
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0133606A1

US 2004O133606A1

Miloushev et al. (43) Pub. Date: Jul. 8, 2004

(54) DIRECTORY AGGREGATION FOR FILES (52) U.S. Cl. .. 707/200
DISTRIBUTED OVER A PLURALITY OF
SERVERS IN A SWITCHED FILE SYSTEM

(57) ABSTRACT
(75) Inventors: Vladimir Miloushev, Dana Point, CA

(US); Peter Nickolov, Laguna Niguel,
CA (US)

Correspondence Address:
MORGAN, LEWIS & BOCKIUS, LLP.
3300 HILLVIEWAVENUE
PALO ALTO, CA 94.304 (US)

(73) Assignee: Z-force Communications, Inc.

(21) Appl. No.: 10/336,833

(22) Filed: Jan. 2, 2003

Publication Classification

(51) Int. Cl." G06F 17/30; G06F 12/00

myFile.doc

410

406

4.08

myFile.doc
FILE SWITCH

A file Switch, logically positioned between client computers
and file Servers in a computer network, distributes user files
among multiple file Servers using an aggregated directory
mechanism. A hierarchical directory Structure is created on
the file Servers and used to Store metadata files, which Store
metadata for each user file to indicate where data files,
containing portions of the user file, are Stored. The file
Switch automatically spreads the data files and metadata files
over a large number of distinct directories on multiple file
Servers, preventing large number of data files from being
Stored in a single directory on a single file Server. In response
to a directory enumeration request from a client computer,
one or more directories of metadata files on one or more of
the file Servers is enumerated, instead of enumerating the
data file that Store the user file portions.

401

myFile.doc

myFile.doc

myFile.doc

File Server N

US 2004/013.3606A1 Jul. 8, 2004 Sheet 1 of 25 Patent Application Publication

90 ||

LEWBOIERE 0 || ||-
YZOL ·ZO ? 20||

Patent Application Publication Jul. 8, 2004 Sheet 3 of 25 US 2004/013.3606A1

3, E
5.
- (f)

3 3 s
A

3

N
v

O y g
3 c) S 9

CY) cy

s s T O

US 2004/013.3606A1 Sheet 4 of 25

O O O O

| 07

|- ––1907

Patent Application Publication Jul. 8, 2004

CPU

Patent Application Publication Jul. 8, 2004 Sheet 6 of 25

600

6O1 /
602

User Interface

MII
608

603

604 604

...
606

E (In

FIG. 6

II. File Servers

US 2004/013.3606A1

610

Operating System
611

Network Comm. Module
612

File Switch Module
613

Core Services Layer
614

Control Plane Layer
615

Data Plane Layer
616

Aggregated File System
617

Virtual File System
618

TCP/IP Transport
619

Parallel Redirector
627

620
State information

621
Transaction State info.

622
Open File State info.

623
Locking State info.

624

Cached information
625

Metadata File

626

Aggregated Data File

Patent Application Publication Jul. 8, 2004 Sheet 7 of 25 US 2004/013.3606A1

7O6
704 7

Parallel
Redirector

702

Aggregated
File

System

TCP/IP Transport

Server Service

708

714
File Servers

716

Global Unique 1704
ldentifier (GUID)

Function

GUID

Data Stream Path = ...Vindex 1 \index 2\,...,\Index n\GUID ASC

FIG. 17

17O6

1708

Patent Application Publication Jul. 8, 2004 Sheet 8 of 25 US 2004/013.3606A1

Metadata File
800

Header

Metadata Offsets

Aggregation Descriptor

Stripe-Mirror Map

802

803

804.

805

806

808

809

-810

811

812

813

83O

814

Matrix(Stripe #Mirrori)
Data Stream Descriptor

Entry
O. O. O.

Total File Length

FIG. 8

85

816

817

818

819

US 2004/013.3606A1

SHEAHES

Sheet 9 of 25

806

Patent Application Publication Jul. 8, 2004

Patent Application Publication Jul. 8, 2004 Sheet 10 of 25 US 2004/013.3606A1

1 OO1

MYFILE.TXT writext
1002

MYFILE.TXT
1 OOO

writetxt > . MYFILE.TXT

MYFILE.TXT

1003 myFLEtxt ?t
1004

FIG. 10

1105 1 109

5

1106 1 O8 11 O 1102 11 O6 1110

2 's
1107

3 1105 11 O7 11 O9 11 OO 3
1108

FIG. 11 to (a

12O1

1200 1 2 3 4

| 2 | | Is?e > 5 s

FIG. 12

Patent Application Publication Jul. 8, 2004 Sheet 11 of 25 US 2004/013.3606A1

SYNTAX 1300

(PATH, TYPE) (NMirrors, N Stripes, Strip Size)

EXAMPLES
1301

1302

1303

1304

(\CODEBASE*, *)
1305

(\CODEBASE\", OBJ)

Patent Application Publication Jul. 8, 2004 Sheet 12 of 25 US 2004/013.3606A1

1402

1404
N

Determine NAS
Array

1406

Determine File
Servers

Determine
Directory Path

-
1408

Determine
Metafile Names

FIG. 14

Patent Application Publication Jul. 8, 2004 Sheet 13 of 25 US 2004/013.3606A1

PrmyFile.doc 1501

GUID ASCII 1
File Server 1

PmyFile.doc 5O2

SmyFile.doc

GUID ASCII 2
File Server 2

6 stripes, O mirror 1503

myFile.doc GUID ASCII 3
mes File Server 3

1500
1504

GUID ASCII 4
File Server 4

1505

GUD ASCII 5
File Server 5

1506

GUID ASCIl 6
File Server 6

FIG. 15

Patent Application Publication Jul. 8, 2004 Sheet 14 of 25 US 2004/013.3606A1

602

Determine NAS
Array

Determine
Number of File

Servers

1606

1608

Select File
Servers & Perform
Load Balancing

Determine &
Handle Spillovers

Create Global
Unique identifier

(GUID)
1612

1614

Determine File
Path With GUID

1616

Create Data
Stream FileName

1618

FIG. 16

US 2004/013.3606A1 Patent Application Publication Jul. 8, 2004 Sheet 15 of 25

Z 12
| 2:0 ||

Z 12

| || Z.

Z |

Z

| 1:0 ||

US 2004/013.3606A1 Sheet 16 of 25 Patent Application Publication Jul. 8, 2004

802Y

902

| | | | | | | | |

0 || Z.|
{ | | | | | | | |

603 (LETIH) GIVE!!!

Patent Application Publication Jul. 8, 2004 Sheet 17 of 25 US 2004/013.3606A1

2OO2

Access Metadata
File

Determine Subset
of File Servers to

ACCess

2OO6

Submit Command
to Selected File

Servers

Wait and Receive
Response from
File Servers

Compute an
Aggregated Result

Submit Response
Back to Client

2012

2O16

FIG. 20

•? |----------;;?--
902

O 12

?703

???JWA :\/ || 3??JNW : 8

US 2004/013.3606A1

| 0 ||

- - - - - - - - - - - - - - - - 1

HO_LINAS ZT| HOLINAS ET||-||

| 0,2

- - - - - - - - - - - - - - - - -e-

Aeluwell

Patent Application Publication Jul. 8, 2004 Sheet 18 of 25

Patent Application Publication Jul. 8, 2004 Sheet 19 of 25 US 2004/013.3606A1

C Start) Generate Byte-Range Lock
22OO Requests to File Servers

22O6

Receive File Write Gather LOCK Results & Save
Request From Client in State 2208

2202

eck if Byte NO Byte-Range NO
Rande LOCked-4 QCK ACQuired

Yes 2204 Yes 22O

Perform Write Operation to
File Servers

2214

Send Write Request
Receive Write Responses Failure to Client

From File Servers
2216 2212

Acknowledge Write
Operation Complete 2218

2220

Release Byte-Range Lock

FIG. 22

Patent Application Publication Jul. 8, 2004 Sheet 20 of 25 US 2004/013.3606A1

2300

2301
N Receive Client's Oplock

Request to Access a
User File

23O2
Send Oplock Requests
On Metafiles to File

Servers

Aggregate File Server
Responses

Grant Client LOWest
Oplock Level Allowed By

File Servers

Save States of Granted
Oplocks From All File

Servers

2305

2306 Save Oplock Level
Granted to Client

FIG. 23a

Patent Application Publication Jul. 8, 2004 Sheet 21 of 25

23 O

Receive an Oplock
Break Notification From
Sender File Server 2311

Exam Level O
Oplock Break
Notification 2312

lf Oplock Level in
Break Notification

lf Oplock Level in
Break Notification <

>= Oplock Level Oplock level
Granted to Client Granted to Client

Respond to Oplock Forward Oplock Break
Break Notification Notification to Client

2313

Update State
Information to New
Oplock Level of

Sender File Server

Update State information
to New Oplock Level of
Sender File Server

Se

Forward Client's
Response Back to
Sender File Server

FG. 23b

Respond to Oplock
Break Notification

Information to New
Oplock Level of

US 2004/013.3606A1

if Client Never
Requested, or Does
Not Hold an Oplock

2318

Update State

ncier File Server

2319

/882

US 2004/013.3606A1

9983

Sheet 22 of 25

O O. O. O 99832992
†7982

0892

Patent Application Publication Jul. 8, 2004

Patent Application Publication Jul. 8, 2004 Sheet 23 of 25 US 2004/013.3606A1

Receive File ACCeSS
Request & Determine
Location of Primary

Metafile

Open Primary Metafile
With Exclusive File ACCess

24O2

Opening Primary
afile Succes

Fail File Access Request
2404 Send Requests to Open

Data Streams On All File
Servers

Open Reqthe
uCCeSSf

YeS

Perform File Access on All
Data Stream Files

Close All Data Stream
Files & Close Primary 24O9

Metafile

Fail File Access Request
24O7

TO 24O9

FIG. 24

Patent Application Publication

25OO

Receive an
Enumeration Request

From Client

Determine Set of
NAS Arrays to be

Enumerated

2502

For Each NAS Array,
Extract Matched Path

2503

O- From 2515

For Each File Server,
Send Enumeration

Request

2504

Receive File Server
Response

2505

For Each Directory
Entry, Process

Responses From File
Servers

2506

To 2507

FIG. 25

From 2515

From 2515

Jul. 8, 2004 Sheet 24 of 25

From 2506

searc
2507

Update
Directory State
& Pointer For
New Entry

2508

Ridhary Metafile Found>

Yes

Submit Entry Back To
Client

Ahfiles in DireCtes
numerated

2512 Yes

All File Server
Qumerated

Yes

N

Yes

Update
Directory State
& Pointer For
Existing Entry

US 2004/013.3606A1

O

2509

NO

NO

NO
O

N-2513
All NAS Array

Yes

NO
2515

2?ent Closes
Enumeration / Al No

2504, 2506

Patent Application Publication Jul. 8, 2004 Sheet 25 of 25 US 2004/013.3606A1

CStart D
2600

Receive Metavolume
Aggregation Request

26O2

Select A Primary
MetaServer 2604

- 2616

Create, Req. Range Lock Send Request to
Operation Type? Primary

Destructive MetaServer
Non- 2606 Success Fails fail

Destructive 2618 Operation
Send Request to

Al Metaservers All Other
MetaServers

Send Request to First/
Next MetaServer

At Least One
MetaServer ACCess

SuCCessful ?

2608

MetaServer
Available 2

Operation

Save Primary Metaserver

Save States of Which
MetaServers Are

Available
2622

Save States of
Metaserver that Returns

Successful Access 2624

2626 FIG. 26
GEnd)

US 2004/O133606 A1

DIRECTORY AGGREGATION FOR FILES
DISTRIBUTED OVER A PLURALITY OF SERVERS

INA SWITCHED FILE SYSTEM

RELATED APPLICATIONS

0001. This application claims priority from U.S. patent
application Ser. No. 10/043,413, entitled File Switch and
Switched File System, filed Jan. 10, 2002, and U.S. Provi
sional Patent Application No. 60/261,153, entitled FILE
SWITCH AND SWITCHED FILE SYSTEM and fled Jan.
11, 2001, both of which are incorporated herein by refer
ence. This application is furthermore related to the following
applications, each of which is filed on the Same date as this
application and is hereby incorporated by reference in its
entirety: Transaction Aggregation in a Switched File SyS
tem, attorney docket 11187-0004-999; Metadata Based File
Switch And Switched File, attorney docket 11187-0006-999;
Rule Based Aggregation of Files and Transactions in a
Switched File System, attorney docket 11187-007-999;
Aggregated Lock Management for Locking Aggregated
Files in a Switched File System, attorney docket 11187-008
999; and Aggregated Opportunistic Lock and Aggregated
Implicit Lock Management for Locking Aggregated Files in
a Switched File System, attorney docket 11187-009-999.

FILED OF THE INVENTION

0002 The present invention relates generally to the field
of Storage networks, and more specifically to file Switching
and Switched file systems.

DESCRIPTION OF THE RELATED ART

0003. Since the birth of computer networking, access to
Storage has remained among the most important network
applications. The reason is simple: the purpose of networks
was and is to share data and content, and most of the data
Worth Sharing resides on Some form of Storage.
0004. Despite the importance of storage applications in
networks, their usefulneSS has, until recently, been greatly
limited by the insufficient bandwidth provided by networks.
Even at 100 Megabits/second (Mbps) (the most common
maximum speed in existing local area networks, also known
as Fast Ethernet), accessing data through a network is
Several times slower than reading it from a hard disk
attached locally to a computer. For this reason, historically
most of the data accessed by a networked computer (work
Station or application server—often referred to as a "client')
has resided on local Storage and only data that has to be
shared has resided on network Servers.

0005 The introduction of gigabit and multi-gigabit net
work technology, however, is changing the rules of the
game. A Single Gigabit Ethernet or FibreChannel connection
is capable of transporting data at aggregate rates of up to 240
Megabytes/second (MB/s), which is much greater than the
performance of most locally attached Storage devices. This
means that in new high Speed networks, data can be accessed
through the network faster than from local Storage. AS a
result, we have now reached the beginning of a fundamental
trend in which the majority of useful data is being moved to
the network.

0006 Storage Networks
0007. The ability to store terabytes of data on the network
and make that data accessible to tens and hundreds of

Jul. 8, 2004

thousands of users is extremely attractive. At the same time,
creating Storage and network Systems capable of adequately
handling Such amounts of information and usage loads is not
a simple task. As a result, Storage networking-the disci
pline that deals with designing, building and managing Such
Systems-is rapidly becoming recognized as a separate,
Specialized field of computer networking.
0008. The key promise of storage networking is in deliv
ering network Systems that enable the Sharing of huge
amounts of information and content among geographically
dispersed users. To deliver on this promise, the Storage
network Systems have to be extremely Scalable while pro
Viding a high degree of availability comparable to that of the
public telephone System. In addition, any System of this
Scale has to be designed So that it can be managed effec
tively.

0009 Available Approaches to Scaling File Systems
0010. The primary function of every file system is to
enable shared access to Storage resources. In fact, file
Systems were originally created to facilitate Sharing of
then-expensive Storage between multiple applications and
multiple users. As a result, when exposed as a network
Service, file Systems provide a complete and mature Solution
to the problem of Sharing data.
0011. The flip side is that file systems are complex and
very processing-intensive, which increases Substantially the
performance requirements to any computer that provides file
Services over a fast network. To serve files to hundreds and
thousands of users Simultaneously requires tremendous
amounts of processing power, memory and bus bandwidth.
0012 FIG. 1 illustrates a typical application of presently
available, commonly used network file Systems. The System
consists of a local area network 104, which connects a large
number of client WorkStations and application Servers 102,
connected to various file Servers. The file Servers typically
include standalone servers such as 105 and 106, as well as
file servers, such as 107 and 108, configured as a cluster 110
with shared storage 118. The servers 107 and 108 are
connected together through a high-speed, low-latency intra
cluster connection 112, and are also connected to the shared
Storage 118 through a SAN (Storage area network), typically
using optical (FibreChannel) interconnect 114 and 116. In
addition, clients and application Servers 102 and file Servers
105 through 108 may be configured to be part of a distrib
uted file System with the appropriate Software Services
installed on all of those machines.

0013 Single Box Solutions
0014. Single box solutions provide a simple and straight
forward approach to the problem of increasing the perfor
mance of file servers. Traditionally, the fastest available
computers were used to Serve files, when even these became
insufficient, Specialized architectures were built to extend
the capabilities of the server. Where one processor was not
enough, more processors were added; where the bandwidth
of a Standard bus was not Sufficient, additional buSSes or
even custom-designed wider buSSes were introduced, and So
O.

0015 The result of this approach is that high-end file
Servers are essentially massively multiprocessing Supercom
puters, with all the associated costs and complexity.

US 2004/O133606 A1

Examples of single box solutions are the EMC Celera/
Symmetrix, SGI Origin, HP Superdome, Intel Paragon and
IBM SP, the trademarks of which are hereby acknowledged.
However, high-performance multiprocessing file Servers
quickly run into the performance limits of their Storage
Subsystems. The approach to resolving this bottleneck is to
Spread the load among multiple hard disks and data paths
operating in parallel.
0016 Single-box solutions are subject to several serious
problems. First, because of the extremely high complexity
and the need to develop custom Silicon in order to Satisfy
performance requirements, Single box Solutions are very
expensive. Second, their development cycles are exceed
ingly long, Virtually guaranteeing that they will be "behind
the curve' in many important aspects, Such as Software
technologies, protocols, etc., by the time they are generally
commercially available. Since Storage requirements effec
tively double every year or so, these boxes often become
obsolete long before the customers manage to depreciate
their high cost.
0017 Cluster File Systems
0.018. An alternative to scaling the server architecture
within the box is to put together multiple Servers accessing
the Same pool of Storage over a fast interconnect Such as
HIPPI or FibreChannel. The result is a “cluster” of comput
ers that acts in many aspects similarly to a multiprocessing
Supercomputer but can be assembled from generally avail
able components.
0.019 Since all computers in a cluster access the same set
of hard disks, the file system software in each of them has
to cooperate with the other members of the cluster in
coordinating the access and allocation of the Storage Space.
The simplest way to approach this problem is to Section the
Storage pool and divide it among the different computers in
the cluster; this approach is implemented in Windows clus
tering described in “Windows Clustering Technologies-An
Overview”, November 2000, Microsoft Corp. The main
challenge in the above-mentioned file System comes from
the need to frequently Synchronize and coordinate access to
the Storage among all members of the cluster. This requires
a centralized lock manager and/or a file manager that con
trols the allocation of disk space to different files and
controls access to those files. These components quickly
become a major bottleneck that prevents the Scaling of
cluster file Systems beyond about Sixteen nodes.
0020. The reliance on centralized resource coordination
is the primary weak point of cluster file Systems that limits
severely their scalability. Solutions that partially relieve this
problem introduce other problems, including custom func
tionality in Storage Subsystems and Specialized client-side
Software. If any of these approaches is commercialized, the
requirement for using proprietary Storage Subsystems will
have Substantial negative effect on both adoption and price,
while the need to rely on proprietary client-Side Software
that has to be installed in every client accessing the System
make the System fragile, prone to Security breaches and hard
to deploy and Support.
0021 Distributed File Systems
0022. Both single box solutions and cluster file systems
are tightly coupled Systems that exhibit Serious Scalability
limitations. Creating distributed file Systems is an approach

Jul. 8, 2004

attempting to combine hundreds of file Servers in a unified
System that can be accessed and managed as a single file
system. Examples of distributed file systems are the Andrew
File System, and its derivatives AFS and Coda, Tricord, as
well as the Microsoft Distributed File System DFS.
0023 Distributed file systems are loosely coupled col
lections of file Servers that can be located in diverse geo
graphical locations. They provide a unified View of the file
namespace, allowing clients to acceSS files without regard to
where in the System those files reside. In addition, the System
administrator can move files from one server to another in a
transparent fashion and replicate files acroSS multiple Servers
for increased availability in case of partial System failure.
0024 Distributed file systems exhibit excellent scalabil
ity in terms of Storage capacity. It is easy to add new Servers
to an existing System without bringing it off-line. In addi
tion, distributed file Systems make it possible to connect
Storage residing in different geographical locations into a
Single cohesive System.
0025. The main problem with available distributed file
Systems is that they do not Scale in performance nearly as
well as they Scale in Storage capacity. No matter how large
the number of servers in the system, each individual file
resides on exactly one server. Thus, the performance the
distributed file System can deliver to a single client (work
Station or application server) is limited by the performance
of the utilized individual file servers, which, considering the
large number of servers involved, is not likely to be a very
high performance machine.
0026. Another problem that has great impact in commer
cial environments is the fact that most distributed file
Systems require Specialized client-side Software that has to
be installed and configured properly on each and every client
that is to access the file System. This tends to create massive
versioning and Support problems.
0027 Moreover, distributed file systems are very prone to
“hotspotting”. Hotspotting occurs when the demand for an
individual file or a Small set of files residing on a Single
Server increases dramatically over Short period of time,
resulting in Severe degradation of performance experienced
by a large number of users.
0028. Yet another problem with distributed file systems is
in their low manageability. Although most aspects of the
distributed file Systems can be managed while the System is
on-line, the heterogeneous and distributed nature of these
Systems effectively precludes any Serious automation of the
management tasks. As a result, managing distributed file
Systems requires large amount of highly qualified labor.
0029 Summary
0030 Although many approaches to Scaling network file
Systems have been taken over the last fifteen years, none has
Succeeded in delivering on the high performance, high
Scalability and Simple management promise of Storage net
working. Analysis of the Systems described above shows
that all of their limitations can be traced to a small set of
fundamental flaws, namely, all available Systems Suffer from
at least one of the following problems:

0031) 1. One file, one server. The inability to utilize
multiple file Servers in handling requests for a Single
file limits Severely the throughput available to any

US 2004/O133606 A1

Single client and does not allow the System to bal
ance the load acroSS all available processing
CSOUCCS.

