wo 2013/036265 A1 | I 01N OO R A0 OO T

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

14 March 2013 (14.03.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/036265 Al

(51) International Patent Classification: crosoft Corporation, LCA - International Patents, One Mi-
GO6F 12/00 (2006.01) GO6F 11/08 (2006.01) crosoft Way, Redmond, WA 98052-6399 (US). NAGAR,
GO6F 9/06 (2006.01) Rajeev; c/o Microsott Corporation, LCA - International

(21) International Application Number: Patents, One Microsoft Way./, Reqund, WA 98052-6.399

PCT/US2011/055818 (US). VERMA, Surendra; c/o Mlc.rosoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
(22) International Filing Date: mond, WA 98052-6399 (US). RAJPAL, Shiv; c/o Mi-
11 October 2011 (11.10.2011) crosoft Corporation, LCA - International Patents, One Mi-
. crosoft Way, Redmond, WA 98052-6399 (US).
(25) Filing Language: English
Lo . (81) Designated States (uniess otherwise indicated, for every

(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,

(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
13/229,736 11 September 2011 (11.09.2011) Us CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(71) Applicant (for all designated States except US): MI- HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
CROSOFT CORPORATION [US/US]; One Microsoft KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
Way, Redmond, WA 98052-6399 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(72) Inventors: MOSS, Darren; c/o Microsoft Corporation, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

LCA - International Patents, One Microsoft Way, Red-
mond, WA 98052-6399 (US). MEHRA, Karan; c/o Mi-

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: NONVOLATILE MEDIA JOURNALING OF VERIFIED DATA SETS

300 \ e 310
302
104 104 104 206 204 JOURNAL
DATASET1 |[DATASET2 |[DATASET3 | TaL
0x0044_| OXADFO
ADDRESS | 0x0044 Ox01A7 0x0045 | 308 ROTAT T OxOFFF
VALUE 0xADFO 0xOFFF OXFCE | yeap 0x0045_| OxBFCE
110 104 —
{— 312
302
104 104 ~ 104 306 — JOURNAL
DATA SET 4 DATA SET & DATA SET 6 TAIL
Gx0044_|_OXADFQ
ADDRESS | 0x0046 0x01A7 0x03C0 Ox01A7 | OXOFFF
VALUE 0x1000 OXFFFF 0x0000 0x0045_| Ox8FCE
0x0046 | _0x1000
308 — Ox0TA7 | OXFFFF
HEAD I> 0x03C0_| 0x0000
f 314
302
TAL JOURNAL OLD 0x0044
OLD 0x0045
0x0044 | OxXAOFO OLD 0x0046
0x01A7 OxOFFF » OLD VERIFIER
¥| COMPUTE
0x0045_| OX9FCE VERIFIER
0x0046 0x1000 VERIFIER [#— 106 —
Ox01A7 OxFFFF
HEAD | 5x0300 | 00000 112
’/— 316
302
HEAD JOURNAL NEW 0x0044
0x03CT_|_0x0000 318 NEW 0x0045
0x0044_|_OXADFD »! NEW 0x0046
0x01A7 | OXOFFF. sATcH NEW VERIFIER
ran | 9x0045] 0xgFCE
0x0046_| 0x1000 | VERIFER | 106
Ox0TA7_| OXFFFE
0x03CO_|_ 00000 I— 112
DATA SET7
ADDRESS 0x03C1
VALUE 0x0000

(57) Abstract: The storage of data sets in a storage set (e.g., data sets
written to hard disk drives comprising a RAID array) may diminish the
performance of storage set through non-sequential writes, particularly if
storage devices promptly write data sets that are followed by sequen-
tially following data sets. Additionally, storage sets may exhibit incon-
sistencies due to non-atomic writes of data sets and verifiers (e.g.,
checksums) and an intervening failure, such as an occurrence of the
RAID write hole. Instead, data sets and verifiers may first be written to
a stored on the nonvolatile media of a storage device betfore being com-
mitted to storage set. Such writes may be sequentially written to the
journal, irrespective of the locations of data sets in the storage set; and
recovery of a failure may simply involve re-committing the consistent
records in the journal to correct incomplete writes to storage set.

WO 2013/036265 A1 |IIIWAT 00NN VAT FAE YL AU

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

NONVOLATILE MEDIA JOURNALING OF VERIFIED DATA SETS
BACKGROUND
[0001] Within the field of computing, many scenarios involve the storage of data

on one or more nonvolatile storage devices (e.g., platter-based magnetic and/or
optical hard disk drives, solid-state storage devices, and nonvolatile memory
circuits). Many details of the data storage may vary, such as the word size, the
addressing method, the partitioning of the storage space of the storage device into
one or more partitions, and the exposure of allocated spaces within the storage
device as one or more volumes within a computing environment.

[0002] In many such storage scenarios, techniques may be utilized to detect
unintended changes to the data. For example, an error in the reading or storing
logic of the device, a buffer underrun or overrun, a flaw in the storage medium, or
an external disruption (such as a cosmic ray) may occasionally cause an
inadvertent change in the data stored on the storage medium or in the reading of
data from the storage medium. Therefore, in many such scenarios, the data is
stored on the storage devices according to an error detection scheme involving a
verifier (e.g., a parity bit or checksum) computed for respective data sets (e.g.,
different words, sectors, regions, or other sets of data). The verifier may be used
to confirm that the contents of the data set have been validly stored to and/or read
from the storage device. As one such example, in the context of storing a data set
comprising a set of bits, an exclusive OR (XOR) operation may be applied to the
bits, resulting in a parity bit that may be stored and associated with this data set.
When the data set is later read, another XOR operation may be applied thereto,
and the result may be compared with the parity bit. A change of any one bit
results in a mismatch of these XOR computations, indicating that the data has
been incorrectly stored, altered, or incorrectly read from the storage device. Many
types of verifiers may be identified, which may vary in some features (e.g., ease of
computation, a capability of identifying which bit of the data set has changed, and
an error-correction capability whereby an incorrectly read portion of data may be
corrected).

[0003] Error detection schemes are often utilized in Redundant Array of
Inexpensive Disks (RAID) arrays, such as a set of hard disk drives that are pooled
together to achieve various aggregate properties, such as improved throughput

and automatic data mirroring. As one such example, a RAID 4 array involves a

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

set of two or more disks, where one disk is included in the array not to store user
data, but to store verifiers of the data stored on the other disks. For example, for
a RAID 4 array involving four disks each storing one terabyte of data, the capacity
of the first three disks is pooled to form a three-terabyte storage space for user
data, while the fourth disk is included in the array to hold verifiers for data sets
stored on the first three disks (e.g., for every three 64-bit words respectively
stored on the other three disks, the fourth disk includes a 64-bit verifier that
verifies the integrity of the three 64-bit words). The RAID array controller
comprises circuitry that is configured to implement the details of a selected RAID
level for a provided set of drives (e.g., upon receiving a data set, automatically
apportioning the data across the three user data disks, calculating the verifier of
the data set, and storing the verifier on the fourth disk). The RAID techniques
used may also enable additional protections or features; e.g., if any single storage
device in a RAID 4 array fails, the data stored on the failed device may be entirely
reconstructed through the use of the remaining storage devices.

SUMMARY
[0004] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key factors or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.
[0005] The writing of data to a storage device may present several sources of
inefficiency and potential problems. As a first example, a data set written to a
storage device may involve a sequence of data, such as data written to a
sequence of physical addresses on a storage device. By writing the data set in
accordance with this sequence (e.g., as a sequential write of a contiguous block of
data), the storage device may achieve faster seek times, higher throughput,
and/or reduced power consumption and physical wear due to the reduction of
seek times and write operations. However, due to various circumstances, a
storage device may write the sequence of data as two or more sub-sequences
and may fail to achieve these efficiencies. As a first example, the request to write
the data set may comprise two or more requests to write a portion of the
sequence (e.g., a first request to write addresses 1,000-1,015 and a second

request to write addresses 1,016 to 1,031), and the storage device may

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

separately commit each portion of the sequence, rather than committing the entire
sequence together. As a second example, the storage device may receive
several write requests, and between writing a first portion of the sequence and a
second portion of the sequence, may store a different data set at a different
location, thereby causing two additional seeks between the first portion and the
second portion. These and other circumstances may be identified as missed
opportunities for efficiency gains in the performance, power efficiency, and
longevity of the storage device.

[0006] A second problem that may arise while storing verifier-based storage
sets involves the delay between storing a data set and its verifier (or vice versa).
As a first example, many storage devices only support a write to one location at a
time (e.g., the location underneath the write head of a hard disk drive, or the
location specified by an address register in a solid-state storage device), and the
sequential storing of data involves writing the data set before the verifier, or vice
versa. As a second example, if the data set and verifier are stored on different
storage devices, it may be difficult to synchronize the moment that the first storage
device stores the data set with the moment that the second storage device stores
the verifier of the data set. In these and other examples, storing a data set and a
corresponding verifier may occur not a synchronous manner, but in a sequential
manner. However, a failure of the storage device(s), such as power loss, a
hardware failure, a software crash, or an unanticipated removal of a storage
device from the array, may occur after storing a data set and before storing the
verifier. Consequently, the verifier does not match the data represented by the
verifier. This problem caused by non-atomic writes, sometimes identified as the
RAID write hole, may manifest in many resulting consequences. For example, it
may be difficult for the storage device(s) to determine how to remedy this error,
e.g., whether the mismatch represents an incorrect verifier, an unintended change
to the data set (e.g., a manifestation of the bit error rate (BER) of the storage set),
or an incorrect read of either the data set or the verifier. This lack of information
may even jeopardize the confidence in the accuracy of a portion of the data set
that have not recently been written. For example, if one of the storage devices
fails, an attempt to recover the data on the storage device from the remaining
storage devices (using the incorrect verifier) may result in incorrect data

reconstruction. For instance, in order to recover data from a particular volume

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

that has been lost or corrupted and substituted with a repaired or replacement
storage device, each word of data on the missing storage devices may be
computed by XORing together the words at the same location (e.g., the same
physical or logical address on the other devices) and the checksum for the set of
words at the address, and the result yields the missing word. However, if the
checksum has inadvertently changed, the XOR operation results in an incorrect
result and the replacement of the word on the substituted volume with incorrect
data. As another example, if a verifier C is stored for a data set comprising
portions A and B, and a catastrophic failure arises while updating A and C, the
computer may be able to identify a mismatch between the data set [A, B] and
verifier C. This inability may undermine the confidence not only in A and C, which
were participating in the writing at the moment of catastrophic failure, but also B,
which may not even have been accessed in a long time.

