
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1

16
2

53
9

B
1

��&�����
������
(11) EP 1 162 539 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
30.07.2008 Bulletin 2008/31

(21) Application number: 01119239.0

(22) Date of filing: 12.02.1999

(51) Int Cl.: �
G06F 11/14 (2006.01) G06F 12/08 (2006.01)

(54) Recovering data from one or more failed caches

Rückgewinnung von Daten von einem oder mehreren fehlerhaften Caches

Récupération des données d’une ou plusieurs antémémoires défaillantes

(84) Designated Contracting States:
DE FR GB NL

(30) Priority: 13.02.1998 US 74587 P
24.11.1998 US 199120

(43) Date of publication of application:
12.12.2001 Bulletin 2001/50

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
99906927.1 / 1 055 173

(73) Proprietor: Oracle International Corporation
Redwood Shores CA 94065 (US)�

(72) Inventors:
• Bamford, Roger J. �

San Francisco, CA 94109 (US) �
• Klots, Boris

Belmont, CA 94002 (US) �

(74) Representative: Viering, Jentschura & Partner
Postfach 22 14 43
80504 München (DE) �

(56) References cited:
EP- �A- 0 471 282 EP- �A- 0 657 813
US- �A- 5 327 556

• AHMED R E ET AL: "Cache- �aided rollback error
recovery (CARER) algorithm for shared- �memory
multiprocessor systems" INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING. (FTCS). NEWCASTLE UPON TYNE,
JUNE 26 - 28, 1990, INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING SYSTEMS. (FTCS), LOS ALAMITOS,
IEEE COMP. SOC. PRESS, US, vol. SYMP. 20, 26
June 1990 (1990-06-26), pages 82-88,
XP010019527 ISBN: 0-8186-2051- �X

• KERMARREC A- �M ET AL: "A RECOVERABLE
DISTRIBUTED SHARED MEMORY INTEGRATING
COHERENCE AND RECOVERABILITY" 25TH.
INTERNATIONAL SYMPOSIUM ON FAULT
TOLERANT COMPUTING. DIGEST OF PAPERS.
PASADENA, JUNE 27 - 30, 1995,
INTERNATIONAL SYMPOSIUM ON FAULT
TOLERANT COMPUTING, LOS ALAMITOS, IEEE
COMP. SOC. PRESS, US, vol. SYMP. 25, 27 June
1995 (1995-06-27), pages 289-298, XP000597800
ISBN: 0-7803-2965-1

EP 1 162 539 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF THE INVENTION

�[0001] The present invention relates to techniques for
reducing the penalty associated with one node request-
ing data from a data store when the most recent version
of the requested data resides in the cache of another
node.

BACKGROUND OF THE INVENTION

�[0002] To improve scalability, some database systems
permit more than one database server (each running
separately) to concurrently access shared storage such
as stored on disk media. Each database server has a
cache for caching shared resources, such as disk blocks.
Such systems are referred to herein as parallel server
systems.
�[0003] One problem associated with parallel server
systems is the potential for what are referred to as "pings".
A ping occurs when the version of a resource that resides
in the cache of one server must be supplied to the cache
of a different server. Thus, a ping occurs when, after a
database server A modifies resource x in its cache, and
database server B requires resource x for modification.
Database servers A and B would typically run on different
nodes, but in some cases might run on the same node.
�[0004] One approach to handling pings is referred to
herein as the "disk intervention" approach. The disk in-
tervention approach uses a disk as intermediary storage
to transfer the latest version of the resource between two
caches. Thus, in the example given above, the disk in-
tervention approach requires database server 1 to write
its cache version of resource x to disk, and for database
server 2 to retrieve this version from disk into its cache.
The disk intervention approach’s reliance on two disk
I/Os per inter- �server transfer of a resource limits the scal-
ability of parallel server systems.�
Specifically, the disk I/Os required to handle a ping are
relatively expensive and time consuming, and the more
database servers that are added to the system, the higher
the number of pings.
�[0005] However, the disk intervention approach does
provide for relatively efficient recovery from single data-
base server failures, in that such recovery only needs to
apply the recovery (redo) log of the failed database serv-
er. Applying the redo log of the failed database server
ensures that all of the committed changes that transac-
tions on the failed database server made to the resources
in the cache of the failed server are recovered. The use
of redo logs during recovery are described in detail in
U.S. Patent US 5832516.
�[0006] Parallel server systems that employ the disk in-
tervention approach typically use a protocol in which all
global arbitration regarding resource access and modifi-
cations is performed by a Distributed Lock Manager
(DLM). The operation of an exemplary DLM is described

in detail in U.S. Patent Application Number 08/669,689,
entitled "METHOD AND APPARATUS FOR LOCK
CACHING", filed on June 24, 1996, the contents of which
are incorporated herein by reference.
�[0007] In typical Distributed Lock Manager systems,
information pertaining to any given resource is stored in
a lock object that corresponds to the resource. Each lock
object is stored in the memory of a single node. The lock
manager that resides on the node on which a lock object
is stored is referred to as the Master of that lock object
and the resource it covers.
�[0008] In systems that employ the disk intervention ap-
proach to handling pings, pings tend to involve the DLM
in a variety of lock-�related communications. Specifically,
when a database server (the "requesting server") needs
to access a resource, the database server checks to see
whether it has the desired resource locked in the appro-
priate mode: either shared in case of a read, or exclusive
in case of a write. If the requesting database server does
not have the desired resource locked in the right mode,
or does not have any lock on the resource, then the re-
questing server sends a request to the Master for the
resource to acquire the lock in specified mode.
�[0009] The request made by the requesting database
server may conflict with the current state of the resource
(e.g. there could be another database server which cur-
rently holds an exclusive lock on the resource). If there
is no conflict, the Master for the resource grants the lock
and registers the grant. In case of a conflict, the Master
of the resource initiates a conflict resolution protocol. The
Master of the resource instructs the database server that
holds the conflicting lock (the "Holder") to downgrade its
lock to a lower compatible mode.
�[0010] Unfortunately, if the Holder (e.g. database serv-
er A) currently has an updated ("dirty") version of the
desired resource in its cache, it cannot immediately
downgrade its lock. In order to do downgrade its lock,
database server A goes through what is referred to as a
"hard ping" protocol. According to the hard ping protocol,
database server A forces the redo log associated with
the update to be written to disk, writes the resource to
disk, downgrades its lock and notifies the Master that
database server A is done. Upon receiving the notifica-
tion, the Master registers the lock grant and notifies the
requesting server that the requested lock has been grant-
ed. At this point, the requesting server B reads the re-
source into its cache from disk.
�[0011] As described above, the disk intervention ap-
proach does not allow a resource that has been updated
by one database server (a "dirty resource") to be directly
shipped to another database server. Such direct ship-
ment is rendered unfeasible due to recovery related prob-
lems. For example, assume that a resource is modified
at database server A, and then is shipped directly to da-
tabase server B. At database server B, the resource is
also modified and then shipped back to database server
A. At database server A, the resource is modified a third
time. Assume also that each server stores all redo logs

1 2

EP 1 162 539 B1

3

5

10

15

20

25

30

35

40

45

50

55

to disk before sending the resource to another server to
allow the recipient to depend on prior changes.
�[0012] After the third update, assume that database
server A dies. The log of database server A contains
records of modifications to the resource with a hole. Spe-
cifically, server A’s log does not include those modifica-
tions which were done by database server B. Rather, the
modifications made by server B are stored in the data-
base server B’s log. At this point, to recover the resource,
the two logs must be merged before being applied. This
log merge operation, if implemented, would require time
and resources proportional to the total number of data-
base servers, including those that did not fail.
�[0013] The disk intervention approach mentioned
above avoids the problem associated with merging re-
covery logs after a failure, but penalizes the performance
of steady state parallel server systems in favor of simple
and efficient recovery. The direct shipment approach
avoids the overhead associated with the disk intervention
approach, but involves complex and nonscalable recov-
ery operations in case of failures.
�[0014] Based on the foregoing, it is clearly desirable
to provide a system and method for reducing the over-
head associated with a ping without severely increasing
the complexity or duration of recovery operations.
�[0015] US-�A-�5 327 556 discloses a technique for trans-
ferring data units between transaction systems in a
shared disk environment. The owning system, having up-
dated the page, generates a version number for the page
which is stored with a lock possessed by the owning sys-
tem. When a requesting system seeks a record on the
page, its request for a lock illicit an indication that a more
recent version of the page is required in the local memory.
The buffer management component of a data bank man-
agement system (DBMS), with assistance from the lock
management, triggers a memory to memory transfer of
the page from the owning DBMS to the requesting DBMS
using a low overhead communication protocol. The trans-
fer of page is made without disk I/O or the log I/O for the
updates made to the page.