0032 2. Centralized arbitration and metadata man
agement. The need to arbitrate access to Storage and
the shared data Structures used to manage it creates
a bottleneck that severely limits the scalability of the
System.

0033 3. Proprietary client-side software. The need
to buy, install, configure and Support a non-trivial
piece of Software acroSS all client machines running
multiple different operating Systems creates Serious
barrier for adoption.

0034) Conclusions
0035. With the mass adoption of gigabit and multi
gigabit network infrastructure, Storage networking is rapidly
becoming key to delivering and managing content on the
network. To achieve this, Storage networks have to facilitate
Sharing of data among thousands (or even larger numbers) of
users, be able to Scale in Storage capacity, performance and
access bandwidth extremely well, provide a very high
degree of availability, and be easy to manage. Increasingly,
new applications, Such as e-mail, Streaming video content,
document repositories, and other Soft-structured data,
require these characteristics to be achieved by a network
Service that provides access to files.
0.036 The existing approaches to scaling network file
Systems are Successful in Solving one or another aspect of
these requirements. However, there is no currently available
System that can deliver all characteristics needed for Storage
networking to achieve its promise.

SUMMARY OF THE INVENTION

0037 ASwitched file system, also termed a file switch, is
logically positioned between client computers and file Serv
ers in a computer network. The file Switch distributes user
files among multiple file Servers using an aggregated direc
tory mechanism. A hierarchical directory Structure of data
files is created on the file servers, with each data file that
Stores a portion of a user file having a global unique
identifier that determines at least a portion of the data file's
file path with the hierarchical directory structure. A hierar
chical directory Structure on the file Servers is also used to
Store metadata files, which Store metadata for each user file
to indicate where the data files for the user file are stored.
The file Switch automatically and randomly spreads the data
files and metadata files over a large number of distinct
directories on multiple file Servers, preventing large number
of data files from being Stored in a Single directory on a
Single file Server. Hence, the file Switch balances the load
and improves the performance of the Switched file System.
In response to a directory enumeration request from a client
computer, one or more directories of metadata files on one
or more of the file Servers is enumerated, instead of enu
merating the data file that store the user file portions. When
the metadata files are redundantly Stored on multiple file
Servers, the metadata files are Stored at the same directory
locations in each file server that stored metadata file. The
directory enumeration mechanism retrieves redundant direc
tory information from the metadata file directories on the
multiple file Servers, and removed redundant information
before Sending the client computer an aggregated directory
enumeration response.

Jul. 8, 2004

BRIEF DESCRIPTION OF THE DRAWINGS

0038. The aforementioned features and advantages of the
invention as well as additional features and advantages
thereof will be more clearly understood hereinafter as a
result of a detailed description of a preferred embodiment of
the invention when taken in conjunction with the following
drawings in which:
0039 FIG. 1 illustrates a prior art storage network
including a distributed file System and a clustered file
System;

0040
network;

0041)
0042 FIG. 4 illustrates transaction aggregation by a file
Switch;

FIG. 2 illustrates a file Switch in a computer

FIG. 3 illustrates a Switched file system;

0043 FIG. 5 illustrates the client's view of a switched
file System;

0044 FIG. 6 illustrates the hardware architecture and
memory Structure of a file Switch;
004.5 FIG. 7 illustrates the data plane of a file switch;
0046 FIG. 8 illustrates an exemplary metafile;
0047 FIG. 9 illustrates namespace aggregation by a file
Switch;

0048 FIG. 10 illustrates data aggregation through mir
roring,

0049 FIG. 11 illustrates data aggregation through strip
ing;

0050 FIG. 12 illustrates data aggregation through spill
OVer,

0051 FIG. 13 illustrates the syntax of data aggregation
rules,

0052 FIG. 14 illustrates a method for creating directory
Structure for a metafile;

0053)
file;

0054 FIG. 16 illustrates a method for creating directory
Structure for a data Stream file;

FIG. 15 illustrates the storage of metafile and user

0055 FIG. 17 illustrates a method for creating directory
path with global unique identifier;

0056 FIG. 18 illustrates a method for balancing load at
the file Switch level;

0057 FIG. 19 illustrates a method for transaction aggre
gation;

0.058 FIG. 20 illustrates a method for accessing an
aggregated user file through the metafile;

0059)
problem;

0060 FIG. 22 illustrates a method for implementing an
implicit locking mechanism;

0061 FIG. 23a illustrates a method for handling an
opportunity locking request;

FIG. 21 illustrates an exemplary concurrency

US 2004/O133606 A1

0062 FIG. 23b illustrates a method for handling an
opportunity locking break notification;
0.063 FIG. 23c illustrates a method for mapping level of
exclusivity of caching to the oplock exclusivity level
granted;

0.064 FIG. 24 illustrates a method for handling a sema
phore locking mechanism;
0065 FIG. 25 illustrates a method for enumerating a
directory;
0.066 FIG. 26 illustrates a method for implementing a
redundant metavolume controller.

DETAILED DESCRIPTION

0067. The following description is provided to enable any
perSon Skilled in the art to which the invention pertains to
make and use the invention and Sets forth the best modes
presently contemplated by the inventor for carrying out the
invention. Various modifications, however, will remain
readily apparent to those skilled in the art, Since the basic
principles of the present invention have been defined herein
Specifically to provide a file Switch, a Switched file System
and their mechanisms of operation. Any and all Such modi
fications, equivalents and alternatives are intended to fall
within the Spirit and Scope of the presently claimed inven
tion.

0068 Definitions
0069. Aggregator. An “aggregator” is a file Switch that
performs the function of directory, data or nameSpace aggre
gation of a client data file over a file array.
0070 Data Stream. A “data stream” is a segment of a
Stripe-mirror instance of a user file. If a data file has no
Spillover, the first data Stream is the Stripe-mirror instance of
the data file. But if a data file has spillovers, the stripe-mirror
instance consists of multiple data Streams, each data Stream
having metadata containing a pointer pointing to the next
data Stream. The metadata file for a user file contains an
array of pointers pointing to a descriptor of each Stripe
mirror instance; and the descriptor of each Stripe-mirror
instance in turn contains a pointer pointing to the first
element of an array of data Streams.
0071 File Array. A “file array' consists of a subset of
Servers of a NAS array that are used to Store a particular data
file.

0.072 File Switch. A “file Switch' performs file aggrega
tion, transaction aggregation and directory aggregation func
tions, and is logically positioned between a client and a Set
of file servers. To client devices, the file Switch appears to be
a file Server having enormous Storage capabilities and high
throughput. To the file Servers, the file Switch appears to be
a client. The file switch directs the storage of individual user
files over multiple file Servers, using Striping to improve
throughput and using mirroring to improve fault tolerance as
well as throughput. The aggregation functions of the file
Switch are done in a manner that is transparent to client
devices.

0073 Switched File System. A “switched file system” is
defined as a network including one or more file Switches and
one or more file servers. The Switched file system is a file
System since it exposes files as a method for Sharing disk

Jul. 8, 2004

Storage. The Switched file System is a network file System,
Since it provides network file System Services through a
network file protocol-the file Switches act as network file
Servers and the group of file Switches may appear to the
client computers as a single file Server.

0074 Data File. In the present invention, a file has two
distinct Sections, namely a “metadata file' and a “data file'.
The “data file” is the actual data that is read and written by
the clients of a file Switch. A file is the main component of
a file System. A file is a collection of information that is used
by a computer. There are many different types of files that
are used for many different purposes, mostly for Storing vast
amounts of data (i.e., database files, music files, MPEGs,
Videos). There are also types of files that contain applica
tions and programs used by computer operators as well as
Specific file formats used by different applications. Files
range in size from a few bytes to many gigabytes and may
contain any type of data. Formally, a file is a called a stream
of bytes (or a data stream) residing on a file System. A file
is always referred to by its name within a file System.

0075 Metadata File. A “metadata file", also referred as
the “metafile', is a file that contains the metadata, or at least
a portion of the metadata, for a specific file. The properties
and State information about a Specific file is called metadata.
In the present invention, ordinary clients cannot read or
write the content of the metadata files, but Still have acceSS
to ordinary directory information. In fact, the existence of
the metadata files is transparent to the clients, who need not
have any knowledge of the metadata files.

0.076 Mirror. A “mirror” is a copy of a file. When a file
is configured to have two mirrors, that means there are two
copies of the file.

0.077 Network Attached Storage Array. A “Network
Attached Storage (NAS) array' is a group of Storage servers
that are connected to each other via a computer network. A
file Server or Storage Server is a network Server that provides
file Storage Services to client computers. The Services pro
vided by the file servers typically includes a full set of
Services (Such as file creation, file deletion, file access
control (lock management Services), etc.) provided using a
predefined industry Standard network file protocol, Such as
NFS, CIFS or the like.
0078. Oplock. An oplock, also called an “opportunistic
lock” is a mechanism for allowing the data in a file to be
cached, typically by the user (or client) of the file. Unlike a
regular lock on a file, an oplock on behalf of a first client is
automatically broken whenever a Second client attempts to
access the file in a manner inconsistent with the oplock
obtained by the first client. Thus, an oplock does not actually
provide exclusive access to a file; rather it provides a
mechanism for detecting when access to a file changes from
exclusive to shared, and for writing cached data back to the
file (if necessary) before enabling shared access to the file.
0079 Spillover. A “spillover” file is a data file (also called
a data Stream file) that is created when the data file being
used to Store a Stripe overflows the available Storage on a
first file Server. In this situation, a spillover file is created on
a Second file Server to Store the remainder of the Stripe. In the
unlikely case that a spillover file overflows the available
Storage of the Second file Server, yet another Spillover file is
created on a third file server to store the remainder of the

US 2004/O133606 A1

Stripe. Thus, the content of a Stripe may be stored in a Series
of data files, and the Second through the last of these data
files are called spillover files.
0080 Strip. A “strip” is a portion or a fragment of the data
in a user file, and typically has a Specified maximum size,
such as 32 Kbytes, or even 32 Mbytes. Each strip is
contained within a Stripe, which is a data file containing one
or more strips of the user file. When the amount of data to
be stored in a Strip exceeds the Strip's maximum size, an
additional Strip is created. The new Strip is typically Stored
in a different Stripe than the preceding Stripe, unless the user
file is configured (by a corresponding aggregation rule) not
to be Striped.
0.081 Stripe. A “stripe' is a portion of a user file. In some
cases an entire file will be contained in a single Stripe. Each
Stripe is (or is stored in) a separate data file, and is stored
Separately from the other Stripes of a data file. AS described
elsewhere in this document, if the data file (also called a
“data stream file”) for a stripe overflows the available
Storage on a file Server, a "spillover file is created to Store
the remainder of the Stripe. Thus, a Stripe is a logical entity,
comprising a Specific portion of a user file, that is distinct
from the data file (also called a data Stream file) or data files
that are used to Store the Stripe.
0082 Stripe-Mirror Instance. A “stripe-mirror instance”
is an instance (i.e., a copy) of a data file that contains a
portion of a user file on a particular file Server. There is one
distinct Stripe-mirror instance for each stripe-mirror combi
nation of the user file. For example, if a user file has ten
Stripes and two mirrors, there will be twenty distinct Stripe
mirror instances for that file. For files that are not striped,
each Stripe-mirror instance contains a complete copy of the
user file.

0.083 Subset. A subset is a portion of thing, and may
include all of the thing. Thus a subset of a file may include
a portion of the file that is less than the entire file, or is may
include the entire file.

0084) User File. A “user file” is the file or file object that
a client computer works with, and is also herein called the
“aggregated file.” A user file may be divided into portions
and stored in multiple data files by the Switched file system
of the present invention.

File Switch and Switched File System
0085 FIG. 2 illustrates an inventive network configura
tion including a file switch 200. In this configuration, the file
Switch 200 is implemented with two different network
interfaces: one for connecting to the client network 211
through connection 209, and the other for connecting to a
file server network through connections 210 and other
Similar connections as shown. For Simplicity, the file Switch
200 is shown in this Figure as being directly connected to
each of the file servers 201 through 207. In practice, one or
more commonly available layer 2 Switches are preferably
used to implement these connections.
0.086 Since most popular network file protocols are
based on the IP standard, the file switch preferably supports
TCP/IP network protocols, as well as other protocols of the
IP stack (e.g., ARP), as appropriate. The file Switch prefer
ably Supports multiple industry Standard network file pro
tocols, such as NFS and CIFS.

Jul. 8, 2004

0087 Clients, such as workstations and application serv
erS 212 request file Services by communicating to the file
switch 200 using the NFS or CIFS protocols. File switch 200
preferably implements the Server Side of the appropriate
network file protocol on the connection 209. The Switch
further interacts with the file servers 201 through 207 by
implementing the client Side of preferably the same network
file protocol. The presence of file Switch 200 is thereby
preferably transparent to both the clients and the Servers.
0088 Additionally, the file Switch may implement other
IP protocols, such as DHCP, DNS or WINS, either as a client
or as a Server for purpose of configuring file Servers 201
through 207, self-configuration of the file switch, and others
that will be described herein.

0089. The file switch 200 implements industry standard
protocols both on the client side (via connection 209) and on
the server side (via connections 210). This implementation
allows the file Switch 200 to function in an environment
where the file servers 201 through 207 are standard, com
mercially available file Servers or NAS appliances, and
clients 212 are Standard commercially available computers.
In this manner, the benefits of the file Switch can be utilized
without requiring any proprietary Software to be installed
and maintained on any other network node.
0090 The primary functionality of the file switch can be
divided into three broad categories: 1) transaction handling;
2) file System aggregation; and 3) Switch aggregation. Trans
action handling includes transaction Switching and transac
tion aggregation. File System aggregation includes aggre
gating file System objects and data file. Switch aggregation
includes various mechanisms for combining multiple file
Switches together, which includes load balancing, configu
ration sharing, fail-over and management aggregation. The
functionality of the file Switch may be implemented in
Software, in hardware or any combination of Software and
hardware, as appropriate.
0091 A Switched file system is a distributed file system
as it aggregates the namespaces of multiple file Servers. It is
also a parallel file System, as it can utilize multiple file
Servers in parallel to Satisfy the request of a single network
file client. Therefore, the Switched file system is a new type
of distributed, parallel network file system.
0092 FIG. 3 illustrates a Switched file system, including

its configurations and applications. The exemplary Switched
file System consists of the following elements. A set of file
Switches 308 are aggregated in a group 309, and are con
nected to two arrays of file servers 310 and 311, which are
called NAS arrays. The file Switches 308 are also connected
to a legacy file Server 313, typically containing archive and
other pre-file Switch content, which is aggregated only by
namespace (i.e., the file Switches 308 do not perform file
aggregation for the files Stored by the legacy file server 313).
In addition, the file Switch group 309 aggregates the
namespace of another Switched file System provided by the
file Switch group 314 connected to NAS array 315 and
connected to the group 309 through a layer 2 switch 312.
0093. The services of the group 309 are provided to a
network 305 that includes clients 306, a management work
station 307 and a connection to a metro-area network 304.
The metro-area network 304 provides the remote LAN 300
and its clients 301 with file services made available by group

US 2004/O133606 A1

309. In order to improve the access to these services, the
remote LAN 300 also includes a file Switch 302, which acts
as a gateway to the group 309 and caches files locally to the
NAS array 303.
0094) Topologies
0.095 The Switched file system provides many combina
tions of file System aggregation and Supports different
topologies.
0096. One of the available topologies is virtualization. In
Virtualization, the Switched file System aggregates the
namespace exposed by a single file server (e.g., legacy file
Server 313) without further aggregating its files on other
servers. One of the mechanisms available for this is the
namespace aggregation technique described herein. The
Virtualization allows pre-existing file Servers to be made
available to clients of the Switched file system and included
in its logical namespace. This functionality facilitates the
adoption of the Switched file System and provides an incre
mental approach to adoption.
0097 Another available topology is NAS array. The
Switched file System can have a set of file servers (e.g., the
servers in array 310), preferably with similar capacity and
performance characteristics, designated as a NAS array. The
file Switches participating in the Switched file System dis
tribute files across the file servers in the NAS array, by using
the directory, and data aggregation mechanisms described
herein. NAS arrayS provide high performance and high
availability. Multiple NAS arrays can be configured in the
Same Switched file System, and their namespaces can be
aggregated with virtualized file Servers to present a unified
nameSpace.

0.098 Yet another available topology is cascading. In a
cascaded configuration, one or more Switched file Systems
can be connected within another Switched file System, effec
tively playing the role of a file server in that other switched
file system. In our example, the file Switches 314 and the
NAS array 315 comprise a small switched file system, which
is aggregated in the nameSpace of the Switched file System
presented by the group 309. Since the file Switches 314
appear as a file server to the file Switches 309, the latter can
aggregate the namespace provided by the former the same
way as the virtualized server 313. One skilled in the art will
easily recognize that multiple instances of the Switched file
system comprising the file Switches 314 and the NAS array
315 may exist, and may be aggregated by the Switches in the
group 309 in any and all ways in which the latter may
aggregate regular file Servers, including data aggregation,
directory aggregation, and So on.
0099 Another topology is the gateway topology. A file
Switch 302, preferably having its own NAS array 303, acts
as a gateway to clients locally connected to it, and provides
access to the file services made available by the file Switch
group 309. An advantage of this topology is that the con
nection between group 309 and file Switch 302, such as the
MAN 304, may have lower bandwidth than the local net
works 305. The gateway topology allows the gateway file
switch 302 to cache locally on the NAS array 303 files
normally residing on the file System exposed by the group
309. Since the file Switch 302 appears as just another client
to the file switch group 309, all locking and other client
semantics are available to the file Switch 302 to provide
caching.

Jul. 8, 2004

0100 Basics of Transaction Aggregation. By a File
Switch

0101 The typical operation of the file Switch involves
receiving file protocol requests, Such as login, tree connect/
mount, file open, file read/write, etc., from clients and
forwarding, or Switching these requests to one or more of the
file servers.

0102 FIG. 4 illustrates a preferred process by which a
file Switch can delegate a single transaction received from a
client to more than one file Server and therefore aggregate
the behavior of those servers in handling the transaction. The
behavior of the file switch is presented to the original client
as the behavior of a Single file Server.

0.103 Consider the case in which a file Switch 400 stripes
the data of a file among file server 401, connected to the file
Switch through connection 403, and file server 402, con
nected to the file Switch through connection 404, in order to
deliver higher aggregate performance to clients by making
these two file Servers handle requests in parallel.

0104. In this example, a client 406 is connected through
a computer network 407 to the file Switch 400 through
connection 408. The client 406 has established preferably a
TCP connection to the file Switch 400, and believes the file
Switch 400 to be a file server. The client 406, therefore,
initiates a file write transaction of a file named myFile.doc
by issuing a write request message to the file Switch 400.
After receiving the write request message, the file Switch is
in a position to decide how to handle the transaction.

0105. In this example, the Switch handles the transaction
by Splitting it into two transactions targeted to two Separate
file servers 401 and 402. Upon examining the write request,
the file Switch updates its State (as discussed in more detail
below) in a manner Sufficient to accomplish the goal, and
forwards the write request to the file servers 401 and 402 via
the connections 403 and 404, respectively. The two file
servers 401 and 402 receive separate file write requests, each
for its appropriate file and each with the appropriate portion
of the data to be written. The file servers execute the
requested write operations in parallel and Submit their
respective responses to the file Switch, which they believe to
be the originator of the write requests. It should be noted that
this proceSS does not require in any way that Servers 401 and
402 interact with one another or even be aware of the other's
existence.

0106 Upon receipt of responses from file servers 401 and
402, respectively, the file Switch 400 knows the results of
both write requests Submitted by it and is, therefore, in a
position to form a response to the original client containing
the aggregate result of the transaction. The Switch achieves
this by Sending an acknowledgement to the original client.
The client receives the response and sends the file myFile
.doc to the file Switch. The file Switch in turn sends the file
myFile.doc to the appropriate directory in servers 401 and
402. The transaction is now complete.