[0007] Presented herein are techniques for reducing the risks of data loss and
the protracted recovery time caused by problems such as the RAID write hole, as
well as improving the efficiency of the storage set. In accordance with these
technigues, on one or more storage devices of the storage set, a journal may be
generated that is configured to store data sets that are to be committed to the
storage set. The journal may comprise, e.g., a sequence of records structured as
a loop array, where each record has capacity to store a data set and a verifier
computed for the data set. All data sets to be written to the storage set may first
be stored in the journal, in sequential order of receipt, along with a verifier
computed for the data set.

[0008] These techniques may reduce the consequences of the RAID write hole
by providing a mechanism whereby non-atomic writes may be stored on the
nonvolatile memory of a storage device before being committed to the location in
the storage set. If a failure occurs while the data set is being written to the journal,
the version of the data set stored in the storage set remains intact; and if a failure
occurs while the data set is being written to the storage set, the failure may be
recovered by reinitiating the write of the data set from the journal to the storage
set. Additionally, the use of a journal may improve the performance of the storage
device by promoting sequential writes. As a first example, non-sequential data
sets are first written sequentially to the journal, providing rapid, sequential write

throughout even for non-sequential data sets. As a second example, the journal

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

may operate as a write buffer between the write requests and the storage set,
thereby enabling a coalescence of write requests comprising a sequence of data
stored in contiguous physical locations of the storage device. Still further
performance improvements may be achieved, e.g., by generating a volatile
memory representation of the journal stored on the nonvolatile storage device,
where the volatile memory representation serves as a reach cache and/or a write
buffer. These and other advantages may be achievable through the use of the
techniques presented herein.
[0009] To the accomplishment of the foregoing and related ends, the following
description and annexed drawings set forth certain illustrative aspects and
implementations. These are indicative of but a few of the various ways in which
one or more aspects may be employed. Other aspects, advantages, and novel
features of the disclosure will become apparent from the following detailed
description when considered in conjunction with the annexed drawings.
DESCRIPTION OF THE DRAWINGS
[0010] Fig. 1 presents an illustration of an exemplary storage of data sets
comprising a storage set on a storage device.
[0011] Fig. 2 presents an illustration of an exemplary scenario depicting a
consequence of a failure during a write operation within a storage set.
[0012] Fig. 3 presents an illustration of an exemplary storage of data sets
comprising a storage set on a storage device according to the techniques
presented herein.
[0013] Fig. 4 presents a flowchart illustrating a first exemplary method of storing
data sets comprising a storage set on at least one storage device according to the
techniques presented herein.
[0014] Fig. 5 presents a flowchart illustrating a second exemplary method of
storing data sets comprising a storage set on at least one storage device
according to the techniques presented herein.
[0015] Fig. 6 is an illustration of an exemplary computer-readable storage
medium comprising processor-executable instructions configured to store data
sets comprising a storage set on at least one storage device according to the
techniques presented herein
[0016] Fig. 7 is an illustration of an exemplary scenario featuring various

techniques for computing the verifier of a data set.

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0017] Fig.8 is an illustration of an exemplary scenario featuring the use of a
volatile memory representation of a journal stored on non-volatile media of a
storage device.
[0018] Fig. 9is an illustration of a first exemplary scenario featuring interactions
with a write buffer of a storage device between a journal stored on a storage
device and a volatile memory representation of the journal.
[0019] Fig. 10is an illustration of a second exemplary scenario featuring
interactions with a write buffer of a storage device between a journal stored on a
storage device and a volatile memory representation of the journal.
[0020] Fig. 11 illustrates an exemplary computing environment wherein one or
more of the provisions set forth herein may be implemented.

DETAILED DESCRIPTION
[0021] The claimed subject matter is now described with reference to the
drawings, wherein like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
claimed subject matter. It may be evident, however, that the claimed subject
matter may be practiced without these specific details. In other instances,
structures and devices are shown in block diagram form in order to facilitate
describing the claimed subject matter.
[0022] A. Introduction
[0023] Within the field of computing, many scenarios involve the storage of a
storage set, comprising a series of data sets, on a set of one or more storage
devices. For example, a user may wish to create an archive across a set of hard
disk drives, and may store within the archive one or more data sets (e.g., bytes,
words, blocks or sequences of data, files, or records). In some scenarios, the
storage device(s) may be entirely allocated for the storage of data; e.g., a two-
terabyte hard disk drive may be configured to provide a two-terabyte storage set.
In other scenarios, the storage set may be redundantly stored on the storage
devices in a manner that promotes data accessibility and/or recovery; e.g., a one-
terabyte data set may be identically stored on two one-terabyte hard disk drives in
order to provide a backup in case either copy becomes corrupt. Multiple storage
devices may be configured to interoperate in various ways to store the storage

set.

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0024] Many such storage schemes and features are included in variations of a
Redundant Array of Inexpensive Disks (RAID). As a second example, in a RAID 0
storage scheme, the entire storage space of two or more hard disk drives may be
allocated to the storage of data, such that a first hard disk drive may provide
access to data stored in one portion of the storage set while a second hard disk
drive provides access in parallel to data stored in another portion of the storage
set, effectively doubling of the rate of access to the data sets (and possibly
comprising a further multiplication for portions of the storage set stored on other
hard disk drives). As a second example, in a RAID 1 storage scheme, a first hard
disk drive may be entirely allocated to store a storage set, and additional disk
drives, operating as mirrors, may store identical copies of the storage set.
Performance improvements may be achieved through concurrent access to the
storage set provided by different hard disk drives. Additionally, a complete copy
of the storage set may be accessed on any hard disk drive, and any hard disk
drive that fails (e.g., due to corruption, unresponsiveness, absence, or damage)
may be replaced without jeopardizing the availability of the data contained therein.
However, RAID 1 schemes significantly reduce the capacity of the storage set
(e.g., the addition of hard disk drives does not increase the capacity of the storage
set). Additional RAID variations may balance the accessibility, performance, and
fault recovery properties of the RAID 0 and RAID 1 arrays while maximizing the
capacity of the storage set. For example, in a RAID 4 array comprising a set of
hard disk drives of a particular size, the full capacity of all but one of the hard disk
drives may provide storage space, while the reserved hard disk drive may store
parity information (e.g., an exclusive OR (XOR) calculation for each of the data
sets stored on the other hard disk drives). This configuration maximizes storage
space (e.g., a RAID 4 array comprising four one-terabyte hard disk drives
provides three terabytes of storage space), while also tolerating a one-drive
failure; e.g., if any one of the hard disk drives completely fails, it may be replaced
with a replacement hard disk drive, and the data on the failed hard disk drives
may be reconstructed using the data stored on the remaining hard disk drives.
For example, a failed parity hard disk drive may be reconstructed simply by
recomputing the XOR values for respective data sets stored on the hard disk
drives; and the data stored on a failed one of the other hard disk drives may be

reconstructed through the use of the available data sets and the XOR parity value.

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0025] However, within scenarios involving the storage of a storage set
comprising various data sets on one or more storage devices, various
inefficiencies and problems may arise that affect the performance and/or reliability
of the storage set. Figs. 1 and 2 depict examples of two such problems that may
be addressed by the techniques presented herein.

[0026] In the exemplary scenario 100 of Fig. 1, a storage set 102, comprising a
series of data sets 104 (e.g., various bytes, words, data blocks, files, or records of
the storage set 102), may be stored on a storage device 106 (e.g., a hard disk
drive). A process generating or accessing the storage set 102 may generate a set
of read and/or write requests involving various data sets 104, and may be
received and fulfilled by the storage device 106. For example, a hard disk drive
may comprise a read/write head 108 that is suspended over a rotating physical
medium, and that is capable of reading the data stored under any sector (e.g.,
radial line of data) of the physical medium that is rotated under the read/write
head 108. Thus, when a first data set 104 is received that is to be stored at a first
location 110 in the storage set 102, the hard disk drive may rotate the physical
medium until the physical location matching the location 110 in the storage set
102 is rotated under the read/wrote head 108, and may then write the data set
104 to the physical medium. However, the performance of such hard disk drives
is often limited by the delay while rotating the physical medium to the appropriate
position. This delay may be mitigated through sequential accesses; e.g., three
data sets 104 comprising a sequence of physical locations on the physical
medium may be written in succession, thereby reducing the number of rotational
delays in correctly positioning the locations under the read/write head 108 from
three to one. Because the rotational delay is often the rate-limiting factor in the
throughput of a hard disk drive, sequential accesses may significantly improve the
throughput of the storage device 106. Additionally, for each data set 104, a
verifier 112 (represented in the exemplary scenario 100 of Fig. 1 as a parity byte
computed for each four-byte data set 104) is computed and stored with the data
set 104, and may be used to verify the integrity of the data set 104. The
exemplary scenario 100 of Fig. 1 presents an efficiency improvement by
appending the verifier 112 to the data set 104 in the sector, such that the data set
104 and the verifier 112 may be stored by performing one rotational seek and

write request.

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0027] Fig. 1 illustrates an exemplary scenario 110 featuring the storage of data
sets 104 of a storage set 102 to a storage device 106. In this exemplary scenario
100, a sequence of four data sets 104 is received and processed by the storage
device 106. At a first time point 114, a first data set 104 is received for storage at
a first location 110 in the storage set 102, and the storage device 106 performs a
first rotational seek in order to position the read/write head 108 over the
corresponding location on the physical medium and writes the first data set 104
and its verifier 112 to the physical medium. At a second time point 116, a second
data set 104 is received for storage at a first location 110 in the storage set 102,
and the storage device 106 performs a second rotational seek in order to position
the read/write head 108 over the corresponding location on the physical medium
and writes the second data set 104 and its verifier 112 to the physical medium.
Additional rotational seek operations are performed at a third time point 108 and a
fourth time point 110, respectively, to store a third data set 104 and a fourth data
set 104.

[0028] However, the exemplary scenario 100 of Fig. 1 depicts some sources of
inefficiency in the writing of data sets 104 to the storage set 102. As a first
example, the first data set 104 and the third data set 104 comprise a sequence
(e.g., data sets 102 stored at consecutive locations 110 in the storage set 102), as
do the second data set 104 and the fourth data set 104. For example, a first
process may request a first sequence of writes to the storage set 102 while a
second process concurrently requests a second sequence of writes to a different
portion of the storage set 102, and the storage device 106 may receive the
requests in an interleaved manner. However, in this exemplary scenario 100, the
storage device 106 writes the data sets 104 to the physical medium in sequential
order of receipt, and thus performs four rotational seeks in order to write the data
sets 104. While this write process may strictly preserve the order in which the
write requests are received, an improvement in throughput may have been
achieved by performing a first rotational seek to store the first data set 104 and
the third data 102, and a second rotational seek to store the second data set 104
and the fourth data set 104.

