MODIFIED GENE-SILENCING RNA AND USES THEREOF

Inventors: Ming-Bo Wang, Canberra (AU);
Peter Waterhouse, Canberra (AU)

Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION (CSIRO), Campbell (AU)

Publication Classification

Int. Cl.
A01K 67/027 (2006.01)
C12Q 1/68 (2006.01)
C12N 15/82 (2006.01)
A61K 31/7105 (2006.01)
C12N 15/11 (2006.01)
C12N 5/04 (2006.01)
C12N 1/19 (2006.01)
C12N 5/08 (2006.01)
A01H 5/00 (2006.01)

U.S. Cl. 800/15; 435/6; 800/286; 514/44;
536/24.5; 435/419; 435/412; 435/416; 435/414;
435/417; 435/411; 435/254; 11; 435/254; 2;
435/366; 435/348; 435/349; 435/353; 435/354;
800/298; 800/13; 800/14; 800/16; 800/17;
800/18; 800/19; 800/20

ABSTRACT

Methods and means for efficiently downregulating the expression of any gene of interest in eukaryotic cells and organisms are provided. To this end, the invention provides modified antisense and sense RNA molecules, chimeric genes encoding such modified antisense or sense RNA molecules and eukaryotic organisms such as plants, animals or fungi, yeast or molds, comprising the modified antisense and/or sense RNA molecules or the encoding chimeric genes.
Figure 2
Figure 4

- pCi (the cloning vector)
- pCi-GFP (target construct)
- sGFP-PSTVd (pMBW493)
- asGFP-PSTVd (pMBW489)
- sGFP-PSTVd (pMBW494)
- asGFP-PSTVd (pMBW491)
- sGFP-CUGrep (pMBW497)
- asGFP-CUGrep (pMBW496)
MODIFIED GENE-SILENCING RNA AND USES THEREOF

FIELD OF THE INVENTION

[0001] The present invention relates to methods for efficiently downregulating the expression of any gene of interest in eukaryotic cells and organisms. To this end, the invention provides modified antisense and sense RNA molecules, chimeric genes encoding such modified antisense or sense RNA molecules, and eukaryotic organisms such as plants, animals or fungi, yeasts or molds, comprising the modified antisense and/or sense RNA molecules and/or the chimeric genes encoding those RNA molecules.

BACKGROUND ART

[0002] Recently, it has been shown that introduction of double-stranded RNA (dsRNA) also called interfering RNA (RNAi), or hairpin RNA is an effective trigger for the induction of gene silencing in a large number of eukaryotic organisms, including animals, fungi, and plants.

[0003] Both the qualitative level of dsRNA-mediated gene silencing (i.e., the level of gene silencing within an organism) and the quantitative level (i.e., the number of organisms showing a significant level of gene silencing within a population) have proven superior to the more conventional antisense RNA or sense RNA mediated gene silencing methods.

[0004] For practical purposes, the production of antisense RNA molecules and chimeric genes encoding such antisense RNA is more straightforward than the production of dsRNA molecules or the genes encoding those RNA molecules. Indeed, the chimeric nucleic acid molecules or the genes encoding those RNA molecules contain large, more or less perfect inverted repeat structures, and such structures tend to hamper the intact maintenance of these nucleic acids in intermediate prokaryotic cloning hosts. The methods and means to increase the efficiency of antisense-RNA mediated gene silencing as hereinafter described provide a solution to this problem as described in the different embodiments and claims.

[0005] U.S. Pat. No. 5,190,131 and EP 0 467 349 A1 describe methods and means to regulate or inhibit gene expression in a cell by incorporating into or associating with the genetic material of the cell a non-native nucleic acid sequence. The sequence is transcribed to produce an mRNA that is complementary to and capable of binding to the mRNA produced by the genetic material of that cell.

[0006] EP 0 223 399 A1 describes methods to effect useful somatic changes in plants by causing the transcription in the plant cells of negative RNA strands which are substantially complementary to a target RNA strand. The target RNA strand can be an mRNA transcript created in gene expression, a viral RNA, or other RNA present in the plant cells. The negative RNA strand is complementary to at least a portion of the target RNA strand to inhibit its activity in vivo.

[0007] EP 0 240 208 describes a method to regulate expression of genes encoded in plant cell genomes, achieved by integration of a gene under the transcriptional control of a promoter which is functional in the host. In this method, the transcribed strand of DNA is complementary to the strand of DNA that is transcribed from the endogenous gene(s) one wishes to regulate.

[0008] WO95/15394 and U.S. Pat. No. 5,908,779 describe a method and construct for regulating gene expression through inhibition by nuclear antisense RNA in mouse cells. The construct comprises a promoter, antisense sequences, and a cis- or trans-ribozyme that generates 5’-ends independently of the polyadenylation machinery and thereby inhibits the transport of the RNA molecule to the cytoplasm.

[0009] WO98/05770 discloses antisense RNA with special secondary structures such as (GC)₉₉-palindrome-(GC)₉₉ or (AT)₉₉-palindrome-(AT)₉₉ or (CG)₉₉-palindrome-(CG)₉₉ and the like.

[0010] WO 01/12824 discloses methods and means for reducing the phenotypic expression of a nucleic acid of interest in eukaryotic cells, particularly in plant cells, by providing aberrant, possibly unpolyadenylated, target-specific RNA to the nucleus of the host cell. Unpolyadenylated target-specific RNA may be provided by transcription of a chimeric gene comprising a promoter, a DNA region encoding the target-specific RNA, a self-splicing ribozyme and a DNA region involved in 3’ end formation and polyadenylation.

[0011] WO 02/10365 provides a method for gene suppression in eukaryotes by transformation with a recombinant construct containing a promoter, at least one antisense and/or sense nucleotide sequence for the gene(s) to be suppressed, wherein the nucleus-to-cytoplasm transport of the transcription products of the construct is inhibited. In one embodiment, nucleus-to-cytoplasm transport is inhibited by the absence of a normal 3’ UTR. The construct can optionally include at least one self-cleaving ribozyme. The construct can also optionally include sense and/or antisense sequences to multiple genes that are to be simultaneously down-regulated using a single promoter. Also disclosed are vectors, plants, animals, seeds, gametes, and embryos containing the recombinant constructs.

[0012] Zhao et al., J. Gen. Virology, 82, 1491-1497 (2001) described the use of a vector based on Potato Virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid (PSTVd).

[0013] WO 02/00894 relates to gene silencing methods wherein the nucleic acid constructs comprise within the transcribed region a DNA sequence that consists of a stretch of T bases in the transcribed strand.

[0014] WO 02/00904 relates to gene silencing methods wherein nucleic acid constructs comprise (or encode) homology to at least one target mRNA expressed by a host, and in the proximity thereto, two complementary RNA regions which are unrelated to any endogenous RNA in the host.

SUMMARY OF THE INVENTION

[0015] In one embodiment of the present invention a method for downregulating the expression of a target gene in cells of a eukaryotic organism is provided, comprising the steps of:

[0016] providing the cells of the eukaryotic organism with a chimeric RNA molecule comprising:

[0017] one or more target gene-specific regions comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene, operably linked to

[0018] a largely double-stranded RNA region comprising a nuclear localization signal from a viroid of the Potato spindle tuber viroid (PSTVd)-type such as Potato Spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grape-
virusoid, Tomato planta macho virusoid, Coconut tinan-gaja virusoid, Tomato apical stunt virusoid, Coconut cadang-cadang virusoid, Citrus exocorticis virusoid, Columnnea latent virusoid, Hop stunt virusoid and Citrus bent leaf virusoid or the largely double-stranded RNA region or a largely double-stranded RNA region comprising at least about 35 repeats of the trinucleotides CUG, CAG, GAC or GUC, such as between about 44 and about 2000 repeats of these trinucleotides; and

identifying those eukaryotic organisms wherein the expression of the target gene is down regulated.

The chimeric RNA molecule may comprise an intron sequence. The viroid may have a genomic nucleotide sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8. The eukaryotic organism may be a plant. Suitable plants include Arabidopsis, alfalfa, barley, bean, corn, cotton, flax, pea, rape, rice, rye, safflower, sorghum, soybean, sunflower, tobacco, wheat, asparagus, beet, broccoli, cabbage, carrot, cauliflower, celery, cucumber, eggplant, lettuce, onion, oilseed rape, pepper, potato, pumpkin, radish, spinach, squash, tomato, zucchini, almond, apple, apricot, banana, blackberry, blueberry, cacao, cherry, coconut, cranberry, date, grape, grapefruit, guava, kiwi, lemon, lime, mango, melon, nectarine, orange, papaya, passion fruit, peach, peanut, pear, pineapple, pistachio, plum, raspberry, strawberry, tangerine, walnut and watermelon. The eukaryotic organism may also be a fungus, yeast or mold, or an animal such as a human, mammal, bird, fish, cattle, goat, pig, sheep, rodent, hamster, mouse, rat, guinea pig, rabbit, primate, nematode, shellfish, prawn, crab, lobster, insect, fruit fly, Coleoptera insect, Diptera insect, Lepidoptera insect, or Homeopteran insect.

It is an object of the present invention to provide a chimeric RNA molecule for downregulating the expression of a target gene in a cell of a eukaryotic organism, comprising one target gene-specific region or multiple target gene-specific regions. A target gene-specific RNA region may comprise a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene. The target gene-specific region may be operably linked to a largely double-stranded RNA region comprising a nuclear localization signal from a virusoid of the Potato spindle tuber virusoid (PSTVd)-type. Exemplary PSTVd-type virusoids include Potato Spindle tuber virusoid, Citrus virusoid species III, Citrus virusoid species IV, Hop latent virusoid, Australian grapevine virusoid, Tomato planta macho virusoid, Coconut tinan-gaja virusoid, Tomato apical stunt virusoid, Coconut cadang-cadang virusoid, Citrus exocorticis virusoid, Columnnea latent virusoid, Hop stunt virusoid and Citrus bent leaf virusoid. Alternatively, the target gene-specific region may be operably linked to a largely double-stranded RNA region comprising at least about 35 repeats of the trinucleotide CUG, CAG, GAC or GUC, such as between about 44 and about 2000 repeats of the trinucleotide CUG, CAG, GAC or GUC, wherein the chimeric RNA molecule, when provided to cells of the eukaryotic organism, downregulates the expression of the target gene.

It is another object of the invention to provide a chimeric DNA molecule for reduction of the expression of a target gene in a cell of a eukaryotic organism, comprising a promoter or promoter region capable of being recognized by RNA polymerases in the cells of the eukaryotic organism; operably linked to a DNA region, which when transcribed yields an RNA molecule, the RNA molecule comprising at least one target gene-specific region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene; operably linked to a largely double-stranded RNA region comprising a nuclear localization signal from a virusoid of the Potato spindle tuber virusoid (PSTVd)-type such as Potato Spindle tuber virusoid, Citrus virusoid species III, Citrus virusoid species IV, Hop latent virusoid, Australian grapevine virusoid, Tomato planta macho virusoid, Coconut tinan-gaja virusoid, Tomato apical stunt virusoid, Coconut cadang-cadang virusoid, Citrus exocorticis virusoid, Columnnea latent virusoid, Hop stunt virusoid and Citrus bent leaf virusoid, or at least about 35 repeats of the trinucleotide CUG, CAG, GAC or GUC, such as between about 44 and about 2000 repeats of the trinucleotide CUG, CAG, GAC or GUC; and optionally further comprising a transcription termination and polyadenylation signal operably linked to the DNA region encoding the RNA molecule, wherein the chimeric DNA molecule, when provided to cells of the eukaryotic organism, reduces the expression of the target gene.

Depending on the eukaryotic host organism, the promoter or promoter region may be a promoter or promoter region that functions in another, a promoter or promoter region that functions in yeast, fungi or molds, or a plant-expressible promoter or promoter region. The promoter may also be a promoter or promoter region recognized by a single subunit bacteriophage RNA polymerase.

The invention also provides cells from a eukaryotic organism comprising chimeric DNA or RNA molecules according to the invention, as well as eukaryotic organisms comprising in their cells a chimeric DNA or RNA molecule according to the invention.

It is yet another object of the invention to provide the use of a chimeric RNA or DNA molecule according to the invention for reduction of the expression of a target gene in a cell of a eukaryotic organism.

The invention also provides a method for making a transgenic eukaryotic organism wherein expression of a target gene in cells of the organism is reduced, the method comprising the steps of: providing a chimeric DNA molecule according to the invention to a cell or cells of the organism to make a transgenic cell or cells; and growing or regenerating a transgenic eukaryotic organism from the transgenic cell or cells.

The invention also provides a method for downregulating the expression of a target gene in cells of a eukaryotic organism, comprising the steps of providing the cells of the eukaryotic organism with a first and second chimeric RNA molecule, wherein the first chimeric RNA molecule comprises an antisense target gene-specific RNA region comprising a...
nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene;

[0039] the second chimeric RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity to the complement of the first chimeric RNA molecule;

[0040] the first and second chimeric RNA are capable of basepairing at least between the about 19 consecutive nucleotides of the first chimeric RNA and the about 19 consecutive nucleotides of the second chimeric RNA; and

[0041] wherein either the first or the second chimeric RNA molecule comprises a largely double-stranded RNA region operably linked to the antisense target-specific RNA region or to the sense target-specific RNA region; and

[0042] identifying those eukaryotic organisms wherein the expression of the target gene is down-regulated.

[0043] Both the first and second chimeric RNA molecule may comprise a largely double-stranded region.

[0044] It is another object of the invention to provide a cell from a eukaryotic organism (and eukaryotic organisms comprising such cells), comprising a first and second chimeric RNA molecule, wherein

[0045] the first chimeric RNA molecule comprises an antisense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene;

[0046] the second chimeric RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity to the complement of the first chimeric RNA molecule;

[0047] the first and second chimeric RNA are capable of basepairing at least between the about 19 consecutive nucleotides of the first chimeric RNA and the about 19 consecutive nucleotides of the second chimeric RNA; and further wherein either the first or the second chimeric RNA molecule comprises a largely double-stranded RNA region operably linked to the antisense target-specific RNA region or to the sense target-specific RNA region.

[0048] The invention further provides chimeric sense RNA molecules or chimeric DNA molecules encoding such chimeric sense RNA molecules for reduction of expression of a target gene in a cell of a eukaryotic organism in cooperation with a chimeric antisense RNA molecule. In this embodiment of the invention, the chimeric sense RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity to the nucleotide of the target gene, operably linked to a largely double-stranded RNA region.

BRIEF DESCRIPTION OF THE FIGURES

[0049] FIG. 1: Schematic representation of the secondary structure predicted using Mfold software for different viroids of the PSTVd-type. A. Potato spindle tuber viroid; B. Austra- lian grapevine viroid; C. Coconut cinchova viroid; D. Tomato plants macho viroid; E. Hop latent viroid of thermo mutant T229; F. Tomato apical stunt viroid.

[0050] FIG. 2: schematic representation of the various chimeric gene constructs used in Examples 1 to 3, below. 35S-P: CaMV 35S promoter; Pdk intron: Flavivira trinervia pyruvate orthophosphate dikinase 2 intron 2; cEin2: cDNA copy of the EIN2 gene from Arabidopsis (gene required for sensitivity to ethylene: Alonso et al. 1999 Science 284: 2148-2152) is the orientation of this region with respect to the promoter is indicated by the arrow; gEin2: genomic copy of the EIN2 gene from Arabidopsis; PSTVd: cDNA copy of the genome of potato spindle tuber viroid; PSTVd*: partial sequence from PSTVd from nucleotide 16 to nucleotide 355, cloned in inverse orientation with regard to the intact copy of PSTVd; OCS 3'-3' region of the octopine synthase gene from Agrobacterium tumefaciens.