0107 The mechanism described above enables two inno
Vative results. First, the file Switch can aggregate a set of file
System entities, Such as files or directories that reside on
different file Servers and present this Set to the clients as a
Single cohesive entity, thereby forming the foundation for
aggregating complete file Systems.

US 2004/O133606 A1

0108) Second, this mechanism allows the Switch to split
or replicate individual read and write network file transac
tions among multiple file Servers, which execute the
requested operations in parallel. In this manner, the present
invention Sets the foundation for forming the equivalent of
a parallel file System on a network including file Switches
and file servers. The file Switch has the ability to deliver
aggregate performance to each client that is many times
higher than the performance of the individual file servers
available to it.

0109) Client's View of the Switched File System
0110. From the standpoint of a network file client, such as
406, the Switched file System appears as a single file Server
with multiple network interfaces. FIG. 5 illustrates the
Similarity between a Switched file System and a Single file
server. Network clients connect to the Switched file system
500 through the interfaces 501 as they would connect to the
single file server 502 though its interfaces 503.
0111. The switched file system 500 preferably provides a
Single nameSpace. It allows network file clients to use
Standard client Software using widely Standardized network
file protocols for accessing file Servers, Such as the CIFS and
NFS protocols. The ability of standard file client software to
access the Switched file System simplifies adoption and also
allows changes to the Switched file System mechanisms and
topologies to be performed transparently to all clients.
0112 Administrator's View of the Switched File System
0113 An administrator's view of the Switched file system
500 is to a degree similar to the client's view. For most
operations, the administrator views the Switched file System
500 as if it were a Single, high-capacity, high-performance,
and highly available file server 502. For the purposes of
management and reconfiguration it preferably appears as a
single file server. The file Switches preferably support the
same file server management protocols (such as MSRAP) as
single CIFS or NFS file servers do. The Switched file system
can be configured to expose shares/mount points in the
aggregated nameSpace to their clients.
0114 Administrators can add individual file servers
(using the virtualization topology) and new NAS arrays to
the Switched file system 500, and can also add or remove file
servers to or from existing NAS arrays in the Switched file
System. In the event the administrator adds one or more file
Servers to an existing NAS array, the file Switch can discover
the newly added servers (or automatically have access to the
added servers). And preferably on administrator's request,
the file Switches redistribute the files and their data across all
file Servers, including the newly added ones, thus extending
both the capacity and the performance of the file System. In
case the administrator wishes to remove one or more file
Servers from a NAS array, the administrator can request that
a file Switch free up specified servers (by redistributing the
files to the file servers that remain in the NAS array). Upon
completion of that process, the file Switches notifies the
administrator that the Selected file Servers are free and can be
removed without data loSS.

0115 The switched file system 500 provides high avail
ability by distributing the work among many file Switches
and file servers. Failure of a file server or a file Switch
typically does not cause loSS of data or loSS of acceSS. The
administrator can be notified of the failure and replace or
repair the failed component.

Jul. 8, 2004

0116. The Switched file system preferably tracks access
patterns and can report Statistical information to the admin
istrator. Based on this information, the administrator can
tune the performance and Storage capacity utilization of the
Switched file system 500, for instance by adding or recon
figuring NAS arrays, file Switches and by changing aggre
gation rules (discussed below) on the file Switches.
0117 Scaling in Switched File System
0118. The Switched file system scales capacity and per
formance by adding more file Servers to a NAS array and
distributing files acroSS all file Servers. It Scales access
bandwidth by adding more file Switches to a connected
group and accesses the Same Set of file Servers, providing a
wider access path (multiple network connections). Unlike
prior art Solutions, the Switched file System Scales indepen
dently in multiple directions (or dimensions) without inher
ent limitations.

0119) The Switched file system also scales in geographi
cal distribution by adding cascaded file Switches (or
Switched file System) and gateway file Switches.

Metadata Based Switched File System
0120 Hardware Architecture
0121. In a preferred embodiment, each file Switch 400
(FIG. 4) of the metadata based switched file system is
implemented using a computer System Schematically shown
in FIG. 6. The computer system (i.e., the file Switch) one or
more processing units (CPU’s) 600, at least one network or
other communications interface 604, a Switch 603 or bus
interface for connecting the network interfaces to the System
busses 601, a memory device 608, and one or more com
munication buSSes 601 for interconnecting these compo
nents. The file Switch may optionally have a user interface
602, although in some embodiments the file Switch is
managed using a WorkStation connected to the file Switch via
one of the network interfaces 604. In alternate embodiments,
much of the functionality of the file Switch may be imple
mented in one or more application specific integrated cir
cuits (ASIC’s), thereby either eliminating the need for a
CPU, or reducing the role of the CPU in the handling file
acceSS requests by client computers.
0.122 The memory 608 may include high speed random
acceSS memory and may also include non-volatile memory,
Such as one or more magnetic disk Storage devices. The
memory 608 may include mass storage that is remotely
located from the central processing unit(s) 600.
0123. The memory 608 preferably stores:

0.124 an operating system 610 that includes proce
dures for handling various basic System Services and
for performing hardware dependent tasks,

0.125 a network communication module 611 that is
used for controlling the communication between the
system and various clients 606 and file servers via
the network interface(s) 604 and one or more com
munication networks, Such as the Internet, other
wide are networks, local area networks, metropolitan
area networks, and So on;

0.126 a file Switch module 612, for implementing
many of the main aspects of the present invention;

US 2004/O133606 A1

0127 state information 620, including transaction
state 621, open file state 622 and locking state 623;
and

0128 cached information 624, including cached
(and aggregated) data file 626 and corresponding
metadata files 625.

0129. The file Switch module 612, the state information
620 and the cached information 624 may include executable
procedures, Sub-modules, tables and other data structures.
0130. In other embodiments, additional or different mod
ules and data Structures may be used, and Some of the
modules and/or data Structures listed above may not be used.
0131 Software Architecture
0132) Layering Model
0.133 FIG. 6 also illustrates the preferred software archi
tecture for a metadata based switched file system. The
Software architecture of the Switched file system is prefer
ably divided in three planes: the core services plane 613, the
control plane 614, and the data plane 615.
0134) The core services layer 613 provides basic services
to all components in the remaining layers. These Services
include Services provided by the operating System (memory
management, component model, threading), as well as Ser
vices developed specifically for the file Switch as an unat
tended and always-on device (configuration database, event
manager, etc.). These Services are general, low-level com
puter Services, and are minimally dependent on the particu
lar functions of a file Switch.

0135 The control plane layer 614 is responsible for
maintaining the operation of the data plane 615. It Sets up the
configuration of the data plane, controls the life cycle of the
file Switch, Such as Start, Stop, and restart, and implements
various management protocols. In addition, it includes addi
tional Services that provide features like clustering of file
Switches, load balancing, failover, backup, file System check
and repair, and automated management. These functions
don’t participate directly in Serving client-originated file
requests, but are essential for the existence and continued
operation of the file Switch. These functions may also
include value-adding Services, Such as data migration and
accounting.

0.136 The data plane layer 615 is responsible for file
Switching and aggregation. It provides all protocol layers
through which file requests pass as well as the Switching
logic that distributes these requests to the file Servers and
aggregates the responses. All requests to access files and
user file directories go through the data plane 615 and are
served by it.
0137) The Data Plane
0138. In the preferred embodiment illustrated in FIG. 7,
the data plane consists of the following key components.
0.139. The TCP/IP Transport 708 includes the NetBT
(NETBIOS over TCP/IP) sub-layer used by the Server
Service (SRV) 718 and Parallel Redirector 706 (RDR)
components. This includes the entire transport layer from the
TCP or NetBT session layer down to the physical Ethernet
interface. For fast operation and minimum load on the CPU,
the file Switch uses a hardware-implemented or hardware

Jul. 8, 2004

assisted extension of the TCP/IP implementation. However,
the use of hardware-assisted TCP is not required for the file
Switch to operate because the components that interface with
TCP. Such as SRV 718 and RDR 706, use the standard
transport protocol interface provided by the TCP/IP trans
port.

0140. The Server Service 718 (SRV) is the CIFS file
Server Service. It interprets the clients requests for opera
tions on files sent as CIFS commands and translates them to
NT/WDM file I/O requests (IRPs). SRV 718 handles the
entire process of authenticating clients. Other file protocol
servers can be used instead of or along with the CIFS file
server (e.g., NFS).
0141. The Virtual File System 702 (VFS) is a file system
driver, an Installable File System, in WDM terms. VFS 702
provides the common name space of the File Switch, which
makes multiple NAS Arrays combined into aggregated file
Systems along with legacy Single-server NAS file Systems
appear as a Single file System to the client. In addition, VFS
Serves as a “security context gateway', working in the
context of the connected client on its front Side and provid
ing the mandated acceSS control checks, while operating in
the "local System’ context when accessing the constituent
file Systems that make up the “virtual' nameSpace. Finally,
VFS implements the local caching of open files to provide
low latency to the clients and optimize access to the con
stituent server file systems by consolidating small I/O
requests (“lazy write”, “read ahead”).
0142. The Aggregated File System 704 (AFS) is a file
system driver. It implements the “Switched File System”
aggregation mechanisms. It presents an array of file Servers
as a single file System by distributing the metafiles and the
data files Stored among the file Servers. It also performs the
function of aggregating data files and load balancing
accesses between clients and the array of file servers. AFS
further provides advanced NTFS-style features including
Unicode names, extended attributes and Security descriptors,
even if the file Systems that it aggregates do not have this
Support.

0143) The Parallel Redirector 706 (RDR) is a file system
driver. It is similar to the Windows Workstation service,
which exposes a file P/O interface and converts it to network
file I/O requests Sent to a remote Server. It uses multiple
concurrent connections to the same network Server in order
to alleviate the inability of some CIFS implementations to
handle multiple pending client read and write requests on the
same network connection. In addition, the RDR is used to
access the virtualized “legacy” Servers and to perform
operations on aggregated data files of the file System.
0144. The data plane also includes a front-side network
interface 710 and a back-side network interface 712. A
front-side and a back-side TCP/IP protocol stack reside
within the TCP/IP transport 708.
0145 Various other services, such as DHCP, DNS, load
balancing, command-line and/or web-based management,
SNMP, etc., may be included in or added to the architecture
described above.

0146 The implementation of the architecture described
above can be arranged in many possible ways. For example,
the network interfaces may be implemented in hardware,
while the rest of the data plane and the two remaining planes

US 2004/O133606 A1

are fully implemented in Software. Alternatively, additional
portions of the data plane may be implemented in hardware
(e.g., by using Field-Programmable Gate Arrays, Applica
tion-Specific Integrated Circuits, Switch fabrics, network
processors, etc.), while the control plane 614 may be imple
mented in Software. In addition, the control plane 614 may
be further implemented or accelerated in hardware. More
over, it may be advantageous to implement portions of a
certain plane (e.g., the data plane or the control plane) by
providing accelerated functions in hardware while maintain
ing the rest of the plane's functionality (Such as Setup,
initialization and other slow functions) in Software. In other
embodiment, the Aggregated File System 704 is provided,
but the Virtual File System 702 is not provided. In yet
another embodiment one or more of the modules of the file
Switch are implemented on the file servers of a NAS array.
0147 One skilled in the art will easily recognize that
various other architectures for implementing a file Switch are
possible. In addition, while most of the particular choices
made in implementing the file Switch (Such as those
described above) are preferably driven by the performance
and cost targets of the file Switch, all various implementa
tions fall within the spirit of the present invention.
0148) Operation of the Data Plane
0149. In normal operation, the components in the data
plane interact with each other and with the Ethernet inter
faces of the File Switch. The following steps illustrate the
interactions between the components for an exemplary client
Session.

Exemplary Client Session
0150) 1. Client Connects to the File Switch via the
Network Interface 710.

0151. The TCP connection request is forwarded to SRV
718 via the TCP/IP transport.
0152 2. Client Logs in and Attaches to a Shared Mount
Point Exposed by the Switch.
0153. The client's request arrives as a series of CIFS
commands. SRV 718 performs authentication of these
requests without involving any other data plane components.
0154) 3. Client Opens a File.
0155 As the shared mount point exposed by SRV 718 is
associated with the file system owned by VFS 702, SRV 718
translates the request to a file system operation on VFS 702.
0156 Next, VFS 702 consults a virtualization table
Stored in the configuration database and finds the translated
path for the file. This path may point to a file on a “legacy”
file system handled by RDR 706 or to a file on an aggregated
file system handled by AFS 704.
0157 Next, VFS 702 retrieves the security descriptor for
the file and performs a security check to verify the client's
right to open the file. If the check passes, the open request
is forwarded to AFS 704 or RDR 706 using the translated file
path. Upon successful completion of the “open”, VFS 702
will request an opportunistic lock (op-lock) on the file in
order to enable local caching of the file.
0158 If the file is on a “legacy” file system, RDR 706
completes the open operation through its CIFS connection to
the NAS Sever.

Jul. 8, 2004

0159. If the file is on an aggregated file system, the
“open” request is handled by AFS 704. Then, AFS 704
begins processing of the “open' request by issuing an
“open' request to all mirror copies of the metadata file that
represents the client's aggregated data files through RDR
706. If at least one mirror copy is opened successfully, AFS
704 completes the client's open request and Starts calling
RDR 706 to open the data files that hold the client's data.

0160 For each of the data files, RDR 706 picks one of its
“trunked” connections to the corresponding NAS server to
use for that file and sends a CIFS open request to that
connection. Following an analogy from the telecom world,
the use of multiple connections to the same target in order
to increase throughput is referred to in this specification as
a “trunked' connection.

0161 4. Client Reads Metadata (e.g., Directory Informa
tion).
0162. A client request to read file attributes, file size and
Similar requests not related to data read/write are forwarded
to SRV 718 and are converted to file system operations on
the metadata file corresponding to the Specified user file. All
of these requests go through the same path as follows:

0163 the VFS 702 forwards the requests directly to
the same file System on which the file was originally
opened.

0164) if file is found on the AFS 704, the AFS 704
forwards the requests to RDR 706 as an operation on
one of the mirror copies of the metadata file or to all
mirror copies, if the operation involves a modifica
tion of the metadata file.

0165 the RDR 706 converts the requests to CIFS
requests and sends them to the NAS server.

0166 5. Client Requests a Data Operation.

0167 Client's data requests are converted by SRV 718
into “read”, “write” and “lock control” file I/O requests sent
to VFS 702. Data operations on aggregated files are for
warded from VFS 702 to AFS 704. AFS 704 consults its
aggregation table, compiled from data in the configuration
database, computes how to distribute the requests among the
data files that hold the client's data and forwards those
requests to the data files open on RDR 706.

0168 6. Client Disconnects.

0169. When the client disconnects, SRV 718 closes any
files that were left open, thus providing proper closing of
files on the servers, even if the client does not close its file
before disconnecting.

0170. One skilled in the relevant art will easily recognize
that various modifications of this architecture can work well
for the inventive file Switch while preserving the spirit of the
present invention. For example, more network interfaces
710 and 712 can be added, and the two network interfaces
can be replaced by a single network interface wherein the
client traffic and the server traffic can be separated by the
TCP protocol stack. The TCP protocol stacks can be merged
together (in many conventional computer architectures there
is a single TCP/IP protocol stack that handles multiple
network adapters) or separated per network adapter.

US 2004/O133606 A1

0171 In addition, multiple server-side SRV's 718 can be
added in order to proceSS multiple network file protocols or
different versions thereof. Similarly, multiple client-side
RDR's 706 can be added in order to support multiple
network protocols or multiple versions of Such network
protocol in interacting with the file Servers.
0172 Metadata File
0173 A metadata file based switched file system aggre
gates files acroSS multiple file Servers of a NAS array in
order to increase performance and to aggregate Storage
capacity. The Subset of file servers of a NAS array that are
used to represent a single user file is known as a file array.
Every file contained in the aggregated file System has a
corresponding file array.
0.174. The model of metadata file aggregation is based on
the file array. From the point of view of the client, an
aggregated file is seen as a single file. However, the Switched
file system views the file as multiple metafiles and data files
stored on multiple file servers in the file array. “Metafile
based aggregation” refers to aggregating the metafiles and
data files that together Store the metadata and data file of a
Specified user file.
0.175. There are two classes of properties of an aggre
gated file: State and metadata. The State properties are
managed internally by the file Switch in memory. These
properties are used to describe the current State of a file Such
as current oplock level, access mode, and cache mode. The
metadata in general is shared between all clients of a single
file. Each property has an associated aggregation class. The
aggregation class describes how a Specific property is aggre
gated in relation to the elements of a file array.
0176) Primary and Secondary Metadata File
0177. The Switched file system metadata for each aggre
gated file (also called the user file) consists of two separate
metadata files: a primary metadata file and a Secondary
metadata file. The Primary metadata file contains various
properties about a specific aggregated file, Such as the
aggregation parameters, file paths to the data files that Store
the contents of the aggregated file, and file attributes. The
metadata file attributes represent the aggregated file
attributes (file attributes, creation date and time, etc.). The
primary metadata filename is the Same as the aggregated
filename except it is prefixed with the letter P.
0178 The secondary metadata file is used only (or pri
marily) to Store the aggregated size of the file. The size of the
file is encoded in the file's date/time attribute fields, which
are retrieved through a file get information request. The
Secondary metadata file contains no data. The Secondary
metadata filename is the same as the aggregated filename
except it is prefixed with the letter S. For file systems that
do not Support date/time attribute fields large enough to Store
the file size, the file size may be stored in the primary or
Secondary file's data.
0179. In an alternative embodiment, only the primary
metadata file is created and there is no Secondary metadata
file. In this alternative implementation, the aggregated file
Size is encoded directly in one of the primary metadata file's
date/time attributes fields (e.g., the creation date/time field).
0180 FIG. 8 illustrates the contents of the primary
metadata file 800 in a preferred embodiment. At a minimum,
the primary metadata file 800 contains the following ele
mentS.

Jul. 8, 2004

0181. A header 801 field for storing genuine file
attributes that are exposed to the user, Such as
creation, last access, and last written dates and times.
The header 801 is optional since much or all of the
header information may be Stored in the directory
entry for the metafile.

0182. A metadata offsets field 802 for pointing to
various portions of the metadata contained in the
metadata file. This is used by the aggregated file
System for quickly accessing the portions of the
metadata. In alternate embodiments, the offsets field
802 can be eliminated if fixed sized fields or fixed
position fields are used in the metadata file.

0183 An aggregation descriptor field 803 that con
tains a header of the descriptor 804, a stripe-mirror
map 811, and a data stream descriptor 813. The
header of the descriptor 804 further contains a flag
that indicates whether the metafile is valid. If the
metafile is not valid, it should be ignored or updated
to become valid.

0184) A number of stripes field 805 for indicating
the number of Stripes into which the corresponding
user file has been divided.

0185 Astrip size field 806 for indicating the size (in
number of bytes) of each strip.

0186. A number of mirror field 808, which indicates
the number of copies (also called mirrors) of each
Stripe that are Stored in a file array.

0187. A spillover field 809 for indicating whether
there is any spillover of the user file.

0188 A number of data streams field 810 for indi
cating the total number of data Streams for the user
file.

0189 A matrix 812 of pointers to entries 830 in the
data Stream descriptor. The Size of the matrix is
determined by the number of stripes 805 and the
number of mirrors 808 of the user file. The matrix
812 contains an array of pointers (e.g., indexes into
the data Stream descriptor), one for each distinct
stripe-mirror of the user file, to entries 830 in the data
stream descriptor 813. For example, if a file has ten
stripes and two mirrors, there will be twenty distinct
Stripe-mirrors for that file. Each instance of a Stripe
is Sometimes called a Stripe-mirror instance, to
emphasize that the data file containing that Stripe
instance is for a particular mirror of the Stripe. Each
entry 830 in the data stream descriptor 813 includes,
in turn, the name 818 of (or a pointer to, or an
identifier of) a file server in which a stripe-mirror
instance of the user file is stored. If the stripe-mirror
instance overflowed the file server, then the entry
830 also identifies a spillover segment with a pointer
(index to next data stream) 815 to a next entry 830
that describes the Spillover Segment.

0190. A total file length field 820 for indicating the
total aggregated Size of the user file. This field is
optional, although frequently helpful.

0191 The entries 830 of the data stream descriptor array
each include the following fields:

US 2004/O133606 A1

0.192 A state of data stream field 814 for indicating
whether the stripe-mirror instance identified by an
entry 830 is valid (containing correct data), invalid
(e.g., containing out of date data) or does not exist.

0193 An index to next data stream field 815 for
linking to the entry 830 for a spillover segment. The
index 815 is null when there is no spillover segment.