SUMMARY OF THE INVENTION

�[0016] The present invention provides a method ac-
cording to claim 1, a computer-�readable medium accord-
ing to claim 7 and an apparatus according to claim 13.
�[0017] A method and apparatus are provided for trans-
ferring a resource from the cache of one database server
to the cache of another database server without first writ-
ing the resource to disk. When a database server (Re-
questor) desires to modify a resource, the Requestor
asks for the current version of the resource. The database
server that has the current version (Holder) directly ships
the current version to the Requestor. Upon shipping the
version, the Holder loses permission to modify the re-
source, but continues to retain a copy of the resource in
memory. When the retained version of the resource, or
a later version thereof, is written to disk, the Holder can

discard the retained version of the resource. Otherwise,
the Holder does not discard the retained version. In the
case of a server failure, the prior copies of all resources
with modifications in the failed server’s redo log are used,
as necessary, as starting points for applying the failed
server’s redo log. Using this technique, single-�server fail-
ures (the most common form of failure) are recovered
without having to merge the recovery logs of the various
database servers that had access to the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

�[0018] The present invention is illustrated by way of
example, and not by way of limitation, in the figures of
the accompanying drawings in which like reference nu-
merals refer to similar elements and in which:�

Figure 1 is a block diagram illustrating cache to cache
transfers of the most recent versions of resources;
Figure 2 is a flowchart illustrating steps for transmit-
ting a resource from one cache to another without
disk intervention according to an embodiment of the
invention;
Figure 3 is a flowchart illustrating steps for releasing
past images of resources, according to an embodi-
ment of the invention;
Figure 4 is a flowchart illustrating steps for recovering
after a single database server failure according to
an embodiment of the invention;
Figure 5 is a block diagram illustrating a checkpoint
cycle according to an embodiment of the invention;
and
Figure 6 is a block diagram of a computer system on
which an embodiment of the invention may be im-
plemented.

DETAILED DESCRIPTION OF THE PREFERRED EM-
BODIMENT

�[0019] A method and apparatus for reducing the over-
head associated with a ping is described. In the following
description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough
understanding of the present invention. It will be appar-
ent, however, to one skilled in the art that the present
invention may be practiced without these specific details.
In other database servers, well-�known structures and de-
vices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW

�[0020] According to one aspect of the invention, pings
are handled by shipping updated versions of resources
directly between database servers without first being
stored to disk, thus avoiding the I/O overhead associated
with the disk intervention approach. Further, the difficul-
ties associated with single- �instance failure recovery are

3 4

EP 1 162 539 B1

4

5

10

15

20

25

30

35

40

45

50

55

avoided by preventing a modified version of a resource
from being replaced in cache until the modified resource
or some successor thereof has been written to disk, even
if the resource has been transferred to another cache.
�[0021] For the purpose of explanation, a copy of a re-
source that cannot be replaced in cache is referred to
herein as a "pinned" resource. The act of making a pinned
resource replaceable is referred to as "releasing" the re-
source.

THE M AND W LOCK APPROACH

�[0022] According to one aspect of the invention, the
modify and write-�to-�disk permissions for a resource are
separated. Thus, a database server that has permission
to write an updated version of a resource from cache to
disk does not necessarily have permission to update the
resource. Conversely, a database server that has per-
mission to modify a cached version of a resource does
not necessarily have permission to write that cached ver-
sion to disk.
�[0023] According to one embodiment, this separation
of permissions is enforced through the use of special
locks. Specifically, the permission to modify a resource
may be granted by a "M" lock, while the permission to
write a resource to disk may be granted by a "W" lock.
However, it should be noted that the use of M and W
locks as described herein represents but one mechanism
for preventing a transferred version of a resource from
being replaced in cache until that version or a successor
thereof is written to disk.
�[0024] Referring to Figure 2, it illustrates the steps per-
formed in response to a ping in a database system that
uses M and W locks, according to one embodiment of
the invention. At step 200, a database server that desires
to modify a resource requests the M lock from the Master
for the resource (i.e. the database server that manages
the locks for the resource). At step 202, the Master in-
structs the database server currently holding the M lock
for the resource (" the Holder") �to transfer the M lock to-
gether with its cached version of the resource to the re-
questing database server via direct transfer over the
communication channel �(s) connecting the two servers
(the "interconnect").
�[0025] At step 204, the Holder sends the current ver-
sion of the resource and the M lock to the Requestor. At
step 206, the Holder informs the Master about the transfer
of the M lock. At step 208, the Master updates the lock
information for the resource to indicate that the Reques-
tor now holds the M lock.

PI RESOURCES

�[0026] The holder of the M lock does not necessarily
have the W lock, and therefore may not have permission
to write the version of the resource that is contained in
its cache out to disk. The transferring database server
(i.e. the database server that last held the M lock) there-

fore continues to pin its version of the resource in dynamic
memory because it may be asked to write out its version
to disk at some future point, as described below. The
version of the resource that remains in the transferring
database server will become out-�of-�date if the receiving
database server modifies its copy of the resource. The
transferring database server will not necessarily know
when the receiving database server (or a successor
thereof) modifies the resource, so from the time the trans-
ferring database server sends a copy of the resource, it
treats its retained version as "potentially out-�of-�date".
Such potentially out-�of-�date versions of a resource are
referred to herein as past-�image resources (PI resourc-
es).

RELEASING PI RESOURCES

�[0027] After a cached version of a resource is released,
it may be overwritten with new data. Typically, a dirty
version of a resource may be released by writing the re-
source to disk. However, database servers with PI re-
sources in cache do not necessarily have the right to
store the PI resources to disk. One technique for releas-
ing PI resources under these circumstances is illustrated
in Figure 3.
�[0028] Referring to Figure 3, when a database server
wishes to release a PI resource in its cache, it sends a
request for the W lock (step 300) to the distributed lock
manager (DLM). In step 302, the DLM then orders the
requesting database server, or some database server
that has a later version of the resource (a successor) in
its cache, to write the resource out to disk. The database
server thus ordered to write the resource to disk is grant-
ed the W lock. After the database server that was granted
the W lock writes the resource to disk, the database serv-
er releases the W lock.
�[0029] The DLM then sends out a message to all da-
tabase servers indicating the version of the resource writ-
ten out (step 304), so that all earlier PI versions of the
resource can be released (step 306). For example, as-
sume that the version written to disk was modified at time
T10. A database server with a version of the resource
that was last modified at an earlier time T5 could now
use the buffer in which it is stored for other data. A data-
base server with a version that was modified at a later
time T11, however, would have to continue to retain its
version of the resource in its memory.