[0051] FIG. 3: Phenotype of EIN2-silenced plants when germinating on L-aminocyclopropane-1-carboxylic acid (ACC) A. In the dark; B. under light conditions. Wt: wild-type plants.

[0052] FIG. 4: schematic representation of the various chimeric gene constructs used in Example 4. CMV promoter: cytomegalovirus promoter; SV40 poly(A): transcription termination and polyadenylation region from SV40; PSTVd: potato spindle tuber viroid sequence; CU1grep: sequence comprising 60 repeats of the CUG sequence; humGFP: humanized green fluorescent protein coding region (adapted to the codon usage of human genes; the orientation of this region with respect to the promoter is indicated by the arrow).

[0053] FIG. 5: Schematic representation of the predicted secondary structure of pSTVd in pMBW491 (A: adopting almost the wild-type configuration) and in pMBW489, where a 10 nucleotide deletion results in a structure different from the wild-type configuration.

DETAILED DESCRIPTION OF THE DIFFERENT EMBODIMENTS

[0054] Method and means are described herein for obtaining enhanced antisense RNA-mediated downregulation of gene expression. These methods and means are based upon the unexpected observation that operably linking the target gene-specific RNA sequence to a largely double-stranded RNA region, such as an RNA region comprising the nucleotide sequence of a Potato spindle tuber viroid genome, which in turn comprises a nuclear localization signal for the RNA in which it is embedded, when introduced into cells of a host organism, such as a plant cell, increased both the number of lines wherein gene expression of the target gene was down-regulated, as well as the number of lines wherein gene expression of the target gene was significantly down-regulated or even abolished.

[0055] Thus, in one embodiment of the invention, a method is provided for downregulating the expression of a target gene in cells of a eukaryotic organism, comprising the steps of:

[0056] providing the cells of the eukaryotic organism with a chimeric RNA molecule wherein the RNA molecule comprises

[0057] a target-gene specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene (the “antisense RNA”); operably linked to

[0058] a largely double-stranded RNA region; and

[0059] identifying those eukaryotic organisms wherein the expression of the target gene is down-regulated.

[0060] “Chimeric gene” or “chimeric nucleic acid,” as used herein, refers to any gene or any nucleic acid that is not
normally found in a particular eukaryotic species or, alternatively, any gene in which the promoter is not associated in nature with part or all of the transcribed DNA region or with at least one other regulatory region of the gene.

As used herein, “antisense RNA” refers to RNA molecules that comprise a nucleotide sequence that is largely complementary to part of the nucleotide sequence of the biologically active RNA, usually but not exclusively mRNA, which is transcribed from the target gene.

The expression “target gene” is used herein to refer to any nucleic acid that is present in the eukaryotic cell and that is transcribed into a biologically active RNA. The target gene may be an endogenous gene, a transgene that was introduced through human intervention in the ancestors of the eukaryotic cell, or a gene introduced into the genome of the cell by infectious organisms such as, e.g., Agrobacterium strains or retroviruses. The target gene may also be of viral origin. The stretch of at least about 19 nucleotides may be selected from the promoter region, the 5'UTR, the coding region, or the 3'UTR.

“Gene expression” or “expression of a nucleic acid” is used herein to refer to the process wherein a gene or nucleic acid, when introduced in a suitable host cell, can be transcribed (or replicated) to yield an RNA, and/or translated to yield a polypeptide or protein in that host cell.

As used herein, “downregulation of gene expression” refers to the comparison of the expression of the target gene or nucleic acid of interest in the eukaryotic cell in the presence of the RNA or chimeric genes of the invention, to the expression of target gene or the nucleic acid of interest in the absence of the RNA or chimeric genes of the invention. The expression of the target gene in the presence of the chimeric RNA of the invention should thus be lower than the expression in its absence, so as to be only about 50% or about 25% or about 10% or about 5% of the phenotypic expression in absence of the chimeric RNA. For a number of applications, the expression should be completely inhibited for all practical purposes by the presence of the chimeric RNA or the chimeric gene encoding such an RNA.

As used herein “comprising” is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein. A chimeric gene comprising a DNA region that is functionally or structurally defined may comprise additional DNA regions, etc.

It will thus be clear that the minimum nucleotide sequence of the antisense RNA of about 19 nt of the target-gene specific RNA region may be comprised within a larger RNA molecule, varying in size from about 19 nt to a length equal to the size of the target gene with a varying overall degree of sequence identity.

For the purpose of this invention, the “sequence identity” of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared. A gap, i.e., a position in an alignment where a residue is present in one sequence but not in the other is regarded as a position with non-identical residues. The alignment of the two sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970). Computer-assisted sequence alignment can be conveniently performed using standard software program such as GAP, which is part of the Wisconsin Package Version 10.1 (Genetics Computer Group, Madison, Wis., USA) using the default scoring matrix with a gap creation penalty of 50 and a gap extension penalty of 3. Sequences are indicated to be “essentially similar” when they have a sequence identity of at least about 75%, at least about 80%, at least about 85%, about 90%, about 95%, about 100%, or are identical. It is clear than when RNA sequences are essentially similar or have a certain lesser degree of sequence identity with DNA sequences, thymine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Thus when it is stated in this application that a first sequence of 19 consecutive nucleotides has a 94% sequence identity to a second sequence of 19 nucleotides, this means that at least 18 of the 19 nucleotides of the first sequence are identical to 18 of the 19 nucleotides of the second sequence.

The mentioned antisense nucleotide regions may thus be about 21 nt, 30 nt, 100 nt, 200 nt, 300 nt, 500 nt, 1000 nt, 2000 nt or even about 5000 nt or larger in length, each having an overall sequence identity of about 40% or 50% or 60% or 70% or 80% or 90% or 100%. The longer the sequence, the less stringent is the requirement for the overall sequence identity.

Furthermore, multiple sequences with sequence identity to the complement of the nucleotide sequence of a target gene (multiple target-gene specific RNA regions) may be present within one RNA molecule. In addition, multiple sequences with sequence identity to the complement of the nucleotide sequences of several target genes may be present within one RNA molecule.

“Target gene-specific” is not to be interpreted in the sense that the chimeric nucleic acids according to the invention can only be used for downregulation of that specific target gene. Indeed, when sufficient homology exists between the target gene-specific RNA region and another gene, or when other genes share the same stretch of about 19 nucleotides (such as genes belonging to a “gene family”), expression of those other genes may also be down-regulated.

As used herein, a “largely double-stranded RNA region” refers to an RNA molecule that is capable of folding into a rod-like structure by internal base pairing. The resulting rod-like structure does not comprise any stretch of 19 consecutive nucleotides having 94% sequence identity to the complement of another stretch of 19 other consecutive nucleotides within that RNA molecule, which are capable of forming a double-stranded region when the RNA molecule folds into a rod-like structure. In other words, the largely double-stranded RNA region, upon folding, does not contain a double-stranded RNA region of at least 19 bp with at most one mismatch in those 19 bp, at least not in the energetically most favorable rod-like confirmation. Non-limiting examples of such structures are represented in FIG. 1.

Although not intending to limit the invention to a specific mode of action, it is thought that such largely double stranded RNA regions are involved in the nuclear localization of the antisense RNA molecules with which they are associated. Consequently, the concentration of the antisense RNA molecules in the nucleus may be increased, allowing a more efficient formation of the formation of sequence-specific dsRNA formation by base pairing with the sense RNA corresponding to the antisense RNA.
As used herein, the phrase “Capable of folding into a rod-like structure” with regard to an RNA molecule refers to a secondary structure, which the RNA molecule may adapt by internal base pairing and which has the overall appearance of a long rod. The rod-like structure may comprise branches or bulges (where non-matching nucleotides bulge out from the overall structure) and may be part of a larger secondary structure (which may or may not be rod-like). Examples of RNA molecules capable of folding into a rod-like structure are represented in FIG. 1.

The specific secondary structure adapted will be determined by the free energy of the RNA molecule, and can be predicted for different situations using appropriate software, such as FOLDRNA (Zuker and Stiegler, 1981) or the MFOLD structure prediction package of GCG (Genetics Computing Group; Zuker 1989, Science 244, 48-52).

In one embodiment of the invention, the largely double-stranded RNA region operably linked to the antisense RNA molecule is a nuclear localization signal from a viroid of the PSTVd type, such as PSTVd (Potato spindle tuber viroid), capable of replicating in the nucleus of the host cell or host plant cell.

In one embodiment of the invention, the largely double stranded RNA region comprises the full length sequence of PSTVd strain RG1, which can conveniently be obtained by amplification from a cDNA copy of the RNA genome of the viroid using oligonucleotide primers with the nucleotide sequence

5'-gcgcagatctggagacttacctgttgctc-3' (SEQ ID NO: 1)

and

5'-gccagatctggagaccaacctgttgctc-3', (SEQ ID NO: 2)

such as the nucleotide sequence represented in SEQ ID NO: 3.

It will be understood that for incorporation in an RNA molecule, an additional step is required to convert the DNA molecule in the corresponding RNA molecule. Such a conversion may be achieved by transcription, e.g., in vitro transcription using a single subunit bacteriophage RNA polymerase.

It will also be clear than when RNA sequences are said to be represented in an entry in the Sequence Listing or to be essentially similar or have a certain degree of sequence identity with DNA sequences represented in the Sequence Listing, reference is made to RNA sequences corresponding to the sequences in the entries, except that thymine (T) in the DNA sequence is replaced by uracil (U) in the RNA sequence. Whether the reference is to RNA or DNA sequence will be immediately apparent by the context.

Similarly largely double-stranded RNA structures are also found within the genomes of other nucleic-replicating viroids of the PSTVd type (or group B according to the classification by Bussière et al., 1996), and these RNA sequences may be used to similar effect. Other nucleic-replicating viroids of the PSTVd group include Citrus viroid species III, Citrus viroid species IV, Coleus viroid, Hop latent viroid (SEQ ID NO: 7), Australian grapevine viroid (SEQ ID NO: 4), Tomato planta macho viroid (SEQ ID NO: 6), Coconut tinanagea viroid (SEQ ID NO: 5), Tomato apical stunt viroid (SEQ ID NO: 8), Coconut cadang-cadang viroid, Citrus exocortis viroid, Columnea latent viroid, Hop stunt viroid, and Citrus bent leaf viroid. These viroids are also characterized by the absence of self-splicing activity, which becomes apparent by the absence of catalytic motifs such as the hammerhead motif (Bussière et al. Nuc. Acids Res. 24, 1793-1798, 1996). The longest stretch of perfect dsRNA structures among all the PSTVd-type of viroids is 11 base pairs in size. The mismatches are usually quite evenly distributed.

Nucleotide sequences for these viroids have been compiled in a database accessible via the worldwide web (http://www.callisto.si.usherb.ca/~jperrra or http://nt.ars-grin.gov/subviral/) and include the following nucleotide sequences:

PSTVd

Potato spindle tuber viroid (PSTVd) (Accession numbers: J02287(gb), M16826(gb), V01465(emb); 333351(gi), 333352(gi) and 62283(gi)); PSTVd.2 (Accession numbers: M38345(gb), 333354(gi)); PSTVd.3 (Accession numbers: M36163(gb), 333356(gi)); PSTVd.4 (Accession numbers: M14814(gb), 333357(gi)); PSTVd.5 (strain: STN combissouri); PSTVd.6 (strain: tomato cv. Rutgers, isolate: KF440-2) (Accession numbers: X58388(emb), 61366(gi)); PSTVd.7 (strain: potato cv. Kansas, isolate: 9576 (emb), 61366(gi)); PSTVd.8 (strain: Burdock) (Accession numbers: M88678(gb), 333360(gi)); PSTVd.9 (strain Wisconsin) (Accession numbers: M88678(gb), 333360(gi)); PSTVd.10 (strain: PSTVd-Naaldwijk) (Accession numbers: X17268(emb), 60649(gi)); PSTVd.11 (strain: strain D, N-AW isolate) (Accession numbers: X52036(emb), 61365(gi)); PSTVd.12 (strain: PSTVd-1, isolate) (Accession numbers: X52037(emb), 61367(gi)); PSTVd.13 (intermediate-severe strain, isolate) (Accession numbers: X52039(emb), 61369(gi)); PSTVd.14 (intermediate-severe strain, isolate) (Accession numbers: X52038(emb), 61368(gi)); PSTVd.15 (intermediate-strain, isolate) (Accession numbers: F88-1S isolate) as published in Herold, T et al., Plant Mol. Biol. 19, 329-333 (1992); PSTVd.16 (strain F88 and S88) (Accession numbers: X52040(emb), 61370(gi)); PSTVd.17 (individual isolate kf 5) (Accession numbers: M93685(gb), 333355(gi)); PSTVd.18 (isolate KF5) (Accession numbers: S54937(gb), 625593(gi)); PSTVd.19 (strain S-XII, variety S) (Accession numbers: X76845(emb), 639994(gi)); PSTVd.20 (strain S-XIII, variety S) (Accession numbers: X76846(emb), 639995(gi)); PSTVd.21 (strain M) (Accession numbers: X76844(emb), 639992(gi)); PSTVd.22 (strain 1-818, variety 14) (Accession numbers: X76848(emb), 639991(gi)); PSTVd.23 (strain 1-818, variety 13) (Accession numbers: X76847(emb), 639990(gi)); PSTVd.24 (strain 1-818, variety 12) (Accession numbers: Z34272(emb), 499191(gi)); PSTVd.25 (strain PQ2B) (Accession numbers: U29906(gi), 75553(gi)); PSTVd.26 (strain QF A) (Accession numbers: U23059(gi), 755555(gi)); PSTVd.27 (strain RG 1) (Accession numbers: U23058(gi), 755584(gi)); PSTVd.28 (Accession numbers: U51385(gb), 1272375(gi)); PSTVd.29 (Potato spindle tuber viroid) (Accession numbers: X97387(emb), 1769438(gi)); PSTVd.30 (strain S77-V1-24) (Accession numbers: Y09382(emb), 2154945(gi)); PSTVd.31 (strain 1-818, variety 19) (Accession numbers: Y09383(emb), 2154944(gi)); PSTVd.32 (strain S-XIII) (Accession numbers: Y09385(gi), 2154943(gi)); PSTVd.33 (strain S77-1-8) (Accession numbers: Y09381(emb), 2154942(gi)); PSTVd.34 (strain PSTV M-V1-15) (Accession numbers: Y09377(emb), 2154941(gi)); PSTVd.35 (strain PSTV M-I-40) (Accession numbers: Y09576(emb), 2154940(gi)); PSTVd.36 (strain PSTV M-I-17) (Accession numbers: Y09575(emb), 2154939(gi)); PSTVd.37
(strain PSTV M-I-10) (Accession numbers: Y09574(emb), 2154938(gi)); PSTVd.38 (variant 14-I-142) (Accession numbers: Y09889(emb), 2154937(gi)); PSTVd.39 (variant PSTVd 12-VI-27) (Accession numbers: Y09887(emb), 2154935(gi)); PSTVd.40 (variant PSTVd 12-VI-25) (Accession numbers: Y09887(emb), 2154935(gi)); PSTVd.41 (variant PSTVd 12-VI-16) (Accession numbers: Y09886(emb), 2154934(gi)); PSTVd.42 (variant PSTVd 14-I-10) (Accession numbers: Y06890(emb), 2154933(gi)); PSTVd.43 (variant PSTVd 12-I-14) (Accession numbers: Y06891(emb), 2154932(gi)); PSTVd.44 (isolate K7) (Accession numbers: AJ007489(emb), 3367737(gi)); and PSTVd.45 (Accession numbers: AF369530, 14133876(gi)).