0.194. A starting offset 816 within the aggregated
user file for indicating the Starting location of the
Segment or Segment portion represented by the entry
830. When the entry 830 represents a stripe-mirror
instance (i.e., a segment of the user file) without a
Spillover Segment, then the Starting and ending off
sets 816, 817 are determined solely on the strip size
and the Stripe number of the Stripe represented by the
entry 830. When a stripe-mirror instance has one or
more spillover Segments, the Starting and ending
offsets represent the Starting and ending positions of
each of the Segments that forms the Stripe-mirror
instance. In an alternate embodiment, when a Stripe
mirror has not spilled over, the field 816 is set to 0
and the field 817 is set to a special value (e.g., -1) to
indicate a maximum value, which allows the System
to avoid modifying the metadata every time data is
written to the end of the file, and allows multiple
openers of the file to work more efficiently together.

0.195 An ending offset 817 within the aggregated
user file for indicating the ending location of the
segment represented by the entry 830.

0196) A server name field 818 for indicating the
name (or some other identifier) of file server in the
file array that Stores the file Segment represented by
the entry 830.

0197) A global unique identifier field 819, contain
ing a global unique identifier (GUID) for the data
Stream of a Stripe-mirror instance corresponding to
the entry 830. The GUID is used for determining the
directory Structure in which the file Segment corre
sponding to the entry 830 is stored within a file
server in the file array. The GUID, in ASCII repre
Sentation, is also used as the file name of the data
file(s) that Stores the Stripe-mirror instance.

0198 The metafile described above can be extended
according to the needs of the Switched file System. For
example, in an alternative embodiment, a deleted file path
field is included in the metadata file for indicating the
location of a user file that has been deleted, but not yet
removed from the file server. Saving the state of the deleted
file path enables the trash bin functionality (which allows
deleted files to be recovered). In addition, a Security descrip
tor field may be included in the metafile for indicating the
access permission of a user file. Other types of metadata that
are not described above may also be extended according to
the needs of the particular file aggregation and the particular
file System. The layout, Structure and usage of the metadata
are entirely up to the particular implementation of the
Switched file system.

Aggregation with Metadata File
0199. One objective of the present invention is to aggre
gate file System Services provided by conventional file

11
Jul. 8, 2004

Servers and present them to network clients as a Single, large,
very high performance network file System, the availability
of which is many times higher than the availability of each
individual file server.

0200. To achieve this objective, the file Switch preferably
aggregates all operations of one or more network file pro
tocols in Such a way that clients connected to the Switch will
not be able to distinguish its operation from the operation of
a Single network file Server. This requires the Switch to
aggregate all entities exposed by a typical network file
protocol, in particular, the file System namespace, directo
ries, and files. Clients connected to the file Switch cannot
observe metafiles and data files Separately. Rather, clients
interact with files, the files having both data (an array of
bytes) and metadata (date, size, attributes, Security descrip
tor, etc).
0201 Rule-Based Aggregation
0202) The mechanisms that the file Switch uses to achieve

file System aggregation are preferably implemented Such
that they can be driven from a set of rules and policies
defined on the file Switch.

0203 There are several attributes that make rule-based
aggregation desirable. First, it allows a Storage administrator
to specify different ways of aggregation for different Sets
and/or types of files, thereby easily tuning the characteristics
of the System to the intended use and the Specific access
patterns for different data. Second, it allows the file Switch
to operate with more deterministic timing by eliminating the
need to consult external devices during normal operation.
0204. In addition, rule-based operation allows multiple

file Switches to aggregate and be put in front of the same Set
of servers without the file Switches having to interact with
each other, except to Synchronize the Set of rules and policies
whenever they are changed. This loose coupling between file
Switches that aggregate the same Set of file Servers makes it
possible to Scale acceSS bandwidth by orders of magnitude,
Simply by adding file Switches whenever needed.
0205 Finally, since file Switches are in an excellent
position to track usage patterns internally, they can be
configured to adjust the aggregation rules (discussed below)
automatically in accordance with policies Specified by the
System administrator and observed usage patterns. AS a
result, the file Switches can optimize in wide margins the
distribution of files and data among the file Servers to
achieve Smooth and adaptive behavior of the network stor
age System as a whole.
0206 Namespace Aggregation
0207 Namespace Rules
0208. In order for a file aggregator to redirect a file
operation to the appropriate NAS array, it uses a set of
namespace rules (also called the nameSpace aggregation
rules) to generate the corresponding NAS array file path.
Using the given file path accessed by a client and matching
namespace rule, the NAS array file path can be generated by
using a path replacement process. Before using path replace
ment, the aggregator must Select the matching nameSpace
rule for the given file path. Once the rule is Selected, the
aggregator uses a path replacement process to generate the
proper NAS array file path. The path replacement proceSS
replaces the client's file path with the NAS array file path.

US 2004/O133606 A1

0209 FIG. 9 illustrates a rule-based namespace aggre
gation by the inventive file Switch to aggregate multiple file
Servers under a common file System namespace. The rules
for namespace aggregation are preferably defined as a table
of path correspondences. The first column specifies the
names Visible to the clients, the Second column Specifies the
name of the file Server and, optionally a shared mount point
on that server, in which the files actually reside. A file Switch
is shown connected to three file servers 908, 909 and 910.
Loaded within (or otherwise accessible by) the file switch is
a rule table 904 that specifies three rules 905, 906 and 907.
The path names 901, 902 and 903 of incoming file requests,
Such as file open requests, initiated by a network client are
compared to the name-mapping rules in the first column
(preferably the comparison is done either by matching
longest prefixes first, or by applying the rules in a predefined
order of priority, So that overlapping pathnames can be
Specified). If a match is found, the matching portion of the
file base path is replaced with the name from the Second
column and the request is forwarded to the new path for
processing. Once a file is open on the target Server, all
further transactions related to this file are Switched to that
SCWC.

0210 For example, rule 905 specifies that the \ENG
Subtree of the common nameSpace is to be mapped to the
Server 908. File 901 will match this rule and therefore will
be Switched to the server 908 where it will arrive with a
modified path. However, rule 906 specifies that a subtree
within the \ENG subtree, namely \ENG\SW, is to be mapped
to a different server, server 909. File 902 satisfies this rule
and will therefore be switched to server 909, where it will
arrive with a modified path. In addition, rule 907 specifies
that the \\ACCT subtree is to be mapped to server 910. This
rule will drive the Switching of file 903 even though this file
resides in a subdirectory of the VACCT subtree (because of
the prefix match).
0211. In addition to base path, other namespace mapping
rules are contemplated. For example, a rule may specify that
all files with a given extension (and, optionally also under a
given Subtree) are Switched to a specific server. For example,
a rule (*.mpeg->\\Srv3\diró) will cause all MPEG files to be
sent to the subdirectory diró on server SRV3 910, no matter
where in the logical nameSpace these files reside.
0212. One skilled in the art will recognize that although
the above example illustrates a method for mapping a
particular file type to a particular directory of a specific
Server, this method can be generalized to include a "file
System name' plus a “target directory'. For example, the file
system name may identify a NAS array 310 or a legacy
server 313. This generalized method is used in the determi
nation of NAS array as described below in FIG. 14.
0213. It should be noted that the new path created by the
application of the nameSpace aggregation rules is the file
path for the metadata file corresponding to the Specified user
file. Access to data within the user file is redirected to other
file Servers, and to Specific directories and data files within
those directories, in accordance with the metadata in the
metadata file. This will be explained in more detail below.
0214) Note that by aggregating the namespace of multiple

file Servers into a common nameSpace, the file Switch
achieves a function similar to what available distributed file
Systems do without requiring any proprietary client-side
Software.

Jul. 8, 2004

0215 Name of a Data Stream
0216 Each aggregated file consists of one or more data
streams that contain the file's data. The number of data
Streams depends upon the number of Stripes and mirrors for
the Specific data file, as well as the number of Spillover
fragments (as explained in more detail below). The name of
a data stream is the ASCII code (i.e., the ASCII represen
tation) of the global unique identifier (GUID) stored in the
corresponding entry 830 of each data stream. This ensures
the name for each data Stream is unique because of the
uniqueness of the GUID.
0217 FIG. 15 illustrates an example where the above
naming methodology is observed. The data Stream names for
the document myFile.doc 1500 are formed using the ASCII
code of the GUID of the corresponding data stream. For
example, the name for the first data Stream on file Server
1501 is the ASCII code of the GUID for this entry (namely
GUID ASCII 1) and similarly, the names for the first data
Stream on file servers 1502 to 1506 are the ASCII codes of
the GUID for the respective entries, namely GUI
D ASCII 2, GUID ASCII 3, GUID ASCII 4, GUI
D ASCII 5 and GUID ASCII 6. Note that the mapping is
configured and performed on the file Switch. The clients
don’t need to know, and in fact have no way of knowing, the
mapping and do not need to be reconfigured if the mapping
is changed.
0218 Data Aggregation Rules
0219. The ability to aggregate data files among multiple
Servers and to do So Safely in a concurrent environment
enables the file Switch to distribute the data of the aggregated
file on multiple Servers, thereby achieving both parallel
operation and high availability. The same process can be
Viewed as the file Switch aggregating the contents of the
member files into a single file that it presents to its network
clients.

0220 Most network file protocols represent data file as
contiguous arrays of bytes. This means that the techniques
required to distribute the data for each individual file are not
different from the techniques required to distribute the data
for an array of hard disks. In accordance with the present
invention, the methods for doing So, including Striping,
mirroring and other variations of RAID, are applied to
distributing data of individual files across a set of file
SCWCS.

0221 FIGS. 10-12, described hereinafter, respectively
illustrate mirroring, Striping, and Spillover as implemented
by the present invention. AS these mechanisms exist con
ventionally, a representation of the clients and ServerS is not
believed necessary. It is noted, however, that these mecha
nisms are performed by the present invention based on
Switching file protocol transactions that take place in the file
Switch (represented by the arrow in each of these figures),
rather than API functions that take place on a local machine,
typically the client.
0222 Mirroring
0223 FIG. 10 illustrates data aggregation through mir
roring in a Switched file System. In this example, the file
switch (not shown) aggregates member files 1001, 1002,
1003 and 1004, all preferably residing on different file
Servers, into a Single aggregated file 1000, presented to the

US 2004/O133606 A1

clients. The member files 1001 through 1004 contain iden
tical data, which the Switch presents as contents of the
aggregated file 1000.
0224. When the client initiates a file open transaction, the
Switch aggregates that transaction (as shown in FIG. 10) and
opens either one or all of the member files 1001 through
1004, depending on the type of operation that is to be
performed subsequent to the file open. When the client
initiates a file open and a file read transaction, the file Switch
Selects, preferably randomly, one of the file Servers on which
the member files reside and Switches the open and read
transactions to it. That Server executes the open and read
transactions and returns the response to the Switch; the
Switch forwards the response to the client, thus completing
the read transaction requested by the client. With this
mechanism, if multiple clients try to read the same file 1000,
the file Switch will direct their transactions to different
member Servers at random (or in accordance with predefined
criteria, Such as load balancing criteria). The Switch thus
balances the load among these file Servers. In addition, the
clients can experience up to four times increase in perfor
mance compared to a situation where the file 1000 is stored
on a single Server.
0225. When a client initiates a file write transaction, the
Switch aggregates the transaction by replicating the user data
into all of the member transactions. As a result, all member
files 1001 through 1004 are updated synchronously with the
Same data. Since all member transactions execute in parallel,
this does not significantly degrade the performance of write
transaction on the aggregated file compared to write trans
actions on a file Stored on a Single Server.
0226 Finally, when a client initiates a close transaction,
the Switch aggregates it in a manner Similar to the open
transaction and closes all member files.

0227. One other significant advantage of file mirroring is
that the above transactions can be completed Successfully
even if one or more of the member file servers become
unavailable. Open, write and close transactions are Switched
to all available Servers, read transactions are Switched to any
one of the available Servers. This way, as long as at least one
of the member files is online, the file system as a whole and
the aggregated file 1000 in particular remain available to all
clients.

0228) Striping
0229 FIG. 11 illustrates data aggregation in a Switched

file System through Striping by a file Switch. In this example,
a user file 1100 contains 6 file strips 1105 through 1110. The
file Switch (not shown) distributes the user file into 4 stripes
1101 through 1104, all preferably residing on different file
servers, according to a predetermined number of stripes 805.
The stripes 1101 through 1104 in this case contain different,
non-overlapping strips 1105 through 1110, which the file
Switch presents as a contiguous aggregated user file 1100.
0230. When a file Switch receives a file open transaction
from a client, it aggregates that transaction (as shown in
FIG. 11) and opens the corresponding metadata file. From
the metadata file, the file Switch determines the number of
Stripes and the file Server locations of the data files contain
ing the Stripes. By placing an appropriate lock on the
metadata file, the file Switch can furthermore prevent other
client requests from interfering with the operation of the
current client request.

Jul. 8, 2004

0231 When the client initiates a file read transaction, the
Switch aggregates this transaction by executing the follow
ing Steps. First, determining based on the Strip size and the
requested Starting offset and the requested transaction size,
which of the member servers will be involved in the trans
action, and at what Starting offset and what amount of data
each of them must read. The Switch then issues the member
transactions to the Selected Servers and aggregates the results
by ensuring that data arrives at the client in the right
reconstructed order. The client receives the aggregated
header for the response, followed by all of the data
requested, in the correct order.

0232. One skilled in the art will recognize that the write
transaction in this case is executed in a manner Similar to the
read transaction described above, except that the data is
distributed as illustrated in FIG. 11, instead of being
assembled as was the case with the read transaction. Finally,
when a client initiates a close transaction, the Switch aggre
gates it in a manner Similar to the open transaction and
closes the corresponding metadata file, as well as any of the
Stripe data files that have been opened.

0233. In the case of data aggregation through Striping,
both read and write transactions are aggregated by Submit
ting corresponding read and write transactions for Smaller
amounts of data to multiple member Servers in parallel. This
results in a respective increase of performance, which the
file Switch can deliver to each individual client, as well as to
an excellent load balancing in the case of multiple clients
accessing the same file. In addition, as multiple Studies have
shown, Striping tends to resolve the problem of hotspotting.

0234 Spillover

0235 FIG. 12 illustrates data aggregation through spill
over. The Spillover mechanism is preferably used to aggre
gate Storage capacity, preferably in conjunction with one or
more of the other mechanisms described herein. The spill
over is especially useful in cases where one or more of the
member Servers for an aggregated file unexpectedly run out
of disk Space while the file is open. The figure illustrates an
aggregated file 1200, comprising two member files 1201 and
1202, preferably residing on different file servers. As seen
from the figure, Sections 1, 2, 3, and 4 of the aggregated file
1200 reside in member file 1201, while the remaining
Sections 5 and 6 reside in member file 1202.

0236 Spillover happens when the file Switch, in the
process of writing data into a file unexpectedly discovers
that the target file Server is about to run or has run out of disk
Space. In Such case, rather than failing the write transaction,
the Switch may elect to open a new member file on another
Server and continue writing into it. The contents of the two
files are concatenated to present a common contiguous byte
array in an obvious way. One skilled in the art will recognize
that the Spillover mechanism can be applied to the Second
file as well, creating an arbitrarily long chain of member
files, So that all disk capacity in the System can be fully
utilized if needed.

0237) The file Switch Switches file transactions to spilled
over files as follows. For read and write transactions, the file
Switch looks at the Starting offset and the length of the
payload to be read/written and Switches the transactions as
follows:

US 2004/O133606 A1

0238 (a) if the payload fits completely within the
first member file (e.g., Segments 1 and 2 from file
1200), the file switch switches the transaction to the
first server.

0239 (b) if the payload fits completely within one of
the Spillover (Second and further) member files (e.g.,
segment 5 from file 1200, which is stored in the
beginning of the member file 1202), the file Switch
Switches the transaction to the Server on which that
member file resides. The Switch also modifies the
parameters of the transaction by Subtracting from the
Starting offset for the transaction the Starting offset of
the member file within the aggregated file. In our
example, segment 5 is at offset 0 in file 1202, so four
Segments should be Subtracted from the request,
resulting in a request to read the first Segment from
file 1202.

0240 (c) if the payload spans multiple member files
(e.g., segments 4 and 5 from file 1200), the file
Switch replicates the transaction to all Servers on
which portions of the request reside, modifying the
Starting offset and length of each transaction. Upon
receiving the responses, the file Switch reconstructs
the data in the correct order (similar to the way this
is done for Striping) and sends it back to the client.

0241. In order for the spillover mechanism to function,
the metadata file stores the range of data file and the location
of the member files in the file system (i.e., the server on
which each member file resides and the file name and file
path of the member file). This same information is obtained
from the metadata file during read and write or update
operations.

0242. According to the present invention, the file Switch
aggregates data file on a file-per-file basis. In this way,
different files can be aggregated in different ways using
different combinations of Striping, mirroring and other data
aggregation techniques to achieve optimal balance between
performance, Storage utilization and the desired level of data
availability.

0243 It is well known that the effectiveness of striping,
mirroring and other data aggregation techniques when
applied to block devices, such as in RAID or parallel file
Systems, can be greatly diminished by the fact that no single
Solution can fit all types of files and access patterns. By way
of example, Streaming video can be Striped very effectively
over a large number of devices, Since Streaming data is
usually being read in large Segments. On the opposite Side of
the spectrum, HTML files are typically only a few kilobytes
large and not a good target for Striping. Therefore, the
present invention utilizes aggregation rules (also called the
data aggregation rules) to configure the file Switch with
different data aggregation parameters for different types
and/or sets of files.

0244 Syntax of Data Aggregation Rules

0245 FIG. 13 illustrates the syntax of data aggregation
rules and provides examples of Such rules. The preferred
Syntax 1300 defines a set of aggregation parameters, namely,
number of mirrors, number of Stripes (i.e., the preferred
number of file Servers across which the Stripes are stored)
and Strip size, which are Selected for a given Set of files

14
Jul. 8, 2004

based on each file's path (location in the aggregated
namespace) and type (recognized by the file extension/
suffix).
0246 Rule 1301 shows typical parameters for MPEG
files located anywhere in the file system. The rule is selected
for any file path, but only for files whose filename extension
is MPEG, and it defines mirroring by 2, striping by 32 and
a strip size of 16 KB. With this rule, any MPEG file will be
mirrored once (two copies of the data will exist in the
System) and Striped across 32 file servers, with a file Strip
size of 16 kilobytes.
0247 Rule 1302 shows typical parameters for HTML
files located anywhere in the file system. The rule is selected
for any file path and only for files whose filename extension
is HTML, and it defines mirroring by 64 and no striping.
With this rule, any HTML file will be mirrored on 64 file
Servers, which allows load balancing when read by large
number of clients simultaneously (which is the typical
access pattern for HTML files on a HTTP server).
0248 Rule 1303 shows typical parameters for Microsoft
Word document files located anywhere in the file system.
The rule is selected for any file path and only for files whose
filename extension is DOC, and it defines mirroring by 3,
striping by 8 and a strip size of 8 KB. With this rule, any
document file will be mirrored twice (three copies of the data
will exist in the system for higher availability) and striped
across 8 file servers, with a file strip size of 8 kilobytes.
Since most Such documents typically have file sizes between
32 KB and 100 KB, this rule provides moderate (e.g., 4x)
improvement in performance for each individual client, and
lowers the probability of hotspotting Significantly since each
file is spread across a total of 24 file servers (if that many file
Servers are available) without wasting too much storage
Space.

0249 Rule 1304 shows a desired set of aggregation
parameters for Software Source code files that contain valu
able intellectual property while being each Small in size. The
rule applies to any file in the \CODEBASE subtree of the
aggregated namespace, and defines mirroring by 4 and no
Striping. This provides moderate performance increase (e.g.,
4x) during program compilation and build, which is the
usage pattern where hundreds of files are being read in a
batch proceSS and provides excellent protection from data
loSS due to Server failure.

0250 Finally, rule 1305 is a modification of rule 1304
that optimizes the use of storage space in the \CODEBASE
Subtree. This rule recognizes the fact that Source code
directories often contain intermediate object code files (with
file extension of OBJ) which are a byproduct of the com
pilation proceSS and can easily be reconstructed if lost. The
rule defines an exception from rule 1304, namely that any
file in the \CODEBASE Subtree that has a filename exten
sion of OBJ will be neither mirrored nor striped. When used
together, rules 1304 and 1305 can easily provide optimal
Storage characteristics for a Software engineering depart
ment.

0251. In another embodiment, the data aggregation rules
contain additional parameters. In particular, the Syntax of the
data aggregation rules in this embodiment is:

0252) (Path, Type)->(N Mirrors, N Stripes, Strip
Size, operational parameters, caching parameters)

US 2004/O133606 A1

0253) The operational parameters may include, for
example, a lock redundancy parameter that Specifies the
number of file servers on which file lock are to be replicated.
The caching parameters may include a “read ahead enabled'
parameter, which indicates whether read ahead caching (i.e.,
retrieving and caching data from a file before it has been
requested by an application running on the client computer)
is enabled for the files to which the aggregation rule applies.
The caching parameters may include a “write behind/write
through' parameter, which indicates (for the files to which
the rule is applicable) whether new and updated data is lazily
written back to the file servers, or is written back immedi
ately. The caching parameters may also include caching
parameters that Specify one or more of a maximum cache
size, a maximum caching time, a maximum amount of dirty
data that can be cached without writeback to the file server
(if write behind is enabled), and so on.
0254 Summary of Data Aggregation Rules
0255. This section has described the various mechanisms,
algorithms and other elements of the present invention used
to achieve the desired behavior of the file Switch, namely the
ability to aggregate multiple independent file Servers into a
Single, highly Scalable Switched file System.
0256. One skilled in the art will easily recognize that the
mechanisms described in this Section can be beneficially
applied Simultaneously to the same file. For example, mir
roring and Striping can be combined to increase both per
formance and availability of a single file; further, spillover
can be added to the same file in case Some of the file Servers
run out of Storage Space. Moreover, one skilled in the art will
recognize that other data aggregation techniques, for
example RAID4 and RAID5, can be implemented in a file
Switch in addition to or instead of the mechanisms described
herein.