[0029] A second source of inefficiency depicted in Fig. 1 arises from
unnecessarily writing data to the storage set 102 that is promptly overwritten by a

subsequent write. As a first example, the second data set 104 and the fourth data

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

set 104 are both written to the same location 110 in the storage set 102. A
recognition of the overwrite may provide an opportunity to improve the
performance of the storage device 106 by only writing the latest write 202
(particularly if the overwrite writes the same data as the earlier write). However,
the storage device 106 in this exemplary scenario 100 fails to achieve this
recognition, and unnecessarily performs two writes of the same data set 104 to
the same location 110 in the storage set 102. As a second example, a first verifier
112 may be computed for a first set of data sets 104 (e.g., locations 0x0044-
0047), including the first data set 104 and the third data set 104, and a second
verifier 112 may be computed for a second set of data sets 104 (e.g., locations
O0xAOQF0-AQF3), including the second data set 104 and the fourth data set 104.
Because of the sequence in which the write requests are received, the storage
device 106 computes and writes each verifier 110 twice (e.g., a first computation
of the first verifier 110 is performed for and stored with the first data set 104; a first
computation of the second verifier 110 is performed for and stored with the
second data set 104; a recomputation of the first verifier 110 is performed for and
stored with the third data set 104; and a recomputation of the second verifier 110
is performed for and stored with the fourth data set 104). These recomputations
may have been avoided, thereby reducing the number of computations and writes,
by computing the first verifier 112 once for the first data set 104 and the third data
set 104 and computing the second verifier 112 once for the second data set 104
and the fourth data set 104. These and other inefficiencies may arise from the
inability of the storage device 106 to identify opportunities to reduce the
computations and/or writes involved for write requests for data sets 104 stored
sequentially in the storage set 102.

[0030] Fig. 2 presents an illustration of an exemplary scenario 200 depicting a
second type of problem that may arise in storage sets 102. In this exemplary
scenario 200, a set of storage devices 106 interoperates to store a storage set
102 having a set of verifiers 112. In particular, three of the storage devices 106
store three data sets 104 associated with a particular location 110, and a fourth
storage device 106 stores verifiers 112 for the three data sets 104; e.g., each data
set 104 may comprise a single bit, and the verifier 112 may be computed by
XORing together the three bits. (The exemplary scenario 200 of Fig. 2 depicts

each data set 104 as a single bit in order to simplify the following explanation, but

10

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

it may be appreciated that the data sets 104 may be of any size.) When any data
set 104 is written, the verifier 112 stored on the fourth storage device 106 is
updated to match the updated data sets 104. However, as illustrated in this
exemplary scenario 200, the writes to various storage devices 106 may not occur
in an atomic and strictly concurrent manner, but may occur at different times; e.g.,
a request may be received to update both a data set 104 stored on one storage
device 106 and the verifier 112 on the fourth storage device 106, but if storage
device 106 may be idle while the other storage device 106 is engaged in a write
operation, the first storage device 106 may initiate and/or complete its write
operation before the second storage device 106. Variations among storage
devices 104 in performance (e.g., rotational speeds) and circumstances (e.g., the
distance of the write location from the current rotational position of the physical
medium) may also contribute to timing differences among storage devices 106.
For example, at a first time point 204, a write 202 may be requested to update a
data set 104 stored on the third storage device 106 and the corresponding verifier
112 stored on the fourth storage device 106. However, the third storage device
106 may begin and/or complete the write 202 at a first time point 204, while the
fourth storage device 106 may complete the write 202 to the verifier 112 at a
second time point 206.

[0031] The imperfect synchrony of storage devices 106 depicted in the
exemplary scenario 200 of Fig. 2 may create an inconsistency in the event of a
failure of the storage service. For example, at a third time point 208, another write
202 may be requested to both a data set 104 stored by the third storage device
106 and the corresponding verifier 112 stored by the fourth storage device 106.
However, a failure 210 of the computing environment (e.g., a power failure or a
hardware or software crash) may occur during this write process. While storage
devices 106 and storage arrays are often designed to withstand many such
failures 210, this failure 210 may occur after the third storage device 106 has
completed the write of the updated data set 104, but before the fourth storage
device 106 has written the updated verifier 112. At a fourth time point 212, when
the storage devices 106 are again accessible (e.g., when power is restored), the
update of the data set 104 stored by the third storage device 106 and the failure of
the fourth storage device 106 to update the verifier 112 present an inconsistency:

the verifier 112 no longer matches the corresponding data. A similar scenario

11

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

may occur with the use of a single storage device 106; e.g., redundant copies of a
data set 104 stored on a storage device 106 with a single read/write head 108
may present an inconsistency if a failure 210 arises between updating a first copy
and a second copy of the data set 104.

[0032] This inconsistency, sometimes identified as the “RAID write hole,” may
result in several problems. As a first example, it may not be possible to identify
which of the one or more data sets 104 and/or the verifier 112 is incorrect (e.g.,
the failure may have similarly occurred after the fourth storage device 106
updated the verifier 112 but before the third storage device 106 completed
updating the data sets 104), thereby jeopardizing the integrity of all of the data
sets 104 represented by the verifier 112 — even the data sets 104 stored on the
first and second storage devices 106 that were not even involved in the write 202.
As a second example, this inconsistency may not be promptly discovered, but
may linger within the storage set 102. Subsequently, if a storage device 106
becomes unavailable (e.g., if the first storage device 106 completely fails or is
removed), an attempt to reconstruct the data on the first storage device 106 may
utilize the data on the other storage devices, but the inconsistency may result in
an incorrect reconstruction of the data. The array therefore fails to provide the
expected capability to recover from the failure of a single storage device 106.
These and other problems may arise from the imperfect synchrony in the
interoperation of the storage devices 106 while storing related data sets 104 in the
storage set 102.

[0033] B. Presented Techniques

[0034] Presented herein are techniques for addressing some of the problems
and/or inefficiencies that may arise in storage scenarios, possibly including those
illustrated in the exemplary scenarios of Fig. 1 and Fig. 2. In accordance with
these techniques, a journal may be generated on one or more of the storage
devices 106 storing the storage set 102. Data sets 104 and verifiers 112 to be
written to the storage set 102 may first be written to the journal. Moreover, the
journal may be structured as a sequence of data sets 104 structured in the
sequence of the write order of the data sets 104, such that a storage device 106
that receives a stream of requests to write data sets 104 in various (non-
sequential) locations 110 of the storage set 102 may first store the data sets 104

sequentially in the journal. Additionally, in order to commit data to the requested

12

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

locations 110 in the storage set 102, a number of data sets may be selected that
may be written as a batch. For example, the journal may sequentially enqueue
data sets 104 to be written to the storage set 102, and may periodically select,
from the front of the queue, a set of data sets 104 that may be written in the same
batch.

[0035] Fig. 3 presents an illustration of an exemplary scenario 330 depicting the
storage of data sets 104 and corresponding verifiers 112 to a storage set 102
through the use of a journal 302 stored on the nonvolatile medium of the storage
device 106. In this exemplary scenario 300, on a storage device 106 that is
configured to store data sets 104 comprising at least a portion of a storage set
102, a journal 302 is generated that is configured to store the data sets 104 and
corresponding verifiers 112 before such data is committed to the storage set 102.
In particular, the journal 302 in this exemplary scenario 300 is structured as a
sequence of records 304 storing a data set 104, the location 110 of the data set
104 in the storage set 102, and the verifier 112 for the data set 104. The records
304 of the journal 302 are structured as a queue by a tail pointer 306 identifying
the beginning of the queue (i.e., the oldest data sets 104 in the journal 304) and a
head pointer 308 identifying the end of the queue (i.e., the latest data sets 104 to
the written to the journal 304). At a first time point 310, the journal 302 is initially
empty (i.e., the head pointer 308 and tail pointer 306 point to the same record
304); and upon receiving a sequence of three data sets 104 to be stored in the
storage set 102, the storage device 106 may record the three data sets 104, in
sequence, to the journal 302 (e.g., by moving the head pointer 308 to allocate
records 304, and then writing the data sets 104 into the records 304). At a second
time point 312, a sequence of requests to write three additional data sets 104 may
be received, and may be stored in the journal 302 by incrementing the head
pointer 308 and writing the data sets 104 to the records 304 of the journal 302.
Additionally, at a third time point 314, the storage device 106 may compute a
verifier 112 for each data set 104 and write each verifier 112 to the journal 302
(possibly using other data sets 104 stored in the journal 302 and/or the storage
set 102. At a fourth time point 316, the storage device 106 may commit a batch
318 of data sets 104 to the storage set 102, e.g., by selecting from the journal 392
a batch 318 of data sets 104 to be committed and writing the data sets 104 and
corresponding verifiers 112 to the storage set 102. The records 304 for the data

13

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

sets 104 that have been committed to the storage set 102 may then be removed
from the journal 302 (e.g., by advancing the tail pointer 306 past the records 302).
In this manner, the data sets 104 may be committed to the storage set 102
according to the techniques presented herein.

[0036] The depiction in Fig. 3 of an exemplary use of some of the techniques
presented herein illustrates some potential advantages that may be achievable
thereby. As a first example, the batching of data sets may coalesce a sequence
two or more data sets 104 that may be written to a continuous sequence of
locations 110 in the storage set 102, even if the write requests for the data sets
104 comprising the sequence are interleaved with other data sets 104 to be stored
in other locations 110 of the storage set 102; even if such data sets 104 are not
received in strict sequential order; and/or even if brief delays occur between the
requests to write the data sets 104. As a second example, the batching of data
sets 104 may improve the efficiency of the storage device 106 by reducing
overwrites of the same data that are received in a short time frame. For example,
multiple requests to overwrite a particular data set 104 may be grouped into a
batch, and may be fulfilled through a single write of the data set 104 to the
location 110 in the storage set 102. For example, the selection of the batch 318 in
the exemplary scenario 300 of Fig. 3 omits a data set 104 that is near the tail
pointer, but that is overwritten by a subsequent write 202 stored in the journal 302.
As a third example, separate requests to write data sets 104 represented by the
same verifier 112, if grouped into the same batch, may result in a single
computation and write of the verifier 112 instead of several separate updates of
the verifier 112. As a fourth example, by selecting the batch 318 conservatively
(e.g., not aggressively emptying the journal 302, but leaving some records 304
therein), the techniques may identify and achieve opportunities for future
efficiency gains. For example, the data set 104 to be written to location 0x03CO is
not selected for the batch 318, as it has been recently received and may be
promptly followed by requests to write additional data sets 104. Thus, when a
subsequent request to write a data set 104 to location 0x03C1 is received and
stored in the journal 302, both data sets 104 may be selected for a future batch
318, thereby committing both data sets 104 together in sequence rather than

issuing two separate writes 202.