[0082] Group III citrus viroid (CvD-III) (CvD-III.I (Accession numbers: S76452(gb), 913161(gi)); CvD-III.II (Australia New South Wales isolate) (Accession numbers: S75465(gb) and S76454(gb), 914078(gi) and 913162(gi)); CvD-III.III (Accession numbers: AF123879, GI:7105753; CvD-III.IV (Accession numbers: AF123878, GI:7105752); CvD-III.V (Accession numbers: AF123877, GI:7105751); CvD-III.VI (Accession numbers: AF123876, GI:7105750); CvD-III.VII (Accession numbers: AF123875, GI:7105749); CvD-III.VIII (Accession numbers: AF123874, GI:7105748); CvD-III.IX (Accession numbers: AF123873, GI:7105747); CvD-III.X (Accession numbers: AF123872, GI:7105746); CvD-III.XI (Accession numbers: AF123871, GI:7105745); CvD-III.XII (Accession numbers: AF123870, GI:7105744); CvD-III.XIII (Accession numbers: AF123869, GI:7105743); CvD-III.XIV (Accession numbers: AF123868, GI:7105742); CvD-III.XV (Accession numbers: AF123867, GI:7105471); CvD-III.XVI (Accession numbers: AF123866, GI:7105470); CvD-III.XVII (Accession numbers: AF123865, GI:7105739); CvD-III.XVIII (Accession numbers: AF123864, GI:7105738); CvD-III.XIX (Accession numbers: AF123863, GI:7105737); CvD-III.XX (Accession numbers: AF123860, GI:7105736); CvD-III.XXI (Accession numbers: AF123859, GI:7105735); CvD-III.XXII (Accession numbers: AF123858, GI:7105734); CvD-III.XXIII (Accession numbers: AB054619, GI:13537479); CvD-III.XXIV (Accession numbers: AB054620, GI:13537480); CvD-III.XXV (Accession numbers: AB054621, GI:13537481); CvD-III.XXVI (Accession numbers: AB054622, GI:13537482); CvD-III.XXVII (Accession numbers: AB054623, GI:13537483); CvD-III.XXVIII (Accession numbers: AB054624, GI:13537484); CvD-III.XXIX (Accession numbers: AB054625, GI:13537485); CvD-III.XXX (Accession numbers: AB054626, GI:13537486); CvD-III.XXXI (Accession numbers: AB054627, GI:13537487); CvD-III.XXXII (Accession numbers: AB054628, GI:13537488); CvD-III.XXXIII (Accession numbers: AB054629, GI:13537489); CvD-III.XXXIV (Accession numbers: AB054630, GI:13537490); CvD-III.XXXV (Accession numbers: AB054631, GI:13537491); CvD-III.XXXVI (Accession numbers: AB054632, GI:13537492); CvD-III.XXXVII (Accession numbers: AF141552, GI:15811643); CvD-III.XXXVIII (Accession numbers: AF141553, GI:15811644); CvD-III.XXXIX (Accession numbers: AF141554, GI:15788894); and CvD-III.XL (Accession number: AF434680)).

[0083] Citrus viroid IV (CvD IV) (CvDIV.I (Accession numbers: X14638(emb), 59042(gi)).

[0084] Coleus blumei-1 viroid (CvD-1) (CvD-1 (Accession numbers: M34917(gb), 323305(gi)); CvD-2 (strain A) (Accession numbers: K00964(gb), 323303(gi)); CvD-3 (strain de25) (Accession numbers: K00965(gb), 323304(gi)); CvD-4 (strain de26) (Accession numbers: K00966(gb), 323304(gi)).

[0094] Columnea latent viroid (CLVd) (CLVd.1 (Accession numbers: X15663(emb), 58888(gi)); CLVd.2 (CLVd-N, individual isolate Neamatanthus) (Accession numbers: M93645(gb), 523356(gi)); and CLVd.3(Columnea latent viroid-B stem-loop RNA) (Accession numbers: X95292(emb), 1770174(gi))).

[0095] Citrus bent leaf viroid (CBLVd) (CBLVd.1 (CBLVd.1b) (Accession numbers: M74065(gb), 323413(gi)); CBLVd.2 (strain CBLVd-225) (Accession numbers: U21125(gb), 710359(gi)); CBLVd.3 (viroid Ia genomic RNA, isolate: Jp) (Accession numbers: AB006734(dbj), 2815403(gi)); CBLVd.4 (viroid lb genomic RNA, isolate: P2) (Accession numbers: AB006735(dbj), 2815401(gi)); CBLVd.5 (viroid Ia genomic RNA) (Accession numbers: AB006736(dbj), 2815402(gi)); CBLVd.6 (Citrus Viroid Ia clone 17) (Accession numbers: AF040721(gb), 3273626(gi)); CBLVd.7 (Citrus Viroid Ia clone 18) (Accession numbers: AF040722(gb), 3273627(gi)); CBLVd.8 (Citrus bent leaf viroid isolate 201-1-1 Uy, complete genome.) (Accession: AF428052); CBLVd.9 (Citrus bent leaf viroid isolate 201-1-2 Uy, complete genome.) (Accession: AF428053); CBLVd.10 (Citrus bent leaf viroid isolate 201-1-5 Uy, complete genome.) (Accession: AF428054); CBLVd.11 (Citrus bent leaf viroid isolate 205-1-1 Uy, complete genome.) (Accession: AF428055); CBLVd.12 (Citrus bent leaf viroid isolate 205-1-3 Uy, complete genome.) (Accession: AF428056); and CBLVd.13 (Citrus bent leaf viroid isolate 205-1-4 Uy, complete genome.) (Accession: AF428057)).
cit18 (cachexia isolate X-704-2) (Accession numbers: AF213489(gb), 12082508(gi)); HSVd.cit19 (cachexia isolate X-704-3) (Accession numbers: AF213490(gb), 12082509(gi)); HSVd.cit20 (cachexia isolate X-707-M) (Accession numbers: AF213491 (gb), 12082510(gi)); HSVd.cit21 (cachexia isolate X-707-1) (Accession numbers: AF213492(gb), 12082511 (gi)); HSVd.cit22 (cachexia isolate X-707-2) (Accession numbers: AF213493(gb), 12082512(gi)); HSVd.cit23 (cachexia isolate X-707-3) (Accession numbers: AF213494(gb), 12082513(gi)); HSVd.cit24 (cachexia isolate X-707-4) (Accession numbers: AF213495(gb), 12082514(gi)); HSVd.cit25 (cachexia isolate X-712-M) (Accession numbers: AF213496(gb), 12082515(gi)); HSVd.cit26 (cachexia isolate X-712-I) (Accession numbers: AF213497(gb), 12082516(gi)); HSVd.cit27 (cachexia isolate X-712-2) (Accession numbers: AF213498(gb), 12082517(gi)); HSVd.cit28 (cachexia isolate X-712-3) (Accession numbers: AF213499(gb), 12082518(gi)); HSVd.cit29 (cachexia isolate X-715-M) (Accession numbers: AF213500(gb), 12082519(gi)); HSVd.cit30 (cachexia isolate X-715-1) (Accession numbers: AF213501(gb), 12082520(gi)); HSVd.cit31 (cachexia isolate X-715-2) (Accession numbers: AF213502(gb), 12082521(gi)); HSVd.cit32 (CVd-lla (117)) (Accession numbers: AF213503(gb), 12082522(gi)); HSVd.cit33 (isolate CVd-IIa 17uy) (Accession numbers: AF353276(gb), 1399164(gi)); HSVd.cit34 (isolate CVd-IIa 11uy) (Accession numbers: AF353927(gb), 13991645(gi)); HSVd.cit35 (isolate CVd-IIa 10uy) (Accession numbers: AF353927(gb), 13991642(gi)); HSVd.cit36 (isolate CVd-Ib 10uy) (Accession numbers: AF353927(gb), 13991641(gi)); HSVd.cit37 (isolate CVd-Ib 5uy) (Accession numbers: AF353927(gb), 13991640(gi)); HSVd.cit38 (isolate CVd-Ib 3uy) (Accession numbers: AF353927(gb), 13991639(gi)); HSVd.cit39 (isolate CVd-Ib 2uy) (Accession numbers: AF353927(gb), 13991638(gi)); HSVd.cit40 (isolate CVd-IIa (Accession numbers: X60519(emb), 2367973(gi)); HSVd.cit41 (isolate CVd-IIb (Accession numbers: X60519(emb), 2367977 (gi)); HSVd.cit42 (isolate CVd-II-42-1) (Accession numbers: AF416554, 158116545(gi)); HSVd.cit43 (isolate CVd-IIa-54-2-1) (Accession numbers: AF416555, 158116546(gi)); HSVd.cit44 (isolate CVd-IIa 205-2-4) (Accession numbers: AF416556, 158116547(gi)); HSVd.cit45 (isolate CVd-IIa 205-2-1) (Accession numbers: AF416557, 158116548(gi)); HSVd.p1 (HSV-peak (A9)) (Accession numbers: D17365 (db), 221254(gi)); HSVd.p2 (HSV-plum and HSV-peak (AF) isolate) (Accession numbers: D17364 (db), 221255(gi)); HSVd.p5 (cv. Jermomino J-16 from Spain) (Accession numbers: Y09352(emb), 1684696(gi)); HSVd.apr1 (cv. Rouge de Roussillon from France) (Accession numbers: Y08438(emb), 2462494(gi)); HSVd.apr2 (unknown cultivar from Spain) (Accession numbers: Y08437 (emb), 2462495 (gi)); HSVd.apr3 (cv. Bulida from Spain) (Accession numbers: Y09345(emb), 1684690(gi)); HSVd.apr4 (cv. Bulida from Spain) (Accession numbers: Y09346(emb), 1684691 (gi)); HSVd.apr5 (cv. Bula da Arques from Spain) (Accession numbers: Y09344(emb), 1684692(gi)); HSVd.apr6 (cv. Pepito del Rubio from Spain) (Accession numbers: Y09347 (emb), 1684697(gi)); HSVd.apr7 (cv. Pepito del Rubio from Spain) (Accession numbers: Y09348(emb), 1684699(gi)); HSVd.apr8 (cv. Pepito del Rubio from Spain) (Accession numbers: Y09349 (emb), 684698(gi)); HSVd.apr9 (cv. Canino from Morocco) (Accession numbers: AJ297825(gb), 10644963(gi)); HSVd.apr10 (cv. Canino from Morocco) (Accession numbers: AJ297826(gb), 10644964(gi)); HSVd.apr11 (cv. Canino from Morocco) (Accession numbers: AJ297827(gb), 10449465(gi)); HSVd.apr12 (cv. Canino from Morocco) (Accession numbers: AJ297828(gb), 10449466(gi)); HSVd.apr13 (cv. Canino from Morocco) (Accession numbers: AJ297829(gb), 10449467(gi)); HSVd.apr14 (cv. Septik from Turkey) (Accession numbers: AJ297830(gb), 10449468(gi)); HSVd.apr15 (cv. Monocotis blyo from Cyprus) (Accession numbers: AJ297831 (gb), 10449469(gi)); HSVd.apr16 (cv. Canino from Morocco) (Accession numbers: AJ297832(gb), 10449470(gi)); HSVd.apr17 (cv. Canino from Cyprus) (Accession numbers: AJ297833(gb), 10449471(gi)); HSVd.apr18 (cv. Bocconia spinosa from Cyprus) (Accession numbers: AJ297834(gb), 10449472(gi)); HSVd.apr19 (cv. Palumella from Cyprus) (Accession numbers: AJ297835(gb), 10449473(gi)); HSVd.apr20 (cv. Palumella from Cyprus) (Accession numbers: AJ297836(gb), 10449474(gi)); HSVd.apr21 (cv. Citrus viroid 11, complete genome (Accession numbers: AF343679(gi)). All the above nucleotide sequences are herein incorporated by reference. [0097] As will be immediately apparent from the above list, viroids are extremely prone to sequence variations. Such natural variants can be used for the currently described methods and means, particularly if they retain the capacity to be transported to the nucleus, together with any operably linked RNA. [0098] In addition to the natural variations in viroid nucleotide sequences, variants may be obtained by substitution, deletion or addition of particular nucleotides. Such variants may be suitable for the currently described methods and means, particularly if they retain the capacity to be transported to the nucleus, together with any operably linked RNA. [0099] Further, smaller RNA regions derived from the viroid nucleotide sequences, and variants thereof, that are capable of being transported to the nucleus together with any operably linked RNA, can be used for the current invention. [0100] The capacity of both smaller regions and variants derived from viroid nucleotide sequences to be transported to the nucleus of a host cell, such as a plant cell, can be determined using the assay described by Zhou et al. 2001, J. Gen Virology, 82, 1491-1497. Briefly, the assay comprises introducing a marker-coding region, such as GFP, comprising an intervening sequence in the coding region of the marker gene, into the host cell by means of a viral RNA vector that replicates in the cytoplasm of the host cell. When a functional nuclear localization signal is introduced (conveniently inserted in the intervening sequence), the viral RNA vector comprising the marker gene is imported into the nucleus, where the intron can be removed and the spliced RNA returned to the cytoplasm. The spliced RNA can be detected
by the translation into GFP protein, as well as by RNA analysis methods (e.g., RT-PCR) to confirm the absence of the intron from the spliced RNA molecules.

[0101] The human hepatitis delta RNA may also be used according to the invention. The human hepatitis delta RNA is a 1700 nt single-stranded circular RNA, which is very similar to the viroids of the PSTVd-type in that it is localized in the nucleus, forming rod-like structures.

[0102] In another embodiment of the invention, the largely double-stranded RNA region comprises CUG, CAG, GAC or GUC repeats. As used herein, “trinucleotide repeats or CUG, CAG, GAC or GUC repeats” are RNA molecules comprising a number of CUG, CAG, GAC or GUC trinucleotides. The CUG trinucleotides may be repeated without intervening sequences, although short regions of 1 to about 20 to about 30 nucleotides not consisting of CUG trinucleotides may be present occasionally between the CUG trinucleotide repeats. The CUG repeats may comprise a number of CUG trinucleotide exceeding about 35 copies or about 44 copies, such as any number between about 50 and about 2000 copies. In particular embodiments, the copy number of the CUG triplet will not exceed about 100 or about 150. It is expected that CAG, GAC or GUC repeats may be used to similar effect.

[0103] Without intending to limit the invention to a particular mode of action, it is taught that such trinucleotide repeats form rod-like structures (by imperfect base-pairing) which function as nuclear retention signal, possibly by sterically blocking RNA export through nuclear pores, as well as activate double stranded RNA dependent protein kinase PKR (Davis et al., 1997 Proc. Natl. Acad. Sci. 94, 7388-7393; Tian et al. 2000 RNA 6, 79-87; Koch and Lefert 1998 J. Theor. Biol. 192, 505-514).

[0104] CUG repeats may be particularly suited to increase the efficiency of antisense-mediated gene silencing when the RNA molecules comprising such CUG repeats can be delivered to the nucleus of the host cell, e.g., through transcription of a chimeric gene encoding such RNA, as hereinbefore described.

[0105] Although the largely double-stranded RNA region such as the PSTVd-type viroid derived nuclear location signals or the trinucleotide repeats can be located at the 3’ end of the target specific antisense RNA, it is expected that the location of the largely double-stranded RNA is of little importance. Hence, largely double-stranded RNA regions may also be located at the 5’ end of the RNA molecule, at the 3’ end, or even in the middle of such an RNA molecule.