PING MANAGEMENT UNDER THE M AND W LOCK
APPROACH

�[0030] According to one embodiment of the invention,
the M and W lock approach may be implemented to han-
dle pings as shall now be described with reference to
Figure 1. Referring to Figure 1, it is a block diagram that
illustrates four database servers A, B, C and D, all of
which have access to a database that contains a partic-
ular resource. At the time illustrated, database servers

5 6

EP 1 162 539 B1

5

5

10

15

20

25

30

35

40

45

50

55

A, B and C all have versions of the resource. The version
held in the cache of database server A is the most recently
modified version of the resource (modified at time T10).
The versions held in database servers B and C are PI
versions of the resource. Database server D is the Master
for the resource.
�[0031] At this point, assume that another database
server (the "Requestor") desires to modify the resource.
The Requestor requests the modify lock from the Master.
The Master sends a command to database server A to
down-�convert the lock (a "BAST") due to the conflicting
request from the Requestor. In response to the down-
convert command, the current image of the resource
(whether clean or dirty) is shipped from database server
A to the Requestor, together with a permission to modify
the resource. The permission thus shipped does not in-
clude a permission to write the resource to disk.
�[0032] When database server A passes the M lock to
the Requestor, database server A downgrades his M lock
to a "hold" lock ("H lock"). The H lock indicates that the
database server A is holding a pinned PI copy. Ownership
of an H lock obligates the owner to keep the PI copy in
its buffer cache, but does not give the database server
any rights to write the PI copy to disk. There can be mul-
tiple concurrent H holders for the same resource, but not
more than one database server at a time can write the
resource, therefore only one database server can hold a
W lock on the resource.
�[0033] Prior to shipping the resource, database server
A makes sure that the log is forced (i.e. that the recovery
log generated for the changes made by database server
A to the resource are durably stored). By passing the
modification permission, database server A loses its own
right to modify the resource. The copy of the resource
(as it was just at the moment of shipping) is still kept at
the shipping database server A. After the shipment of the
resource, the copy of the resource retained in database
server A is a PI resource.

COURTESY WRITES

�[0034] After a database server ships a dirty resource
directly to another database server, the retained copy of
the resource becomes a pinned PI resource whose buffer
cannot be used for another resource until released. The
buffers that contain PI resources are referred to herein
as PI buffers. These buffers occupy valuable space in
the caches of the database servers, and eventually have
to be reused for other data.
�[0035] To replace PI buffers in the buffer cache (to be
aged out or checkpointed) a new disk write protocol, re-
ferred to herein as "courtesy writes", is employed. Ac-
cording to the courtesy write protocol, when a database
server needs to write a resource to disk, the database
server sends the request to the DLM. The DLM selects
a version of the resource to be written to disk, finds the
database server that has the selected version, and caus-
es that database server to write the resource to disk on

behalf of the database server which initiated the write
request. The database server that actually writes the re-
source to disk may be the database server which request-
ed the write, or some other database server, depending
on the latest trajectory of the resource.
�[0036] Writing the selected version of the resource to
disk releases all PI versions of the resource in all buffer
caches of a cluster that are as old or older than the se-
lected version that was written to disk. The criteria used
to select the version that will be written to disk shall be
described in greater detail hereafter. However, the se-
lected version can be either the latest PI version known
to the Master or the current version ("CURR") of the re-
source. One benefit of selecting a version other than the
current version is that selection of another version leaves
the current copy uninterruptedly available for modifica-
tions.
�[0037] A database server that is holding a PI resource
can write out its PI copy provided that it has acquired a
W lock on the resource. The writes of the resource are
decoupled from the migration of the CURR resource im-
age among the various database servers.

EFFICIENCY FACTORS

�[0038] There is no need to write a PI copy each time
a resource is shipped to another database server. There-
fore, the goal of durably storing resources is to keep the
disk copies recent enough, and to keep the number of
non-�replaceable resources in the buffer caches reason-
able. Various factors determine the efficiency of a system
that employs the courtesy write protocol described
above. Specifically, it is desirable to:�

(1) minimize I/O activity caused by writing dirty re-
sources to disk;
(2) keep the disk versions of resources current
enough to speed up recovery operations after a fail-
ure; and
(3) prevent overflow of the buffer cache with pinned
PI resources.

�[0039] Maximizing the first criteria has a negative im-
pact on the second and third criteria, and visa versa.
Therefore, a trade off is necessary. According to one em-
bodiment of the invention, a self-�tuning algorithm may be
used which combines different techniques of checkpoint-
ing (LRU mixed with occasional continuous checkpoint-
ing) coupled with a control over the total IO budget.

THE NEWER-�WRITE APPROACH

�[0040] An alternative to the courtesy-�write protocol de-
scribed above is referred to herein as the write-�newer
approach. According to the write- �newer approach, all da-
tabase servers have permission to write their PI resourc-
es to disk. However, prior to doing so, a database server
acquires a lock on the disk-�based copy of the resource.

7 8

EP 1 162 539 B1

6

5

10

15

20

25

30

35

40

45

50

55

After acquiring the lock, the database server compares
the disk version with the PI version that it desires to write.
If the disk version is older, then the PI version is written
to disk. � If the disk version is newer, then the PI version
may be discarded and the buffer that it occupied may be
reused.
�[0041] Unlike the courtesy-�write protocol, the newer-
write approach allows a database server to release its
own PI version, either by writing it to disk or determining
that the disk version is newer. However, the newer- �write
approach increases contention for the lock of the disk-
based copy, and may incur a disk-�I/O that would not have
been incurred with the courtesy-�write approach.

PERMISSION STRINGS

�[0042] Typical DLMs govern access to resources
through the use of a limited number of lock modes, where
the modes are either compatible or conflicting. According
to one embodiment, the mechanism for governing access
to resources is expanded to substitute lock modes with
a collection of different kinds of permissions and obliga-
tions. The permissions and obligations may include, for
example, the permission to write a resource, to modify a
resource, to keep a resource in cache, etc. Specific per-
missions and obligations are described in greater detail
below.
�[0043] According to one embodiment, permissions
and obligations are encoded in permission strings. A per-
mission string might be augmented by a resource version
number since many permissions are related to a version
of a resource rather than to the resource itself. Two dif-
ferent permission strings are conflicting if they demand
the same exclusive permission for the same version of
the resource (e.g. current version for modification or a
disk access for write). Otherwise they are compatible.

CONCURRENCY USING PERMISSION TRANSFERS

�[0044] As mentioned above, when a resource is mod-
ified at one database server and is requested for further
modifications by another database server, the Master in-
structs the database server that holds the current copy
(CURR copy) of the resource to pass its M lock (the right
to modify) together with the CURR copy of the resource
to the other database server. Significantly, though the
request for the M lock is sent to the master, the grant is
done by some other database server (the previous M
lock holder). This triangular messaging model deviates
significantly from the traditional two-�way communication
where the response to a lock request is expected from
the database server containing the lock manager to
which the lock request was initially addressed.
�[0045] According to one embodiment of the invention,
when the holder of the CURR copy of a resource (e.g.
database server A) passes the M lock to another data-
base server, database server A notifies the Master that
the M lock has been transferred. However, database

server A does not wait for acknowledgment that the Mas-
ter received the notification, but sends the CURR copy
and the M lock prior to receiving such acknowledgement.
By not waiting, the round trip communication between
the master and database server A does not impose a
delay on the transfer, thereby yielding a considerable
saving on the protocol latencies.
�[0046] Because permissions are transferred directly
from the current holder of the permission to the requestor
of the permission, the Master does not always know the
exact global picture of the lock grants. Rather, the Master
knows only about the trajectory of the M lock, about the
database servers which just ’held it lately’, but not about
the exact location of the lock at any given time. According
to one embodiment, this "lazy" notification scheme is ap-
plicable to the M locks but not to W, X, or S locks (or their
counterparts). Various embodiments of a locking scheme
are described in greater detail below.

FAILURE RECOVERY

�[0047] Within the context of the present invention, a
database server is said to have failed if a cache associ-
ated with the server becomes inaccessible. Database
systems that employ the direct, inter-�server shipment of
dirty resources using the techniques described herein
avoid the need for merging recovery logs in response to
a single-�server failure. According to one embodiment,
single-�server failures are handled as illustrated in Figure
4. Referring to Figure 4, upon a single-�database server
failure, the recovery process performs the following for
each resource held in the cache of the failed database
server: �

(step 400) determine the database server that held
the latest version of the resource;
(step 402) if the database server determined in step
400 is not the failed database server, then (step 404)
the determined database server writes its cached
version of the resource to disk and (step 406) all PI
versions of the resource are released. This version
will have all the committed changes made to the re-
source (including those made by the failed database
server) and thus no recovery log of any database
server need be applied.