14

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0037] A second potential advantage of the presently disclosed techniques
illustrated in the exemplary scenario 300 of Fig. 3 is a reduction of the incidence
and consequences of the RAID write hole. Committing requests to update a data
set 104 first to the journal on the nonvolatile medium of the storage device 106,
and then moving the data set 104 and verifier 112 to the storage set 102, may
avoid an inconsistent therebetween. For example, if a failure 210 occurs while the
data set 104 and/or verifier 112 are being written to the journal, a recovery
process may detect that the journal was incompletely written, and may discard the
incomplete portion of the journal. While this discarding may result in a loss of
writes 202, such writes 202 were not yet committed to the storage set 102 and
were not confirmed to the processes requesting such writes 202, and thus may be
safely lost. Additionally, the consistency of the storage set 102 is not
compromised by the incomplete write involved in the RAID write hole. Further, if a
failure 210 occurs while the contents of the journal are being committed to the
storage set 102, the storage device 106 may recover from the failure 210 by re-
committing the data sets 104 stored in the journal to the storage set 102. In this
manner, writes 202 to the storage set 102 may be fulfilled with improved
performance and/or with a reduced incidence of inconsistencies caused by
problems such as the RAID write hole. These and other advantages may be
achievable through the storage of data sets 104 to a storage set 102 according to
the techniques presented herein.

[0038] C. Exemplary Embodiments

[0039] Fig. 4 presents an illustration of a first exemplary embodiment of these
techniques, depicted as a first exemplary method 400 of storing data sets 104 in a
storage set 102 provided by at least one storage device 106. The exemplary
method 400 may be implemented, e.g., as a set of instructions stored in a memory
component of a device (e.g., a memory circuit, a platter of a hard disk drive, a
solid-state memory component, or a magnetic or optical disc) that, when executed
by a processor of a device, cause the device to perform the techniques presented
herein. The exemplary method 400 begins at 402 and involves executing 404 the
instructions on the processor. Specifically, the instructions are configured to
generate 406, on at least one storage device 106, a journal 302 configured to
store data sets 104 respectively associated with a verifier 112. The instructions

are also configured to, upon receiving a request to store a data set 104 at a

15

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

location 110 in the storage set 102, store 408 the data set 104 in the journal 302.
The instructions are also configured to select 410 a batch 318 of data sets 104
stored in the journal 302, which are to be committed to the storage set 102. The
instructions may achieve this commitment to the storage set 102 by, for respective
412 data sets 104 of the batch 318, computing 414 a verifier 112; storing 416 the
verifier 112 in the journal 302; and storing 418 the data set 104 and the verifier
112 of the data sets 104 in the storage set 102. The instructions are also
configured to, after storing 418 the data set 104 and the verifier 112 of the data
set 104 in the storage set 102, remove the data set 104 from the journal 302. In
this manner, the instructions achieve the storing of data sets 104 in the storage
set 102 according to the techniques presented herein, and the exemplary method
400 so ends at 420.

[0040] Fig. 5 presents an illustration of a second embodiment of these
techniques, illustrated as a second exemplary method 500 of storing data sets
104 in a storage set 102 provided by at least one storage device 106. The
exemplary method 500 may be implemented, e.g., as a set of instructions stored
in a memory component of a device (e.g., a memory circuit, a platter of a hard
disk drive, a solid-state memory component, or a magnetic or optical disc) that,
when executed by a processor of a device, cause the device to perform the
techniques presented herein. The exemplary method 500 begins at 502 and
involves sending 504 the instructions to the device. Specifically, the instructions
are configured to generate 506 on a storage device 106 a journal 302 comprising
a sequence of records 304, a head pointer 308, and a tail pointer 306. The
instructions are also configured to, upon receiving 508 a data set 104 to be stored
at a location 110 in the storage set 102, advance 510 the head pointer 308 of the
journal 302 past a new record 304, and store 512 the data set 104 in the new
record 304. The instructions are also configured to select 514 at least one
selected data set 104 near the tail pointer 306 of the journal 302 for commitment
to the storage set 102. For the respective 516 selected data sets 104, the
instructions are configured to compute 518 a verifier 112 for the selected data set
104; store 520 the verifier 112 of the selected data set 104 in the journal 302; and
commit 522 the selected data set 104 and the verifier 112 of the data set 104 to
the storage set 102. The instructions are also configured to advance 524 the tail

pointer 306 of the journal 302 past the records 304 comprising the at least one

16

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

selected data sets 104. In this manner, the instructions achieve the storing of
data sets 104 in the storage set 102 according to the techniques presented
herein, and the exemplary method 500 so ends at 526.

[0041] Fig. 6 presents a third exemplary embodiment of these techniques,
illustrated as an exemplary computer-readable medium 600 comprising
processor-executable instructions 602 configured to apply the techniques
presented herein. Such computer-readable media may include, e.g., computer-
readable storage media involving a tangible device, such as a memory
semiconductor (e.g., a semiconductor utilizing static random access memory
(SRAM), dynamic random access memory (DRAM), and/or synchronous dynamic
random access memory (SDRAM) technologies), a platter of a hard disk drive, a
flash memory device, or a magnetic or optical disc (such as a CD-R, DVD-R, or
floppy disc), encoding a set of computer-readable instructions that, when
executed by a processor 612 of a device 610 such as a computer, cause the
device 610 to implement the techniques presented herein. Such computer-
readable media may also include (as a class of technologies that are distinct from
computer-readable storage media) various types of communications media, such
as a signal that may be propagated through various physical phenomena (e.g., an
electromagnetic signal, a sound wave signal, or an optical signal) and in various
wired scenarios (e.g., via an Ethernet or fiber optic cable) and/or wireless
scenarios (e.g., a wireless local area network (WLAN) such as WiFi, a personal
area network (PAN) such as Bluetooth, or a cellular or radio network), and which
encodes a set of computer-readable instructions that, when executed by a
processor of a device, cause the device to implement the techniques presented
herein. In one such embodiment, the processor-executable instructions 602 may
be configured to perform a method of storing data sets 104 in a storage set 102
provided by at least one storage device 106, such as the first exemplary method
400 of Fig. 4, or the second exemplary method 500 of Fig. 5. Many such
computer-readable media may be devised by those of ordinary skill in the art that
are configured to operate in accordance with the techniques presented herein.
[0042] D. Variations

[0043] The techniques discussed herein may be devised with variations in many
aspects, and some variations may present additional advantages and/or reduce

disadvantages with respect to other variations of these and other techniques.

17

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

Moreover, some variations may be implemented in combination, and some
combinations may feature additional advantages and/or reduced disadvantages
through synergistic cooperation. The variations may be incorporated in various
embodiments (e.g., the first exemplary method 400 of Fig. 4 and the second
exemplary method 500 of Fig. 5) to confer individual and/or synergistic
advantages upon such embodiments.

[0044] D1. Scenarios

[0045] A first aspect that may vary among embodiments of these techniques
relates to the scenarios wherein such techniques may be utilized. As a first
variation, these techniques may be used to manage many types of storage sets
102 and data sets 104, including one or more volumes respectively comprising a
set of values stored at respective addresses; file systems respectively comprising
a set of files; databases respectively comprising a set of records; media libraries
respectively comprising a set of media objects; application sets respectively
comprising a set of applications; and computing environment servers respectively
comprising a set of volumes and/or memories of virtual machines. Additionally,
the identification of a data set 104 within a storage set 102 may vary in granularity
among different scenarios; e.g., a storage set 102 comprising a volume may
utilize these techniques to journal and commit to the storage set 102 data sets
104 comprising bits, bytes, words of various lengths, data blocks of various
lengths, or sectors.

[0046] As a second variation, these technique may be used to manage the
storage of storage sets 102 and data sets 104 on various types of volatile and
nonvolatile storage devices 106, including hard disk drives, solid-state storage
devices, magnetic or optical tape storage drives, and magnetic or optical discs.
The number of storage devices 106 involved in storing the storage set 102 may
also vary; e.g., these techniques may be used to manage the storage of a storage
set 102 on a single storage device 106, on a small and tightly integrated set of
storage devices 106 (e.g., a RAID array), or a loosely integrated set of storage
devices 106 that may be potentially large and/or potentially widely distributed
(e.g., a set of storage devices 106 deployed in different areas of the world and
communicating over the internet). As but one example, these techniques may be
adapted for use with different RAID levels implemented in various types of RAID

arrays of storage devices 106. Moreover, the storage devices 106 storing the

18

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

storage set 102 may also be of mixed types, and may be organized according to
various hierarchical arrangements (e.g., the storage set 102 may first be stored on
a comparatively high-performance primary storage device 106 that is backed up to
a comparatively low-performance offsite archive storage device 106). The
techniques may be also be implemented in view of and attuned to various
properties of the storage set 102 and storage devices 106, including cost,
availability, reliability, performance demands, and sensitivity and security
measures applied to the storage set 102, and the capabilities of the storage
devices 106.

[0047] A third variation of this first aspect relates to the relationships of journals
302 with storage devices 106, particularly where the storage set 102 spans
multiple storage devices 106. As a first such example, a journal 302 may be
stored exclusively on one storage device 106 for a storage set 102 allocated
across one or more separate storage devices 106. Alternatively, the journal 302
may be stored on the same storage device 106 as part or all of the storage set
102. As a second such example, multiple journals 302 may be generated among
the storage devices 106. For example, for a storage set 102 spanning several
storage devices 106, a journal 302 may be generated on each storage device 106
for the data sets 104 store in the portion of the storage set 102 stored on the
storage device 106. Alternatively, journals 302 on separate storage devices 106
may not be associated with particular locations in the storage set 102; e.g., a data
set 104 to be written to the storage set 102 may be stored in any journal before
being committed to the storage set 102. This variation may provide a
decentralized journaling process; e.g., a data set 104 may be written to the journal
302 of the storage device 106 having the shortest I/O queue, or, for a storage set
102 shared among a geographically distributed set of storage devices 106, to the
storage device 106 presenting the highest accessibility to the writing process
(e.g., the storage device 106 that is geographically closest to the process and/or
featuring the lowest latency or highest bandwidth while communicating with the
writing process). As a third such example, a journal 302 may be redundantly
stored as two or more copies on the same storage devices 106, may be stored as
mirror copies on two or more storage devices 106, or distributed (e.g., by striping)
across two or more storage devices 106, in order to confer upon the journal 302

similar fault-tolerance features as provided by various RAID storage schemes.

19

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

[0048] A fourth variation of this first aspect relates to the types of verifiers 112
used to verify the integrity of respective data sets 104. In some scenarios, a
comparatively simple verifier 112 may be used, such as a parity bit computed as
an XOR of the data sets 104, or a sum or hashcode of the data sets 104. A
simple verifier 112 may be suitable for comparatively low-value storage sets 102,
comparatively low-powered storage devices 106 (e.g., a storage device on a
portable device having comparatively slow hardware, limited-capacity memory,
and limited battery life), and/or storage sets 102 for which performance is highly
significant, such that more rapidly computable verifiers 112 may be advantageous.
In other scenarios, a comparatively complex verifier 112 may be used that may
provide additional data security features. For example, an error-correcting verifier
112, such as a Hamming code, may be used to determine not only whether the
data sets 104 are accurate, but also whether an inconsistency has been caused
by a change to one of the data sets 104 and/or the verifier 112. Moreover,
different types of verifiers 112 may be utilized for different sets or types of data
sets 104 in the storage set 102 (e.g., more complex but durable verifiers 112 may
be utilized for more valuable data). Those of ordinary skill in the art may
implement the techniques presented herein in many scenarios having these and
other types of variations and details.