[0106] It was also unexpectedly found that the efficiency of antisense-mediated downregulation of gene expression, wherein the antisense RNA was operably linked to a largely double-stranded RNA region, could be further enhanced by inclusion of an intron sequence in the RNA molecule provided to the host cell.

[0107] Again, the location of the intron in the RNA molecule with respect to both the target specific nucleotide sequence as well as the largely double-stranded RNA region is expected to have little effect on efficiency. In fact, it is expected that the largely double-stranded RNA region may be located within the intron sequence.

[0108] As used herein, an “intron” or intervening sequence is used to refer to a DNA region within a larger transcribed DNA region, which is transcribed in the nucleus to yield an RNA region which is part of a larger RNA; however, the RNA region corresponding to intron sequence is removed from the larger RNA when transferred to the cytoplasm. The corresponding RNA is also referred to as an intron or intervening sequence. Intron sequences are flanked by splice sites, and synthetic introns may be made by joining appropriate splice sites to any sequence having an appropriate branching point. Introns or intervening sequences that are located in 5’UTR, coding region, or 3’UTR may be used.

[0109] Intervening sequences or introns may be capable of being spliced in the eukaryotic host cells, although the presence of intervening sequences which can no longer be spliced, e.g., because their guide sequences have been altered or mutated, may even further increase the efficiency of the chimeric RNA molecules to downregulate the expression of a target gene. In one embodiment of the invention, the intron is essentially identical in sequence to the *F. trinervia* pyruvate orthophosphate dikinase 2 intron 2 (*pkd2* intron) and may comprise the sequence of SEQ ID No. 9. Other examples of plant introns include the catalase intron from Castor bean (Accession number AF274974), the Delta12 desaturase (Fad2) intron from cotton (Accession number AF331163), the Delta 12 desaturase (Fad2) intron from *Arabidopsis* (Accession number ACO69473), the Ubiquitin intron from maize (Accession number S94464), and the actin intron from rice. Other examples of mammalian virus introns include the intron from SV40. Examples of fungal introns include the intron from the triose phosphate isomerase gene from *Aspergillus*.

[0110] It was also unexpectedly found that further introduction of a sense RNA molecule with a target gene-specific region corresponding to the target gene-specific region of the antisense RNA molecule already present in the cell of the eukaryotic organism, further increased the efficiency of the downregulation of the expression of the target gene. The same efficiency of downregulation of the expression of a target gene could be observed if the sense RNA molecule was provided with a largely double-stranded RNA region as herein described. Sense RNA was provided to a cell of a eukaryotic host organism simultaneously with antisense RNA capable of forming a double-stranded region by basepairing with the sense RNA.

[0111] Thus, in another embodiment of the invention a method is provided for downregulating the expression of a target gene in cells of a eukaryotic organisms, comprising the steps of

[0112] providing the cells of the eukaryotic organism with a first and second chimeric RNA molecule, wherein

[0113] the first chimeric RNA molecule comprises an antisense target-gene specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene;

[0114] the second chimeric RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity to the complement of the first chimeric RNA molecule;

[0115] the first and second chimeric RNA are capable of basepairing at least between the about 19 consecutive nucleotides of the first chimeric RNA and the about 19 consecutive nucleotides of the second chimeric RNA; and

[0116] either the first or the second chimeric RNA molecule comprises a largely double-stranded RNA region
operably linked to the antisense target-specific RNA region or to the sense target-specific RNA region; and

identifying those eukaryotic organisms wherein the expression of the target gene is down-regulated.

In another specific embodiment, both the first and second chimeric RNA molecule comprise a largely double-stranded region. Specific embodiments of the largely double-stranded RNA region and target gene-specific antisense RNA are described elsewhere herein. Specific embodiments for the sense RNA region are similar to the specific embodiments for the antisense RNA region.

Conveniently, the antisense or sense RNA molecules comprising a largely double-stranded RNA region as herein described may be provided to the eukaryotic host cell or organism by introduction and possible integration of a chimeric gene, transcription of which yields such an antisense or sense RNA. Thus the invention is also aimed at providing such a chimeric gene comprising

a promoter or a promoter region which is capable of being expressed in cells of the eukaryotic organism of interest; operably linked to a DNA region which when transcribed yields an antisense RNA molecule comprising

a target gene-specific antisense nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene; or

a target gene-specific sense nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with about 19 consecutive nucleotides from the nucleotide sequence of the target gene; operably linked to a largely double-stranded RNA region as herein described; and optionally

a transcription termination and polyadenylation region suitable for the eukaryotic cell of choice.

As used herein, the term “promoter” denotes any DNA that is recognized and bound (directly or indirectly) by a RNA-dependent RNA polymerase during initiation of transcription. A promoter includes the transcription initiation site, and binding sites for transcription initiation factors and RNA polymerase, and can comprise various other sites (e.g., enhancers), at which gene expression regulatory proteins may bind.

The term “regulatory region”, as used herein, means any DNA that is involved in driving transcription and controlling (i.e., regulating) the timing and level of transcription of a given DNA sequence, such as a DNA coding for a protein or polypeptide. For example, a “5′ regulatory region” (or “promoter region”) is a DNA sequence located upstream (i.e., 5′) of a coding sequence and which comprises the promoter and the 5′-untranslated leader sequence. A “3′ regulatory region” is a DNA sequence located downstream (i.e., 3′) of the coding sequence and which comprises suitable transcription termination (and/or regulation) signals, including one or more polyadenylation signals.

In one embodiment of the invention, the promoter is a constitutive promoter. In another embodiment of the invention, the promoter activity is enhanced by external or internal stimuli (inducible promoter), such as but not limited to hormones, chemical compounds, mechanical impulses, and abiotic or biotic stress conditions. The activity of the promoter may also be regulated in a temporal or spatial manner (e.g., tissue-specific promoters; developmentally regulated promoters).

In a particular embodiment of the invention, the promoter is a plant-expressible promoter. As used herein, the term “plant-expressible promoter” means a DNA sequence that is capable of initiating and/or controlling transcription in a plant cell. This includes not only promoters of plant origin, but also any promoter of non-plant origin that is capable of directing transcription in a plant cell. Examples of such non-plant promoters include certain promoters of viral or bacterial origin, such as the CaMV 35S (Hupster et al., 1988), the subterranean clover virus promoter No 4 or No 7 (WO9606852), or T-DNA gene promoters. Also included within the definition of plant-expressible promoters are tissue-specific or organ-specific promoters. Exemplary tissue- or organ-specific promoters include seed-specific promoters (e.g., WO89/03887), organ-prominoid specific promoters (An et al., 1996), stem-specific promoters (Keller et al., 1988), leaf-specific promoters (Hudspeth et al., 1989), mesophyll-specific promoters (such as the light-inducible Rubisco promoters), root-specific promoters (Keller et al., 1989), tuber-specific promoters (Kos et al., 1989), vascular tissue-specific promotors (Peleman et al., 1989), stamen-selective promotors (WO 89/10596, WO 92/1956), dehiscence zone specific promotors (WO 97/13865), and the like.

In another embodiment of the invention, the promoter is a fungus-expressible promoter. As used herein, the term “fungus-expressible promoter” means a DNA sequence that is capable of initiating and/or controlling transcription in a fungal cell. Exemplary fungus-expressible promoters include the A. nidulans trpC gene promoter, or the inducible S. cerevisiae GAL4 promoter.

In yet another embodiment of the invention, the promoter is an animal-expressible promoter. As used herein, the term “animal-expressible promoter” means a DNA sequence that is capable of initiating and/or controlling transcription in an animal cell. Exemplary animal-expressible promoters include SV40 late and early promotors, cytomegalovirus CMV-IE promotors, RSV-LTR promotors, SCV promotors, SCBV promotor, and the like.

The antisense or sense RNA molecules useful for the invention may also be produced by in vitro transcription. To this end, the promoter of the chimeric genes according to the invention may be a promotors recognized by a bacteria-phage single subunit RNA polymerase, such as the promotors recognized by bacteriophage single subunit RNA polymerase such as the RNA polymerases derived from the E. coli phages T7, T3, 5l, 5ll, W311, H1, Y, A1, 122, cro, C21, C22, and C2; Pseudomonas putida phage gh-1; Salmonella typhimurium phage SP6; Serratia marcescens phage IV; Citrobrochus phage Vlil; and Klebsiella phage No. 11 (Hausmann, Current Topics in Microbiology and Immunology, 75: 77-109 (1976); Korsten et al., J. Gen Virol. 43: 57-75 (1975); Dunn et al., Nature New Biology, 230: 94-96 (1971); Towe et al., J. Biol. Chem. 250:1732-1733 (1975); Butler and Chamberlin, J. Biol. Chem., 252: 5772-5778 (1982)). Examples of such promotors are a T3 RNA polymerase promoter specific promoter and a T7 RNA polymerase specific promotor, respectively. A T3 promotor to be used as a first promotor in the CIG can be any promotors of the T3 genes as described by McGraw et al, Nucl. Acid. Res. 13: 6773-6766 (1985). Alternatively, a T3 promotor may be a T7 promotor which is modified at nucleotide positions -10, -11 and -12 in order to be recognized by T3 RNA polymerase (Klement et al., J. Mol. Biol. 215, 21-29 (1990)). A suitable T3 promotor is the promotor having the “consensus” sequence for a T3 promotor, as described in U.S. Pat. No. 5,037,745. A T7 promotor which may be used according to the invention, in combination with T7 RNA polymerase, may comprise a promotors of one of the T7 genes as described by Dunn and Studier, J. Mol. Biol. 166: 477-535 (1983).
suitable T7 promoter may comprise the “consensus” sequence for a T7 promoter, as described by Dunn and Studier (supra).

[0130] The antisense or sense RNA can be produced in large amounts by contacting the acceptor vector DNA with the appropriate bacteriophage single subunit RNA polymerase under conditions well known to the skilled artisan. The so-produced antisense or sense RNA can then be used for delivery into cells prone to gene silencing, such as plant cells, fungal cells or animal cells. Antisense RNA may be introduced in animal cells via liposomes or other transfection agents (e.g., Clonfect reaction reagent, or the CalPhos Mammalian transfection kit from ClonTech) and could be used for methods of treatment of animals, including humans, by silencing the appropriate target genes. Antisense or sense RNA can be introduced into the cell by whatever means is deemed suitable by the skilled artisan. For example, the antisenese or sense RNA may be administered by microinjection, bombardment by particles covered by the antisense or sense RNA, soaking the cell or organisms in a solution of the antisense or sense RNA, electroporation of cell membranes in the presence of antisense or sense RNA, liposome-mediated delivery of antisense or sense RNA and transfection mediated by chemicals such as calcium phosphate, viral infection, transformation and the like.

[0131] The antisense or sense RNA may be introduced along with components that enhance RNA uptake by the cell, stabilize the annealed strands, or otherwise increase inhibition of the target gene. In the case of a whole animal, the antisense or sense RNA is conveniently introduced by injection or perfusion into a cavity or interstitial space of an organism, or systemically via oral, topical, parenteral (including subcutaneous, intramuscular or intravenous administration), vaginal, rectal, intranasal, ophthalmic, or intraperitoneal administration. The antisense or sense RNA may also be administered via an implantable extended release device.

[0132] The chimeric genes according to the invention capable of producing antisense or sense RNA may also be equipped with any prokaryotic promoter suitable for expression of the antisense or sense RNA in a particular prokaryotic host. The prokaryotic host can be used as a source of antisense and/or sense RNA, e.g. by feeding it to an animal, such as a nematode or an insect, in which the silencing of the target gene is envisioned and monitored by reduction of the expression of the reporter gene. In this case, it will be clear that the target gene and reporter genes should be genes present in the cells of the target eukaryotic organism, and not in the prokaryotic host organism.

[0133] The antisense and sense RNA according to the invention, or chimeric genes capable of yielding such antisense or sense RNA molecules, can thus be produced in one host organism, administered to another (target) organism (e.g., through feeding, orally administering, as a naked DNA or RNA molecule or encapsulated in a liposome, in a virus particle or attenuated virus particle, or on an inert particle, etc.) and effect reduction of gene expression in the target gene or genes in another organism.

[0134] Suitable transcription termination and polyadenylation region include but are not limited to the SV40 polyadenylation signal, the HSV TK polyadenylation signal, the nopaline synthase gene terminator of Agrobacterium tumefaciens, the terminator of the CaMV 35S transcript, terminators of the subterranean stunt clover virus, the terminator of the Aspergillus niger trpC gene and the like.

[0135] The invention also supplies methods for providing antisense and sense RNA molecules, which may be obtained by transcription from these chimeric genes, and which are useful for the methods according to the invention.

[0136] The present invention also provides eukaryotic cells, and eukaryotic organisms, containing the antisense RNA molecules of the invention, or containing the chimeric genes capable of producing the antisense RNA molecules of the invention. In one embodiment, the chimeric genes are stably integrated in the genome of the cells of the eukaryotic organism.

[0137] The present invention also provides eukaryotic cells and eukaryotic organisms simultaneously containing sense and antisense RNA molecules of which one or both of the RNA molecules comprise a largely double-stranded RNA region, or chimeric genes encoding such RNA molecules.

[0138] In another embodiment, the chimeric genes of the invention may be provided on a DNA molecule capable of autonomously replicating in the cells of the eukaryotic organism, such as, e.g., viral vectors. The chimeric gene or the antisense or sense RNA may also be provided transiently to the cells of the eukaryotic organism.

[0139] Introduction of chimeric genes (or RNA molecules) into the host cell can be accomplished by a variety of methods including calcium phosphate transfection, DEAE-dextran mediated transfection, electroporation, microprojectile bombardment, microinjection into nuclei and the like.

[0140] Methods for the introduction of chimeric genes into plants are well known in the art and include Agrobacterium-mediated transformation, particle gun delivery, microinjection, electroporation of intact cells, polyethylene glycol-mediated protoplast transformation, electroporation of protoplasts, liposome-mediated transformation, silicon-whiskers mediated transformation, etc. The transformed cells obtained in this way may then be regenerated into mature fertile plants.

[0142] Gametes, seeds, embryos, progeny, and hybrids of plants or animals comprising the chimeric genes of the present invention, which are produced by traditional breeding methods, are also included within the scope of the present invention.

[0143] The methods and means described herein can be applied to any eukaryotic organism in which gene silencing takes place. Such organisms include, but are not limited to, plants (such as corn, wheat, potato, sunflower, turf grasses, barley, rye, soybeans, tobacco, trees, flax, palm trees, peanuts, beans, etc.); invertebrate animals (such as insects, shellfish, mollusks, crustaceans such as crabs, lobsters and prawns) vertebrate animals (fish, birds, mammals, humans); yeast; and fungi, amongst others.

[0144] The following non-limiting Examples describe method and means for enhanced antisense RNA mediated
silencing of the expression of a target gene in eukaryotic cell or combined sense/antisense RNA mediated target gene silencing.