�[0048] If the database server determined in step 402
is the failed database server, then (step 408) the data-
base server holding the latest PI version of the resource
writes out its cached version of the resource to disk and
(step 410) all previous PI versions are released. The ver-
sion written out to disk will have the committed changes
made to the resource by all database servers except the
failed database server. The recovery log of the failed da-
tabase server is applied (step 412) to recover the com-
mitted changes made by the failed database server.
�[0049] Alternatively, the latest PI version of the re-
source may be used as the starting point for recovering

9 10

EP 1 162 539 B1

7

5

10

15

20

25

30

35

40

45

50

55

the current version in cache, rather than on disk. Specif-
ically, the appropriate records from the recovery log of
the failed database server may be applied directly to the
latest PI version that resides in cache, thus reconstruct-
ing the current version in the cache of the database server
that holds the latest PI version.

MULTIPLE DATABASE SERVER FAILURE

�[0050] In case of a multiple server failure, when neither
the latest PI copy nor any CURR copy have survived, it
may happen that the changes made to the resource are
spread over multiple logs of the failed database servers.
Under these conditions, the logs of the failed database
servers must be merged. However, only the logs of the
failed database servers must be merged, and not logs of
all database servers. Thus, the amount of work required
for recovery is proportional to the extent of the failure and
not to the size of the total configuration.
�[0051] In systems where it is possible to determine
which failed database servers updated the resource, only
the logs of the failed database servers that updated the
resource need to be merged and applied. Similarly, in
systems where it is possible to determine which failed
database servers updated the resource subsequent to
the durably stored version of the resource, only the logs
of the failed database servers that updated the resource
subsequent to the durably stored version of the resource
need to be merged and applied.

EXEMPLARY OPERATION

�[0052] For the purpose of explanation, an exemplary
series of resource transfers shall be described with ref-
erence to Figure 1. During the series of transfers, a re-
source is accessed at multiple database servers. Spe-
cifically, the resource is shipped along a cluster nodes
for modifications, and then a checkpoint at one of the
database servers causes a physical I/O of this resource.
�[0053] Referring again to Figure 1, there are 4 data-
base servers: A,�B, �C, and D. Database server D is the
master of the resource. Database server C first modifies
the resource. Database server C has resource version
8. At this point, database server C also has an M lock
(an exclusive modification right) on this resource.
�[0054] Assume that at this point, database server B
wants to modify the resource that database server C cur-
rently holds. Database server B sends a request (1) for
an M lock on the resource. Database server D puts the
request on a modifiers queue associated with the re-
source and instructs (message 2: BAST) database server
C to:�

(a) pass modification permission (M lock) to data-
base server B,
(b) send current image of the resource to database
server B, and
(c) downgrade database server C’s M lock to an H

lock.

�[0055] After this downgrade operation, C is obligated
to keep its version of the resource (the PI copy) in its
buffer cache.
�[0056] Database server C performs the requested op-
erations, and may additionally force the log on the new
changes. In addition, database server C lazily notifies (3
AckM) the Master that it has performed the operations
(AST). The notification also informs the Master that da-
tabase server C keeps version 8. Database server C does
not wait for any acknowledgment from the Master. Con-
sequently, it is possible that database server B gets an
M lock before the Master knows about it.
�[0057] Meanwhile, assume that database server A al-
so decides to modify the resource. Database server A
sends a message (4) to database server D. This message
may arrive before the asynchronous notification from da-
tabase server C to database server D.
�[0058] Database server D (the Master) sends a mes-
sage (5) to database server B, the last known modifier
of this resource, to pass the resource (after B gets and
modifies it) to database server A. Note that database
server D does not know whether the resource is there or
not yet. But database server D knows that the resource
will eventually arrive at B.
�[0059] After database server B gets the resource and
makes the intended changes (now B has version 9 of the
resource), it downgrades its own lock to H, sends (6) the
current version of the resource ("CURR resource") to
database server A together with the M lock. Database
server B also sends a lazy notification (6 AckM) to the
Master.
�[0060] While this resource is being modified at data-
base server A, assume that a checkpointing mechanism
at database server C decides to write the resource to
disk. Regarding the asynchronous events described
above, assume that both 3AckM and 6 AckM have al-
ready arrived to the master. The operations performed
in response to the checkpointing operation are illustrated
with reference to Figure 5.
�[0061] Referring to Figure 5, since database server C
holds an H lock on version 8, which does not include a
writing privilege, database server C sends message 1 to
the Master (D) requesting the W (write) lock for its ver-
sion. At this point in time, the Master knows that the re-
source was shipped to database server A (assuming that
the acknowledgments have arrived). Database server D
sends an (unsolicited) W lock to database server A (2
BastW) with the instruction to write the resource.
�[0062] In the general case, this instruction is sent to
the last database server whose send notification has ar-
rived (or to the database server which is supposed to
receive the resource from the last known sender). Data-
base server A writes (3) its version of the resource. The
resource written by database server A is version 10 of
the resource. By this time, the current copy of the re-
source might be somewhere else if additional requestors

11 12

EP 1 162 539 B1

8

5

10

15

20

25

30

35

40

45

50

55

demanded the resource. The disk acknowledges when
the write is completed (4Ack).
�[0063] When the write completes, database server A
provides database server D with the information that ver-
sion 10 is now on disk (5 AckW). Database server A vol-
untarily downgrades its W lock (which it did not ask for
in the first place).
�[0064] The Master (D) goes to database server C and,
instead of granting the requested W lock, notifies C that
the write completed (6). The Master communicates the
current disk version number to the holders of all PI copies,
so that all earlier PI copies at C can be released. In this
scenario, since database server C has no PI copies older
than 10, it downconverts database server C’s lock to
NULL.
�[0065] The Master also sends an acknowledgment
message to database server B instructing database serv-
er B to release its PI copies which are earlier than 10
(7AckW�(10)).

THE DISTRIBUTED LOCK MANAGER

�[0066] In contrast with conventional DLM logic, the
Master in a system that implements the direct-�shipping
techniques described herein may have incomplete infor-
mation about lock states at the database servers. Ac-
cording to one embodiment, the Master of a resource
maintains the following information and data structures:�

(1) a queue of CURR copy requestors (either for
modification or for shared access) (the upper limit
on the queue length is the number of database serv-
ers in the cluster). This queue is referred to herein
as the Current Request Queue (CQ).
(2) when a resource is sent to another CURR re-
questor, the senders lazily (asynchronously in a
sense that they do not wait for a acknowledgment)
notify the Master about the event. Master keeps track
of the last few senders. This is a pointer on the CQ.
(3) the version number of the latest resource version
on disk.
(4) W lock grants and a W requests queue.�
According to one embodiment, W permission is syn-
chronous: it is granted only by the master, and the
master ensures that there is not more than one writer
in the cluster for this resource. The Master can make
the next grant only after being notified that the pre-
vious write completed and the W lock was released.
If there are more than one modifier, a W lock is given
for the duration of the write and voluntarily released
after the write. If there is only one modifier, the mod-
ifier can keep the W permission.
(5) a list of H lock holders with their respective re-
source version numbers. This provides information
(though possibly incomplete) about the PI copies in
buffer caches.