[0049] D2. Elements

[0050] A second aspect that may vary among embodiments involves variations
of the elements of these techniques. As a first variation, many techniques may be
used while generating 406 the journal 302. For example, the journal 302 may
comprise many types of data structures, such as an array, a linked list, a table, a
database, a stack, a queue, a heap, or a binary tree. Different implementations
may present various advantages and disadvantages (e.g., performance, ease of
updating, space efficiency, computing economy, and compatibility with the
characteristics of the storage device 106 and/or storage set 102). Different types
of journals 302 may also be implemented on different storage devices 106 storing
the storage set 102 and/or for different types of data sets 104. For example, a
journal 302 structured as an array, comprising a head pointer 308 and a tail
pointer 306, may provide the advantages of rapid index (e.g., O(1) access time) to
any record 304 of the journal 302, efficient allocation and re-use of records 304

through manipulation of the head pointer 308 and the tail pointer 306, and efficient

20

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

storage of data sets 104 in the journal 302 (e.g., by simply appending the new
data set 104 to the sequence of records 304 comprising the journal 302).

[0051] As a second variation of this second aspect, the selecting 410 of batches
318 to be committed to the storage set 102 may be performed in many ways. As
a first example, the selecting 410 may be initiated by many types of events. For
example, a device 610, storage device 106, or other type of device implementing
these techniques may initiate the selecting 410 of batches 318 upon detecting
many types of commit events. Some examples of such commit events
(comprising an exemplary commit event set) include a journal capacity event
involving a capacity of the journal 302 (e.qg., the journal 302 becoming full); a
duration event involving a duration of the data sets 104 stored in the journal 302
(e.g., data sets 104 older than a certain age, such as data sets 104 stored in the
journal 302 more than a minute ago); a commit request event involving a request
to commit at least one data set 104 in the journal 302 to the storage set 102 (e.g.,
a process that requested the write 202 of a data set 104 may request a
commitment of the data set 104 to the storage set 102); and a storage device
workload event involving a workload of at least one storage device 106 of the
storage set 102 (e.g., a storage device 106 may detect an idle moment of
input/output work and may use the idle moment to flush some data sets 104 from
the journal 302). Many other types of events may prompt an initiation of the
process of committing data sets 104 to the storage set 102.

[0052] As a second example of this second variation of this second aspect, the
selection of a batch 318 of data sets 104 to be committed to the storage set 102
may be performed in many ways. For example, it may be advantageous to defer
the committing of a first data set 104 to the storage set 102 for a brief duration
after receiving the write request, in case subsequent writes 202 specify an
overwriting of the first data set 104 and/or provide additional data sets 104 that
sequentially follow the first data set 104 and that therefore may be written together
to the storage set 102 (e.g., as depicted at the fourth time point 316 in the
exemplary scenario 300 of Fig. 3). However, it may be disadvantageous to defer
the committing of a data set 104 for an extended period of time, when the value of
the reduced probability of imminently receiving a sequentially following second
data set 104 is outweighed by the cost and complexity involved in storing the data

set 104 as a record 304 of the journal 302. Additionally, it may be advantageous

21

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

to select the data sets 104 comprising a batch 318 in order to improve the
efficiency of the commitments to the storage set 102. As a first such example,
when a first data set 104 stored in the journal 302 is selected for inclusion in a
batch 318 that is to be stored at a first location 110 in the storage set 102, an
embodiment may also select for inclusion in the batch 318 a second data set 104
that is also stored in the journal 302 and that is to be stored at a second location
110 that is near the first location 110 in the storage set 102 (e.g., data sets 104
that are consecutive or at least physically nearby on the physical medium of the
storage device 106, and that may efficiently be written together in the same batch
318). As a second such example, an embodiment of these techniques may omit
from a batch 318 a first data set 104 that is stored in the journal 302 and that is to
be stored at a location 110 in the storage set 102, if the embodiment determines
that the journal 302 also includes a second data set 104 that is newer than the
first data set 104, and that is to be stored at the same location 110 in the storage
set 102 (i.e., a subsequent overwrite). Rather than including the data set 104 in
the batch 318, the embodiment may simply remove the older data set 104 from
the journal 302.

[0053] As a third variation of this second aspect, the computing 414 of verifiers
112 may occur in many ways. As a noted variation of the first aspect, many types
of verifiers 112 may be utilized in such scenarios, but additionally, the verifier 112
may be computed from the available data in various ways. As a first example, the
verifier 112 may be entirely recalculated based on the current data sets 104
represented thereby. However, as a second example, when a verifier 112
represents several data sets 104 of which a subset of data sets 104 changes, it
may be possible, and occasionally more efficient, to remove the stale data sets
104 from the verifier 112 and include the updated data sets 104 in the verifier 112
than to recompute the verifier 112 from the current data sets 104, which may
involve retrieving the remainder of the data set 104 from the storage set 102.
[0054] Fig. 7 presents an illustration of an exemplary scenario 700 featuring
different ways of computing the verifier 112. At a first time point 702, space has
been allocated for a data set 104 and corresponding verifier 112 in the storage set
102. However, neither any portion of the data set 104 nor the verifier 112 has yet
been written to the storage set 102. At a second time point 704, a portion of the

data set 104 has been received, and a request to commit the data set 104 to the

22

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

storage set 102 has been initiated. In order to compute the verifier 112, an
embodiment of these techniques may identify that the remaining data comprising
the data set 104 exists in neither the journal 302 nor the storage set 102.
Accordingly, the embodiment may compute the verifier 112 using the provided
portion of the data set 104, and may infer and use default values (e.g., zero) for
the remainder of the data set 104. Thus, at the second time point 704, the verifier
112 is computed using only the existing portion of the data set 104. At a third time
point 706, the verifier 112 is computed using the current data for the data set 104.
For example, new and updated data that fully specifies the data set 104 may have
been provided (e.g., a series of writes 202 that comprise the full data set 104 may
exist in the journal 302, or the portions of the data set 104 that do not exist in the
journal 302 may be retrieved from the storage set 102), and the verifier 112 may
be entirely recomputed using the current data comprising the data set 104 (e.g.,
as an XOR of all of the current data). However, at a fourth time point 708, the
verifier 112 is recomputed in view of a change to the data set 104 using only the
original verifier 112 and the original and new versions of the data set 104. For
example, the new verifier 112 may be computed by XORing the original verifier
112 with the original version of the data set 104, thereby reversing the addition of
that portion of the data set 104 from the original verifier 112, and then XORing this
value with the new version of the data set 104. This recalculation may be more
efficient for a data set 104 that is not completely stored in the journal 302; e.g.,
this recalculation may avoid reading the portion of the data set 104 that is not
stored in the journal 302 from the storage set 102. Moreover, a selection between
these recalculation techniques may be made based on the comparative cost of
retrieving this portion of the data set 104 from the storage set 102 (e.g., for a
verifier 112 representing a large data set 104, it may be more efficient to remove
and include an update of a small portion of the data set 104, and to recalculate the
verifier 112 from the current data for an update of a large portion of the data set
104).

[0055] As a fourth variation of this second aspect, in the event of a failure 210
of the storage set 102 (e.g., a power failure or a software crash) and/or one or
more storage devices 106 (e.g., an interruption of communication with the storage
device 106, a hardware, firmware, or driver failure of the storage device 106, or a

removal of or damage to the storage device 106, followed by a reestablishment of

23

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

communication or a replacement of the storage device 107), an embodiment of
these techniques may utilize the journal 302 in many ways to recover from the
failure 210. As a first example of this fourth variation of this second aspect, an
embodiment of these techniques may simply review the journal 302, discard any
incomplete or inconsistent records 304 in the journal 302 (e.g., records that were
incompletely written at the moment of the failure 210), and then recommence
committing data sets 104 from the journal 302 to the storage set 102. In the
process, any data sets 104 that may have been incompletely written to the
storage set 102 may be correctly rewritten during the recovery process, even
without detecting the incomplete writing of the data set 104 to the storage set 102.
[0056] As a second example of this fourth variation of this second aspect, the
recovery from a failure 210 may be performed in a phased manner. For example,
it may be advantageous to recover from a failure 210 as rapidly as possible (e.g.,
in order to reduce the downtime of a service utilizing the storage set 102), while
also ensuring that accesses to the storage set 102 provide valid and consistent
data. Accordingly, during a first phase of the recovery, an embodiment of these
technigues may first read the contents of a journal 302 (e.g., the locations 110
within the storage set 102 where a data set 104 is stored in the journal 302), in
order to determine whether accesses to the storage set 102 are to be fulfilled from
the journal 302 or from the storage set 102. The recovery may then proceed to a
second phase involving recommencing the commitment of data sets 104 from the
journal 302 to the storage set 102 in order to correct incompletely and/or
inconsistently written data sets 104 caused by the failure 210. Thus, the
embodiment may block

[0057] Additional exemplary variations of the recovery process may involve,
e.g., scanning part or all of the storage set 102 to verify the integrity thereof;
applying the recovery process only to the storage devices 106 involved in the
failure (e.g., only rewriting data sets 104 from the journal 302 to the storage
device 106 that was temporarily removed); and applying different recovery
processes for different storage devices 106 and/or different data sets 104 (e.g.,
applying the recovery process to a first journal 302 stored on a first storage device
106, and completing the recovery thereof, before applying the recovery process to

a second journal 302 stored on a second storage device 106). Those of ordinary

24

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

skill in the art may devise many such ways of varying the elements of the
techniques presented herein for application in different scenarios.