0257 Directory Aggregation
0258 Namespace aggregation as described above is an
easy way to distribute files among different Servers, and also
to add a new Server to an existing System. However, this
technique alone may not be Sufficient to aggregate Seam
lessly the Storage capacity of multiple file Servers. For
example, with namespace aggregation alone it may not be
possible to tell how much free disk-space is available on the
aggregated file System.
0259 Since different directories are mapped to different
servers, a file that cannot be stored under the \ENG subtree
for lack of room may be Successfully Stored under the
\ENG\SW Subtree, which resides on a different server. Thus,
even when the System as a whole has plenty of available
Storage Space, particular file operations in particular places
in the nameSpace may not be able to execute Successfully
without extensive human intervention.

0260 Directory aggregation resolves the above issues by
making it possible to distribute files that reside in the same
aggregated directory among different Servers. This ensures
that the files from all directories of the combined nameSpace
can share all of the available free disk Space.
0261) Directory Structure of Metadata File
0262. In order to determine the directory structure for
Storing the metafile of a user file in the group of file Servers,
the file Switch needs to construct the following:

Jul. 8, 2004

0263 NAS arrayfile server directory pathfile
name

0264 FIG. 14 illustrates a method for constructing the
directory structure of a metafile. The method consists of the
following key Steps:

0265 1. Determine NAS array 1404: The aggregator
needs to first determine which NAS array should be
used. This determination is based on the namespace
rules. The file path being accessed is mapped to a
Specific NAS array and directory path in accordance
with the nameSpace rules, as described above.

0266 2. Determine File Servers 1406: The file
server (more specifically the set of file servers) that
contains the metadata file is determined by using a
hash function (e.g., by applying it to the user file
name) to identify a first file server. The set of
additional file Servers for Storing redundant copies of
the metadata file is determined simply by Selecting
the “next N-1 file servers in the NAS array, when a
total of N file servers are needed. If the number of
Servers in the array is reached, the counting wraps
around to the first Server. The metadata redundancy
N is independent of the number of stripes and
number of mirrors. N can be set as a constant on the
NAS array, or be set per Subtree in the namespace
aggregation rules (e.g., by adding a metadata redun
dancy field to each aggregation rule.

0267 3. Determine Directory Path 1408: The direc
tory path for a metafile is calculated using the
namespace aggregation rules and the file path (of the
associated user file) provided with the request. Parts
of the file path may need to be replaced depending on
the nameSpace aggregation rules. The constructed
directory path is replicated according to the number
of redundant metafiles, which in Some embodiments
is defined by the nameSpace aggregation rules.

0268 4. Determine Metafile Names 1410: The file
names of the primary and Secondary metafile Stored
on the file Server are the same as the user file name,
with a prefix of “P” for the primary metafile and a
prefix of “S” for the secondary metafile respectively.

0269. The NAS array in which the metafile is to be stored
is identified by the namespace aggregation rules. There may
be multiple NAS arrays in a given file system. Each NAS
array is responsible for Specific directories and files as
described by the rules. Directory aggregation applies to a
specific NAS array; not all NAS arrays as a whole. The full
set of file servers that makes up the NAS array must be
known to the file Switch (e.g., a background Service may
keep track of this information). Each file server in the array
is identified by its computer name on the network and a
share (server's file system mount point) in which files should
be Stored. In order to access a file Stored on a given Server,
the pair <Server, Shared is needed. Since every Server
preferably participates with a single share in the NAS array,
the pair <NAS array, servers is sufficient to identify <server,
shared. The <Server, Share> pair for each Server that par
ticipates in the NAS array is listed in the configuration of the
NAS array.
0270. A hash function is used to determine the first file
server in the NAS array that contains a specific metafile. The

US 2004/O133606 A1

hash function is applied to the name of the file (preferably
not including the file path). The value of the hash is used to
determine which file Server contains the first occurrence of
the metafile. The hash function is configured to produce a
value in a range of numbers equal to the number of file
Servers in the NAS array, where each value in this range
represents one of the file Servers in the array. This mecha
nism evenly distributes metafiles across the NAS array. The
hash function, used in conjunction with the nameSpace
aggregation rules, determines the exact Subset of file Servers
containing the Specific metafile.

0271 To one skilled in the art, it will be apparent that it
is possible to Set the metadata redundancy N to 1, in which
case the directory aggregation achieves only distribution
without redundancy. It is also possible to Set the hash
function to always return the value associated with the first
Server in the NAS array, thereby achieving only metadata
redundancy. However, it is highly beneficial to use both
redundancy and distribution of the metafile, to improve data
Security and availability.

0272. The components of the array configuration are used
to aggregate files and directories across the NAS array.
Below is a simple example:

0273 Namespace rule:
\ENGADOCS*.*>NAS3\DIR4ADATA

0274 Client requested file:
\ENG\DOCSWJOHN\myFile.doc

0275 Value of file hash: second server in NAS array
0276 Configuration entry for the second server in
the NAS array NAS3: server SRV2, share SH1

0277 Using the above information, the client file path
“\ENG\DOCS\myFile.doc" is translated
into\SRV2\SH1\DIR4\DATAWOHN\myFile.doc" on the
third NAS array, NAS3 (“SRV2” is the name of the second
server in the NAS array NAS3). The directory
“\DIR4\DATA\JOHN”, if it doesn't already exist, is created
on all members of the NAS array, not just the members
containing the metafile for file “myFile.doc", to support
directory enumeration and metafile redundancy.

0278. This example pertains to both opening and creating
files. When accessing the file on the NAS array, the metadata
files involved are:

0279 NAS3\DIR4\DATA\JOHN\PmyFile.doc
primary metadata file

0280 NAS3\DIR4\DATA\JOHN\SmyFile.doc
Secondary metadata file

0281 FIG. 15 illustrates a graphical representation of the
Storage of the user file and metadata files for an aggregated
user file named “myFile.doc'. There are six file servers 1501
to 1506 in the file array. The user file is divided into six
Stripes. In this example, no mirrors of the user file are shown.

0282. The primary and secondary metadata files (Pmy
File.doc and SmyFile.doc) are stored in the first file server
1501 of the array. The metadata files are replicated one time
in file server 1502 to provide redundancy.

Jul. 8, 2004

0283 Directory Structure of a Data File
0284. The data files are preferably stored on servers of
the same NAS array as the metadata files but in a different
directory Sub-tree, Separate from the metafiles. A "file array'
is the subset of file servers in a single NAS array that stores
the contents of a specific file. This section describes how to
create the directory Structure of data files within a file array.
0285) User File Data Distribution Mechanism
0286 FIG. 16 illustrates a preferred embodiment for
distributing the data of user files in a NAS array. The method
consists of the following Steps:

0287) 1. Determine NAS array 1604;
0288 2. Determine the number of file servers 1606;
0289) 3. Select File Servers and Perform Load Bal
ancing 1608;

0290 4. Determine and Handle Spillovers 1610;
0291 5. Create Global Unique Identifiers (GUID)
1612;

0292) 6. Determine File Path with GUID 1614;
0293 7. Create Data Stream Filename 1616;

0294 The method starts in block 1602 and moves to
block 1604 where mapping of a user file to the proper NAS
array is performed. The method uses the namespace rules
described above. This method is the same as for determining
the NAS array for storing the metafile.
0295). In block 1606, the number of file servers to be used
to store the data of the user file is determined. The method
applies the aggregation rules, which Specify the number of
Stripes and the number of mirrors. In one approach, the
number of Servers is computed by multiplying the number of
stripes by the number of mirrors. However, in the event that
there is an insufficient number of file servers to store each
mirrored Stripe of the user file, multiple stripes (i.e., Stripe
instances) can be stored in a single file server.
0296) In block 1608, the number of file servers computed
in block 1606 is selected from the NAS array. There are
numerous Selection methods that can be applied to Select the
file Servers for achieving the goal of load balancing in
Storing the user file. In one Selection method, called the
round robin method, each file server within the NAS array
is Selected Sequentially for Storing a mirror-Stripe file for the
user file. When multiple copies of each stripe are to be
Stored, each instance or copy of the Stripe must be Stored on
a different file server. In other selection method, based on the
available disk space on the file servers, the file server with
the largest available disk Space is Selected first, and then the
file Server with the next largest available disk space is
Selected Second. The proceSS continues until all the Stripes of
the user file are stored. Yet another method for selecting the
file Servers can be based on the historical load Statistics of a
particular file server. Yet another method for selecting the
file servers can be based on the response time of the file
SCWCS.

0297. In block 1610, the method determines and handles
any Spillover fragments of the Stripes that form the user file.
While aggregating files to multiple devices, over time Some
of the device's Storage capacity may become exhausted. AS
a result, the file aggregation may fail and cause disruptions
in the Systems network. To avoid Such failures, file aggre

US 2004/O133606 A1

gation includes Spillover. This is a mechanism that allows
the aggregator to use a different Storage device (i.e., file
Server) when one or more of the devices run out of Storage
Space. Each file Server's Storage capacity must be monitored
using a specific threshold. The threshold varies depending
on the Storage capacity of the file Server. The threshold is
needed So a portion of the Storage is preferably reserved for
file spillover information and metafiles. Note that when the
user file is first created, the determination Step will show that
no spillover fragment exists, and hence the handling Spill
over step will not be performed.
0298. When the file aggregator detects that a particular

file server has reached its threshold (i.e., the file server's
disks are full), a different file server is designated for all
Subsequent data belonging to the accessed data file. One
approach to Storing the Spillover fragments of a user file is
to Store the Spillover data file in the Subsequent file Server,
in a predefined sequence of the file servers with the NAS
array. The Sequence of the file Servers wraps around when
the last file Server is reached. Whenever possible, the aggre
gator preferably avoids Storing a Spillover fragment of a
given Stripe’s mirror on the same Server where another
mirror (or fragment thereof) of the same Stripe is already
Stored; this allows the aggregator to preserve data redun
dancy.

0299. By allowing directories and their contents to spill
over on the Servers, the capacity of the entire NAS array can
be used for file Storage.
0300 For a given file, there is either spillover or no
spillover, as indicated by the spillover flag 809 in the
metafile for the user file. If there is no spillover, the flag
indicates that there is no spillover and that each Stripe-mirror
instance is represented by a single data Stream. If there is
Spillover, the flag indicates So, and the Spillover contents of
a stripe are stored on another server using a new GUID (See
GUIDs below); the determination of the file path of the new
data stream is described below, with reference to FIG. 17.
AS long as at least one Stripe-mirror instance has been Spilled
over, the Spillover flag is Set (in Some embodiments, how
ever, the spillover flag may be eliminated). The primary
metadata file is updated to include pointers to the full set of
Spillover fragments. In addition, all redundant metafiles
must be updated to include entries 830 for each spillover
fragment.
0301 To indicate that an aggregated file has spillover, its
primary metafile is updated with the following information:

0302 Spillover flag 809 is set, to indicate that the
file has at least one spillover.

0303 Total number of data streams, which is stored
in field 810 of the metadata file, as shown in FIG.8.
This parameter indicates the total number of data
Streams for the aggregated file, including the first
fragments of each Stripe-mirror instance and any
Spillover fragments of any Stripe-mirror instance.

0304 List of all data streams which include (<stripe
#>, <mirror i>, <Start offset>, <end offset>, <logical
device name>). More particularly, each data stream
is represented by an entry 830 of the data stream
descriptor 813 in the metadata file, as shown in FIG.
8. The entry 830 for the initial fragment of a stripe
mirror instance is identified in the Stripe-mirror map

Jul. 8, 2004

811, more specifically by a data Stream index value
stored in the matrix 812 by stripe number and mirror
number. Once the first data stream has been spilled
over, the first spillover fragment is linked to by the
“index to next data stream'815, and if there are any
additional Spillover fragments for the same Stripe
mirror instance, these are found by following the
links in the index field 815 of Successive entries 830.

0305 The spillover information in the metafile is prefer
ably stored in the order that the spillovers occur. A full stripe
of a file is a concatenation of all of the Stripe fragments,
including an initial fragment file and Zero of more Spillover
fragment files, in the order that they are listed in the metafile.
Each fragment file is stored on one of the NAS devices, as
indicated by the server name 818 in the entry 830 repre
Senting the fragment file. The file name for the fragment is
indicated by the GUID field 819 in the entry 830 for that
fragment file.

0306 When accessing a file contains spillover data, the
file Switch checks if the needed data is on the regular file
Server for a particular Stripe, or a spillover file Server, or
both. The file's metadata is used to determine which file
Servers contain the Spillover data. There may be any number
of spillover file servers in the NAS array.

0307. In block 1612, the global unique identifier (GUID),
a value that is 16 bytes long in a preferred embodiment, is
created for each distinct fragment (data stream file) of the
user file. The length of the GUID may be different in other
implementations. The GUID for each data stream file is
stored in a descriptor field 819 of the corresponding entry
830 in the metadata file. FIG. 17 illustrates a method for
creating the GUID. The inputs 1702 for creating the GUID
consist of a unique MAC address of a network interface, a
time Stamp and a Sequence counter number. In other embodi
ments, other information or additional information (e.g., the
filename) could be used as input to the GUID function 1704.
The MAC is the unique network address of one of the file
Switch's network interfaces (and uniquely identifies the file
Switch among all other file Switches); the time Stamp indi
cates the time of the user file creation and the Sequence
counter counts the number of files created by the file Switch.
The GUID function 1704 combines the inputs to create a
unique bit stream that is written into the GUID 1706. The
GUID is preferably unique among all the GUIDS generated
by any file Switch, on any NAS array, on any Server.

0308. In block 1614, the file path, within a file server, for
each data file (i.e., each Stripe-mirror instance file and
spillover file) is determined using the GUID for that data
file. FIG. 17 illustrates one approach to implement this step.
In block 1706, the GUID is divided into multiple bitfield
Segments, herein called indexes, namely index 1, indeX 2
and up to indeX n. The directory path to the data Stream file
is formed by concatenating a Subset of the indices to form a
file path, with each utilized indeX comprising a directory
name in the file path. For example, the GUID of a data file
may contain indices A, B, C, D and E, as well as other
portions not used in the file path. In one embodiment, each
index from the GUID comprises one or two ASCII charac
ters. The file path for the data file is then
VA\B\C\D\E\filename. As shown in 1708, each index from
the GUID forms the name of a directory in the file path of
the data stream. By forming the file path of each of the data

US 2004/O133606 A1

Streams in this way, the data Streams are automatically and
randomly (or pseudo-randomly) spread over a large number
of distinct directories, thereby preventing large numbers of
data Streams from being Stored in a single directory. Having
large numbers of data Streams in the same directory could
have an adverse impact on System performance, and this file
path forming mechanism avoids that potential problem.

0309. In block 1616, the file names of all the data streams
of each Stripe-mirror instance of the user file in the file array
are determined. In normal operations, each aggregated file
consists of one or more Stripe-mirror instances. The number
of Stripe-mirror instances depends on the number of Stripes
and mirrors for the specific user file. The number of data
Streams for each Stripe-mirror instance depends on the
number of Spillovers for the Specific Stripe-mirror instance.
The data streams are named using the ASCII code of the
GUID associated with each corresponding data Stream, with
two ASCII characters for each byte of the GUID. This was
described above in detail with reference to FIG. 15. Other
methods can be used to convert the GUID into valid file
names using characters allowed by the file Servers, one Such
method is to convert the number in a base-62 System, where
the digits are 0-9, followed by all uppercase letters of the
English alphabet, followed by all lowercase letters (10+26+
26).
0310 Note that the mapping of the data files (that
together form the data for an aggregated file) to file servers,
and to specific directories on the file Servers is performed by
the file Switch. The clients don’t need to know, and in fact
have no way of knowing, the mapping and do not need to be
reconfigured if the mapping is changed.

0311. After the step of determining data stream file names
in block 1616, the method ends at block 1618.

0312. It should be pointed out that in other embodiments,
the steps of FIG. 16 may be performed in a different order.
Further, many of these Steps may be performed or re
executed each time the user file increases in size Sufficiently
to require that addition of a new data Stream for the user file.

EXAMPLE

0313 The following example illustrates how the direc
tory structure for the user file is determined. This example
assumes the following:

0314. One file aggregator (i.e., file Switch) and 2
different NAS arrays NAS1 and NAS2. Each NAS
array contains 8 file servers. The names of the file
servers in NAS1 are NAS1. SRV1, NAS1. SRV2,
NAS1. SRV3, etc. The names of the file servers in
NAS2 C NAS2 SRV1, NAS2 SRV2,
NAS2 SRV3, etc.

0315. The following namespace rules are defined:

Rule 1: ZF ENGDOC*.*
Rule 2: ZF ENGDESIGN*.*
Rule 3: ZF ENGTRAINING*MPG

-> NAS1DOC DIR
-> NAS2DESIGN DIR
- NAS2MOVIES

Jul. 8, 2004

0316 The following aggregation rules are defined
for NAS1:

Rule 1: DOC DIR*.* -> stripe (4, 8192), mirror (1) }

0317. The following aggregation rules are defined
for NAS2:

Rule 1: DESIGN DIR*.*
Rule 2: MOVIES*.*

-> stripe (4, 8192), mirror (1) }
-> stripe (8, 16384), mirror (0)}

0318 Assuming the client requests to access the file
“\ZF\ENGADOC\GEARS. DOC':

0319 According to namespace rule 1, this path is
mapped to the first NAS array NAS1 to the directory
“DOC DIR”. The application of this namespace rule
identifies the location where the metadata file for the
user file is located.

0320 According to the aggregation rule 1 for NAS1,
“DOC DIR” is striped over 4 servers, each stripe is
8 K and each stripe is mirrored 1 time on the other
4 servers in the NAS array.

0321) Let HashFunction(GEARS.DOC)=0. In this
case, the first server containing the file “GEARS
.DOC" is NAS1. SRV1. Additional file servers, for
additional Stripes and mirrors are identified using this
first Server as a starting point. Alternately, the file
servers to be used to store the data files are identified
using a load balancing function. Further, each copy
of a stripe data file must be stored on a different file
Server than the other copies of the same Stripe, in
order to provide protection against file Server fail
ures, and to provide parallel data paths for improved
throughput.

0322. A separate GUID is computed for each dis
tinct data Stream of a user file. Thus, a respective
GUID is computed for each data stream of a stripe
mirror instance, and if there are spillovers, a separate
GUID is computed for each spillover segment. From
the GUID for each data Stream, a file path is gener
ated, and each data Stream is Stored in the determined
file server at the file path determined from its GUID.

0323) Isomorphic Trees
0324. In order to implement directory aggregation,
described below, the aggregated directory Structure is pref
erably present on all servers of the NAS array. Each file
Server preferably has the same directory structure (also
called a directory tree) under the share exposed for this
server in the NAS array. Having isomorphic directory trees
enables metafiles to be stored on any server in the NAS
array. Each file Server need not have the same metafiles.
0325 In order to ensure that each file server has the exact
Same directory Structure, for each directory create request
received from the client, the aggregator must create the
Specified directories on all the file Servers. The aggregator
(i.e., the file switch) extracts the directory portion of the file
path and creates the same directory Structure on all file
Servers in parallel.