Throughout the description and Examples, reference is made to the following sequences:

SEQ ID NO: 1: oligonucleotide primer for the amplification of the RG1 PSTVd;

SEQ ID NO: 2: oligonucleotide primer for the amplification of the RG1 PSTVd;

SEQ ID NO: 3: nucleotide sequence of the genome of PSTVd RG1;

SEQ ID NO: 4: nucleotide sequence of genome of the Australian grapevine viroid;

SEQ ID NO: 5: nucleotide sequence of the genome of the Coconut tinangaja viroid;

SEQ ID NO: 6: nucleotide sequence of the genome of the Tomato planta macho viroid;

SEQ ID NO: 7: nucleotide sequence of the genome of the Hop latent viroid;

SEQ ID NO: 8: nucleotide sequence of the genome of the Tomato apical stunt viroid;

SEQ ID NO: 9: nucleotide sequence of the pdk2 intron;

SEQ ID NO: 10: nucleotide sequence of the EIN2 cDNA;

SEQ ID NO: 11: nucleotide sequence the genomic EIN2 clone;

SEQ ID NO: 12: oligonucleotide primer 1 for the amplification of the EIN2 part used in the constructs in the Examples;

SEQ ID NO: 13: oligonucleotide primer 2 for the amplification of the EIN2 part used in the constructs in the Examples;

SEQ ID NO: 14: pTSVD sequence in pMBW491;

SEQ ID NO: 15: pTSVD sequence in pMBW489 (with 10 nt deletion).

EXAMPLES

Example 1

Construction of the Different Plant Lines Containing Different Chimeric Genes Used

As an example target gene to downregulate the expression using the various constructs, the EIN2 gene from Arabidopsis thaliana was chosen. The downregulation of the expression of the EIN2 gene can easily be visualized by germinating seeds on MS-ACC medium (containing aminocyclopropane-1-carboxylic acid (ACC)) and incubating either in the dark or in light.

Dark-grown EIN2 silenced seedlings grown in the dark have a longer hypocotyl and a more developed root system compared to wildtype (“wt”) seedlings, whereas EIN2 silenced seedlings grown in light can be differentiated from the wt seedlings by their larger cotyledon size (see FIG. 3).

The EIN2 nucleotide sequence to be used in the different constructs in sense or antisense orientation was amplified by PCR using oligonucleotide primers with a nucleotide sequence as represented in SEQ ID NO: 12 and 13 using genomic DNA (nucleotide sequence see SEQ ID NO: 11) or cDNA (nucleotide sequence see SEQ ID NO: 10) as template DNA. The amplification of the genomic EIN2 sequence part (geIN2) resulted in a PCR fragment with the nucleotide sequence of SEQ ID NO: 11 from the nucleotide at position 558 to the nucleotide at position 1123 and contains two native introns of the EIN2 gene.

The geIN2 fragment was cloned as a KpnI/ClaI fragment into pART7 (Gleave, 1992 Plant. Mol. Biol. 20: 1203-1207), resulting in pMBW313 and the 35S promoter geIN2sense-OC3’ cassette was cloned into pART7 (Gleave 1992 supra) at the NotI site to result in pMBW353.

A similar fragment (eIN2) was amplified by PCR using EIN2 cDNA (SEQ ID NO: 10) as template and the same pair of primers as for geIN2. The eIN2 fragment was digested with BamHIClaI and cloned into pSHUTTLE (Wang et al., 1998 Acta Hort. 461: 401-407) at the same sites, giving pMBW310. The eIN2 fragment was then excised from pMBW310 with XbaI and cloned into the Xbal site of pART7, forming pMBW351. From this intermediate vector the 35S-EIN2antisense-OC3’ cassette was excised and cloned into pWBVec2A (Wang et al. 1998, supra) at the NotI site, resulting in pMBW360.

A full-length sequence of the PSTVd strain RG1 (SEQ ID NO: 3) was amplified from a cDNA using oligonucleotides with the nucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2. The resulting PCR fragment was digested with BglIII and cloned into the BamHI site of pMBW313, resulting in pMBW345, from which the 35S-gEIN2-PSTvD-OC3’ cassette was excised and cloned into pART27 at the NotI site resulting in pMBW355.

For pMBW359 the PCR amplified PSTVd sequence was digested with BglIII and cloned into the BamHI site of pMBW310, giving pMBW346, from which the eIN2antisense-PSTVd sequence was excised with XbaI and cloned into the Xbal site of pHANNIBAL (Wesley et al. 2001), forming pMBW349. The 35S-pdk2-eIN2antisense-PSTvD-OC3’ cassette was then cloned into pWBVec2A at the NotI site forming pMBW359. The eIN2antisense PSTVd fragment was also cloned into pWBVec2A to yield pMBW357.

The EIN2 cDNA fragment was excised from pMBW310 with EcoRV/BamHI, blunted by Pfu treatment and ligated into the BamHI site (also Pfu treated) of pKAN-NIBAL (Wesley et al. 2001). Plasmids having the eIN2 in both orientations with respect to the 35S promoter were recovered and named pMBW401 (antisense) and pMBW404 (sense orientation).
For pLMW37, pLMW38, pLMW39, and pLMW40 the cEIN2 fragment was inserted in sense or antisense orientation upstream or downstream of an inverted repeat of the PSTVd sequence. To this end, a partial PSTVd sequence (SEQ ID NO: 3 from the nucleotide at position 16 to the nucleotide at position 355) was cloned upstream of the pdk intron in inverse orientation with regard to the complete copy of the PSTVd genome.

The different constructs are schematically represented in FIG. 2.

Example 2
Analysis of Expression of the EIN2 Gene in Transgenic Arabidopsis Lines Comprising the Different Chimeric Genes of Example 1

The chimeric constructs represented in FIG. 2 were introduced into Agrobacterium tumefaciens using conventional methods and the resulting Agrobacterium strains were used to introduce the chimeric genes into Arabidopsis ecotype Landsberg erecta through the dipping method. Transgenic lines were selected on 15 mg/L hygromycin or 50 mg/L kanamycin as the selective agent. T1 or F1 seed was collected and assayed for EIN2 silencing.

To this end, the seed was plated on MS medium containing 50 μM ACC. The plates were sealed tightly with parafilm and kept either under light or in the dark. Silencing was scored by looking at the size of roots and cotyledons (incubation in the light) or by looking at the size of roots or hypocotyls (incubation in the dark). In EIN2 silenced lines, the roots or hypocotyls are significantly longer, and the cotyledons are significantly larger than in wild type lines grown under the same conditions.

Seed from primary transformants was plated on MS-ACC medium, sealed with Parafilm, kept at 4°C. For 0-2 overnights, and then moved to growth room and kept either under light or in the dark. Silencing of the EIN2 gene was scored by examining the size of the roots and cotyledons (for those germinating under light) or the size of hypocotyls (for those in the dark). Significant or strong silencing means long roots or hypocotyls, while weak silencing means bigger cotyledons but short roots or hypocotyls. The results are summarized in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1-continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of the efficiency of EIN2 silencing in A. thaliana plants transformed with various EIN2 constructs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construct</th>
<th>Short description</th>
<th>transgenic lines</th>
<th># strong silencing</th>
<th># weak silencing</th>
<th>Frequency of silencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMBW360 EIN2 sense</td>
<td>23</td>
<td>2</td>
<td>5</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>PMBW401 EIN2 sense</td>
<td>20</td>
<td>0</td>
<td>3</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>PMBW357 EIN2 sense PSTVd</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>PMBW359 EIN2 sense PSTVd pdk intron</td>
<td>22</td>
<td>10</td>
<td>6</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>PMBW353 EIN2 sense Native introns</td>
<td>19</td>
<td>2</td>
<td>3</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>PMBW355 EIN2 sense Native introns</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>PMBW404 EIN2 sense PSTVd pdk intron</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>

Example 3
Analysis of Expression of the EIN2 Gene in Arabidopsis Lines Obtained by Crossing of the Transgenic Arabidopsis Lines Comprising the Different Chimeric Genes of Example 1

By cross-pollination between the Arabidopsis lines MBW353, MBW355, MBW359, and MBW360 new lines were obtained simultaneously containing sense and antisense EIN2 constructs. These new lines were analyzed in a similar way as described in Example 2. The results are summarized in Table 2. Plants wherein at least one of the transgenes contained a PSTVd sequence were very efficiently silenced.

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of the efficiency of EIN2 silencing in A. thaliana plants comprising different combination of sense and antisense EIN2 constructs.</td>
</tr>
<tr>
<td>Line</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>MBW353 × MBW360 EIN2 sense</td>
</tr>
<tr>
<td>Native introns And EIN2 antisense</td>
</tr>
<tr>
<td>MBW353 × MBW359 EIN2 sense</td>
</tr>
<tr>
<td>Native introns And EIN2 antisense PSTVd</td>
</tr>
</tbody>
</table>
Example 4
Construction of Different Chimeric Genes for Mediating Gene Silencing of a GFP Gene in Mammalian Cells and Analysis in CHO Cells

[0176] As an example target gene to down-regulate the expression in mammalian cells, the humanized GFP coding region, expressed under control of a CMV promoter region, and followed by a SV40 polyadenylation signal was chosen (pCI-GFP).

[0177] Different experimental silencing constructs were constructed, having either the GFP coding region cloned in sense (as in pMBW493, pMBW494 and pMBW497) or antisense orientation (as in pMBW489, pMBW491 or pMBW496) with regard to the CMV promoter region.

[0178] Plasmids pMBW493 and pMBW489 contained downstream of the GFP coding region, but upstream of the SV40 polyadenylation signal, a nucleotide sequence corresponding to a PSTVd sequence but with a 10 nt deletion (SEQ ID NO: 15). This deletion impacts the predicted secondary structure (see FIG. 5).

[0179] Plasmids pMBW494 and pMBW491 contained downstream of the GFP coding region, but upstream of the SV40 polyadenylation signal, a nucleotide sequence corresponding to a PSTVd sequence of SEQ ID NO: 14 without the 10 nt deletion.

[0180] Plasmids pMBW497 and pMBW496 contained downstream of the GFP coding region, but upstream of the SV40 polyadenylation signal, a nucleotide sequence comprising 60 CUG trinucleotide repeats.

[0181] The different experimental plasmids were introduced (at different concentrations) into CHO cells in combination with a plasmid comprising the GFP expressing chimeric gene (Table 3; entries 1 to 18). Since the GFP construct is a functional sequence in the sense constructs, sense GFP containing experimental constructs were also introduced without the extra GFP expressing chimeric gene; to estimate the GFP expression by these constructs alone (Table 3; entries 19 to 30). Further, combinations of antisense and sense experimental constructs were introduced into CHO cells, at different concentrations (Table 3; entries 31 to 42). As a control, the chimeric GFP expression construct (pCI-GFP) was introduced alone into CHO cells.

[0182] After 24 hrs or 48 hrs, the cells were assayed for GFP expression. Average counts and standard deviations are represented in Table 3.

<table>
<thead>
<tr>
<th>Experimental DNA</th>
<th>Target DNA</th>
<th>Remarks on Experimental DNA</th>
<th>Average count (24 hr)</th>
<th>Average count (48 hr)</th>
<th>Standard deviation (24 hr)</th>
<th>Standard deviation (48 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.1 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td>Antisense + PSTVd (deletion)</td>
<td>3521</td>
<td>3522</td>
<td>41</td>
<td>4688</td>
</tr>
<tr>
<td>2 0.3 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td></td>
<td>3167</td>
<td>3196</td>
<td>1348</td>
<td>1096</td>
</tr>
<tr>
<td>3 0.7 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td></td>
<td>3585</td>
<td>3692</td>
<td>86</td>
<td>5908</td>
</tr>
<tr>
<td>4 0.1 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td>Antisense + PSTVd</td>
<td>748</td>
<td>748</td>
<td>128</td>
<td>1426</td>
</tr>
<tr>
<td>5 0.3 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td></td>
<td>23</td>
<td>23</td>
<td>25</td>
<td>1637</td>
</tr>
<tr>
<td>6 0.7 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td></td>
<td>3217</td>
<td>3217</td>
<td>467</td>
<td>5221</td>
</tr>
<tr>
<td>7 0.1 μg pMBW96</td>
<td>0.3 μg GFP</td>
<td>Antisense + CUG repeats</td>
<td>2907</td>
<td>2907</td>
<td>107</td>
<td>3272</td>
</tr>
<tr>
<td>8 0.3 μg pMBW96</td>
<td>0.3 μg GFP</td>
<td></td>
<td>181</td>
<td>181</td>
<td>92</td>
<td>1433</td>
</tr>
<tr>
<td>9 0.7 μg pMBW96</td>
<td>0.3 μg GFP</td>
<td></td>
<td>5815</td>
<td>5815</td>
<td>313</td>
<td>16482</td>
</tr>
<tr>
<td>10 0.1 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td>Sense + PSTVd (deletion)</td>
<td>10453</td>
<td>10453</td>
<td>1555</td>
<td>15810</td>
</tr>
<tr>
<td>11 0.3 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td></td>
<td>12718</td>
<td>12718</td>
<td>5423</td>
<td>10666</td>
</tr>
<tr>
<td>12 0.7 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td>Sense + PSTVd</td>
<td>9166</td>
<td>9166</td>
<td>1269</td>
<td>15023</td>
</tr>
<tr>
<td>13 0.1 μg pMBW94</td>
<td>0.3 μg GFP</td>
<td></td>
<td>12719</td>
<td>12719</td>
<td>3894</td>
<td>6699</td>
</tr>
<tr>
<td>14 0.3 μg pMBW94</td>
<td>0.3 μg GFP</td>
<td></td>
<td>1009</td>
<td>1009</td>
<td>658</td>
<td>13133</td>
</tr>
<tr>
<td>15 0.7 μg pMBW94</td>
<td>0.3 μg GFP</td>
<td>Sense + CUG repeats</td>
<td>6414</td>
<td>6414</td>
<td>1367</td>
<td>15795</td>
</tr>
<tr>
<td>16 0.1 μg pMBW97</td>
<td>0.3 μg GFP</td>
<td></td>
<td>3596</td>
<td>3596</td>
<td>50</td>
<td>10235</td>
</tr>
<tr>
<td>17 0.3 μg pMBW97</td>
<td>0.3 μg GFP</td>
<td></td>
<td>729</td>
<td>729</td>
<td>295</td>
<td>13171</td>
</tr>
<tr>
<td>18 0.7 μg pMBW97</td>
<td>0.3 μg GFP</td>
<td></td>
<td>1216</td>
<td>1216</td>
<td>15</td>
<td>3692</td>
</tr>
<tr>
<td>19 0.1 μg pMBW93</td>
<td>0.3 μg GFP</td>
<td>Sense + PSTVd (deletion)</td>
<td>1216</td>
<td>1216</td>
<td>15</td>
<td>3692</td>
</tr>
<tr>
<td>Experimental DNA</td>
<td>Target DNA</td>
<td>Remarks on Experimental DNA</td>
<td>Average count (24 hr)</td>
<td>Standard deviation</td>
<td>Average count (48 hr)</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>20 0.3 µg pMBW93</td>
<td>None</td>
<td></td>
<td>6022</td>
<td>1293</td>
<td>9341</td>
<td>273</td>
</tr>
<tr>
<td>21 0.5 µg pMBW93</td>
<td>None</td>
<td></td>
<td>6795</td>
<td>3235</td>
<td>11466</td>
<td>2541</td>
</tr>
<tr>
<td>22 0.7 µg pMBW93</td>
<td>None</td>
<td></td>
<td>12002</td>
<td>763</td>
<td>10316</td>
<td>1523</td>
</tr>
<tr>
<td>23 0.1 µg pMBW94</td>
<td>None</td>
<td>Sense + PSTVd</td>
<td>2121</td>
<td>594</td>
<td>5417</td>
<td>111</td>
</tr>
<tr>
<td>24 0.3 µg pMBW94</td>
<td>None</td>
<td></td>
<td>5671</td>
<td>5096</td>
<td>9317</td>
<td>743</td>
</tr>
<tr>
<td>25 0.5 µg pMBW94</td>
<td>None</td>
<td></td>
<td>6349</td>
<td>3253</td>
<td>7842</td>
<td>337</td>
</tr>
<tr>
<td>26 0.7 µg pMBW94</td>
<td>None</td>
<td></td>
<td>1785</td>
<td>729</td>
<td>15574</td>
<td>2208</td>
</tr>
<tr>
<td>27 0.1 µg pMBW97</td>
<td>None</td>
<td>Sense + CUG repeats</td>
<td>4448</td>
<td>626</td>
<td>6064</td>
<td>289</td>
</tr>
<tr>
<td>28 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>487</td>
<td>83</td>
<td>7767</td>
<td>194</td>
</tr>
<tr>
<td>29 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>522</td>
<td>223</td>
<td>7481</td>
<td>566</td>
</tr>
<tr>
<td>30 0.7 µg pMBW97</td>
<td>None</td>
<td></td>
<td>270</td>
<td>159</td>
<td>8980</td>
<td>1154</td>
</tr>
<tr>
<td>31 0.1 µg pMBW97</td>
<td>None</td>
<td>Sense + PSTVd (deletion)</td>
<td>1189</td>
<td>148</td>
<td>2331</td>
<td>815</td>
</tr>
<tr>
<td>32 0.3 µg pMBW97</td>
<td>None</td>
<td>Anti-sense + PSTVd</td>
<td>695</td>
<td>83</td>
<td>3101</td>
<td>533</td>
</tr>
<tr>
<td>33 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>111</td>
<td>117</td>
<td>3758</td>
<td>1583</td>
</tr>
<tr>
<td>34 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>1811</td>
<td>1304</td>
<td>5301</td>
<td>73</td>
</tr>
<tr>
<td>35 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>312</td>
<td>171</td>
<td>4972</td>
<td>401</td>
</tr>
<tr>
<td>36 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>14</td>
<td>20</td>
<td>2896</td>
<td>1075</td>
</tr>
<tr>
<td>37 0.1 µg pMBW97</td>
<td>None</td>
<td>Anti-sense + CUG repeats</td>
<td>3841</td>
<td>929</td>
<td>2945</td>
<td>341</td>
</tr>
<tr>
<td>38 0.3 µg pMBW97</td>
<td>None</td>
<td>Sense + CUG repeats</td>
<td>1018</td>
<td>401</td>
<td>3236</td>
<td>822</td>
</tr>
<tr>
<td>39 0.5 µg pMBW97</td>
<td>None</td>
<td></td>
<td>1252</td>
<td>241</td>
<td>6730</td>
<td>289</td>
</tr>
<tr>
<td>40 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>3603</td>
<td>2785</td>
<td>10349</td>
<td>3463</td>
</tr>
<tr>
<td>41 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>4903</td>
<td>1054</td>
<td>3453</td>
<td>2380</td>
</tr>
<tr>
<td>42 0.3 µg pMBW97</td>
<td>None</td>
<td></td>
<td>278</td>
<td>46</td>
<td>5897</td>
<td>1899</td>
</tr>
<tr>
<td>43 None</td>
<td>0.3 µg GFP</td>
<td>Control</td>
<td>4780</td>
<td>688</td>
<td>25175</td>
<td>8280.6</td>
</tr>
</tbody>
</table>