[0058] Da3. Volatile Memory Representation of the Journal

[0059] A third aspect that may vary among embodiments of these techniques
involves the generation, in a volatile memory of a device 610 implementing such
techniques, of a volatile memory representation of the journal 302. For example,
in addition to the journal 302 generated on the nonvolatile medium of a storage
device 106, an embodiment of these techniques may generate a volatile memory
representation that also stores the data sets 104 stored in the journal 302, and
that is kept in sync with the journal 302. While the generation and maintenance of
a volatile memory representation to the journal 302 may add complexity and
consume additional computing resources, the volatile memory representation may
provide many potential uses and advantages in embodiments of these techniques.
As a first exemplary advantage, the volatile memory representation may serve as
a write buffer to the journal 302; e.g., instead of writing individual data sets 104 to
the journal 302, an embodiment may initially store the data sets 104 in the volatile
memory representation, and may commit a block of data sets 104 to the journal
302, thereby extending the efficiency gain of sequential writes 202 of the data sets
104 to the journal 302 with the batching of writes 202 to the journal 302. As a
second exemplary advantage, the volatile memory representation may serve as a
read cache of recently written data sets 104; e.g., instead of reading a recently
written data set 104 from the journal 302 stored on the comparatively slow storage
device 106, an embodiment may provide the data set 104 from the volatile
memory representation. An embodiment of these techniques may therefore
endeavor to retrieve a requested data set 104 according to its availability in the
journal 302 and the volatile memory representation. For example, the
embodiment may, upon determining that the data set 104 is stored in the volatile
memory representation of the journal 302 in the volatile memory, retrieve and
present the data set 104 stored in the volatile memory representation; upon
determining that the data set 104 is stored in the journal 302 on a storage device
106, retrieve and present the data set 104 stored in the journal 302; and may
otherwise retrieve and present the data set 104 stored in the storage set 102 on
the storage device 106. A data set 104 may also span two or more of these

sources; e.g., a first portion of a requested data set 104 may exist in and be

25

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

retrieved from the journal 302, while a second portion of the requested data set
104 may exist in and be retrieved from the volatile memory representation
(irrespective of whether this second portion is present in the less accessible
journal 302 and/or storage set 104). As a third exemplary advantage, decisions
pertaining to the data sets 104 stored in the journal 302, such as the selecting 410
of batches 318, may be more efficiently performed by evaluating the contents of
the volatile memory representation, which often provides more rapid access, than
evaluating the contents of the journal 302. These advantages of accessibility of
the data sets 104 in the rapid but volatile memory of the device 610 may be
achieved in parallel with the durability of the data sets 104 through the storage
thereof in the journal 302 on the nonvolatile storage device 106.

[0060] As a first variation of this third aspect, the volatile memory representation
may be structured similarly to the journal 302, or may be generated in a different
manner. For example, while it may be advantageous to structure the journal 302
to promote sequential writes on a storage device 106 such as a hard disk drive,
this advantage may be diminished in a memory circuit that provides comparatively
equivalent sequential and random access; thus, the volatile memory
representation may be generated in another manner, such as indexed according
to the locations 110 in the storage set 102 where the data sets 104 are to be
stored, such as a hashtable or a B-tree such as an Adelson-Velskii-Landis tree.
[0061] As a second variation of this third aspect, the volatile memory
representation may store the same data sets 104 stored in the journal 302, or may
store different storage sets 104. As a first such example, the volatile memory
representation may temporarily accumulate new data sets 104 to be written
together to the journal 302 in the manner of a write buffer. As a second such
example, the volatile memory representation may retain data sets 104 that are
removed from the journal 302, in furtherance of the use of excess capacity of the
volatile memory representation as a volatile memory read cache. For example,
after a data set 104 is committed to the storage set 102 and removed from the
journal 302 (and perhaps even overwritten), the volatile memory representation
may retain the data set 104 in memory, due to the comparatively high probability
that a process may request the recently written data set 104. This retention of
data sets 104 in the volatile memory representation (following the committing of

the data set 104 to the journal 302 and/or the storage set 102) may continue as

26

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

long as capacity remains in the volatile memory representation, and the volatile
memory representation may evict previously committed data sets 104 in order to
provide capacity for newly received and as-yet uncommitted data sets 104. In this
scenario, it may be advantageous for the volatile memory representation to
differentiate data sets 104 that have been committed to the journal 302 and/or the
storage set 102 from uncommitted data sets 104. For example, upon storing a
data set 104 in the journal 302, an embodiment may store the data set 104 in the
volatile memory representation of the journal 302 and mark the data set 104 as
unremovable; and upon committing a data set 104 stored in the journal 302 to the
storage set 102, the embodiment may mark the data set 104 stored in the volatile
memory representation as removable. Subsequently, in order to free capacity in
the volatile memory representation, the embodiment may safely remove from the
volatile memory representation of the journal 302 only the data sets 104 that are
marked as removable. This variation maintains the synchrony of the journal 302
and the volatile memory representation while advantageously utilizing the spare
capacity of the volatile memory representation as a read cache.

[0062] Conversely, and as a third variation of this third aspect, it may be
advantageous not to exhaust the capacity of the volatile memory representation in
storing committed or uncommitted data sets 104, but to reserve sufficient capacity
in the volatile memory representation in the volatile memory to store incoming
data sets 104. In particular, sufficient capacity may be reserved for a buffer
configured to store data sets 104 to be stored in the storage set 102 while the
journal 302 is occupied with committing other data sets 104 to the journal 302.
This variation further utilizes the volatile memory representation as a write buffer
in order to accept incoming data sets 104 without interrupting the storage device
106 from the task of committing data sets 104 from the journal 302 to the storage
set 102.

[0063] As a fourth variation of this third aspect, a recovery of a failure 210 may
also involve the rebuilding of the volatile memory representation 802 of the journal
302. For example, the recovery process may begin by reading the journal 302 to
regenerate the volatile memory representation 302. Beginning the rebuilding in
this manner may be advantageous, e.g., by reestablishing the read cache and/or
write buffer features of the volatile memory representation 802, and thereby

reducing the read/write workload of the storage device 106 storing the journal 302

27

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

and facilitating the task of committing data sets 104 in the journal 302 to the
storage set 102 in order to overwrite incomplete or inconsistent writes 202 caused
by the failure 210.

[0064] Fig. 8 presents an illustration of an exemplary scenario 800 wherein a
journal 302 generated on a nonvolatile storage device 106 is paired with a volatile
memory representation 802 of the journal 302 in the volatile memory of the device
610. In this exemplary scenario 800, the volatile memory representation 802 is
stored as a B-tree organized according to the hexadecimal addresses of the
locations 110 of the data sets 104 stored in the journal 302. At a first time point
804, the journal 302 and the volatile memory representation 802 may store a
particular set of data sets 104; and when, at a second time point 806, a second
data set 104 is received to be written to the journal 302, the second data set 104
may be stored in the volatile memory representation 802 and then (directly or
through a write buffer) written to the journal 302. Additionally, at a third time point
806, when one or more data sets 104 stored in the journal 302 are committed to
the storage set 102 stored on a storage device 106, the data sets 104 may be
removed from the journal 302 (e.g., by advancing a tail pointer 306 past the
records 302 containing the committed data sets 104), but if spare capacity of the
volatile memory representation 802 is available, these data sets 104 may be
retained in the volatile memory representation 802, but marked as removable (as
indicated in the exemplary scenario 800 of Fig. 8 by a dashed border). The
volatile memory representation 802 may thus provide capacity for newly received
data sets 104 (e.g., the receipt of a fourth data set 104 at a fourth time point 810).
Read requests may therefore be fulfilled according to the availability of the data
sets 104 in the volatile memory representation 802, the journal 302, and the
storage set 102. For example, at a fifth time point 812, three read requests may
be received for three data sets 104, the first of which may be provided from the
volatile memory representation 802 (existing therein despite eviction from the
journal 302); the second of which may be provided from the journal 302 (having
been removed from the volatile memory representation 802 after being committed
to the journal 302); and the third of which (having been evicted from the volatile
memory representation 802 and the journal 302) may be retrieved and provided
from the storage set 102. In this manner, the embodiment of these techniques

illustrated in the exemplary scenario 800 of Fig. 8 achieves several advantages

28

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

through the implementation of a volatile memory representation 802 of the journal
302. Those of ordinary skill in the art may devise such uses of such a volatile
memory representation 802 of the journal 302 in accordance with the techniques
presented herein.

[0065] DA. Interoperation with Write Buffer

[0066] A fourth aspect that may vary among embodiments of these techniques
relates to the inclusion and utilization of a write buffer in a storage device 106
storing the storage set 102. In many cases, a storage device 106 may
advantageously utilize a write buffer to improve performance, e.g., by batching
writes 202 of data sets 104 in a volatile memory until a flush request is initiated,
and then committing all of the data sets 104 to the storage set 102 stored on the
storage device 106. However, the operation of a write buffer on a storage device
106 may diminish the performance of the techniques presented herein, and in fact
may cause some problems. For example, if a request to store a data set 104 in
the journal 302 results is delayed in the volatile write buffer, then the data sets 104
may be lost if a failure 210 occurs. In particular, the write buffer is often
implemented in a transparent manner, such that the operating system or
processes may have difficulty determining whether data sets 104 have actually
been committed to the 302 journal (unless a flush operation is affirmatively
requested and verified as complete), or even whether or not a write buffer exists
for the storage device 104. Thus, when a process requests to write a data set 104
to the journal 302, the storage device 106 may promptly indicate to the process
that the request has been fulfilled, even if the write is stored in the volatile write
buffer instead of in the nonvolatile storage of the journal 302. The application may
therefore incorrectly operate as if the data set 104 had been committed, and
inconsistencies and unexpected data loss may arise if a failure 210 occurs before
the storage device 106 flushes the data set 104 from the write buffer. Similarly,
the operation of the write buffer between the journal 302 and the storage set 102
may cause the journal 302 to operate incorrectly as if the data sets 104 had been
persistently stored; e.g., the journal may remove data sets 104 that have not yet
been committed to the storage set 102, thereby resulting in incomplete and
inconsistent data sets 104 in the event of a failure 210 before the write buffer is
flushed. Moreover, the advantages that the write buffer may propose (e.g.,

batched writes 202, coalescence of sequential writes 202, and reduction of

29

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

overwrites) are already provided by other components of the techniques
presented herein. Thus, it may be appreciated that the presence and operation of
the write buffer causes added complexity, increased expense, potential
performance degradation, and unexpected results, and yet provides few or no
advantages that are not already achieved by the techniques presented herein.
[0067] In view of these potential disadvantages, an embodiment of these
techniques may be adjusted in view of the presence of the write buffer. As a first
variation of this fourth aspect, an embodiment of these techniques may avoid the
use and effects of the write buffer in various ways. As a first example of this first
variation, when writing data sets 104 and verifiers 112 to the journal 302, bypass
the write filter, e.g., by issuing the write to the journal 302 as a write-through
request, or by simply disabling the write buffer on the storage device 106. As a
second example of this first variation, the embodiment may negate the effects of
the write buffer by issuing a flush request after each write 202 to the journal 302
and/or the storage set 102 stored on the storage device 106. Although a frequent
issuing of flush requests may diminish the performance of the storage device 106,
the loss of performance may be reduced in various ways; e.g., if the storage set
102 and/or journal 302 are distributed over a set of storage devices 106 that
respectively may or may not comprise a write buffer, an embodiment of these
technigues may be configured to issue flush requests only to the storage devices
106 storing the recently written data sets 104.