US 2004/O133606 A1

0326 In case the network file system semantics allows
creating files without having to pre-create their directories,
the file Switch creates the directories on all servers (at least
all servers that can be used to Store metafiles), regardless of
where the metafile is created. AS an example, if the file path
being created is “\eng\doc\archive\mydoc.doc", the aggre
gator must create the parent directory “\eng\doc\archive' on
every file server in the appropriate NAS array where the file
“mydoc.doc' is to be stored.
0327 Load Balancing at the File Switch Level
0328 FIG. 18 illustrates a mechanism provided by the
present invention for load balancing at the file Switch level.
Since all file Switches within an aggregated file Switch
provide access to the same Set of files, any client may be
connected to any of the file Switches. This allows clients to
be distributed among the file Switches so that not all clients
are connected to the same file Switch. This can be achieved
by manually configuring each client to use a particular file
Switch or by automatically distributing the clients when they
try to connect to the aggregated file Switch 1803.
0329. The selection of which particular file Switch is
going to Serve a given client happens when the client
connects to the file Switch. This association preferably does
not change for the duration of the client connection.
0330. The load distribution is preferably done through a
name resolution service, such as DNS or WINS, that pro
vides a mapping between a name (configured as server name
for the clients) and the IP address of a particular file switch.
0331 One possible mechanism is to have the group 1803
be assigned a separate DNS Subdomain (e.g., ZX1.Z-force
.com). File switch 1801, which is configured as a group
controller also acts as a DNS server for that Subdomain. The
Subdomain preferably contains two host names, Such as
admin.ZX1.Z-force.com and ZX1.Z-force.com. The name
admin.ZX1.Z-force.com is used for management, the host
name ZX1.Z-force.com is used for file Serving (i.e., this is the
name to which clients connect). The group controller always
resolves the admin.ZX1.Z-force.com host to itself. It resolves
the ZX1.Z-force.com host name dynamically. In different
embodiments, the ZX1.Z-force.com host name is resolved to
a respective file Switch on a rotating basis, a random basis,
on the basis of the number of users connected to each of the
file Switches, or on the basis of the current transactional
loads being handled by the file Switches in the group (the file
Switches may report their load factor periodically to the
group controller 1801). As a result, different clients end up
on different Switches. Each of the Switches may also have a
unique name in the Subdomain (e.g., Switch3.ZX1.Z-force
.com).
0332. In an alternative embodiment, the group controller
can be a dedicated device instead of the file Switch 1801.

0333 Another mechanism for load balancing is for each
file Switch to have a different server name and IP address.
The System administrator can configure different groups of
clients to connect to different file Switches (e.g., based on
company structure), or use a third-party load balancer or
round-robin DNS Such as RRDNS.

0334 Yet another mechanism that can be used by the file
Switches belonging to the same group is to configure the
switches with the same server name (e.g., the CIFS server

Jul. 8, 2004

name), and have that name registered as a group name
instead of an individual host name. When a client tries to
establish a connection to that name, the first Switch able to
respond will get the client connection. Since typically this
will be the least-loaded Switch, this mechanism can also be
used for load balancing.
0335). One skilled in the art will recognize that other
mechanisms can be used to achieve load balancing. One
skilled in the art will also recognize that combining a
load-balanced front end with independent connections on
the back end of the file Switch allows practically unlimited
Scaling up of the bandwidth of the network file System,
simply by adding file Switches to the group 1803. In such
case, one may also increase the number of file Servers to
which the file Switches connect as needed to achieve the
desired aggregate performance.
0336 Transaction Aggregation
0337 FIG. 19 illustrates transaction aggregation by a file
switch. File switch 200 receives a file read request 1901
from a client connected through connection 209. The Switch
determines the Subset of file servers on which instances of
the aggregated file reside, preferably by using the aggrega
tion descriptor 803 for that file (as described in the following
section); in this example, servers 201, 202, 203 and 204,
collectively identified as the file array 1900. The Switch then
submits appropriately modified file read requests 1902,
1903, 1904 and 1905 to servers of the file array 1900, in
parallel. The servers 201 through 204 receive their respec
tive file read requests 1902 through 1905, execute them in
parallel and respond according to protocol back to the
Switch, each believing that the Switch is its client for the
individual file that resides on that server. The file Switch 200
collects all responses from the file Servers. Next, it updates
its State with information regarding the member files that
comprise the aggregated file, each residing on one of the
servers 201 through 204 of the file array 1900. Then it
aggregates the transaction result and Submits it back to the
original client.
0338. As a result, the client can now initiate various file
transactions on the file (in this example, FILE1), as if it were
a Single file residing on a single file Server. The Switch
aggregates different transactions differently. Its operation on
read and write transactions is described elsewhere in this
document. The operation of the file Switch with respect to
concurrency-related requests and issues is described in the
following Section.
0339 Accessing an Aggregated User File Through the
Metafile

0340 FIG.20 illustrates the preferred method for access
ing an aggregated user file through the metafile. Upon
receiving a file operation request from a client, the file
Switch follows Similar patterns without regard to the actual
command being processed. The method starts in block 2002
and goes through the following Steps.

0341 In step 2004, the metafile is accessed to fetch the
metadata of the user file. The location of the metafile is
determined by applying a namespace rule to identify a NAS
array (i.e., a group of file servers) and by applying a hash
function to the given user file name and the given file path
to identify a particular file server within the identified NAS
array.

US 2004/O133606 A1

0342. In step 2006, the file server that stores each indi
vidual data file of the user file is determined from the
metadata of the user file. Treating the set of file servers in
which the data files are stored as a “file array,” each file
access operation is executed over a specific Set of data files
in the file array.
0343. In step 2008, the file aggregator Submits the file
access command(s) to the Selected file array (or a Subset
thereof). The commands are preferably submitted to the
different file array members simultaneously (or in quick
Succession), So that all members will receive them practi
cally at the Same time.
0344) In step 2010, the file aggregator (i.e., the file
Switch) waits and receives response(s) from the Selected
array of file Servers. After all operations are Submitted to
their recipients, the file aggregator waits for a response from
each of the array elements participating in the command.
The responses may come in any order at any time. It is not
necessary for the file aggregator to wait until the entire and
complete response is received from a file array member.
Once the file aggregator receives enough of the response in
order to make a decision about the Submitted command, it
may stop waiting for the response from that member.
0345. In step 2012, the file aggregator computes the
aggregated result. When all the file array member responses
are received, the file aggregator combines them in an aggre
gate response.

0346. In step 2014, the file aggregator Submits a response
back to the client. After all responses are received from the
file array members and the aggregate result is calculated, the
final response is sent back to the client. Each of the client's
operations are preferably executed asynchronously due to
the fact that the file aggregator preferably Submits each
command to the file array members acroSS a network.
Finally, the method ends in block 2016.
0347 General Algorithm for Handling Client Accesses
0348 This section presents the general aggregation algo
rithms used to aggregate operations over metafiles in an
aggregated file System. There are two general algorithms: 1)
perform operation over all metafiles for the user file, and 2)
perform operation on a single metafile. Which algorithm is
used is mostly dependent upon the type of file operation
executed.

0349 Perform Operation Over All Metafiles
0350. In this algorithm, operations are executed over all
metafiles for a given user file. One case this algorithm is
used is for all operations that modify the metadata Stored in
the metafiles. For example, this algorithm is used when
creating files for access, and when deleting files. The opera
tion is repeated over all metafiles in parallel for highest
performance.
0351. Note that the operations are performed only over
metafiles that reside on currently available servers. If one of
the copies of the metadata is not available, the modifications
are Stored in the others; at least one copy must exist in order
for access to be provided.
0352) Perform Operation Over a Single Metafile
0353. This algorithm is preferably used for non-destruc
tive file operations that retrieve but not modify data in the

2O
Jul. 8, 2004

metafile, Such as getting the last modified time of the file. In
this algorithm, an operation is performed over the metafile
stored in the metaserver with the lowest ordinal number.
Alternatively, the operation may be performed over the
metafile Stored in a randomly or pseudo-randomly Selected
metaserver, from among the metaservers currently believed
to be available.

0354 Handling Concurrent Accesses
0355 Since file servers and network file protocols are
designed for accessing by multiple clients simultaneously,
they typically provide excellent Support for concurrency
handling. For example, the CIFS network file protocol
provides the ability to request an exclusive file open, mean
ing that if two clients request open at the same time, only one
of the requests is going to Succeed.
0356. In the case of a single file server, this support is
often implemented inside the file Server by using operating
System Synchronization objects. This works well for a single
Server in which acceSS from multiple clients can be Serial
ized within the same computer. However, as the background
discussion explains, extending this approach to multiple
Servers in a clustered configuration creates a bottleneck. For
this reason, the present invention preferably uses a different
mechanism for handling concurrency.
0357 An Exemplary Concurrency Problem
0358 FIG. 21 illustrates an exemplary concurrency
problem when two clients trying to access the same
resources simultaneously. The system 2108 consists of two
file switches 200 and 2106, file servers 201 through 207, and
a layer 2 Switch 2107, which is used to connect the file
servers and the file Switches.

0359. In this example, two clients send requests for a file
write Simultaneously. A first client, client A is connected to
file Switch 200 and sends its file write request 2111 to it; a
Second client, client B is connected to the file Switch 2106
and sends its file write request 2101 to it. In this example, the
requested file is aggregated from four data streams (e.g., four
mirrors), each residing on one of the servers 201 through
204 (the four servers forming the file array 2100 for this file).
0360 Both file Switches process the request at the same
time and try to process it by Switching the incoming requests
2111 and 2101 to each of the four servers of the file array
2100. File switch 200 sends requests 2112 through 2115 to
the file servers 201 through 204, respectively. File Switch
2106 sends requests 2102 through 2105 to the file servers
201 through 204, respectively. While the two switches may
have issued the requests at the same time, the requests arrive
at each of the file Servers in Some order. In this example, the
file servers 201, 203 and 204 receive the requests 2112,2114
and 2115, respectively, before they receive the correspond
ing requests from the file Switch 2106, namely the requests
2102, 2104 and 2105. However, the file server 202 receives
the request 2103 from the file Switch 2106 before it receives
the request 2113 from the file Switch 200. One skilled in the
art will easily recognize that Several other orders are pos
Sible, as well as Similar Situations with more than two
clients, more than two Switches and another number of file
SCWCS.

0361 Based on the above-described order of arrival of
requests, the file servers 201, 203 and 204 satisfy the write

US 2004/O133606 A1

requests 2112, 2114 and 2115 coming from file Switch 200
(data A) while the file server 202 satisfies the request 2103
from the file switch 2106 (data B). The mirrors of the file
contain inconsistent data as a result of the concurrent
accesses by both client A and client B without proper locking
mechanism. From the standpoint of a file Switch, both
aggregated transactions will fail, Since neither of them
would succeed in writing all four of the member files. This
Scenario is clearly in Violation of the Semantics of the write
request, which requires that one client should Succeed and
all others should fail.

0362 One skilled in the art will recognize that this
Situation can occur with other operations. For example with
a lock request, this situation leads to the classic deadlock
problem. Although the resource that both clients requested
(i.e., the aggregated file) is available and can be granted to
one of the clients easily, none of the clients is able to acquire
it (i.e., write to the file). The concurrent access problem
described above, with respect to write operations, can be
Solved using implicit locking, as described next. Concur
rency problems associated with the open-exclusive opera
tion and with lock requests are Solved using mechanisms
described below with reference to FIG. 24.

0363 Implicit Locking
0364 Network file protocols typically provide file-level
locking and byte-range locking in order to Synchronize
multiple clients that try to write to the same file and the same
area within a file. When locking is used consistently by all
clients, there is no need for additional Synchronization in
order to avoid inconsistent data being written to different
mirrors of the same file; however, not all file client appli
cations use the locking mechanism consistently.

0365 Implicit locking allows a client to write data into a
locked byte range while sharing the same file with other
clients. While a client holds a lock on a byte range in a file,
it is the only client that is allowed to write data into that
portion of the file. Other clients can not read or write data in
the locked range area. This gives a client an exclusive acceSS
to a specific portion of the file but not to the entire file. If
byte range locking is used consistently by all clients, there
is no need for additional Synchronization in order to avoid
inconsistent data being written to different mirrors of the
Same file. However, not all client applications use the
locking mechanism consistently, which can result in data
corruption in an aggregated file System.

0366 Another application of implicit locking is when the
file aggregator needs to lock a portion of the file if a client
is trying to write data to the file and does not have eXclusive
access to the target area of the file. The file aggregator (i.e.,
the file Switch) is configured to lock the corresponding byte
range of a file if the client attempts to write data into the file
without first locking the range itself, the aggregator locks the
byte range on behalf of the client. The aggregator preferably
locks the byte range if the client does not have eXclusive
access to the whole file or exclusive access to the accessed
portion of the file in which it intends to write. When the
write operation is complete, the file aggregator unlocks the
previously locked byte region of the file (if it had locked it
implicitly).
0367 FIG. 22 illustrates a method for implementing
implicit locking with metafiles that ensures that a client

Jul. 8, 2004

Writing to a file has exclusive access to that portion of the file
and keeps all mirrored copies of the file properly Synchro
nized with the correct data. The method starts in block 2200
and then moves through the following Steps.
0368. In step 2202, the file aggregator receives a file write
request from a client. Typically before issuing a write
request, a client preferably requests, through the file aggre
gator, a byte range lock of the Section of the aggregated file
to be modified. Next, the file aggregator forwards the
client'sbyte range lock request to the appropriate file Servers
in the correct NAS array. Then, the file aggregator gathers
the byte range lock results from the file servers, forwards the
aggregated result back to the client, and Saves the State of the
Specific byte range that has been locked by the client.
However, the procedure shown here does not assume that a
byte range lock has already been obtained.
0369. Upon receiving the client's write request, the file
aggregator first determines, in Step 2204, whether the byte
range of the write operation has been locked by the request
ing client. If the byte range is locked, the method moves on
to step 2214.
0370. In the alternative, if the byte range is not locked,
then the method moves to step 2206 where the file aggre
gator generates byte range lock requests to each of the file
servers that contain a copy of the file on behalf of the client.
In one implementation, the byte range lock request is
forwarded to the appropriate file ServerS So as to request
locks on the data files containing the data in the specified
byte range. To do this, the primary metafile for the Specified
user file is first accessed to determine the identities and
locations of the data files for the Stripes containing the
Specified byte range. Then the lock requests, for locks on the
required portions of those data files, are forwarded to the
appropriate file Servers.
0371. In a second preferred implementation, the byte
range locks are obtained on the primary metadata file and its
copies, no locks are obtained on the underlying data files. In
particular, a byte range lock may be obtained on a file, Such
as a metafile, even when the byte range specified in the lock
request is partially or even completely outside the range of
data actually Stored in the file. Thus, in this implementation,
the byte range lock requests are directed to all the copies of
the primary metadata file, corresponding to the user file on
which the lock has been requested (whether explicitly or
implicitly). To prevent deadlocks, the byte range lock
request is first directed to the primary file server for the
metafile (as determined, for example, by a hash function or
other Selection function); and after the lock request is
granted by the primary file Server, the Same lock request is
then directed to the other file servers on which copies of the
metafile are Stored.

0372 Both implementations utilize the lock management
capabilities of the file servers, with the primary roles of the
file Switch being the application of the namespace rules to
determine the file servers to which the lock request should
be directed, replication of the lock request to those file
Servers, and aggregation of the lock request results. In yet
another implementation, the aggregation rule applicable to
the user file includes a lock redundancy parameter P that
Specifies the number of primary metafile copies on which the
lock is obtained. In this implementation, the lock request is
directed to a primary file Server for the metafile, and then to

US 2004/O133606 A1

P-1 other file servers, Selected in a predefined manner (e.g.,
based on ordinal numbers associated with the file Servers,
using a round robin Selection function).
0373) In step 2208, the file aggregator gathers the byte
range lock results from the file Servers and Save the State of
the Specific byte range that was locked. In Step 2210, a
determination is made as to whether the byte range lock has
been acquired by the file aggregator. If the byte range lock
has been acquired, the method continues in Step 2214. If the
byte range lock has not been acquired, then the file aggre
gator fails the write request and Sends a notice to the client
in step 2212.
0374. In step 2214, after confirming the client has
secured the byte range lock either in step 2204 or step 2210,
the file aggregator performs the write operation to all file
Servers that contain the aggregated file. In Step 2216, the file
aggregator receives and aggregates Write responses from the
file servers. The method then moves to step 2218 where the
file aggregator Sends an acknowledgement to the client when
the write operations have Successfully completed.
0375. In step 2220, the file aggregator releases the byte
range lock. This Step is performed regardless of whether the
write operations have completed Successfully as in Step 2218
or the write request has failed as in Step 2212. After releasing
the byte range lock, the method ends in block 2222.
0376 When this mechanism is consistently used by the

file Switch, and in the case of multiple file Switches access
ing the same Set of file Servers by all file Switches, it ensures
consistency of the data file at a level comparable to that
maintained by any Single file Server.
0377 Opportunistic Locks and Caching
0378. Another mechanism frequently deployed with net
work protocols is Opportunistic Locks (“oplocks”; also
known as callbacks). Oplocks allow clients to cache the data
file locally to increase performance while keeping the files
Synchronized and consistent. Depending on the network file
System that is used, oplockS may or may not be Supported
and the different types of OplockS may vary. Most existing
operating Systems, including MicroSoft Windows and
LINUX (e.g., SAMBA), Support oplocks.
0379 Oplocks are usually only requested by a client
when the client opens a file on a network file server. When
requesting an oplock, a client always requests an oplock. If
the oplock is granted to a client, the client may then cache
data file locally to increase performance. If an oplock is not
granted, the client must Send all network file requests over
the network and it can not cache any data from the file. A
Server does not have to grant the oplock Specified by the
client; it may grant the client a different level of oplock than
the one requested.

0380 FIG. 23a illustrates a method for handling an
oplock request by a client. The method starts at step 2300
and continues to step 2301 where the file aggregator (i.e., a
file Switch) receives the client's request of an oplock to a
user file. In Step 2302, the aggregator Sends oplock requests
on the metafiles corresponding to the Specified user file to a
predetermined array of file Servers. Next, the aggregator
waits and aggregates the responses from the file servers (step
2303) and grants the client the lowest leveloplock that was
granted by the servers for the metafiles (step 2304). Note

22
Jul. 8, 2004

that oplocks are used on metafiles only, not on data files.
Then, in Step 2305, the aggregator Saves the State of all the
granted oplocks from the file servers. In step 2306, the
oplock level granted to the client is also saved as the current
oplock level for the file aggregator. The method ends at
block 2307.

0381. Oplocks can be “broken” at any time. This means
that after a Server grants a Specific oplock to a client, the
Server can Send a notification that tells the client that it no
longer has the right to hold its current oplock. This usually
occurs when a Second client tries to open the same file. The
Server may downgrade the current oplock to a different
oplock or may remove the oplock completely from the
client. Depending on the new oplock granted by the Server,
the client may have to flush any cached data file back to the
server to keep the file synchronized with other clients. If the
client no longer holds an oplock on the file, all cached data
file must be flushed and all Subsequent file operations must
be sent over the network to the file server.

0382 FIG. 23b illustrates a method for handling oplock
break notifications from a file server. The method starts at
step 2310 and continues at step 2311 where an oplock break
notification from a Sender file Server is received. Then, in
Step 2312, the file aggregator (i.e., the file Switch) compares
the level of oplock break notification from the file server
Versus the oplock level granted to the client.

0383) In step 2313, if the level of oplock break notifica
tion is lower than the oplock level granted to the client, the
forwards the oplock break notification to the client. Then in
Step 2314, the aggregator waits for the client to respond to
the oplock break notification, and updates the current oplock
level to the new oplock level. In Step 2315, the aggregator
forwards the client's response to the file Server that origi
nated the oplock break notification.
0384. In step 2316, if the oplock break notification speci
fies an oplock level that is equal to or greater than the current
oplock level that was granted to the client, the aggregator
responds to the oplock break notification. It then updates its
state to reflect the new oplock level for this file server in step
2317. Since the client may hold an oplock that is lower than
the oplock Specified in the notification, there is no reason to
propagate the notification to the client.

0385) In step 2318, if the client never requested an oplock
when it opened the file or does not hold an oplock associated
with this file, the aggregator responds to the oplock break
notification.

0386. It then updates its state with the new oplock level
in step 2319. The method ends in step 2320.

0387 Note that, before responding to any oplock break
notification received from a file server, the aggregator (i.e.,
file Switch) must first update any oplock State as necessary.
AS a result, data cached within the aggregator may need to
be written back to the file server, if the cached data has been
modified, and cached data in the aggregator may need to be
invalidated if the oplock is being totally withdrawn by the
file Server. If multiple oplock break notifications are received
from different file Servers around the same time, they are
queued and handled one at a time. In addition, it is not
necessary to respond to the Server's Oplock break notifica
tion if the client chooses to close the aggregated file when it

US 2004/O133606 A1

receives the notification from the aggregator. Some network
file Systems accept a file close operation as a response to an
oplock break notification.

0388. There are several different types of oplocks that can
be granted. The types of oplocks are defined by the network
file protocol that is used with the file aggregator. The type of
oplock defines exactly how the client can cache data,
ordered by the level of caching given to a client. FIG. 23c
illustrates a method for mapping a level of exclusivity of
caching to the oplock exclusivity level granted. For
example, when using the CIFS file protocol, an “exclusive”
oplock allows the client 2330 to cache a data file “myFile
.doc'2331 locally. Under an exclusive oplock, all read and
write operations can be executed locally and therefore the
file access time is reduced. A “level 2 oplock allows the
data file “myFile.doc'2333 to be cached in the file Switch
2332 or in the client. A level 2 oplock allows all clients given
this level of oplock to cache read data locally. (The oplock
is revoked the first time someone writes to the file). Note that
the file Switch can also use the oplock level in order to
determine whether it can cache read data, in addition to or
instead of the clients. This file is shared among clients
supported by the file Switch 2332. “No Oplock” is the lowest
level, where the client is not allowed to cache the file
“myFile.doc". Under “no oplock', mirrors of this file 2335
and 2337 are stored in the file servers 2334 and 2336
respectively.