[0183] The antisense GFP constructs pMBW491, pMBW496 and pMBW489 that carry the PSTVd or CUG repeat sequences resulted in a significant reduction of the expression of the GFP gene.

[0184] Interestingly, pMBW489 in which the PSTVd sequence contains a 10 nt deletion, resulted in slower and lower degrees of GFP silencing than pMBW491, which contains an intact PSTVd sequence.
SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOs: 5

<210> SEQ ID NO 1
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer for the PCR amplification of the genome of PSTVd R1

<400> SEQUENCE: 1

cgccgatcct ggaactaacc tctggttct 29

<210> SEQ ID NO 2
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer for the PCR amplification of the genome of PSTVd R1

<400> SEQUENCE: 2

gccgatctta ggaaccaact ggggtttc 27

<210> SEQ ID NO 3
<211> LENGTH: 359
<212> TYPE: DNA
<213> ORGANISM: Potato spindle tuber viroid

<400> SEQUENCE: 3
cgcgaactaaa ctctggtttc ctgtgttctc caacgacact cctgacaaga aaagaaaaa 60
gaacggcgct cgagggagcg ctctaggat ccccggggaa accggagcg caaccggaaaa 120
aaaagcaggtt ggggagcggc cagccggcag cagctagatt ctccggcgag aacggtttttt 180
caacctcttc tctttcggtt gctctctcct cggcccgccg gaccaacccc cggccccttt 240
gcggtgtgctttctgttaaaccgggttgaa aacactggtaa gttcggcggaa accgggttttt 300
tctatcttta ctgtctcgg gcgcaggggt tttagccccct ggaaccggcg cttgtttctc 359

<210> SEQ ID NO 4
<211> LENGTH: 369
<212> TYPE: DNA
<213> ORGANISM: Australian grapevine viroid

<400> SEQUENCE: 4
ttggccacca ctagaggtttc ctaggttatt cccgaaggg cgcaacgta ggaagaaaaa 60
agataagaa acggtaag actacctgg cgactcttgcttgacagaga gttcctcaga 120
gagcaacggc agaggggtct gtccagaaac gtccggggtt cttccggcgg gactcggga 180
aactcgggtt tctcttttta ccttctgatcg gaaattcctgg ttggttgcgg cggccaaacc 240
tgcggaggactctctttgc cccggcggct cgccgggtcc cttccggcgg ccccaaccgg 300
tttttggatt ctatcttttt ctagggcgcc cggctgtcgg ttacccggtc gttccgggtt 360
tggagggcc 369

<210> SEQ ID NO 5
<211> LENGTH: 254
<212> TYPE: DNA
<213> ORGANISM: Coconut tinamugaja viroid
<400> SEQUENCE: 5

tctgggaatt cccacggtcgc ggcaataata aagacacaga gcagctgtcga gaggagatcc 60
cggggaaaacc cctgagacac gcagttggga gcagtcgtca tctgacgtt 120
tgggtcttct ctcttcgaga cttcgatcgc aacgcgcggcc gtctccgctg cgaagtctct 180
agggagatca cccggttgga acaactcttt gcagccgcct ggttaataaa aagctcagac 240
cggtttgcgc cccc 254

<210> SEQ ID NO 6
<211> LENGTH: 360
<212> TYPE: DNA
<213> ORGANISM: Tomato planta macho viroid
<400> SEQUENCE: 6

cgggatatctt ttctgtggtt tcccgttcta cccacgctgac ctctgcacca gaaaaagaaaa 60
aagaaagcttc ggcacaggg ggcgttgggg atcccgccgggg aacccctgagc cgaactctggc 120
agggagatcgc ggtcgtgagggc ttctccgacg agagatatac cccggttgaaa cagggttttcc 180
accccttttt ccctgctttc tttgcttcgc gcggtgcaca ccctgccccg ctcttttttcg 240
gcgtgctttc cggagacatc cccccggtgaa caactgaagc ttcacaaggc gctcttttttct 300
catatgttcg gcggtcctggg cggaggtgga aacccctgagc accctgaccc gaaagttcct 360

<210> SEQ ID NO 7
<211> LENGTH: 256
<212> TYPE: DNA
<213> ORGANISM: Hop latent viroid
<400> SEQUENCE: 7

tctgggatac caacctgctg cttacctgta tggatgccag ggttcgaga ggaatccccc 60
ggggacacca ctacagcagc gggagatcgc gcggtccggc tgcctgatgt gaaatcagtc 120
tggatgctgt ggtgcttcgtc gcggtcctgc gtcggacgcc ttccttcact cccgagcggg 180
aggtgggaac acctcgcttc gataaatctt tgcggcgcgaa gttttacttc gcgaagttc 240
catagaaaaag gcocac 256

<210> SEQ ID NO 8
<211> LENGTH: 360
<212> TYPE: DNA
<213> ORGANISM: Tomato apical stunt viroid
<400> SEQUENCE: 8

cgggatatcttt cgtgaggttc ctctgtggtct cccctgaccc tgcaggcaac aagaaaaaac 60
atagggcg aagaaagaaa gttcctcagg cgcacgccgg gaaacctgga ggaatcagag 120
gttggtcgt ctatatcatt ccctgtggag cccagaataa ttccagtctga aacagtggc 180
tacccctcgc ttctttgttg tttctttctc tccggcgggg gttctctggcc ctcggccggc 240
aggtttctcct tcgacactac cccgggtgaaa caactgaaga ttcacttcct aagctttttt 300
tccatatcct tctggtcttcgc gcggcaggg gcggagcagcct gcgaacccctg aagttgctcc 360

<210> SEQ ID NO 9
<211> LENGTH: 786
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: nucleotide sequence of the pdk2 intron

<400> SEQUENCE: 9

aagcttgtga aagaataat tatttttctt ttgctttita gtataataa gtagattgc 60
gtattagt atgattataa taatatagtt ggataaattg tgaagaataat atcttataat 120
atagtttta cataaccaac atagtaatgt aaaaaatat gacaagttgat gttaaagct 180
aagaagataa aagttgagag taagtaatt atttttaatg aattttgtgct aacattgtaag 240
agatatagc agatataataa tttgttttta tctataaatg aatcttagct gttttgatga 300
ataaatctc aatgataaa tacatatga aaataaagaa taataaatat aaaaaatat 360
ttttttatg ttaatatttt attataaat ataatatat caccatatc ataatatttt 420
gttaaatag taataaatat ttttttagaa atcccaaatc gtgttaaatttatataaaaa 480
csaaaaita aataaacagc taagaataac aataaatata acaaatatg ccaagatatacc 540
taagtaaa caacaaatac taagtaaat aataaagac gcaagatccta ctatatttaa 600
tagatatatt tattaaccaac atcttataaat aataatgtga tttttttatttaa 660
ccttaaatag atattgacat taattaatg aattagtctgc acaagataaa acaaggttaac 720
atgtacagtc atgtcagttg ttataatattg ctttttacct tttggtggtc aacagtggaga 780
aagctt 806

<210> SEQ ID NO: 10
<211> LENGTH: 4746
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 10

cctttctct tcctctctctt cctcctctct cttgataaga gttctctctt ttggaagatc 60
cggtctctct tcctctctctt cctcctctct cttgataaga gttctctctt ttggaagatc 120
cggaaggtcct ctggtctctct cttgataaga gttctctctt ttggaagatc 180
agttcttcttg cctggtctctct cttgataaga gttctctctt ttggaagatc 240
gaatcttcttg cctggtctctct cttgataaga gttctctctt ttggaagatc 300
tacagcttcttg cctggtctctct cttgataaga gttctctctt ttggaagatc 360
ttgtataaca atgatagctt cttggtctctct cttgataaga gttctctctt ttggaagatc 420
attggtctt cttggtctctct cttgataaga gttctctctt ttggaagatc 480
tcataatatt gttctctctct cttgataaga gttctctctt ttggaagatc 540
ttgaatcttc cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 600
attggtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 660
attggtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 720
tgtgtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 780
tgtgtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 840
ttgtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 900
tgtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 960
attggtctt cttgatagaatagtt atacagctttcc cctggtctctct cttgataaga gttctctctt ttggaagatc 1020
cttttctctt gaaaatggtta tggcacaatc acgtatccct tactctgcag gcctggatat
1080
aetctotatat gtatctgccgt totcttgctg tcagctgag atcccaacct tcatgaaatg
1140
agtcttaaact gcgttaaatgt gagagagcgcccc acattgcacct ctgtgcttc tttgggcag
1200
cactcctct caaatttctt atactcactc ttatcttcttt tcagggaaat gacatactgc
1260
tgatgcagc cagagagagct ttgctcaagga ccatttgcttg gctacatatt ttgcttccag
1320
cggagctgctt ctgctaatatt atgtatggat gactcgacact gtaatattgct ttccacagtac
1380
tgctccttcttg gtaactgaacct ttcacagtgc ctggctcaact atggagcaggg tattatatgag
1440
tccgcctcaatt ccaagttctt tcctgttatt cttttgctcct tcatagtcaaa ttaccgcact
1500
agcttgggtct ccttgaggtagg gctcgcttct gctacacttc ctgagagatag aatataacccg
1560
tggtgcttcct gctgtcacta tcgaatatct tgcagttgctt cctgctcatt atgattgtatg
1620
gcatctgtgt gcagaggggaa tataaccgttt actattttt acaccagctctct ttggtgcaaact
1680
gactccttct ctcgctggtaa taccctttctt ccagattctgct tgcgctgagc aatcctgtgg
1740
tgctcataaa atccgcaaggg tttgcggcaacct ctcggtccct ccaaggttttt tttggatttt
1800
ggggagttatt ggtgttcttgg tggagtatttc gcatggttttgg acgactgtctt ggggtgtgtg
1860
ttttgagattt gatactcgattta tcagacacct gatteactac accactctgc ttgtatctgc
1920
atgtctccct tctatctgtcg taacctgggtt ggtccacccg cgcgtgcaat tctctgtgcatt
1980
cagagggagaaa gctcaaatat tggcttcagttt ctttattttttt ttcgctagttt ggggtctttt
2040
tcagaggggaa gatcttctggt tgcagaggtt cagagaccttg catagctgcg gcagagccag
2100
tttgcaacgg aggcttcgga tgcggtcgttt gcagcttttcag tggggtggtgta ggggagtgtg
2160
tttgcgagac accttctctct aaaggtcattttatgc ccgagtttctgc cggaggcagcag
2220
agatgtgcttt gtagatctga atcccttccttt ccagaggtttt gctctctctg ggtctttttt
2280
aaagaaggcct tagctgagttc agtctttgcttg ggtgtagagctt gtaaatctg tggctttgct
2340
tgtagaacaat gtagccttt ggtgtagagctt gtaaatctg tggctttgcttg ggtgtagagctt
2400
ggagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
agatgtgcttt gtagatctga atcccttccttt ccagaggtttt gctctctctg ccttttctttt
2520
cggccgatgtcctt agtcttttcttg ggtgtagagctt gtaaatctg tggctttgcttg ggtgtagagctt
2580
ggagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
gagatttcagtacgatcatttttttttttt ttgaaagggg ggtctttttttt ttgaaagggg
cggagtttcttg gtagatctga atcccttccttt ccagaggtttt gctctctctg ccttttctttt
2640
tgattttctt tggggttcagtt ggtgtagagctt gtaaatctg tggctttgcttg ggtgtagagctt
2700
cagtgtcctttt ggtgtagagctt gtaaatctg tggctttgcttg ggtgtagagctt gtaaatctg
ttttgggggtgtcttt
<210> SEQ ID NO 11
<211> LENGTH: 6022
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 11

aggtgccag agcaccate acctccagac ctatagataca aatattgatt gtataagtcttt
20
aggtgcagc gttactttcct tttatatcata tatattgatt tttctctctc ctctctctc aatattgatt
40
aggtgcagc gttactttcct tttatatcata tatattgatt tttctctctc ctctctctc aatattgatt
60
gttgttatt ctttggtata ttccttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
80
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
100
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
120
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
140
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
160
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
180
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
200
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
220
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
240
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
260
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
280
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
300
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
320
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
340
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
360
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
380
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
400
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
420
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
440
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
460
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
480
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
500
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
520
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
540
tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc tttcttcttc aatattgatt
560
-continued