[0068] As a second variation of this fourth aspect, an embodiment of these
technigues may interoperate with the write buffer, and may coordinate the
operation of the write buffer with the operation of the journal 302 and/or the in-
memory representation 802 of the journal 302. As a first example of this second
variation, when a storage device 106 storing a journal 302 is flushed, a flush point
of the journal 302 may be identified that represents the data sets 104 that have
been flushed to the journal 302 (as contrasted with the data sets 104 for which a
write request has been issued to the journal 302, but that may remain in the write
buffer). For example, in an embodiment featuring a volatile memory
representation 802 of the journal 302, the data sets 104 stored in the volatile
memory representation 802 may initially be marked as unremovable, and may

remain so marked until the flush point of the journal 302 is moved past the data

30

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

set 104, at which point the volatile memory representation 802 may mark the data
set 104 as removable.

[0069] Fig. 9 presents an illustration of an exemplary scenario 900 featuring an
adaptation of a volatile memory representation 802 to interoperate with a write
buffer 902 of a storage device 106 storing the journal 302. In this exemplary
scenario 900, data sets 104 that are to be written to the storage set 102 are first
stored in the volatile memory representation 802, and are then written to the
journal 302 before being committed to the storage set 102. However, a write
buffer 902 may exist on the storage device 106 storing the journal 302, and may
cause inconsistencies and problems, e.g., if a data set 104 is presumed to have
been written to the journal 302 is instead stored in the volatile memory of the write
buffer 902, and a failure 210 causes the data set 104 to be lost without being
written to the journal 302. Accordingly, the volatile memory representation 902
may record the status of respective data sets 104. For example, at a first time
point 904, upon initiating a request to move a set of data sets 104 to the journal
302, the volatile memory representation 802 may record the status of the data
sets 104 as in the process of being written to the storage device 106 (i.e., to
indicate that a request to write the data sets 104 to the storage device 106 has
been initiated, but the storage device 106 has not yet indicated that the write
request has been received). At a second time point 906, the storage device 106
responds that the data sets 104 have been received. However, the volatile
memory representation may not be able to determine whether the data sets 104
have been committed to the journal 302, or whether the data sets 104 reside in a
write buffer 902. Accordingly, at the second time point 906, the volatile memory
representation 902 marks the data sets 104 as having been buffered by the
storage device 106. Meanwhile, other data sets 104, which the storage device
104 has not yet acknowledged as having fully received, may continue to be
marked as in the process of being written to the storage device 106. As a third
time point 908, the volatile memory representation 802 may issue a request to
flush the write buffer 902, and the write buffer 902 may commence committing the
data sets 104 that have been fully received to the nonvolatile storage medium
comprising the journal 302. At a fourth time point 910, when the storage device
106 indicates that the flush request has been fulfilled, the volatile memory

representation may mark all of the data sets 104 that had previously been marked

31

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

as buffered (i.e., all of the data sets 104 that the storage device 106 had
acknowledged as fully received prior to the flush request) as having been fully
journaled, and optionally removable. At a fifth time point 912, the storage device
106 may subsequently indicate that additional data sets 104 have been fully
received, and the volatile memory representation 802 may mark these data sets
104 as buffered and ready for commitment to the journal 302 through a second
flush request. In this manner, the volatile memory representation 802 tracks the
status of the data sets 104 with respect to the write buffer 902 of the storage
device 106.

[0070] As a third variation of this fourth aspect, a write buffer 902 may also
intermediate, and may interfere with, the commitment of data sets 104 from the
journal 302 to the storage set 106. In similar manner, the status of the data sets
104 stored in the volatile memory representation 802 and/or the journal 302 may
indicate whether the data sets 104 have been flushed from the journal 302 to the
storage set 102. For example, an embodiment of these techniques may, upon
detecting a commitment of a data set 104 from the write buffer 902 to the storage
set 12 (e.g., an acknowledgment of a flush request), mark the data set 104 in the
journal 302 and/or the volatile memory representation 902 as committed, and may
remove from the journal 302 and/or the volatile memory representation 902 only
the data sets 104 that are marked as having been committed to the storage set
104.

[0071] Fig. 10 presents an illustration of an exemplary scenario 1000 featuring
an adjustment of a journal 302 to interoperate with write buffers 902 of storage
devices 106 storing the storage set 102. In this exemplary scenario 1000, the
journal 302 stores data sets 104 that are to be committed to a storage set 102
distributed across three storage devices 106, each comprising a write buffer 902.
In order to ensure that data sets 104 are fully committed to the physical medium of
the storage devices 106 storing the storage set 102, the journal 302 may record
the status of the data sets 104 that the journal 302 has requested to be written to
the storage set 102. For example, at a first time point 1002, upon identifying a
batch 318 of data sets 104 to be committed, the journal 302 may send a write
request for each data set 104 to the storage device 106 storing the data set 104.
However, when the storage devices 106 acknowledge receipt of the data sets

104, the journal 302 may not presume that the data sets 104 have been

32

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

committed to the storage set 102, but may be stored in a volatile write buffer 902
on each device 106, and may therefore mark each data set 104 in the journal 302
as having been buffered. At a second time point 1004, the journal 302 may issue
flush requests to the storage devices 106 (and, specifically, only to the storage
devices 106 storing the buffered data sets 106; e.g., the third storage device 106
does not store any recently committed data sets 104, and is not issued a flush
request). At a third time point 1004, when a storage device 106 indicates that a
flush request has been fulfilled, the journal 302 may mark the data sets 104 as
having been committed. The journal 302 may also identify a flush point 1008
between the head pointer 308 and the tail pointer 306, such that all data sets 104
between the flush point and the tail pointer 306 have been committed to the
storage set 102. At a fourth time point 1010, the journal 302 may then evict data
sets 104 by moving the tail pointer 308 to the flush point 1008, since any
intervening data sets 104 have been fully committed to the storage set 102. In
this manner, the journal 302 may be adapted to account for the operation of the
write buffers 902 of the storage devices 106 storing the storage set 102. Those of
ordinary skill in the art may devise many ways of accounting for the presence and
operation of write buffers 902 while implementing the techniques presented
herein.

[0072] E. Computing Environment

[0073] Fig. 11 presents an illustration of an exemplary computing environment
within a computing device 1102 wherein the techniques presented herein may be
implemented. Example computing devices include, but are not limited to,
personal computers, server computers, hand-held or laptop devices, mobile
devices (such as mobile phones, Personal Digital Assistants (PDAs), media
players, and the like), multiprocessor systems, consumer electronics, mini
computers, mainframe computers, and distributed computing environments that
include any of the above systems or devices.

[0074] Fig. 11 illustrates an example of a system 1100 comprising a computing
device 1102 configured to implement one or more embodiments provided herein.
In one configuration, the computing device 1102 includes at least one processor
1106 and at least one memory component 1108. Depending on the exact
configuration and type of computing device, the memory component 1108 may be

volatile (such as RAM, for example), non-volatile (such as ROM, flash memory,

33

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

etc., for example) or an intermediate or hybrid type of memory component. This
configuration is illustrated in Fig. 11 by dashed line 1104.

[0075] In some embodiments, device 1102 may include additional features
and/or functionality. For example, device 1102 may include one or more
additional storage components 1110, including, but not limited to, a hard disk
drive, a solid-state storage device, and/or other removable or non-removable
magnetic or optical media. In one embodiment, computer-readable and
processor-executable instructions implementing one or more embodiments
provided herein are stored in the storage component 1110. The storage
component 1110 may also store other data objects, such as components of an
operating system, executable binaries comprising one or more applications,
programming libraries (e.g., application programming interfaces (APIls), media
objects, and documentation. The computer-readable instructions may be loaded
in the memory component 1108 for execution by the processor 1106.

[0076] The computing device 1102 may also include one or more
communication components 1116 that allows the computing device 1102 to
communicate with other devices. The one or more communication components
1116 may comprise (e.g.) a modem, a Network Interface Card (NIC), a
radiofrequency transmitter/receiver, an infrared port, and a universal serial bus
(USB) USB connection. Such communication components 1116 may comprise a
wired connection (connecting to a network through a physical cord, cable, or wire)
or a wireless connection (communicating wirelessly with a networking device,
such as through visible light, infrared, or one or more radiofrequencies.

[0077] The computing device 1102 may include one or more input components
1114, such as keyboard, mouse, pen, voice input device, touch input device,
infrared cameras, or video input devices, and/or one or more output components
1112, such as one or more displays, speakers, and printers. The input
components 1114 and/or output components 1112 may be connected to the
computing device 1102 via a wired connection, a wireless connection, or any
combination thereof. In one embodiment, an input component 1114 or an output
component 1112 from another computing device may be used as input
components 1114 and/or output components 1112 for the computing device 1102.
[0078] The components of the computing device 1102 may be connected by

various interconnects, such as a bus. Such interconnects may include a

34

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

Peripheral Component Interconnect (PCI), such as PCI Express, a Universal
Serial Bus (USB), firewire (IEEE 1394), an optical bus structure, and the like. In
another embodiment, components of the computing device 1102 may be
interconnected by a network. For example, the memory component 1108 may be
comprised of multiple physical memory units located in different physical locations
interconnected by a network.

[0079] Those skilled in the art will realize that storage devices utilized to store
computer readable instructions may be distributed across a network. For
example, a computing device 1120 accessible via a network 1118 may store
computer readable instructions to implement one or more embodiments provided
herein. The computing device 1102 may access the computing device 1120 and
download a part or all of the computer readable instructions for execution.
Alternatively, the computing device 1102 may download pieces of the computer
readable instructions, as needed, or some instructions may be executed at the
computing device 1102 and some at computing device 1120.

[0080] F. Usage of Terms

[0081] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific features and acts
described above are disclosed as example forms of implementing the claims.

[0082] As used in this application, the terms "component,” "module,” "system”,
"interface", and the like are generally intended to refer to a computer-related
entity, either hardware, a combination of hardware and software, software, or
software in execution. For example, a component may be, but is not limited to
being, a process running on a processor, a processor, an object, an executable, a
thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be a component. One or
more components may reside within a process and/or thread of execution and a
component may be localized on one computer and/or distributed between two or
more computers.

[0083] Furthermore, the claimed subject matter may be implemented as a
method, apparatus, or article of manufacture using standard programming and/or

engineering techniques to produce software, firmware, hardware, or any

35

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

combination thereof to control a computer to implement the disclosed subject
matter. The term "article of manufacture” as used herein is intended to
encompass a computer program accessible from any computer-readable device,
carrier, or media. Of course, those skilled in the art will recognize many
modifications may be made to this configuration without departing from the scope
or spirit of the claimed subject matter.

[0084] Various operations of embodiments are provided herein. In one
embodiment, one or more of the operations described may constitute computer
readable instructions stored on one or more computer readable media, which if
executed by a computing device, will cause the computing device to perform the
operations described. The order in which some or all of the operations are
described should not be construed as to imply that these operations are
necessarily order dependent. Alternative ordering will be appreciated by one
skilled in the art having the benefit of this description. Further, it will be
understood that not all operations are necessarily present in each embodiment
provided herein.