DISK WARM UP

�[0067] Since the direct- �shipment techniques de-
scribed herein significantly segregate the life cycles of
the buffer cache images of the resources and the disk
images, there is a need to bridge this gap on recovery.
According to one embodiment, a new step of recovery,
between DLM recovery and buffer cache recovery, is
added. This new recovery step is referred to herein as
’disk warm up’.
�[0068] Although during normal cache operations a
master of a resource has only approximate knowledge
of the resource location and about the availability of PI
and CURR copies, on DLM recovery (which precedes
cache recovery), the master of a resource collects com-
plete information about the availability of the latest PI and
CURR copies in the buffer caches of surviving database
servers. This is true whether or not the master of the
resource is a new master (if before the failure the re-
source was mastered on a failed database server) or a
surviving master.
�[0069] After collecting this information, the Master
knows which database server possesses the latest copy
of the resource. At ’disk warm up’ stage, the master is-
sues a W lock to the owner of this latest copy of the
resource (CURR if it is available, and latest PI copy if the
CURR copy disappeared together with the failed data-
base server). The master then instructs this database
server to write the resource to disk. When the write com-
pletes, all other database servers convert their H locks
to NULL locks (because the written copy is the latest
available). After those locks have been converted, cache
recovery can proceed as normal.
�[0070] Some optimizations are possible during the disk
warm up stage. For example, the resource does not nec-
essarily have to be written to disk if the latest image is in
the buffer cache of the database server performing re-
covery.

ALTERNATIVES TO LOCK-�BASED SCHEME

�[0071] Various techniques for directly shipping dirty
copies of resources between database servers have
been described in the context of a locking scheme that
uses special types of locks (M, W and H locks). Specifi-
cally, these special locks are used to ensure that (1) only
the server with the current version of the resource mod-
ifies the resource, (2) all servers keep their PI versions
of the resource until the same version or a newer version
of the resource is written to disk, and (3) the disk-�based
version of the resource is not overwritten by an older
version of the resource.
�[0072] However, a lock- �based access control scheme
is merely one context in which the present invention may
be implemented. For example, those same three rules
may be enforced using any variety of access control
schemes. Thus, present invention is not limited to any
particular type of access control scheme.

13 14

EP 1 162 539 B1

9

5

10

15

20

25

30

35

40

45

50

55

�[0073] For example, rather than governing access to
a resource based on locks, access may be governed by
tokens, where each token represents a particular type of
permission. The tokens for a particular resource may be
transferred among the parallel servers in a way that en-
sures that the three rules stated above are enforced.
�[0074] Similarly, the rules may be enforced using a
state-�based scheme. In a state- �based scheme, a version
of a resource changes state in response to events, where
the state of a version dictates the type of actions that may
be performed on the version. For example, a database
server receives the current version of a resource in its
"current" state. The current state allows modification of
the resource, and writing to disk of the resource. When
a database server transfers the current version of the
resource to another node, the retained version changes
to a "PI writeable" state. In the PI writeable state, the
version (1) cannot be modified, (2) cannot be overwritten,
but (3) can be written to disk. When any version of the
resource is written to disk, all versions that are in PI write-
able state that are the same or older than the version that
was written to disk are placed in a "PI released" state. In
the PI released state, versions can be overwritten, but
cannot be modified or written to disk.

HARDWARE OVERVIEW

�[0075] Figure 6 is a block diagram that illustrates a
computer system 600 upon which an embodiment of the
invention may be implemented. Computer system 600
includes a bus 602 or other communication mechanism
for communicating information, and a processor 604 cou-
pled with bus 602 for processing information. Computer
system 600 also includes a main memory 606, such as
a random access memory (RAM) or other dynamic stor-
age device, coupled to bus 602 for storing information
and instructions to be executed by processor 604. Main
memory 606 also may be used for storing temporary var-
iables or other intermediate information during execution
of instructions to be executed by processor 604. Com-
puter system 600 further includes a read only memory
(ROM) 608 or other static storage device coupled to bus
602 for storing static information and instructions for proc-
essor 604. A storage device 610, such as a magnetic
disk or optical disk, is provided and coupled to bus 602
for storing information and instructions.
�[0076] Computer system 600 may be coupled via bus
602 to a display 612, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 614, including alphanumeric and other keys, is
coupled to bus 602 for communicating information and
command selections to processor 604. Another type of
user input device is cursor control 616, such as a mouse,
a trackball, or cursor direction keys for communicating
direction information and command selections to proc-
essor 604 and for controlling cursor movement on display
612. This input device typically has two degrees of free-
dom in two axes, a first axis (e.g., x) and a second axis

(e.g., y), that allows the device to specify positions in a
plane.
�[0077] The invention is related to the use of computer
system 600 for reducing the overhead associated with a
ping. According to one embodiment of the invention, the
overhead associated with a ping is reduced by computer
system 600 in response to processor 604 executing one
or more sequences of one or more instructions contained
in main memory 606. Such instructions may be read into
main memory 606 from another computer-�readable me-
dium, such as storage device 610. Execution of the se-
quences of instructions contained in main memory 606
causes processor 604 to perform the process steps de-
scribed herein. In alternative embodiments, hard-�wired
circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any spe-
cific combination of hardware circuitry and software.
�[0078] The term "computer- �readable medium" as used
herein refers to any medium that participates in providing
instructions to processor 604 for execution. Such a me-
dium may take many forms, including but not limited to,
non-�volatile media, volatile media, and transmission me-
dia. Non-�volatile media includes, for example, optical or
magnetic disks, such as storage device 610. Volatile me-
dia includes dynamic memory, such as main memory
606. Transmission media includes coaxial cables, cop-
per wire and fiber optics, including the wires that comprise
bus 602. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio- �wave and infra-�red data communications.
�[0079] Common forms of computer-�readable media in-
clude, for example, a floppy disk, a flexible disk, hard
disk, magnetic tape, or any other magnetic medium, a
CD-�ROM, any other optical medium, punchcards, pap-
ertape, any other physical medium with patterns of holes,
a RAM, a PROM, and EPROM, a FLASH-�EPROM, any
other memory chip or cartridge, a carrier wave as de-
scribed hereinafter, or any other medium from which a
computer can read.
�[0080] Various forms of computer readable media may
be involved in carrying one or more sequences of one or
more instructions to processor 604 for execution. For ex-
ample, the instructions may initially be carried on a mag-
netic disk of a remote computer. The remote computer
can load the instructions into its dynamic memory and
send the instructions over a telephone line using a mo-
dem. A modem local to computer system 600 can receive
the data on the telephone line and use an infra-�red trans-
mitter to convert the data to an infra-�red signal. An infra-
red detector can receive the data carried in the infra-�red
signal and appropriate circuitry can place the data on bus
602. Bus 602 carries the data to main memory 606, from
which processor 604 retrieves and executes the instruc-
tions. The instructions received by main memory 606
may optionally be stored on storage device 610 either
before or after execution by processor 604.
�[0081] Computer system 600 belongs to a shared disk

15 16

EP 1 162 539 B1

10

5

10

15

20

25

30

35

40

45

50

55

system in which data on one or more storage devices
(e.g. disk drives 655) are accessible to both computer
system 600 and to one or more other CPUs (e.g. CPU
651). In the illustrated system, shared access to the disk
drives 655 is provided by a system area network 653.
However, various mechanisms may alternatively be used
to provide shared access.
�[0082] Computer system 600 also includes a commu-
nication interface 618 coupled to bus 602. Communica-
tion interface 618 provides a two- �way data communica-
tion coupling to a network link 620 that is connected to a
local network 622. For example, communication inter-
face 618 may be an integrated services digital network
(ISDN) card or a modem to provide a data communication
connection to a corresponding type of telephone line. As
another example, communication interface 618 may be
a local area network (LAN) card to provide a data com-
munication connection to a compatible LAN. Wireless
links may also be implemented. In any such implemen-
tation, communication interface 618 sends and receives
electrical, electromagnetic or optical signals that carry
digital data streams representing various types of infor-
mation.
�[0083] Network link 620 typically provides data com-
munication through one or more networks to other data
devices. For example, network link 620 may provide a
connection through local network 622 to a host computer
624 or to data equipment operated by an Internet Service
Provider (ISP) 626. ISP 626 in turn provides data com-
munication services through the world wide packet data
communication network now commonly referred to as
the "Internet" 628. Local network 622 and Internet 628
both use electrical, electromagnetic or optical signals that
carry digital data streams. The signals through the vari-
ous networks and the signals on network link 620 and
through communication interface 618, which carry the
digital data to and from computer system 600, are exem-
plary forms of carrier waves transporting the information.
�[0084] Compufer system 600 can send messages and
receive data, including program code, through the net-
work�(s), network link 620 and communication interface
618. In the Internet example, a server 630 might transmit
a requested code for an application program through In-
ternet 628, ISP 626, local network 622 and communica-
tion interface 618.
�[0085] The received code may be executed by proc-
essor 604 as it is received, and/or stored in storage de-
vice 610, or other non-�volatile storage for later execution.
In this manner, computer system 600 may obtain appli-
cation code in the form of a carrier wave.
�[0086] While techniques for handling pings have been
described herein with reference to pings that occur when
multiple database servers have access to a common per-
sistent storage device, these techniques are not restrict-
ed to this context. Specifically, these techniques may be
applied in any environment where a process associated
with one cache may require a resource whose current
version is located in another cache. Such environments