gcgagatcta agtttttttc ttttttactta ctgtactctgg ttgttggttg aeccttttttt 600
tcttgaaga ctggtaaagc tagataatac aggcttcttg catttcttttt gcgttctggc 660
aggggtacga ttcttttagc ttgagtttag gtagaatattg aatattttttt gagatttatct 720
tttttttgtg gactttcctt acctaaattta actattttatg gtaaattttc ctgtaatctg 790
agattttttcc cataaaaaaa aataacggtc ctgaaagtgg tgttgaattttttt ggagagata 840
tccgtatttt cttacctattt ggagaatctt gttctgctct tgttctgctt gttagctggct 900
ccctcatttt gcaccactta gctgaattgtt gtatgacctc ttcctctggaa gcaggcaata 960
aqagaagagt ctggattcctta acctaactac ttgttaacttg aggaaaccttc agctattatt 1020
aggttaagaa agacagctcca gaagtgttga acaatgaatag gttagagttg cttgtggtgc 1080
tctggtgtgtc gatggaacgaa tggatctgtt gtttgctggtt agctttaggagg ggaatcagat 1140
ttcgcggaggg aaggtgcttt aggctaaattt tgtgaaattttt actcaactga ggcctttgatg 1200
gacacaagcac tgacgagttt aacccgactcc cctcccctcag taattaaattt atcagsatg 1260
tttggatgg aagggcttaat tgtgagatgtg agaactccagc tagggtagtt tcaagaagtg 1320
gtcctccgc tactctcctgt ccctttctgg ctttcgcctgt atattatgcc cgggaattgg 1380
gtttgagaaaa agaagagcgg tgtgcttgctt gggtatgacct tgggtaaccat taaccttcctg 1440
tccatattttg gcgcatcatt ttcgcacaaat gttgacacgc gcataagaagt tgtgagctgt 1500
aaacacttgg tcggagatc aaatctctcttg atctotaaag aacaactctt taaatatcctt 1560
aaacgctgcc tctgctgtcc tctcactttt ctcactgagt ccccttcact acaccctctc 1620
ttatttttta taatttttttt cttggaggaa cttggccagta ttgcaaatga agaatagcag 1680
aatgcggagct ctagttcctt gggccattcg gggagacgct cagcaactct gcagagcctt 1740
aaccagttag tccttaaccct ttctgtgtct ttcttaatttt tttatatact gcattaacttt 1800
tgttctctct gtcctgagtt tttctattatat aacagggatgt gcggagttgct ggtgtgcactt 1860
aacctttttgt ttgctggaga gttttactat ggaagtgtttt tggggcagat ggtgcgttttt 1920
ttattctcttt ttctgtctttc tttctctgta tgaactgtctct toctgctgctt ttttttttttt 1980
ccacgctttt gaaatgaagat tattgggatat cagtcggtcatt gctaaccatt tctcagcggga 2040
aatgtgctag cgaacaaagct tataatatttt cttgcagcgg cttgatttaac ttcttattgt 2100
acctgggtct tgtgcgtagtc agtctgctgat cccactcttt aagcttttgag tgggaactctt 2160
gtttaaggg gaggacgcttg cctgctctgt cggctttccgt ggccagcttg tggctctcctt 2220
cattttcctt aaccaacagtg atactactattt atgataaaggt aatggatatattt 2280
ctccccctgt ggaggcaaat tattgacacta aagcagtgaact ggtctatattct aggaaatggc 2340
acctggctgt gatgtgctagac agaagacgattag gtttctccttg ccattttgtg ccaatttttt 2400
tgatctttaag cagactggcttg cttgcagagtt tgcctctgtaa cttgatgttaact gatgttttgtg 2460
tccagcactt ggcctgtggttag ctcgctatttt ttcagcagtc ggccactggcttg 2520
tgatctgacc gcggtagttatt ctcgtagttga ctatcctaa tttttagga aaaaagatcg 2580
aatctcatcg tattatattatt ctcttcctgtct gtagttggct cctcgctatttt 2640
cgccctctct caggtgtcgtt tttgtgctct tgttctctgt ctatcctaa taccgctact 2700
gettggtgtct tgtggtgcttg gtcgctctct ctcagctact tgcagataga aatacctcct 2760
tgctctctct ctgcacctat cagacatttt gcagggctgc ctcgctcttttt cttggtgttg 2820
```plaintext
acccaggtgg gtcacatggg ggagccacta atttcatcgg ttctcaacct tggagatcgt 5160
tgcgtttgga gactgattg ttagtgagc tttggaat ttgcaacc gctctctctt 5220
gactgttctc tcatgagag tcggcctgag ctttgagggaa agtacactta cgtctcacc 5280
cggcttaga gtaaaacac cgcagagtt catggtaaat caagttttgg cagtttgga 5340
atattgacat gtaggatat aacacggag gtagatcctc ggcgtctcga aagctgagga 5400
caccaacc gcacggttgt tcgtctcga ttccacgca cccacagaga ggagttggca 5460
cctcagctaa cggaacttct cctcggcttg caaaccggcc taagggcaaa tgcacaaccg 5520
cagtctcact tctctgacta atccaaagcgt tggaaagcgt aatctctttgt agaaaaagcc 5580
gaacccgtag acgtcgagtg gatgtggcttt tocacgaggg gasagagaagt tgggtctgg 5640
tttggaagcg gtataacgct cggttatcga ataaaccagc acggtatcag caggttgac 5700
cgggtaacc aaaaaagtct acgctgtaac gctttagggg ttggaaga agaaccattgt 5760
ggaaatcttc attgctaaag tgcagctcag agggaagccc agaactccaa acctctgctt 5820
ttgattgctc ctctgctctg ttataagtt attaagaaa gasagaaaaa aatggttattt 5880
tgttgtttca gaatttttgc ctcttttttt ctaatttggt ttgtaattgt gtgttatatat 5940
acatataca tctctactag acatagctaa caaaccgat cccggttgctg taatctcag 6000
cgggaatcata aaaaaatcgg 6022

<210> SEQ ID NO 12
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer for PCR amplification of part of EIN2

<400> SEQUENCE: 12
getggtctcg gtaacttgaa tctactcttg ag 32

<210> SEQ ID NO 13
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer for PCR amplification of part of EIN2

<400> SEQUENCE: 13
gagatgatgc tcaagacttgac tcaagca 26

<210> SEQ ID NO 14
<211> LENGTH: 368
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: PSTVd variant

<400> SEQUENCE: 14
agatctcgcga actaaactcg tggctctgt ggttcaaccc tgaactctcgt acaagaaaaaag 60
aaaagaaag ggagctcggg ggagcgtcctc aggcatcccc cgggaaaacct ggaggaact 120
ggacaaaaag gacggtggg gatgcgcagg gcggcagagg agtatattcc gcacaacagg 180
gtttttacct ttctctttct ccgggtctct tcctctgccg cgcagaacca cccctgacc 240
```
1. A method for downregulating the expression of a target gene in cells of a eukaryotic organism, comprising the steps of:

 providing the cells of the eukaryotic organism with a chimeric RNA molecule, wherein the chimeric RNA molecule comprises a target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene, operably linked to a largely double-stranded RNA region; and

 identifying those eukaryotic organisms wherein the expression of the target gene is downregulated.

2. The method according to claim 1, wherein the largely double-stranded RNA region comprises a nuclear localization signal from a viroid of the potato spindle tuber viroid (PSTVd)-type.

3. The method according to claim 2, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato Spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tinangaja viroid, Tomato apical stunt viroid, Coconut cadang-cadang viroid, Citrus exocortic viroid, Columnnea latent viroid, Hop stunt viroid and Citrus bent leaf viroid.

4. The method according to claim 3, wherein the viroid has a nuclear localization sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

5. The method according to claim 2, wherein the nuclear localization signal is from Potato spindle tuber viroid.

6. The method according to claim 2, wherein the nuclear localization signal is from Potato spindle tuber viroid strain RG1.

7. The method according to claim 2, wherein the nuclear localization signal comprises the nucleotide sequence of SEQ ID NO: 3.

8. The method according to claim 2, wherein the largely double-stranded RNA comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Potato Spindle tuber viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tinangaja viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadang-cadang viroid, the genome nucleotide sequence of Citrus exocortic viroid, the genome nucleotide sequence of Columnnea latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

9. The method according to claim 8, wherein the viroid genome nucleotide sequence is selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

10. The method according to claim 2, wherein the largely double stranded RNA region comprises a genomic nucleotide sequence of Potato spindle tuber viroid.

11. The method according to claim 10, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

12. The method of claim 11, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO: 3.

13. The method according to claim 1, wherein the largely double stranded RNA region comprises at least about 35 repeats of the trinucleotide CUG.
14. The method according to claim 13, wherein the largely double-stranded RNA region comprises between about 44 and about 2000 repeats of the trinucleotide CUG.

15. The method according to claim 1, wherein the RNA molecule comprises multiple target gene-specific regions.

16. The method according to claim 1, wherein the RNA molecule comprises an intron sequence.

17. The method according to claim 16, wherein the intron sequence is selected from the group consisting of the pdk2 intron, the catalase intron from Castor bean, the Delta12 desaturase intron from cotton, the Delta12 desaturase intron from Arabidopsis, the ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from Aspergillus and the intron from SV40.

18. The method according to claim 1, wherein the eukaryotic organism is a plant.

19. The method according to claim 18, wherein the plant is selected from the group of Arabidopsis, alfalfa, barley, bean, corn, cotton, flavus, pea, rape, rice, soybean, sorghum, soybean, sunflower, tobacco, wheat, asparagus, beet, broccoli, cabbage, carrot, cauliflower, celery, cucumber, eggplant, lettuce, onion, oilseed rape, pepper, potato, pumpkin, radish, spinach, squash, tomato, zucchini, almond, apple, apricot, banana, blackberry, blueberry, cacao, cherry, coconut, cranberry, date, grape, grapefruit, guava, kiwi, lemon, lime, mango, melon, nectarine, orange, papaya, passion fruit, peach, pear, pineapple, pistachio, plum, raspberry, strawberry, tangerine, walnut and watermelon.

20. The method according to claim 1, wherein the eukaryotic organism is a fungus, yeast or mold.

21. The method according to claim 1, wherein the eukaryotic organism is an animal.

22. The method according to claim 21, wherein the animal is a human, mammal, bird, fish, cattle, goat, pig, sheep, rodent, hamster, mouse, rat, guinea pig, rabbit, primate, nematode, shellfish, prawn, crab, lobster, insect, fruit fly, Coleopteran insect, Dipteran insect, Lepidopteran insect and Homeopteran insect.

23. The method according to claim 1, wherein the chimeric RNA is produced by transcription from a chimeric DNA molecule.

24. A chimeric RNA molecule for downregulating the expression of a target gene in a cell of a eukaryotic organism, comprising

- a target-gene specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene in the cell of the eukaryotic organism; operably linked to
- a largely double stranded RNA region;

wherein the chimeric RNA molecule, when provided to cells of the eukaryotic organism, downregulates the expression of the target gene.

25. The chimeric RNA molecule according to claim 24, wherein the largely double-stranded RNA region comprises a nuclear localization signal from a viroid of the Potato spindle tuber viroid (PSTVd) type.

26. The chimeric RNA molecule according to claim 25, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato Spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tinangaja viroid, Tomato apical stunt viroid, Coconut cadang-cadang viroid, Citrus exocortic viroid, Columnnea latent viroid, Hop stunt viroid and Citrus bent leaf viroid.

27. The chimeric RNA molecule according to claim 25, wherein the viroid has a genome nucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 and SEQ ID NO:8.

28. The chimeric RNA molecule according to claim 25, wherein the nuclear localization signal is from Potato spindle tuber viroid.

29. The chimeric RNA molecule according to claim 25, wherein the nuclear localization signal is from Potato spindle viroid strain RG1.

30. The chimeric RNA molecule according to claim 25, wherein the nuclear localization signal comprises a nucleotide sequence functioning as a nuclear localization signal selected from the nucleotide sequence of SEQ ID NO:3.

31. The chimeric RNA molecule according to claim 25, wherein the largely double-stranded RNA comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Potato Spindle tuber viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tinangaja viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadang-cadang viroid, the genome nucleotide sequence of Citrus exocortic viroid, the genome nucleotide sequence of Columnnea latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

32. The chimeric RNA molecule according to claim 31, wherein the viroid genome nucleotide sequence is selected from group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 and SEQ ID NO:8.

33. The chimeric RNA molecule according to claim 25, wherein the largely double stranded RNA region comprises a genomic nucleotide sequence of Potato spindle tuber viroid.

34. The chimeric RNA molecule according to claim 33, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

35. The chimeric RNA molecule of claim 34, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO:3.

36. The chimeric RNA molecule according to claim 24, wherein the largely double stranded RNA region comprises at least about 35 repeats of the trinucleotide CUG.

37. The chimeric RNA molecule according to claim 36, wherein the largely double stranded RNA region comprises between about 44 and about 2000 repeats of the trinucleotide CUG.

38. The chimeric RNA molecule according to claim 24, wherein the RNA molecule comprises multiple target gene-specific regions.

39. The chimeric RNA molecule according to claim 24, wherein the RNA molecule comprises an intron sequence.

40. The chimeric RNA molecule according to claim 39, wherein the intron sequence is selected from the group consisting of the pdk2 intron, the catalase intron from Castor
bean, the Delta12 desaturase intron from cotton, the Delta 12 desaturase intron from Arabidopsis, the Ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from Aspergillus and the intron from SV40.

41. A chimeric DNA molecule for reduction of the expression of a target gene in a cell of a eukaryotic organism, comprising

- a promoter or promoter region capable of being recognized by RNA polymerases in the cells of the eukaryotic organism, operably linked to
- a DNA region that, when transcribed, yields an RNA molecule comprising a target gene-specific RNA region comprising

- a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of 19 consecutive nucleotides from the nucleotide sequence of the target gene in the cell of the eukaryotic organism, operably linked to

a DNA region comprising a target gene-specific RNA region wherein the chimeric DNA molecule, when provided to cells of the eukaryotic organism, reduces the expression of the target gene.

42. The chimeric DNA molecule according to claim 41, wherein the densely double-stranded DNA region comprises a nuclear localization signal from a viroid of the potato spindle tuber viroid type.

43. The chimeric DNA molecule according to claim 42, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tinangaja viroid, Tomato apical stunt viroid, Coconut cadang-cadang viroid, Citrus exocortic viroid, C. latifolia latent viroid, Hop stunt viroid and Citrus bent leaf viroid.

44. The chimeric DNA molecule according to claim 42, wherein the viroid has a genome nucleotide sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

45. The chimeric DNA molecule according to claim 42, wherein the nuclear localization signal is from Tomato spindle tuber viroid.

46. The chimeric DNA molecule according to claim 45, wherein the nuclear localization signal is from Tomato spindle viroid strain RG1.

47. The chimeric DNA molecule according to claim 42, wherein the nuclear localization signal comprises the nucleotide sequence of SEQ ID NO: 3.

48. The chimeric DNA molecule according to claim 42, wherein the densely double-stranded DNA region comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Potato spindle tuber viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tinangaja viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadang-cadang viroid, the genome nucleotide sequence of Citrus exocortic viroid, the genome nucleotide sequence of C. latifolia latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

49. The chimeric DNA molecule according to claim 48, wherein the viroid genome nucleotide sequence is selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

50. The chimeric DNA molecule according to claim 42, wherein the densely double-stranded RNA region comprises a genome nucleotide sequence of Potato spindle tuber viroid.

51. The chimeric DNA molecule according to claim 41, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

52. The chimeric DNA molecule of claim 51, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO: 3.

53. The chimeric DNA molecule according to claim 41, wherein the densely double-stranded RNA region comprises at least about 35 repeats of the trinucleotide CUG.

54. The chimeric DNA molecule according to claim 53, wherein the densely double-stranded RNA region comprises between about 44 and about 2000 repeats of the trinucleotide CUG.