0389. In an alternate embodiment, oplocks requests are
directed to and handled by the file servers that store data files
for a specified user file, instead of being handled by the file
servers that store the metafile for the specified user file. The
file Switch distributes the oplock requests to the file servers
accordingly, and also aggregates the Oplock responses, break
messages, and So on from the same file Servers. The number
of file Servers to which each oplock request is directed is
determined by the number of stripes that are included in the
Subset of the file for which an oplock is being requested, and
the level of lock redundancy to be used. This method allows
the file Switch to cache fragments of the file differently on
different file servers.

0390. In one embodiment, implicit locking is used in
combination with opportunistic locking. In particular, when
a client does not request an oplock in conjunction with an
operation on a user file, the file Switch may nevertheless
request an oplock from the file Servers when predefined
implicit locking criteria are met (e.g., when the nature of the
client request, or a usage pattern by the client, indicates
continued access to the file is likely). When the implicit
oplock is granted, the file Switch preferably caches data from
the file Specified by the client, without the client having any
knowledge that Such caching is occurring. By opportunisti
cally caching data in the file Switch, the file Switch provides
faster access to data in the Specified file. This can be
especially helpful when the file Switch is much closer to the
client computer than the file Servers on which the requested
file resides. In addition, while the file Switch caches data
from a file, it can respond to requests from more than one
client requesting data from that file, using the same cached
data to provide fast responses to each of the clients, So long
as none of the clients requests exclusive access to the file.

0391) In some embodiments, the file Switch can cache
data and use the cached data to provide fast response to two

23
Jul. 8, 2004

or more clients or client computers, even when one or more
of the clients have requested an oplock on the same file. In
other words, when a Second client attempts to access the
Same file for which an oplock has been granted, the oplock
is not necessarily broken. Rather, if the accesses by all the
clients are compatible, then the file Switch caches the oplock
State (if any) associated with each client requesting access to
the same file, and sends responses to the clients using the
cached data from the file. The caching of the data in the file
Switch ends when caching termination condition arises, Such
as a client requesting eXclusive access to the file, or all
clients closing the file.
0392 Semaphores

0393 A Semaphore is a mechanism that allows only a
certain number of entities to access a particular resource. In
the context of an aggregated file System, a Semaphore is used
to allow only one file Switch to access a specific aggregated
file at a time. This includes all occurrences of the file on all
file servers in the NAS array (i.e., if the file is striped or
mirrored among multiple file servers). In an aggregated file
System, the Semaphore is achieved using the primary meta
data file Stored on the NAS arrays as the Semaphore object.
The process that obtains access to the primary metadata file
also obtains access to the aggregated user file as a whole (the
file may still be shared among multiple clients).
0394. The semaphore synchronization mechanism is used
mainly with destructive file operations. Destructive file
operations include creating a new file, truncating an existing
file, deleting an existing file and renaming or moving an
existing file. The Semaphore Synchronization mechanism is
also used with non-destructive operations, Such as exclusive
Open.

0395 Synchronization is needed for destructive opera
tions since executing the operations over a specific file
changes Some aspect of the file; if the aggregator needs to
back out and let another entity have access to the same file,
it would have to restore the state of all files that it accessed.
This would require keeping the States of the transactions on
the file Switch, which is very costly and can degrade
performance. By using the Semaphore Synchronization
mechanism, an aggregator does not execute destructive file
operations over any files unless it is granted access to the
files by way of a Semaphore.

0396 FIG. 24 illustrates a method for handling concur
rent accesses using a Semaphore. The method Starts in Step
2400 and moves to step 2401 where the file aggregator
receives a request for opening the file for exclusive acceSS
(not a destructive operation). Also in step 2401, the file
aggregator determines the location of the primary metafile of
the requested user files by applying a hash function on the
user file name.

0397 Next, in step 2402, the file aggregator tries to open
the primary metafile with exclusive file access and no file
sharing allowed. In step 2403, a first determination is made
as to whether the primary metafile has been Successfully
opened. If the answer is positive, the method continues in
Step 2405. If the answer is negative, the file aggregator fails
the client's file access request and moves to step 2409; or
waits a random amount of time and retries to open the
primary metafile again. There should be a limit on the
number of retries. If opening the metafile has Succeeded, the

US 2004/O133606 A1

aggregator is granted access to the aggregated file. If there
is more than one copy of the primary metafile, then the open
is considered Successful if all opens completed Successfully;
if at least one open failed indicating that the file is already
open, the client's request for exclusive open will be denied.
0398. In step 2405, the file aggregator opens all the data
streams on all of the file servers of this user file's file array,
or alternately opens all the data Streams that will be needed
for the destructive file operation. Step 24.05 ensures that all
the data Streams required for the destructive file operation
are available.

0399. In step 2406, a second determination is made as to
whether all open requests have been granted by the file
Servers. If any of the open requests fail, the file aggregator
fails the client’s file access request in step 2407 and moves
to step 2409. In the alternative, if all open requests have been
granted Successfully, the method moves to step 2408 and the
file aggregator performs file acceSS on all data Stream files.
In step 2409, after all the file accesses have been completed,
the file aggregator closes all the data files and then closes the
primary metafile(s). The method ends in step 2410.
0400. With each aggregator accessing the files using this
methodology, it can be guaranteed that the access to the file
will be properly Synchronized.
0401 Summary of Aggregation of Concurrent Accesses
0402 One skilled in the art will recognize that other
algorithms may be employed to achieve the same results and
ensure consistent and atomic behavior for aggregated trans
actions. Similarly, one skilled in the art will recognize that
the same approaches may be applied to other file transaction
types, Such as locking, creation, etc.
0403. In effect, the present invention aggregates the exist
ing Synchronization mechanisms provided by network file
protocols (and thus by the file servers in the system) to
implement Synchronization between the clients of multiple
independent file Switches without requiring direct interac
tion and communication, and therefore, coupling, between
the file Switches. In addition, each individual file Switch can
further use these mechanisms in order to Synchronize trans
actions requested by multiple clients that are connected to
that Switch.

04.04 Directory Enumeration
04.05) When a file Switch receives a directory enumera
tion request from a client, the request may specify to
enumerate an entire directory (not including Sub-directories)
or it may enumerate a Single file. Single file enumeration is
typically used to determine whether or not a specific file
exists in the file System. This Section covers how to enu
merate a Single directory or a Single file.
0406. When a directory enumeration request is received,
the aggregated file System uses the nameSpace aggregation
rules to determine which NAS arrays need to be enumerated
in order to Satisfy the request. Any particular directory (i.e.,
an aggregated directory in the user namespace) may be
distributed over multiple different NAS arrays because mul
tiple namespace rules may apply to the files in that one
directory. The file aggregator enumerates the corresponding
directories on all the NAS arrays that are the target of the
applicable namespace rules, combines the results, and
propagates the combined result back to the client.

24
Jul. 8, 2004

0407. When enumerating the directories in an aggregated
file system, all of the file servers of a specific NAS array are
preferably enumerated for their directory contents. This is
due to the fact that a hash function distribution function is
used to distribute the metadata files among different file
servers of the NAS array. Only the metafiles are enumerated;
data files are ignored. The main goal of the aggregated
directory enumeration mechanism is to efficiently eliminate
duplicate files in the enumeration So that aggregated direc
tory enumeration is fast and efficient.
0408. The basic aggregated directory enumeration
method is as follows. When a file Switch needs to enumerate
a directory on a NAS array, the client's enumeration request
is replicated in parallel to all of the file servers in the NAS
array. The file Switch receives all of the responses from the
Servers and builds the enumerated directory Structure
entirely in memory. The file Switch does not wait for the
entire directory structure to be built in memory before
Sending enumeration results back to the client. Rather, the
enumeration results are Sent back to the client as Soon as
they are available.
04.09 The directory enumeration strategy is defined in the
following two Sections:

0410 Enumeration State: Describes the internal
State that the file Switch needs to maintain during a
directory enumeration operation.

0411 Enumeration Algorithm: Defines the algo
rithm of how to enumerate a directory over a set of
NAS arrays.

0412 State Information Related to the Directory Entries
0413. In order to enumerate the directories on a NAS
array, the enumeration request is Sent to all file Servers of the
array and the responses are collected. Since the enumerated
directory Structure is built entirely in memory from these
responses, the file Switch needs to maintain the following
internal State (i.e., the enumeration State):

0414 a list of directory entries;
0415 additional state related to the directory entries;
and

0416)
0417. A List of Directory Entries

a list of pointers to the directory entries.

0418. After the enumeration request is replicated to all
file servers of a NAS array, the file Switch collects all of the
responses. These responses contain a list of files that are
contained in the enumerated directory. The responses should
contain only listings of primary and Secondary metafiles,
because data files are stored in a different Sub-tree on the file
Servers. For each listed file, the response contains the
directory information requested in the enumeration request,
Such as file name, file size, and other file attributes. Each file
listing returned in the enumeration Set is known as a direc
tory entry.

0419 Each file found in the enumeration response is
added to a list/array of directory entries maintained in
memory in the file Switch. In a preferred embodiment, each
directory entry is added to the list in the order in which it is
received and processed. The list or array is preferably
implemented as either a queue or a linked list.

US 2004/O133606 A1

0420 Each distinct user file must appear in the final
enumerated list only once. Duplicate file names refer to files
with the same name that are located in the same user
namespace directory. Duplicate files may appear because the
file Switch replicates the metadata files for redundancy.
0421 Additional State Relate to the Directory Entries
0422 For each directory entry, there is additional state
that is tracked by the file Switch during enumeration. This
State includes the following:

0423. The number of times the file was found in the
enumeration (duplicate files). This occurs since
metadata files are replicated for redundancy. Sepa
rate counters are maintained for the primary and
Secondary metafiles.

0424. Whether or not the file has been submitted
back to the client as part of the directory enumeration
response.

0425 The additional state can be kept as part of the
directory entry array or can be Stored in a separate array.
0426 A List of Pointers to the Directory Entries
0427 For each directory entry that is processed by the file
Switch, the file Switch must search the directory entry list to
see if the file is already included in the list. This can be a
very time consuming process, especially if the directory
entry list contains thousands of unsorted entries.
0428. In order to speed up the enumeration process, the

file Switch must maintain a list or array of memory pointers
that point to specific entries in the directory entry array. The
pointer list contains pointers to the directory entries ordered
alphabetically. Using the pointer list, the file Switch can
quickly Search through the directory entries using a binary
search to find out whether or not a file exists in the directory
entry list. If a new file needs to be added to the list, the file
Switch only needs to update the pointer list and no entry data
needs to be copied in memory.
0429 Directory Enumeration Algorithm
0430 FIG. 25 illustrates directory enumeration for the
aggregated file System. During directory enumeration, direc
tory requests are Sent to redundant directories of metafiles
and duplicate responses are filtered out. This is done to
ensure that if a file Server fails while processing a directory
enumeration request, the directory enumeration request is
processed to completion using data obtained from the other
file Servers. The directory enumeration request is processed
just as quickly as if the file Server had not failed. Thus, the
directory enumeration method makes individual file Server
failures invisible to the client. Only if there is a failure of all
the file servers on which redundant metafiles are stored will
directory enumeration Service to the client computers be
impacted.

0431) The method starts in step 2500 and then moves to
step 2501 where the file Switch receives a directory enu
meration request (e.g., a command asking for a listing of all
files in a particular directory) from a client.
0432. In step 2502, given the directory to be enumerated,
the file Switch determines the set of NAS arrays that need to
be enumerated based on the nameSpace aggregation rules
and the directory path being enumerated. More particularly,

25
Jul. 8, 2004

the file Switch determines, from the directory path Specified
in the request, all namespace rules that are applicable to the
request. Those rules specify the NAS arrays that store the
files in the specified directory path. Each NAS array is
enumerated in exactly the Same way. The file Switch may
enumerate the NAS arrays one at a time. When the enu
meration is completed on one NAS array, the file Switch
moves to the next NAS array (if any) using the same internal
State information.

0433) Once the set of NAS arrays is determined, each
NAS array is enumerated one at a time. Step 2503 marks the
beginning of the control loop for processing directory infor
mation for each NAS array identified in step 2502. In step
2503, the file Switch extracts the match path portion after the
last backslash \ of the enumeration path (e.g., “**",
“*.doc", or “a.doc"). If the first character of the match path
is not the wildcard character “*”, the single character
wildcard “” is added as a prefix to the match path. If more
than one NAS array is identified in step 2502, the match path
portion of the enumeration path (extracted in step 2503) is
different for each identified NAS array because each stores
only a portion of the files in the directory to be enumerated.
For example, a first particular NAS array identified in Step
2502 may only store files (in the specified directory) having
a file extension of “doc'. If the directory enumeration
request is for files starting with the letter “a” (e.g., dir a*.*),
the extracted match path portion for this first NAS array
would be “adoc'. In other embodiments, where there is
no secondary metafile, the metafile has the same name as the
user file, so the extracted match path will not need the “?”
prefix.

0434. The extracted match path portion is used by the file
Switch in step 2504 to retrieve all of the metafiles that match
the match path portion. In the Simplest case, if the enumera
tion path specifies only a single file with no wildcards (e.g.,
“dir file1.doc"), the file Switch simply replicates the request
to the appropriate Set of file Servers of a Single NAS array,
with a “'?” wildcard prefixed to the filename. The responses
are collected and a consolidated response is Sent back to the
client. No other StepS are executed. The directory entry list,
pointer list and additional State information are emptied or
reset to contain no entries.

0435 More generally, in step 2504, the file switch
replaces the enumeration path according to the namespace
aggregation rules (i.e., as determined in Step 2503) appli
cable to the NAS array currently being processed, and
replicates the enumeration request in parallel to all of the file
Servers in the NAS array that are configured to Store meta
data files. In Some embodiments, the NAS array is config
ured so that some of the file servers in the NAS array store
metadata files, while other file Servers are configured to Store
data files (i.e., files other than metadata files); in other
embodiments, Some file Servers may be configured to Store
both metadata files and data files, while other file servers are
configured to store only data files. In step 2505, the file
Switch waits and receives the responses to the enumeration
requests from the file Servers.
0436 Step 2506 marks the beginning of the control loop
for processing the response received from each file Server. In
step 2506 a first or next file name in the response received
from a file server is processed. The file Switch searches the
pointer list by file name to see if the file name is already

US 2004/O133606 A1

included in the directory entry list. During this step, the 'P
or 'S' prefix of the file name, which indicates whether the
listed file is a primary or Secondary metafile, is Stripped from
the file name for purposes of Searching the pointer list.
0437. In step 2507, a determination is made as to whether
a new entry has been received. If the entry is not new, i.e.,
the file exists in the directory entry list built in memory, then
the method takes the NO branch and moves to step 2509
where the file Switch updates the State and pointer related to
the existing directory entry. The State of the directory entry
includes the directory information returned by the file server
with the directory entry. In step 2509, the file Switch also
updates the additional state of the directory entry with the
number of times the primary and Secondary metafiles have
been found.

0438. In the alternative, if the entry is new, then the
method takes the YES branch and moves to step 2508 where
the file Switch adds the directory entry to the directory entry
list and initializes the state of the new directory entry. The
filename used in the directory entry does not include the 'P
or 'S' prefix of the primary or Secondary metafile repre
sented by the received filename. The file Switch also updates
the pointer list with a pointer to the new directory entry in
the proper alphabetical order and initializes any other addi
tional State needed for the new entry.
0439. In step 2510, a determination is made as to whether
both the primary and Secondary metafiles for a user file have
been found. If the primary and secondary metafiles have not
been found according to the file aggregation rules, the file
Switch does not send the directory entry back to the client
that requested the directory enumeration, because it does not
yet have Sufficient information to Send back to the client.
Instead, the method moves to step 2512 and continues with
the next entry returned by the file servers (at step 2506). In
the alternative, if both the primary and Secondary metafiles
have been found, the directory entry contains all the
requested directory information for the corresponding user
file, and this directory entry is sent back to the client. The
directory information for the Secondary metafile contains the
aggregated file size and allocation size of the user file. The
directory information for the primary metafile contains all
other file information, including access/creation dates and
times, file attributes and So on. (An alternate embodiment
that changes the operation of step 2510 is discussed below.)
0440. In step 2511, the file switch Submits the entry back
to the client as part of the enumeration response. The file
Switch preferably uses a different thread to submit an entry
back to the client. This thread runs in parallel with the
threads that are enumerating the directories on the file
servers. If the entry has already been submitted back to the
client, the file Switch does not return the entry to the client
in step 2511, and instead skips over to step 2512.
0441. In step 2512, a determination is made as to whether
all files in the directory has been enumerated. If the answer
is negative, the NO path is taken and the method moves to
step 2515 before it continues with the next entry returned by
the file server (step 2506). The directory enumeration con
tinues until all of the files are enumerated and Stored in
memory. In the alternative, the YES path is taken and the
method moves to step 2513. Note that if there are any
directory enumeration errors, but at least one of the enu
meration requests to the file ServerS is Successful, a positive

26
Jul. 8, 2004

enumeration response is sent back to the client with the
collected enumeration results. If all of the enumeration
requests fail, the client's enumeration request fails and a
failure response is returned to the client.
0442. In step 2513, a determination is made as to whether
all file servers have been enumerated. If the answer is
negative, the NO path is taken and the method moves to Step
2515 before it continues with the next file server in the file
array (at step 2504). In the alternative, the YES path is taken
and the method moves to step 2514 where another determi
nation is made as to whether all NAS arrays have been
enumerated. If the answer is negative, the NO path is taken
and the method moves to step 2515 before it continues with
the next NAS array in the Switched file system (at step
2503). In the alternative, the YES path is taken and the
method ends in step 2516.
0443) In step 2515, a termination condition is checked as
to whether the client has closed the enumeration. If the
termination condition has not occurred, the method contin
ues at step 2503, 2504 or 2506, depending on the iteration
loop the method is in, as indicated by which Step was
performed (namely 2512, 2513 or 2514) prior to step 2515.
In the alternative, if the termination condition has occurred,
the YES path is taken and the method ends in step 2516.
0444) Note that when enumerating directories, the total
number of entries that are in the enumeration Set may exceed
the number of entries that can be returned back to the client
due to limitations of the client's response receive buffer. If
this situation occurs, the file Switch Sends an enumeration
response containing a Subset of the entries with an indicator
that indicates there are more entries in the enumeration. This
enables the client to Send another enumeration request to
retrieve the remaining entries.
0445. When updating the directory entry list of an exist
ing entry, Several entry attributes need to be updated (see
step 2509 above). The most important attribute is the size or
allocation size of the file. For each aggregated file, the size
of the file is Stored in the Secondary metafile encoded in one
of the time/date fields associated with the file. The allocation
Size is determined by taking the aggregated file size and
multiplying it by the number of mirrors. All other file
attributes are retrieved from the primary metafile. These
attributes include last accessed date and time, creation date
and time, last written date and time, and So on.
0446. If after a directory entry is submitted back to the
client, the file Switch receives another occurrence of the
Same file listing on one of the other file Servers, this is not
considered an error-because metafiles are purposely rep
licated. In this case, the file listing received from the file
Server is ignored.
0447. In an alternate embodiment, directory entries are
not submitted back to the client at step 2511, but instead a
sorted list of directory entries is built at step 2511. The
resulting Sorted list is returned to the client when the
building of the list is complete, just before step 2516.
0448. In another alternate embodiment, only a primary
metafile is provided for each user file, and no Secondary
metafile is used. AS explained above, one of the directory
fields of the primary metafile is used to Store the aggregated
file size for the corresponding user file. In this embodiment,
step 2510 can be eliminated. Instead, step 2508 is followed

US 2004/O133606 A1

by step 2511, but step 2509 is followed by step 2512. In
other words, whenever a new metafile is found, its entry is
Submitted to the client, but when a redundant metafile is
found the directory enumeration procedure Skips over it,
except for bookkeeping (step 2509).
0449 The directory enumeration method shown in FIG.
25 can also be used, with minor modifications, to perform
other directory operations (sometimes called file com
mands), Such as changing a specified file attribute for a
specified set of files (e.g., “attrib+rc:\x\y\ab*.doc") or delet
ing a specified set of files (e.g., “del c:\X\y\abcd.doc'). In
step 2504, the file command is sent to the applicable file
servers of NAS server identified in step 2502. Steps 2506 to
2510 are replaced by Similar Steps for aggregating the
responses obtained from the file servers, and in step 2511 or
2516 the aggregated responses are returned to the client.
0450 Redundant Metavolume Controller
0451 A collection of user files is referred to as a “vol
ume” of data files. A volume of data files may be stored on
one or more file Servers, and a file Server may host one or
more logical volumes. In the context of the metadatabased
file Switch and Switched file system, a collection of metafiles
corresponding to the collection of user files is called a
“metavolume”. It is desirable to replicate metavolumes over
multiple file servers to provide backup of the metafiles and
to provide continue operation of the Switched file System in
event of a failure of one of the file servers used to store the
metafiles.