include, for example, environments in which text servers
on different nodes have access to the same text material,
environments in which media servers on different nodes
have access to the same video data, etc.
�[0087] Handling pings using the techniques described
herein provides efficient interdatabase server transfer of
resources so uptime performance scales well with in-
creasing number of database servers, and users per da-
tabase server. In addition, the techniques result in effi-
cient recovery from single- �database server failures (the
most common type of failure) that scales well with in-
creasing number of database servers.
�[0088] Significantly, the techniques described herein
handle pings by sending resources via the IPC transport,
not through disk intervention. Consequently, disk I/Os for
resources that result in a ping are substantially eliminat-
ed. A synchronous I/O is involved only as long as it is
needed for the log force. In addition, while disk I/O is
incurred for checkpointing and buffer cache replacement,
such I/O does not slow down the buffer shipment across
the cluster.
�[0089] The direct shipping techniques described here-
in also tend to reduced the number of context switches
incurred by a ping. Specifically, the sequence of round
trip messages between the participants of the protocol
(requestor and holder) and the Master, is substituted by
the communication triangle: Requestor, Master, Holder,
Requestor.
�[0090] In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifi-
cations and changes may be made thereto. The specifi-
cation and drawings are, accordingly, to be regarded in
an illustrative rather than a restrictive sense.

Claims

1. A method for recovering a resource after a failure,
the method comprising the steps of:�

before said failure, retaining a dirty version of a
resource in a first cache while transferring a copy
of the resource from said first cache to a second
cache without first durably storing said dirty ver-
sion of the resource from said first cache to a
persistent storage (655);
after failure of a cache that held a dirty version
of the resource, determining (S402) whether the
failed cache held the latest version of the re-
source;
if the failed cache held the latest version of the
resource, then applying a recovery log of the
failed cache to a previous version of the re-
source (S408, 410, 412) to reconstruct the latest
version of the resource; and
if the failed cache did not hold the latest version
of the resource, then the cache that holds the

17 18

EP 1 162 539 B1

11

5

10

15

20

25

30

35

40

45

50

55

latest version of the resource writing the latest
version of the resource to the persistent storage
(S404, 406).

2. The method of Claim 1, wherein the previous version
of the resource is durably stored on disk (610, 655).

3. The method of Claim 1, wherein the previous version
of the resource is a past image of the resource in a
third cache.

4. The method of Claim 3, wherein said past image of
the resource in said third cache is at least as current
as any other past image of the resource that is cur-
rently retained in any cache of a plurality of caches
that did not fail.

5. The method of Claim 3, wherein the recovery log of
the failed cache is applied to the previous version of
the resource in said third cache without first durably
storing the previous version of the resource to the
persistent storage.

6. The method of Claim 1, further comprising:�

if the failed cache did not hold the latest version
of the resource, then the cache that holds the
latest version of the resource releasing all past
image versions of the resource.

7. A computer-�readable medium carrying one or more
sequences of instructions for recovering a resource,
wherein execution of the one or more sequences of
instructions by one or more processors (604, 651)
causes the one or more processors to perform the
steps of: �

before said failure, retaining a dirty version of a
resource in a first cache while transferring a copy
of the resource from said first cache to a second
cache without first durably storing said dirty ver-
sion of the_ �resource from said first cache to a
persistent storage;
after failure of a cache that held a dirty version
of the resource, determining (S402) whether the
failed cache held the latest version of the re-
source;
if the failed cache held the latest version of the
resource, then applying (S412) a recovery log
of the failed cache to a previous version of the
resource to reconstruct the latest version of the
resource; and
if the failed cache did not hold the latest version
of the resource, then the cache that holds the
latest version of the resource writing (S404) the
latest version of the resource to the persistent
storage.

8. The computer-�readable medium of Claim 7, wherein
the previous version of the resource is durably stored
on disk.

9. The computer-�readable medium of Claim 7, wherein
the previous version of the resource is a past image
of the resource in a third cache.

10. The computer- �readable medium of claim 9, wherein
said past image of the resource in said third cache
is at least as current as any other past image of the
resource that is currently retained in any cache of a
plurality of caches that did not fail.

11. The computer-�readable medium of Claim 9, wherein
the recovery log of the failed cache is applied to the
previous version of said resource in the third cache
without first durably storing the previous version of
the resource to the persistent storage.

12. The computer-�readable medium of Claim 7, wherein
execution of the one or more sequences of instruc-
tions by the one or more processors (604, 651) fur-
ther causes the one or more processors to perform
the step of:�

if the failed cache did not hold the latest version
of the resource, then the cache that holds the
latest version of the resource releasing all past
image versions of the resource.

13. An apparatus for recovering a resource after a fail-
ure, wherein the apparatus is configured to:�

before said failure, retain a dirty version_�of a
resource in a first cache while transferring a copy
of the resource from said first cache to a second
cache without first durably storing said dirty ver-
sion of the resource from said first cache to a
persistent storage;
after the failure of a cache that held a dirty ver-
sion of the resource, determine (S402) whether
the failed cache held the latest version of the
resource;
if the failed cache held the latest version of the
resource, then apply (S412) a recovery log of
the failed cache to a previous version of the re-
source to reconstruct the latest version of the
resource; and
if the failed cache did not hold the latest version
of the resource, then the cache that holds the
latest version of the resource writing (S404) the
latest version of the resource to the persistent
storage.

14. The apparatus of Claim 13, wherein the previous ver-
sion of the resource is durably stored on disk (610,
655).

19 20

EP 1 162 539 B1

12

5

10

15

20

25

30

35

40

45

50

55

15. The apparatus of Claim 13, wherein the previous ver-
sion of the resource is a past image of the resource
in a third cache.

16. The apparatus of Claim 15, wherein said past image
of the resource in said second cache is at least as
current as any other past image of the resource that
is currently retained in any cache of a plurality of
caches that did not fail.

17. The apparatus of Claim 15, wherein the recovery log
of the failed cache is applied to the previous version
of the resource in said third cache without first dura-
bly storing the previous version of the resource to
the persistent storage.

18. The apparatus of Claim 13, wherein the apparatus
is further configured to:�

if the failed cache did not hold the latest version
of the resource, then the cache that holds the
latest version of the resource releasing all past
image versions of the resource.

Patentansprüche

1. Verfahren zum Wiederherstellen einer Ressource
nach einem Ausfall, wobei das Verfahren die folgen-
den Schritte aufweist: �

vor dem Ausfall Beibehalten einer unsauberen
Version einer Ressource in einem ersten Zwi-
schenspeicher während des Übertragens einer
Kopie der Ressource von dem ersten Zwischen-
speicher zu einem zweiten Zwischenspeicher,
ohne dass vorher die unsaubere Version der
Ressource von dem ersten Zwischenspeicher
in einem persistenten Speicher (655) dauerhaft
gespeichert wird;
nach dem Ausfall eines Zwischenspeichers, der
eine unsaubere Version der Ressource aufwies,
Ermitteln (S 402), ob der ausgefallene Zwi-
schenspeicher die neueste Version der Res-
source aufwies;
wenn der ausgefallene Zwischenspeicher die
neueste Version der Ressource aufwies, An-
wenden eines Wiederherstellungsprotokolls
des ausgefallenen Zwischenspeichers auf eine
vorherige Version der Ressource (S 408, 410,
412) zum Rekonstruieren der neuesten Version
der Ressource; und
wenn der ausgefallene Zwischenspeicher nicht
die neueste Version der Ressource aufwies,
Schreiben der neuesten Version der Ressource
auf den persistenten Speicher (S 404, 406)
durch den Zwischenspeicher, der die neueste
Version der Ressource aufweist.