55. The chimeric DNA molecule according to claim 41, wherein the RNA molecule comprises multiple target gene-specific regions.

56. The chimeric DNA molecule according to claim 41, wherein the RNA molecule comprises an intron sequence.

57. The chimeric DNA molecule according to claim 56, wherein the intron sequence is from the group consisting of the pdk2 intron, the catalase intron from Castor bean, the Delta12 desaturase intron from cotton, the Delta 12 desaturase intron from Arabidopsis, the Ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from Aspergillus and the intron from SV40.

58. The chimeric DNA molecule according to claim 41, further comprising a transcription termination and polyadenylation signal operably linked to the DNA region encoding the RNA molecule.

59. The chimeric DNA molecule according to claim 41, wherein the promoter or promoter region is plant-expressible.

60. The chimeric DNA molecule according to claim 41, wherein the promoter or promoter region functions in animals.

61. The chimeric DNA molecule according to claim 41, wherein the promoter or promoter region functions in yeast, fungi or molds.

62. The chimeric DNA molecule according to claim 41, wherein the promoter or promoter region is recognized by a single subunit bacteriophage RNA polymerase.

63. A cell from a eukaryotic organism comprising a chimeric DNA molecule according to claim 41.

64. A eukaryotic cell comprising a chimeric RNA molecule according to claim 24.

65. The cell according to claim 63, wherein the eukaryotic organism is a plant.

66. The cell according to claim 64, wherein the eukaryotic organism is a plant.

67. The cell according to claim 65, wherein the plant is selected from the group of Arabidopsis, alfalfa, barley, bean, corn, cotton, clover, pea, rape, rice, rye, safflower, sorghum, soybean, sunflower, tobacco, wheat, asparagus, beets, broccoli, cabbage, carrot, cauliflower, celery, cucumber, eggplant, lettuce, onion, oilseed rape, pepper, potato, pumpkin, radish,
spinach, squash, tomato, zucchini, almond, apple, apricot, banana, blackberry, blueberry, cacao, cherry, coconut, cranberry, date, grape, grapefruit, guava, kiwi, lemon, lime, mango, melon, nectarine, orange, papaya, passion fruit, peach, peanut, pear, pineapple, pistachio, plum, raspberry, strawberry, tangerine, walnut and watermelon.

68. The cell according to claim 63, wherein the eukaryotic organism is a fungus, yeast or mold.

69. The cell according to claim 63, wherein the eukaryotic organism is an animal.

70. The cell according to claim 64, wherein the eukaryotic organism is an animal.

71. The cell according to claim 69, wherein the animal is a human, mammal, bird, fish, cattle, goat, pig, sheep, rodent, hamster, mouse, rat, guinea pig, rabbit, primate, nematode, shellfish, prawn, crab, lobster, insect, fruit fly, Coleopteran insect, Dipteran insect, Lepidopteran insect and Homeopteran insect.

72. A eukaryotic organism comprising in its cells a chimeric DNA molecule according to claim 41.

73. A eukaryotic organism, comprising in its cells a chimeric RNA molecule according to claim 24.

74. The eukaryotic organism according to claim 72, wherein the eukaryotic organism is a plant.

75. The eukaryotic organism according to claim 73, wherein the eukaryotic organism is an animal.

76. The cell according to claim 74, wherein the plant is selected from the group of Arabidopsis, alfalfa, barley, bean, corn, cotton, flax, pea, rape, rice, rye, safflower, sorghum, soybean, sunflower, tobacco, wheat, asparagus, beet, broccoli, cabbage, carrot, cauliflower, celery, cucumber, eggplant, lettuce, onion, oilseed rape, pepper, potato, pumpkin, radish, spinach, squash, tomato, zucchini, almond, apple, apricot, banana, blackberry, blueberry, cacao, cherry, coconut, cranberry, date, grape, grapefruit, guava, kiwi, lemon, lime, mango, melon, nectarine, orange, papaya, passion fruit, peach, peanut, pear, pineapple, pistachio, plum, raspberry, strawberry, tangerine, walnut and watermelon.

77. The eukaryotic organism according to claim 72, wherein the eukaryotic organism is a fungus, yeast or mold.

78. The non-human eukaryotic organism according to claim 72, wherein the eukaryotic organism is an animal.

79. The eukaryotic organism according to claim 73, wherein the eukaryotic organism is an animal.

80. The non-human eukaryotic organism according to claim 78, wherein the animal is a human, mammal, bird, fish, cattle, goat, pig, sheep, rodent, hamster, mouse, rat, guinea pig, rabbit, primate, nematode, shellfish, prawn, crab, lobster, insect, fruit fly, Coleopteran insect, Dipteran insect, Lepidopteran insect and Homeopteran insect.

81. A method for making a transgenic eukaryotic organism in which expression of a target gene in cells of the organism is reduced, the method comprising the steps of:

- providing a chimeric DNA molecule according to claim 41 to a cell or cells of the organism to make a transgenic cell or cells; and
- growing or regenerating a transgenic eukaryotic organism from the transgenic cell or cells.

82. A method for downregulating the expression of a target gene in cells of a eukaryotic organism, comprising the steps of

- providing the cells of the eukaryotic organism with a first and second chimeric RNA molecule, wherein the first chimeric RNA molecule comprises an antisense target gene-specific RNA region, comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene;
- the second chimeric RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity to the complement of the first chimeric RNA molecule;
- the first and second chimeric RNA are capable of basepairing at least between the about 19 consecutive nucleotides of the first chimeric RNA and the about 19 consecutive nucleotides of the second chimeric RNA; and
- either the first or the second chimeric RNA molecule comprises a largely double-stranded RNA region operably linked to the antisense target-specific RNA region or to the sense target-specific RNA region; and
- identifying those eukaryotic organisms wherein the expression of the target gene is down regulated.

83. The method according to claim 82, wherein the first and the second chimeric RNA molecule comprise a largely double-stranded RNA region.

84. The method according to claim 83, wherein the first and the second chimeric RNA molecule comprise the same largely double-stranded RNA region.

85. The method according to claim 82, wherein the largely double-stranded RNA region comprises a nuclear localization signal from a viroid of the Potato spindle tuber viroid (PSTVd)-type.

86. The method according to claim 85, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tinanajaya viroid, Tomato apical stunt viroid, Coconut cadang-cadang viroid, Citrus exocortis viroid, Cylindrocladium leaf viroid, Hop stunt viroid and Citrus bent leaf viroid.

87. The method according to claim 85, wherein the viroid has a genome nucleotide sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

88. The method according to claim 85, wherein the nuclear localization signal is from Potato spindle tuber viroid.

89. The method according to claims 85, wherein the nuclear localization signal is from Potato spindle viroid strain RG1.

90. The method according to claim 85, wherein the nuclear localization signal comprises a nucleotide sequence functioning as a nuclear localization signal selected from the nucleotide sequence of SEQ ID NO: 3.

91. The method according to claim 85, wherein the largely double-stranded RNA comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Tomato spindle viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tinanajaya viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadang-cadang viroid, the genome nucleotide sequence of Citrus exocortis viroid, the genome nucleotide sequence of Colun-
nea latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

92. The method according to claim 91, wherein the viroid genome nucleotide sequence is selected from group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

93. The method according to claim 85, wherein the largely double-stranded RNA region comprises a genomic nucleotide sequence of Potato spindle tuber viroid.

94. The method according to claim 93, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

95. The method of claim 94, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO: 3.

96. The method according to claim 82, wherein the largely double stranded RNA region comprises at least about 35 repeats of the tri nucleotide CUG.

97. The method according to claim 96, wherein the largely double stranded RNA region comprises between about 44 and about 2000 repeats of the AUCUG.

98. The method according to claim 82, wherein the RNA molecule comprises multiple target gene-specific regions.

99. The method according to claim 82, wherein the RNA molecule comprises an intron sequence.

100. The method according to claim 99, wherein the intron sequence is selected from the group consisting of the pdk2 intron, the catalase intron from Castor bean, the Delta12 desaturase intron from cotton, the Delta12 desaturase intron from Arabidopsis, the Ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from Aspergillus, and the intron from SV40.

101. The method according to claim 82, wherein the first chimeric RNA and the second chimeric RNA are transcribed from a first and second chimeric gene.

102. A cell from a eukaryotic organism comprising a first and second chimeric RNA molecule, wherein the first chimeric RNA molecule comprises an antisense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity with the complement of about 19 consecutive nucleotides from the nucleotide sequence of the target gene; the second chimeric RNA molecule comprises a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides having at least about 94% sequence identity to the complement of the first chimeric RNA molecule; the first and second chimeric RNA are capable of basepairing at least between the about 19 consecutive nucleotides of the first chimeric RNA and the about 19 consecutive nucleotides of the second chimeric RNA; and either the first or the second chimeric RNA molecule comprises a largely double-stranded RNA region operably linked to the antisense target-specific RNA region or to the sense target-specific RNA region.

103. The cell according to claim 102, wherein the first and the second chimeric RNA molecule comprise a largely double-stranded RNA region.

104. The cell according to claim 103, wherein the first and the second chimeric RNA molecule comprise the same largely double-stranded RNA region.

105. The cell according to claim 102, wherein the largely double-stranded RNA region comprises a nuclear localization signal from a viroid of the Potato spindle tuber viroid (PSTVd)-type.

106. The cell according to claim 105, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato Spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tiangaja viroid, Tomatoplastic stunt viroid, Coconut cadangan cadang viroid, Citrus exocortis viroid, Calomaea latent viroid, Hop stunt viroid and Citrus bent leaf viroid.

107. The cell according to claim 105, wherein the viroid has a genome nucleotide sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

108. The cell according to claim 105, wherein the nuclear localization signal is from Potato spindle tuber viroid.

109. The cell according to claim 105, wherein the nuclear localization signal is from Potato spindle viroid strain RG1.

110. The cell according to claim 107, wherein the nuclear localization signal comprises the nucleotide sequence of SEQ ID NO: 3.

111. The cell according to claim 105, wherein the largely double-stranded RNA comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Potato Spindle tuber viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tiangaja viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadangan cadang viroid, the genome nucleotide sequence of Citrus exocortis viroid, the genome nucleotide sequence of Calomaea latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

112. The cell according to claim 111, wherein the viroid genome nucleotide sequence is selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

113. The cell according to claim 105, wherein the largely double-stranded RNA region comprises a genomic nucleotide sequence of Potato spindle tuber viroid.

114. The cell according to claim 113, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

115. The cell of claim 114, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO: 3.

116. The cell according to claim 102, wherein the largely double-stranded RNA region comprises at least about 35 repeats of the tri nucleotide CUG.

117. The cell according to claim 116, wherein the largely double-stranded RNA region comprises between about 44 and about 2000 repeats of the tri nucleotide CUG.

118. The cell according to claim 102, wherein the RNA molecule comprises multiple target gene-specific regions.

119. The cell according to claim 102, wherein the RNA molecule comprises an intron sequence.

120. The cell according to claim 119, wherein the intron sequence is selected from the group consisting of the pdk2
intron, the catalase intron from Castor bean, the Delta12 desaturase intron from cotton, the Delta 12 desaturase intron from *Arabidopsis*, the Ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from *Aspergillus* and the intron from SV40.

121. The cell according to claim 102 wherein the first and second chimeric RNA are transcribed from a first and second chimeric gene.

122. A eukaryotic organism comprising the cell according to claim 102.

123. A chimeric sense RNA molecule for reduction of expression of a target gene in a cell of a eukaryotic organism in cooperation with a chimeric antisense RNA molecule, the chimeric sense RNA molecule comprising

a sense target gene-specific RNA region comprising a nucleotide sequence of at least about 19 consecutive nucleotides, which has at least about 94% sequence identity to the nucleotide of the target gene; operably linked to

a largely double-stranded RNA region.

124. The chimeric RNA molecule according to claim 123, wherein the largely double-stranded RNA region comprises a nuclear localization signal from a viroid of the Potato spindle tuber viroid (PSTVd)-type.

125. The chimeric RNA molecule according to claim 124, wherein the nuclear localization signal is from a viroid selected from the group consisting of Potato Spindle tuber viroid, Citrus viroid species III, Citrus viroid species IV, Hop latent viroid, Australian grapevine viroid, Tomato planta macho viroid, Coconut tinangaja viroid, Tomato apical stunt viroid, Coconut cadang-cadang viroid, Citrus exocortis viroid, *Columnnea* latent viroid, Hop stunt viroid and Citrus bent leaf viroid.

126. The chimeric RNA molecule according to claim 125, wherein the viroid has a genome nucleotide sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

127. The chimeric RNA molecule according to claim 124, wherein the nuclear localization signal is from Potato spindle tuber viroid.

128. The chimeric RNA molecule according to claim 124, wherein the nuclear localization signal is from Potato spindle viroid strain RG1.

129. The chimeric RNA molecule according to claim 124, wherein the nuclear localization signal comprises the nucleotide sequence of SEQ ID NO: 3.

130. The chimeric RNA molecule according to claim 124, wherein the largely double-stranded RNA comprises a viroid genome nucleotide sequence selected from the group consisting of the genome nucleotide sequence of Potato Spindle tuber viroid, the genome nucleotide sequence of Citrus viroid species III, the genome nucleotide sequence of Citrus viroid species IV, the genome nucleotide sequence of Hop latent viroid, the genome nucleotide sequence of Australian grapevine viroid, the genome nucleotide sequence of Tomato planta macho viroid, the genome nucleotide sequence of Coconut tinangaja viroid, the genome nucleotide sequence of Tomato apical stunt viroid, the genome nucleotide sequence of Coconut cadang-cadang viroid, the genome nucleotide sequence of Citrus exocortis viroid, the genome nucleotide sequence of *Columnnea* latent viroid, the genome nucleotide sequence of Hop stunt viroid and the genome nucleotide sequence of Citrus bent leaf viroid.

131. The chimeric RNA molecule according to claim 130, wherein the viroid genome nucleotide sequence is selected from group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.

132. The chimeric RNA molecule according to claim 124, wherein the largely double-stranded RNA region comprises a genomic nucleotide sequence of Potato spindle tuber viroid.

133. The chimeric RNA molecule according to claim 132, wherein the viroid genome nucleotide sequence is the genome nucleotide sequence of Potato spindle tuber viroid strain RG1.

134. The chimeric RNA molecule of claim 133, wherein the genome nucleotide sequence has the nucleotide sequence of SEQ ID NO: 3.

135. The chimeric RNA molecule according to claim 132, wherein the largely double-stranded RNA region comprises at least about 35 repeats of the trinucleotide CUG.

136. The chimeric RNA molecule according to claim 135, wherein the largely double-stranded RNA region comprises between about 44 and about 2000 repeats of the trinucleotide CUG.

137. The chimeric RNA molecule according to claim 123, wherein the RNA molecule comprises multiple target gene-specific regions.

138. The chimeric RNA molecule according to claim 123, wherein the RNA molecule comprises an intron sequence.

139. The chimeric RNA molecule according to claim 138, wherein the intron sequence is selected from the group consisting of the pnlk2 intron, the catalase intron from Castor bean, the Delta12 desaturase intron from cotton, the Delta 12 desaturase intron from *Arabidopsis*, the Ubiquitin intron from maize, the Actin intron from rice, the triose phosphate isomerase intron from *Aspergillus* and the intron from SV40.

140. A chimeric DNA molecule for reduction of the expression of a target gene in a cell of a eukaryotic organism, comprising

a promoter or promoter region capable of being recognized by RNA polymerases in the cells of the eukaryotic organism; operably linked to

a DNA region that, when transcribed, yields a chimeric sense RNA molecule as described in claim 123.

* * * * *