0452. A group of file servers in a NAS array can be
designated to Store metafiles. Each Such file Server is called
a metaserver. In Some implementations, all metaservers in a
NAS array have identical metafile content (i.e., they all store
copies of the same metafiles). In other implementations,
while each metafile is replicated N times on a set of
metaserverS Selected using a distribution function, the num
ber of metaservers is greater than N, and therefore the
metaservers do not have identical content. Once a metavol
ume is created, its configuration (with respect to the metaser
ver and directories in which the metafiles are stored) does
not change. Each metaserver within the redundant metavol
ume is assigned an ordinal number. This ordinal number also
does not change once a metavolume assigned to the metaser
ver is created.

0453 Accessing Redundant Metavolumes
0454. In general, there are three types of redundant
metavolume operations: destructive operations, non-de
Structive operations and creating new file or lock acquisi
tion. A non-destructive operation, Such as a read operation,
does not change the content or attributes of the metavolume,
So this operation is performed on any one of the metaservers.
On the other hand, a destructive operation, Such as a delete
operation, does change the content or attributes of the
metavolume, and this operation is performed on all the
metaservers of the NAS array to which the metavolume has
been mapped. For creating new file or lock acquisition, the
operation is performed first on the primary metaserver to
obtain the exclusive access to the metavolume, and then the
operation is performed on all other metaservers of the
metavolume.

0455 FIG. 26 illustrates a method for accessing redun
dant metavolumes. The method starts in block 2600 and

27
Jul. 8, 2004

thereafter moves to block 2602. At block 2602, the redun
dant metavolume controller (RMC) receives a request from
a file aggregator to access the redundant metavolumes Stored
in a group of metaServers. In a preferred embodiment, the
RMC is implemented as a software module within the
aggregated file system 616 (FIG. 6). In another embodi
ment, the RMC may be implemented using one or more
application specific integrated circuits (ASICs), or a com
bination of ASIC's and Software.

0456. At block 2604, the RMC selects a primary metaser
Ver. The primary metaserver is Selected based on the name
of the metafile. In one embodiment, the RMC selects the
primary metaserver by computing a Sum S of all character
values of the metafile name and then computer S modulo M,
where M is the number of metaservers. The resultant number
is used by the file Switch as the ordinal number of the
primary metaserver. In another embodiment of the present
invention, the primary metaserver is Selected by computing
a hash function of the name of the metafile. The resultant
number of the hash function is the ordinal number of the
selected primary metaserver. Both of these methods distrib
ute the primary metafiles evenly acroSS the available
metaservers, and hence improve the performance of the
overall System. In yet another implementation, the primary
metaserver is a predefined one of the metaservers, Such as
the metaserver having the lowest ordinal number.
0457. At block 2606, a determination is made as to the
type of the requested operation. If a destructive operation is
requested, the path to 2612 is taken; if a non-destructive
operation is requested, the path to block 2608 is taken; and
otherwise the path to block 2616 is taken for handling
operations Such as creating a new file, lock acquisition,
rename, and the like.
0458. At block 2608, the RMC sends the non-destructive
operation request to the available metaserver with the lowest
ordinal number. Alternately, the RMC sends the operation to
a randomly or pSuedo-randomly Selected metaserver, from
among the metaservers currently believed to be available.
Next, the method moves to block 2610 where a determina
tion is made as to whether the metaserver to which the
request is Sent is available. If the metaserver is unavailable,
the NO path is taken and the RMC retries the operation to
the next available metaserver (by the next lowest ordinal
number) by repeating the steps in blocks 2608 and 2610. In
the alternative, if the metaserver is available, the method
moves to block 2620.

0459. At block 2612, the RMC sends the destructive
operation request to all metaservers and aggregates the
responses from all the metaservers. Next, the method moves
to block 2614 where a determination is made as to whether
at least one of the accesses to the metaservers is Successful.
If none of the accesses to the metaservers is Successful, the
NO path is taken and the RMC fails the destructive operation
request. If the access to at least one, but not all of the
metaservers is available and returns Success, the operation is
considered to have been successfully complete, and the YES
path is taken to block 2620. If the destructive operation fails
on a particular metaserver, the operation may be retried one
or more times, and if the operation continues to fail, the
metaserver may be denoted as being inoperative and in need
of repair.
0460. At block 2616, the RMC sends either the creating
new file request or the range lock acquisition request to the

US 2004/O133606 A1

primary metaserver. If the requested operation on the pri
mary metaserver fails (but the primary metaserver is avail
able), the FAIL path is taken and the RMC fails the operation
request; if the primary metaserver is unavailable, another
metaserver is chosen as a primary and the operation is
retried. In the alternative, if the access to the primary
metaserver is successful, the SUCCESS path is taken and the
method moves to block 2618.

0461. At block 2618, the RMC sends either the creating
new file requests or the lock acquisition requests to all other
metaservers. It is expected that the operation will Succeed on
those other metaservers; an unexpected failure (other than
the metadata server just being unavailable) is usually an
indication of inconsistency among the metadata Servers.
0462. At block 2620, based on the successful accesses to
a metaserver in either block 2610, 2614 or 2618, the RMC
Saves a primary metaserver Status in accordance with the
metaserver or metaservers that Successfully handled the
acceSS operation.
0463) At block 2622, the RMC saves the states of the
available metaservers and responds to the requested opera
tion.

0464 At block 2624, the RMC saves states information
indicating which metaserverS Successfully handled the
access operation. Preferably, these are the only metaservers
to which Subsequent operations for this metafile will be sent.
For Some operations, this step 2624 may be skipped. The
method then ends in block 2626.

0465. The foregoing description, for purposes of expla
nation, has been described with reference to specific
embodiments. However, the illustrative discussions above
are not intended to be exhaustive or to limit the invention to
the precise forms disclosed. Many modifications and varia
tions are possible in View of the above teachings. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
applications, to thereby enable otherS Skilled in the art to
best utilize the invention and various embodiments with
various modifications as are Suited to the particular use
contemplated.
What is claimed is:

1. A method of generating a directory listing of user files,
where each user file of at least a plurality of the user files is
divided into portions Stored on a plurality of file Servers,
among a group of file Servers in a computer network,
comprising:

receiving a user request for a directory listing of user files
for a specified directory;

accessing a directory of metafiles corresponding to all
user files in the Specified directory, each metafile Stor
ing information identifying a set of file Servers that
Store respective defined portions of the Specified user
file, wherein the directory listing of metafiles is
obtained from a particular file Server of the group of file
Servers in which the metafiles are Stored; and

constructing a directory listing of the user files from the
directory of metafiles.

2. The method of claim 1, wherein the directory listing of
metafiles includes, for each metafile, an aggregated file size
for the user file corresponding to the metafile.

28
Jul. 8, 2004

3. The method of claim 2, wherein the aggregated file Size
is stored in a date field of the directory listing of the
metafiles.

4. The method of claim 1, including:

whenever an operation is performed on any user file in the
Specified directory that changes the aggregated file size
of the user file, updating the directory of metafiles to
indicate the changed aggregated file size of the user file.

5. The method of claim 1, wherein

the Specified directory has an associated file path; and

the directory of metafiles corresponding to the user files
for the Specified directory has a file path corresponding
to the file path of the specified directory.

6. A file Switch for use in a computer network having a
group of file Servers and a plurality of client computers, the
file Switch comprising:

at least one processing unit for executing computer pro
grams,

at least one port for exchanging information with the file
Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

receiving a user request for a directory listing of user
files for a specified directory;

accessing a directory of metafiles corresponding to all
user files in the Specified directory, each metafile
Storing information identifying a set of file Servers
that Store respective defined portions of the Specified
user file, wherein the directory listing of metafiles is
obtained from a particular file Server of the group of
file servers in which the metafiles are stored;

constructing a directory listing of the user files from the
directory of metafiles, and

Sending the directory listing to a particular client com
puter of the plurality of client computers.

7. The file Switch of claim 6, wherein the directory listing
of metafiles includes, for each metafile, an aggregated file
Size for the user file corresponding to the metafile.

8. The file Switch of claim 7, wherein the aggregated file
Size is Stored in a date field of the directory listing of the
metafiles.

9. The file Switch of claim 6, wherein the computer
programs of the file aggregation module include instructions
for updating the directory of metafiles, whenever an opera
tion is performed on any user file in the Specified directory
that changes the aggregated file size of the user file, So as to
indicate the changed aggregated file size of the user file.

10. The file Switch of claim 6, wherein the specified
directory has an associated file path; and

the directory of metafiles corresponding to the user files
for the Specified directory has a file path corresponding
to the file path of the specified directory.

US 2004/O133606 A1

11. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,
a file Switch, the file Switch including:
at least one port for exchanging information with the file

Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

means for receiving a user request for a directory listing
of user files for a Specified directory;

means for accessing a directory of metafiles correspond
ing to all user files in the Specified directory, each
metafile Storing information identifying a Set of file
Servers that Store respective defined portions of the
Specified user file, wherein the directory listing of
metafiles is obtained from a particular file server of the
group of file Servers in which the metafiles are Stored;

means for constructing a directory listing of the user files
from the directory of metafiles; and

means for Sending the directory listing to a particular
client computer of the plurality of client computers.

12. The system of claim 11, wherein the directory listing
of metafiles includes, for each metafile, an aggregated file
Size for the user file corresponding to the metafile.

13. The System of claim 11, wherein the aggregated file
size is stored in a date field of the directory listing of the
metafiles.

14. The System of claim 11, including means for updating
the directory of metafiles, whenever an operation is per
formed on any user file in the Specified directory that
changes the aggregated file Size of the user file, So as to
indicate the changed aggregated file size of the user file.

15. The system of claim 11, wherein the specified direc
tory has an associated file path; and

the directory of metafiles corresponding to the user files
for the Specified directory has a file path corresponding
to the file path of the specified directory.

16. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,
a file Switch, the file Switch including:
at least one port for exchanging information with the file

Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

at least one processing unit for executing computer pro
grams,

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

receiving a user request for a directory listing of user
files for a specified directory;

accessing a directory of metafiles corresponding to all
user files in the Specified directory, each metafile
Storing information identifying a set of file Servers
that Store respective defined portions of the Specified
user file, wherein the directory listing of metafiles is

29
Jul. 8, 2004

obtained from a particular file Server of the group of
file servers in which the metafiles are stored;

constructing a directory listing of the user files from the
directory of metafiles, and

Sending the directory listing to a particular client com
puter of the plurality of client computers.

17. The system of claim 16, wherein the directory listing
of metafiles includes, for each metafile, an aggregated file
Size for the user file corresponding to the metafile.

18. The system of claim 17, wherein the aggregated file
Size is Stored in a date field of the directory listing of the
metafiles.

19. The system of claim 16, wherein the computer pro
grams of the file aggregation module include instructions for
updating the directory of metafiles, whenever an operation is
performed on any user file in the Specified directory that
changes the aggregated file Size of the user file, So as to
indicate the changed aggregated file size of the user file.

20. The system of claim 16, wherein the specified direc
tory has an associated file path; and

the directory of metafiles corresponding to the user files
for the Specified directory has a file path corresponding
to the file path of the specified directory.

21. A method of generating a directory listing of user files,
where each user file of at least a plurality of the user files is
divided into portions Stored on a plurality of file Servers,
among a group of file Servers in a computer network,
comprising:

receiving a user request for a directory listing of user files
for a specified directory;

accessing, in each of a plurality of file Servers of the group
of file Servers, a respective directory of metafiles cor
responding to all user files in the Specified directory,
each metafile Storing information identifying a Set of
file Servers that Store respective defined portions of the
Specified user file; and

aggregating the accessed directories of metafiles to con
Struct an aggregated directory listing of the user files.

22. The method of claim 21, wherein each respective
directory listing of metafiles includes, for each metafile
listed therein, an aggregated file size for the user file
corresponding to the metafile.

23. The method of claim 22, wherein the aggregated file
Size is Stored in a date field of the respective directory listing
of the metafiles.

24. The method of claim 21, including:
whenever an operation is performed on any user file in the

Specified directory that changes the aggregated file size
of the user file, updating the corresponding directory of
metafiles to indicate the changed aggregated file size of
the user file.

25. The method of claim 21, wherein

the Specified directory has an associated file path; and
each respective directory of metafiles corresponding to

the user files for the specified directory has a file path
corresponding to the file path of the Specified directory.

26. A file Switch for use in a computer network having a
group of file Servers and a plurality of client computers, the
file Switch comprising:

US 2004/O133606 A1

at least one processing unit for executing computer pro
grams,

at least one port for exchanging information with the file
Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

receiving a user request for a directory listing of user
files for a specified directory;

accessing, in each of a plurality of file Servers of the
group of file Servers, a respective directory of meta
files corresponding to all user files in the Specified
directory, each metafile Storing information identi
fying a set of file Servers that Store respective defined
portions of the Specified user file;

aggregating the accessed directories of metafiles to
construct an aggregated directory listing of the user
files, and

Sending the aggregated directory listing to a particular
client computer of the plurality of client computers.

27. The file Switch of claim 26, wherein each respective
directory listing of metafiles includes, for each metafile
listed therein, an aggregated file size for the user file
corresponding to the metafile.

28. The file Switch of claim 27, wherein the aggregated
file Size is Stored in a date field of the respective directory
listing of the metafiles.

29. The file Switch of claim 26, the computer programs of
the file aggregation module including instructions, activated
when an operation is performed on a user file in the Specified
directory that changes the aggregated file size of the user
file, for updating the corresponding directory of metafiles to
indicate the changed aggregated file size of the user file.

30. The file Switch of claim 26, wherein

the Specified directory has an associated file path; and
each respective directory of metafiles corresponding to

the user files for the specified directory has a file path
corresponding to the file path of the Specified directory.

31. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,

a file Switch, the file Switch including:

at least one port for exchanging information with the file
Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

means for receiving a user request for a directory listing
of user files for a Specified directory;

means for accessing, in each of a plurality of file Servers
of the group of file Servers, a respective directory of
metafiles corresponding to all user files in the Specified
directory, each metafile Storing information identifying
a set of file Servers that Store respective defined por
tions of the Specified user file;

30
Jul. 8, 2004

means for aggregating the accessed directories of meta
files to construct an aggregated directory listing of the
user files, and

means for Sending the aggregated directory listing to a
particular client computer of the plurality of client
computers.

32. The system of claim 31, wherein each respective
directory listing of metafiles includes, for each metafile
listed therein, an aggregated file size for the user file
corresponding to the metafile.

33. The system of claim 32, wherein the aggregated file
Size is Stored in a date field of the respective directory listing
of the metafiles.

34. The System of claim 31, including means for updating
the corresponding directory of metafiles, when an operation
is performed on a user file in the Specified directory that
changes the aggregated file Size of the user file, to indicate
the changed aggregated file size of the user file.

35. The system of claim 31, wherein
the Specified directory has an associated file path; and
each respective directory of metafiles corresponding to

the user files for the specified directory has a file path
corresponding to the file path of the Specified directory.

36. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,
a file Switch, the file Switch including:
at least one port for exchanging information with the file

Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

at least one processing unit for executing computer pro
grams,

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

receiving a user request for a directory listing of user
files for a specified directory;

accessing, in each of a plurality of file Servers of the
group of file Servers, a respective directory of meta
files corresponding to all user files in the Specified
directory, each metafile Storing information identi
fying a set of file Servers that Store respective defined
portions of the Specified user file;

aggregating the accessed directories of metafiles to
construct an aggregated directory listing of the user
files, and

Sending the aggregated directory listing to a particular
client computer of the plurality of client computers.

37. The system of claim 36, wherein each respective
directory listing of metafiles includes, for each metafile
listed therein, an aggregated file size for the user file
corresponding to the metafile.

38. The system of claim 37, wherein the aggregated file
Size is Stored in a date field of the respective directory listing
of the metafiles.

39. The system of claim 36, the computer programs of the
file aggregation module including instructions, activated

US 2004/O133606 A1

when an operation is performed on a user file in the Specified
directory that changes the aggregated file size of the user
file, for updating the corresponding directory of metafiles to
indicate the changed aggregated file size of the user file.

40. The system of claim 36, wherein
the Specified directory has an associated file path; and
each respective directory of metafiles corresponding to

the user files for the specified directory has a file path
corresponding to the file path of the Specified directory.

41. A method for determining Storage locations of a user
file in a group of file Servers in a computer network,
comprising the Steps of:

in accordance with a predefined Set of aggregation rules,
determining a set of file Servers from the group of file
Servers for Storing the user file;

for each portion of the user file to be Stored in a respective
one of the determined Set of Servers, generating a file
path as a function of a file name of the user file, the file
path including at least three directory levels below a
root path of the file server; and

Storing each said portion of the user file in the respective
one of the determined Set of Servers at the generated file
path.

42. The method of claim 41, wherein the file path for each
portion of the user file is generated by generating a globally
unique identifier that is unique with respect to globally
unique identifiers for all user file portions Stored in the group
of file Servers, extracting a plurality of file path Segments
from the globally unique identifier, and concatenating the
plurality of file path Segments to form at least a portion of
the file path.

43. The method of claim 41, including generating the file
path as a function of the file name of the user file, a value
corresponding to the file portion for which the file path is
being generated, and a value corresponding to the respective
server in which the file portion is to be stored.

44. A file Switch for use in a computer network having a
group of file Servers and a plurality of client computers, the
file Switch comprising:

at least one processing unit for executing computer pro
grams,

at least one port for exchanging information with the file
Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

determining, in accordance with a predefined set of
aggregation rules, a Set of file Servers from the group
of file servers for storing the user file;

for each portion of the user file to be stored in a
respective one of the determined set of Servers,
generating a file path as a function of a file name of
the user file, the file path including at least three
directory levels below a root path of the file server;
and

Jul. 8, 2004

Storing each Said portion of the user file in the respec
tive one of the determined set of servers at the
generated file path.

45. The file Switch of claim 44, wherein the computer
programs of the file aggregation module include instructions
for generating a globally unique identifier that is unique with
respect to globally unique identifiers for all user file portions
Stored in the group of file Servers, extracting a plurality of
file path Segments from the globally unique identifier, and
concatenating the plurality of file path Segments to form at
least a portion of the file path.

46. The file Switch of claim 44, wherein the computer
programs of the file aggregation module include instructions
for generating the file path as a function of the file name of
the user file, a value corresponding to the file portion for
which the file path is being generated, and a value corre
sponding to the respective Server in which the file portion is
to be stored.

47. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,
a file Switch, the file Switch including:
at least one port for exchanging information with the file

Servers and client computers, the information
eXchanged including information concerning a speci
fied user file;

means for determining, in accordance with a predefined
Set of aggregation rules, a Set of file Servers from the
group of file Servers for Storing the user file;

means for generating, for each portion of the user file to
be Stored in a respective one of the determined set of
Servers, a file path as a function of a file name of the
user file, the file path including at least three directory
levels below a root path of the file server; and

means for Storing each said portion of the user file in the
respective one of the determined Set of Servers at the
generated file path.

48. The System of claim 47, including means for gener
ating a globally unique identifier that is unique with respect
to globally unique identifiers for all user file portions Stored
in the group of file Servers, extracting a plurality of file path
Segments from the globally unique identifier, and concat
enating the plurality of file path Segments to form at least a
portion of the file path.

49. The system of claim 47, including means for gener
ating the file path as a function of the file name of the user
file, a value corresponding to the file portion for which the
file path is being generated, and a value corresponding to the
respective server in which the file portion is to be stored.

50. A System for use in a computer network having a
plurality of client computers, the System comprising:

a group of file Servers,
a file Switch, the file Switch including:
at least one port for exchanging information with the file

Servers and client computers, the information
eXchanged including information concerning a speci
fied user file; and

a file aggregation module including one or more computer
programs, the computer programs including instruc
tions for:

US 2004/O133606 A1

determining, in accordance with a predefined set of
aggregation rules, a Set of file Servers from the group
of file servers for storing the user file;

for each portion of the user file to be stored in a
respective one of the determined set of Servers,
generating a file path as a function of a file name of
the user file, the file path including at least three
directory levels below a root path of the file server;
and

Storing each Said portion of the user file in the respec
tive one of the determined set of servers at the
generated file path.

51. The system of claim 50, wherein the computer pro
grams of the file aggregation module include instructions for

32
Jul. 8, 2004

generating a globally unique identifier that is unique with
respect to globally unique identifiers for all user file portions
Stored in the group of file Servers, extracting a plurality of
file path Segments from the globally unique identifier, and
concatenating the plurality of file path Segments to form at
least a portion of the file path.

52. The system of claim 50, wherein the computer pro
grams of the file aggregation module include instructions for
generating the file path as a function of the file name of the
user file, a value corresponding to the file portion for which
the file path is being generated, and a value corresponding
to the respective server in which the file portion is to be
Stored.