2. Verfahren gemäß Anspruch 1, wobei die vorherige
Version der Ressource dauerhaft auf Platte (610,
655) gespeichert wird.

3. Verfahren gemäß Anspruch 1, wobei die vorherige
Version der Ressource ein früheres Abbild der Res-
source in einem dritten Zwischenspeicher ist.

4. Verfahren gemäß Anspruch 3, wobei das frühere Ab-
bild der Ressource in dem dritten Zwischenspeicher
mindestens so aktuell ist, wie jedes andere frühere
Abbild der Ressource, das aktuell in irgendeinem
Zwischenspeicher einer Mehrzahl von Zwischen-
speichern, die nicht ausgefallen sind, beibehalten
wird.

5. Verfahren gemäß Anspruch 3, wobei das Wieder-
herstellungsprotokoll des ausgefallenen Zwischen-
speichers auf die vorherige Version der Ressource
in dem dritten Zwischenspeicher angewendet wird,
ohne dass erst die vorherige Version der Ressource
in dem persistenten Speicher dauerhaft gespeichert
wird.

6. Verfahren gemäß Anspruch 1, ferner aufweisend:�

Freigeben aller früheren Abbildversionen der
Ressource durch den Zwischenspeicher, der
die neueste Version der Ressource aufweist,
wenn der ausgefallene Zwischenspeicher nicht
die neueste Version der Ressource aufwies.

7. Computer-�lesbares Medium, das eine oder mehrere
Folgen von Befehlen für das Wiederherstellen einer
Ressource enthält, wobei das Ausführen von der ei-
nen oder den mehreren Folgen von Befehlen durch
einen oder mehrere Prozessoren (604, 651) bewirkt,
dass der eine oder die mehreren Prozessoren die
folgenden Schritte durchführen: �

vor dem Ausfall Beibehalten einer unsauberen
Version einer Ressource in einem ersten Zwi-
schenspeicher während des Übertragens einer
Kopie der Ressource von dem ersten Zwischen-
speicher zu einem zweiten Zwischenspeicher,
ohne dass vorher die unsaubere Version der
Ressource von dem ersten Zwischenspeicher
in einem persistenten Speicher (655) dauerhaft
gespeichert wird;
nach dem Ausfall eines Zwischenspeichers, der
eine unsaubere Version der Ressource aufwies,
Ermitteln (S 402), ob der ausgefallene Zwi-
schenspeicher die neueste Version der Res-
source aufwies;
wenn der ausgefallene Zwischenspeicher die
neueste Version der Ressource aufwies, An-
wenden (S 412) eines Wiederherstellungspro-
tokolls des ausgefallenen Zwischenspeichers

21 22

EP 1 162 539 B1

13

5

10

15

20

25

30

35

40

45

50

55

auf eine vorherige Version der Ressource zum
Rekonstruieren der neuesten Version der Res-
source; und
wenn der ausgefallene Zwischenspeicher nicht
die neueste Version der Ressource aufwies,
Schreiben (S404) der neuesten Version der
Ressource auf den persistenten Speicher durch
den Zwischenspeicher, der die neueste Version
der Ressource aufweist.

8. Computerlesbares Medium gemäß Anspruch 7, wo-
bei die vorherige Version der Ressource dauerhaft
auf Platte gespeichert wird.

9. Computerlesbares Medium gemäß Anspruch 7, wo-
bei die vorherige Version der Ressource ein früheres
Abbild der Ressource in einem dritten Zwischenspei-
cher ist.

10. Computerlesbares Medium gemäß Anspruch 9, wo-
bei das frühere Abbild der Ressource in dem dritten
Zwischenspeicher mindestens so aktuell ist, wie je-
des andere frühere Abbild der Ressource, das aktu-
ell in irgendeinem Zwischenspeicher einer Mehrzahl
von Zwischenspeichern, die nicht ausgefallen sind,
beibehalten wird.

11. Computerlesbares Medium gemäß Anspruch 9, wo-
bei das Wiederherstellungsprotokoll des ausgefalle-
nen Zwischenspeichers auf die vorherige Version
der Ressource in dem dritten Zwischenspeicher an-
gewendet wird, ohne dass zuerst die vorherige Ver-
sion der Ressource in dem persistenten Speicher
dauerhaft gespeichert wird.

12. Computerlesbares Medium gemäß Anspruch 7, wo-
bei das Ausführen der einen oder mehreren Folgen
von Befehlen durch den einen oder die mehreren
Prozessoren (604, 651) ferner bewirkt, dass der eine
oder die mehreren Prozessoren den folgenden
Schritt durchführen:�

Freigeben aller früheren Abbildversionen der
Ressource durch den Zwischenspeicher, der
die neueste Version der Ressource aufweist,
wenn der ausgefallene Zwischenspeicher nicht
die neueste Version der Ressource aufwies.

13. Vorrichtung zum Wiederherstellen einer Ressource
nach einem Ausfall, wobei die Vorrichtung eingerich-
tet ist zum: �

vor dem Ausfall Beibehalten einer unsauberen
Version einer Ressource in einem ersten Zwi-
schenspeicher während des Übertragens einer
Kopie der Ressource von dem ersten Zwischen-
speicher zu einem zweiten Zwischenspeicher,
ohne dass vorher die unsaubere Version der

Ressource von dem ersten Zwischenspeicher
in einem persistenten Speicher dauerhaft ge-
speichert wird;
nach dem Ausfall (S 402) eines Zwischenspei-
chers, der eine unsaubere Version der Ressour-
ce aufwies, Ermitteln, ob der ausgefallene Zwi-
schenspeicher die neueste Version der Res-
source aufwies;
wenn der ausgefallene Zwischenspeicher die
neueste Version der Ressource aufwies, An-
wenden (S 412) eines Wiederherstellungspro-
tokolls des ausgefallenen Zwischenspeichers
auf eine vorherige Version der Ressource zum
Rekonstruieren der neuesten Version der Res-
source; und
wenn der ausgefallene Zwischenspeicher nicht
die neueste Version der Ressource aufwies,
Schreiben (S404) der neuesten Version der
Ressource auf den persistenten Speicher durch
den Zwischenspeicher, der die neueste Version
der Ressource aufweist.

14. Vorrichtung gemäß Anspruch 13, wobei die vorhe-
rige Version der Ressource dauerhaft auf Platte
(610, 655) gespeichert wird.

15. Vorrichtung gemäß Anspruch 13, wobei die vorhe-
rige Version der Ressource ein früheres Abbild der
Ressource in einem dritten Zwischenspeicher ist.

16. Vorrichtung gemäß Anspruch 15, wobei das frühere
Abbild der Ressource in dem zweiten Zwischenspei-
cher mindestens so aktuell ist, wie jedes andere frü-
here Abbild der Ressource, das aktuell in irgendei-
nem Zwischenspeicher einer Mehrzahl von Zwi-
schenspeichern, die nicht ausgefallen sind, beibe-
halten wird.

17. Vorrichtung gemäß Anspruch 15, wobei das Wieder-
herstellungsprotokoll des ausgefallenen Zwischen-
speichers auf die vorherige Version der Ressource
in dem dritten Zwischenspeicher angewendet wird,
ohne dass erst die vorherige Version der Ressource
in dem persistenten Speicher dauerhaft gespeichert
wird.

18. Vorrichtung gemäß Anspruch 13, wobei die Vorrich-
tung ferner eingerichtet ist zum: �

Freigeben von allen früheren Abbildversionen
der Ressource durch den Zwischenspeicher,
der die neueste Version der Ressource auf-
weist, wenn der ausgefallene Zwischenspeicher
nicht die neueste Version der Ressource auf-
wies.

23 24

EP 1 162 539 B1

14

5

10

15

20

25

30

35

40

45

50

55

Revendications

1. Procédé pour récupérer une ressource après un in-
cident, le procédé comprenant les étapes consistant
à :�

avant ledit incident, conserver une version im-
propre d’une ressource dans un premier cache
tandis qu’est transférée une copie de la ressour-
ce depuis ledit premier cache vers un second
cache sans commencer par stocker durable-
ment ladite version impropre de la ressource à
partir dudit premier cache dans un stockage per-
sistant (655) ;
après l’incident d’un cache qui conservait une
version impropre de la ressource, déterminer
(S402)
si le cache qui a connu une panne a conservé
la dernière version de la ressource ;
si le cache qui a connu une panne a conservé
la dernière version de la ressource, puis appli-
quer un journal de récupération du cache qui a
connu une panne à une version précédente de
la ressource (S408, 410, 412) pour reconstruire
la dernière version de la ressource ; et
si le cache qui a connu une panne n’a pas con-
servé la dernière version de la ressource, alors
le cache qui conserve la dernière version de la
ressource écrit la dernière version de la ressour-
ce dans le stockage persistant (S404, 406).

2. Procédé selon la revendication 1, dans lequel la pré-
cédente version de la ressource est stockée dura-
blement sur un disque (610, 655).

3. Procédé selon la revendication 1, dans lequel la pré-
cédente version de la ressource est une image pas-
sée de la ressource dans un troisième cache.

4. Procédé selon la revendication 3, dans lequel ladite
image passée de la ressource dans ledit troisième
cache est au moins aussi actuelle que tout autre ima-
ge passée de la ressource qui est actuellement con-
servée dans n’importe quel cache parmi une pluralité
de caches qui n’ont pas connu d’incident.

5. Procédé selon la revendication 3, dans lequel le jour-
nal de récupération du cache qui a connu un incident
est appliqué à la version précédente de la ressource
dans ledit troisième cache sans commencer par
stocker durablement la précédente version de la res-
source dans le stockage persistant.

6. Procédé selon la revendication 1, comprenant en
outre l’étape consistant à ce que :�

si le cache qui a connu un incident ne conservait
pas la dernière version de la ressource, alors le

cache qui contient la dernière version de la res-
source libère toutes les versions d’image pas-
sées de la ressource.

7. Support lisible par un ordinateur portant une ou plu-
sieurs séquences d’instructions pour récupérer une
ressource, dans lequel l’exécution d’une ou plu-
sieurs séquences d’instructions par un ou plusieurs
processeurs (604, 651) entraîne que le ou les pro-
cesseurs exécutent les étapes consistant à :�

avant ledit incident, conserver une version im-
propre d’une ressource dans un premier cache
tandis qu’est transférée une copie de la ressour-
ce depuis ledit premier cache vers un deuxième
cache sans commencer par stocker durable-
ment ladite version impropre de la ressource à
partir dudit premier cache dans un stockage
persistant ;
après l’incident d’un cache qui conservait une
version impropre de la ressource, déterminer
(S402)
si le cache qui a connu une panne a conservé
la dernière version de la ressource ;
si le cache qui a connu une panne a conservé
la dernière version de la ressource, puis appli-
quer (S412) un journal de récupération du cache
qui a connu une panne à une version précédente
de la ressource pour reconstruire la dernière
version de la ressource ; et
si le cache qui a connu une panne n’a pas con-
servé la dernière version de la ressource, alors
le cache qui conserve la dernière version de la
ressource écrit (S404) la dernière version de la
ressource dans le stockage persistant.

8. Support lisible par un ordinateur selon la revendica-
tion 7, dans lequel la version précédente de la res-
source est stockée durablement sur le disque.

9. Support lisible par un ordinateur selon la revendica-
tion 7, dans lequel la précédente version de la res-
source est une image passée de la ressource dans
un troisième cache.

10. Support lisible par un ordinateur selon la revendica-
tion 9, dans lequel ladite image passée de la res-
source dans ledit troisième cache est au moins aussi
actuelle que tout autre image passée de la ressource
qui est actuellement conservée dans n’importe quel
cache parmi une pluralité de caches qui n’ont pas
connu d’incident.

11. Support lisible par un ordinateur selon la revendica-
tion 9, dans lequel le journal de récupération du ca-
che qui a connu un incident est appliqué à la version
précédente de ladite ressource dans le troisième ca-
che sans commencer par stocker durablement la

25 26

EP 1 162 539 B1

15

5

10

15

20

25

30

35

40

45

50

55

précédente version de la ressource dans le stockage
persistant.

12. Support lisible par un ordinateur selon la revendica-
tion 7, dans lequel l’exécution d’une ou plusieurs sé-
quences d’instructions par le ou les processeurs
(604, 651) entraîne en outre que le ou les proces-
seurs exécutent les étapes consistant à ce que :�

si le cache qui a connu un incident ne conservait
pas la dernière version de la ressource, alors le
cache qui contient la dernière version de la res-
source libère toutes les versions d’image pas-
sées de la ressource.

13. Appareil pour récupérer une ressource après un in-
cident, où l’appareil est configuré pour :�

avant ledit incident, conserver une version im-
propre d’une ressource dans un premier cache
tandis qu’est transférée une copie de la ressour-
ce depuis ledit premier cache vers un second
cache sans commencer par stocker durable-
ment ladite version impropre de la ressource à
partir dudit premier cache dans un stockage
persistant ;
après l’incident d’un cache qui conservait une
version impropre de la ressource, déterminer
(S402) si le cache qui a connu une panne a con-
servé la dernière version de la ressource ;
si le cache qui a connu l’incident a conservé la
dernière version de la ressource, alors appliquer
(S412) un journal de récupération du cache qui
a connu une panne à une version précédente
de la ressource pour reconstruire la dernière
version de la ressource ; et
si le cache qui a connu une panne n’a pas con-
servé la dernière version de la ressource, alors
le cache qui conserve la dernière version de la
ressource écrit (S404) la dernière version de la
ressource dans le stockage persistant.

14. Appareil selon la revendication 13, dans lequel la
version précédente de la ressource est stockée du-
rablement sur un disque (610, 655).

15. Appareil selon la revendication 13, dans lequel la
précédente version de la ressource est une image
passée de la ressource dans un troisième cache.

16. Appareil selon la revendication 15, dans lequel ladite
image passée de la ressource dans ledit deuxième
cache est au moins aussi actuelle que tout autre ima-
ge passée de la ressource qui est actuellement con-
servée dans n’importe quel cache parmi une pluralité
de caches qui n’ont pas connu d’incident.

17. Appareil selon la revendication 15, dans lequel le

journal de récupération du cache qui a connu un in-
cident est appliqué à la version précédente de la
ressource dans ledit troisième cache sans commen-
cer par stocker durablement la précédente version
de la ressource dans le stockage persistant.

18. Appareil selon la revendication 13, dans lequel l’ap-
pareil est en outre configuré pour exécuter l’étape
consistant à ce que : �

si le cache qui a connu un incident ne conservait
pas la dernière version de la ressource, alors le
cache qui contient la dernière version de la res-
source libère toutes les versions d’image pas-
sées de la ressource.

27 28

EP 1 162 539 B1

16

EP 1 162 539 B1

17

EP 1 162 539 B1

18

EP 1 162 539 B1

19

EP 1 162 539 B1

20

EP 1 162 539 B1

21

EP 1 162 539 B1

22

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5832516 A [0005]
• US 669689 A [0006]

• US 5327556 A [0015]

	bibliography
	description
	claims
	drawings