[0085] Moreover, the word "exemplary" is used herein to mean serving as an
example, instance, or illustration. Any aspect or design described herein as
"exemplary" is not necessarily to be construed as advantageous over other
aspects or designs. Rather, use of the word exemplary is intended to present
concepts in a concrete fashion. As used in this application, the term "or" is
intended to mean an inclusive "or" rather than an exclusive "or". That is, unless
specified otherwise, or clear from context, "X employs A or B" is intended to mean
any of the natural inclusive permutations. That is, if X employs A; X employs B; or
X employs both A and B, then "X employs A or B" is satisfied under any of the
foregoing instances. In addition, the articles "a" and "an" as used in this
application and the appended claims may generally be construed to mean "one or
more" unless specified otherwise or clear from context to be directed to a singular
form.

[0086] Also, although the disclosure has been shown and described with
respect to one or more implementations, equivalent alterations and modifications
will occur to others skilled in the art based upon a reading and understanding of
this specification and the annexed drawings. The disclosure includes all such

modifications and alterations and is limited only by the scope of the following

36

10

15

WO 2013/036265 PCT/US2011/055818

claims. In particular regard to the various functions performed by the above
described components (e.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless otherwise
indicated, to any component which performs the specified function of the
described component (e.g., that is functionally equivalent), even though not
structurally equivalent to the disclosed structure which performs the function in the
herein illustrated exemplary implementations of the disclosure. In addition, while
a particular feature of the disclosure may have been disclosed with respect to only
one of several implementations, such feature may be combined with one or more
other features of the other implementations as may be desired and advantageous
for any given or particular application. Furthermore, to the extent that the terms
"includes”, "having", "has", "with", or variants thereof are used in either the
detailed description or the claims, such terms are intended to be inclusive in a

manner similar to the term "comprising.”

37

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

What is claimed is:
1. A method of storing data sets in a storage set provided by at least one
storage device, the method involving a computer having a processor and
comprising:
executing on the processor instructions configured to:
generate on a storage device a journal configured to store data sets
respectively associated with a verifier;
upon receiving a request to store a data set at a location in the
storage set, store the data set in the journal;
select a batch of data sets stored in the journal; and
for respective data sets of the batch:
compute a verifier for the data set;
store the verifier in the journal;
store the data set and the verifier of the data set in the
storage set; and
after storing the data set and the verifier of the data set in the

storage set, remove the data set from the journal.

2. The method of claim 1, the instructions configured to select the batch of
data sets to be stored in the storage set upon detecting a commit event selected
from a commit event set comprising:

a journal capacity event involving a capacity of the journal;

a duration event involving a duration of the data sets stored in the journal;

a commit request event involving a request to commit at least one data set
in the journal to the storage set; and

a storage device workload event involving a workload of at least one

storage device of the storage set.

3. The method of claim 1, selecting the batch of data sets comprising:
selecting for inclusion in the batch a first data set stored in the journal and
to be stored at a first location in the storage set; and
selecting for inclusion in the batch a second data set stored in the journal
and to be stored at a second location that is near the first location in the storage

set.

38

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

4. The method of claim 1:
respective requests specifying a location in the storage set for the data set;
and
computing the verifier for a data set comprising:
for a data set that is completely recorded in the journal, computing
the verifier from the data set; and
for a data set that is not completely recorded in the journal:
reading an original version of the data set at the location in
the storage set;
reading an original verifier of the original version of the data
set;
removing the original version of the data set from the original
verifier; and

including the data set in the original verifier.

5. The method of claim 1:
the computer comprising a volatile memory; and
the instructions configured to:
generate in the volatile memory a volatile memory representation of
the journal stored on the storage device; and
upon storing a data set in the journal, store the data set in the

volatile memory representation of the journal.

6. The method of claim 5, the instructions configured to, upon receiving a
request to read a data set:

upon determining that the data set is stored in the volatile memory
representation of the journal in the volatile memory, present the data set stored in
the volatile memory representation;

upon determining that the data set is stored in the journal on the storage
device, present the data set stored in the journal; and

upon determining that the data set is stored in the storage set stored on the
storage device, present the data set stored in the storage set of the storage

device.

39

10

15

20

25

30

WO 2013/036265 PCT/US2011/055818

7. The method of claim 5, the instructions configured to, after storing a data
set to the storage set, remove the data set from the volatile memory

representation of the journal.

8. The method of claim 7:
the instructions configured to:
upon storing a data set in the journal, store the data set in the
volatile memory representation of the journal marked as unremovable; and
upon storing a data set in the storage set, mark the data set stored
in the volatile memory representation of the journal as removable; and
removing data sets from the volatile memory representation of the journal
in the volatile memory comprising: removing from the volatile memory

representation of the journal only data sets marked as removable.

9. The method of claim 5:
the volatile memory representation of the journal having a capacity of data
sets; and
generating the volatile memory representation of the journal in the volatile
memory comprising: reserving capacity in the volatile memory to store:
the capacity of data sets in the volatile memory representation of the
journal;
the verifiers of the data sets comprising the capacity of the volatile
memory representation of the journal; and
a buffer configured to store data sets to be stored in the storage set

while data sets stored in the journal are being stored in the storage set.

10. A computer-readable storage medium comprising instructions that, when
executed on a processor of a device, store data on a storage set comprising at
least one storage device by:
generating on a storage device a journal comprising a sequence of records,
a head pointer, and a tail pointer;
upon receiving a data set to be stored at a location in the storage set:
advancing the head pointer of the journal past a new record, and

storing the data set in the new record;

40

WO 2013/036265 PCT/US2011/055818

selecting at least one selected data set near the tail pointer of the journal;
and
for respective selected data sets:
computing a verifier for the selected data set;
storing the verifier of the selected data set in the journal; and
committing the selected data set and the verifier of the data set to
the storage set; and
advancing the tail pointer of the journal past the at least one selected data

sets.

41

WO 2013/036265

100
X

102 —

PCT/US2011/055818

111

{—114

STORAGE SET

108
0a— 1 T |
DATA SET 1 /A A
L 110
ADDRESS 0x0044 /] y —
VALUE O0xAOFO 110 — OxAOFO0 PARITY ¥V~ 112
116
102 — f
STORAGE SET
106
108 ~ T~
104 — f [—
DATA SET 2 ==
A 110 /=\
ADDRESS OXO1A7 / v \
VALUE OxOFFF OXAOF0 PARITY || oxoFFF PARITY
—110 112
118
102 — f
STORAGE SET
106
a1 T |
DATA SET 3 —/ j =
A 110
ADDRESS 0x0045 o’ \
VALUE 0x9FCE 0xAOF0 0x9FCE || PARITY || OxOFFF PARITY
110 — —112
102 —
STORAGE SET
106
104 — f
DATA SET 4
L 110 / -
ADDRESS 0x01A7 <
VALUE OxFFFF 0XAOF0 | 0x9FCE || PARITY I_OXOFFF PARITY

~—110 1127

FIG. 1

WO 2013/036265 PCT/US2011/055818

2/11
200 202 204
1063 106 — 110 ~\106 —~ 112 r
DISK 1 DISK 2 DISK3 &4/ 104/_ DISK 4
0x0000 | 0 — 0x0000| 0 +—'0x0000| %1 +— ' —»{0x0000| 0
0x0001 | 1 | 0x0001| 1 +— 0x0001| 1 H L 0x0001 | 1
0x0002 | 0 — 0x0002| 0 - 0x0002| 0 H |5 0x0002 | O
0x0003| 0 | 0x0003| 0 |—{0x0003| 1 | yor > 0X0003 [1
0x0004 | 0 | Ox0004| 1 +— Ox0004| 0 L 0x0004 | 1
0x0005]| 1 | 0x0005] 0 +— Ox0005| 0 L 0x0005| 1
0x0006| 0 — 0x0006| 1 +— Ox0006| 1 L5 0x0006| O
0x0007 | 0 — 0x0007| 0 - 0x0007| 0 H | » 0x0007 | O
f_ 206
112 —~
DISK 1 DISK 2 DISK 3 DISK 4\
0x0000| 0 | Ox0000| 0 +— 0x0000| 1 H |5 0x0000 | X1
0x0001| 1 | 0x0001| 1 +— 0x0001| 1 L 0x0001 | 1
0x0002| 0 0x0002| 0 +— 0x0002| 0 M |5 0x0002 | O
0x0003| 0 | 0x0003| 0 |—{0x0003| 1 | yor > 0Xx0003] 1
0x0004 | 0 | Ox0004| 1 +— Ox0004| 0 M L 0x0004 | 1
0x0005| 1 | 0x0005| 0 +— 0x0005| 0 M L5 0x0005 | 1
0x0006| 0 — Ox0006| 1 +— Ox0006| 1 L » 0x0006| O
0x0007 | 0 | 0x0007| 0 - 0x0007| 0 M L5 0x0007 | O
o 208
DISK 1 DISK 2 DISK 3 DISK 4
0x0000| 0 | Ox0000| 0 +— 0x0000| 1 H | 5 0x0000 | 1
0x0001| 1 | 0x0001| 1 +— 0x0001| 1 L 0x0001 | 1
0x0002| 0 0x0002| 0 +— 0x0002| 0 M |5 0x0002 | O
0x0003| 0 | 0x0003| 0 |—{0x0003| 1 | yor > 0Xx0003] 1
0x0004 | 0 | Ox0004| 1 +— Ox0004| 0 L 0x0004 | 1
0x0005| 1 | 0x0005| 0 +— 0x0005| O Z L5 0x0005 | 1
0x0006 | 0 — 0x0006| 1 +— Ox0006| 1 L »! 0x0006 ogg
0x0007 | 0 |— Ox0007| 0 |— Ox0007 | X1 \H L 5 0x0007] O
110~ 104~ =202 112 —210 —/
o 212
DISK 1 DISK 2 DISK 3 DISK 4
0x0000 | 0 — 0x0000| 0 +— Ox0000| 1 H |5 0x0000 | 1
0x0001 | 1 | 0x0001| 1 +— 0x0001| 1 H L5 0x0001 | 1
0x0002 | 0 — 0x0002| 0 - 0x0002| 0 H |5 0x0002 | O
0x0003| 0 | 0x0003| 0 |—{0x0003| 1 | yor > 0X0003 [1
0x0004 | 0 | Ox0004| 1 +— Ox0004| 0 L 0x0004 | 1
0x0005| 1 +— 0x0005| 0 +— 0x0005| 0 L 0x0005 | 1
0x0006| 0 — Ox0006| 1 +— Ox0006| 1 L » 0x0006| O
0x0007 | 0. — 0x0007 | 0, — 0x0007 | 1. - »0x0007 | 0,
Jo? ; = o)
110 104 110 104 110 104 110 2112

FIG. 2

WO 2013/036265 PCT/US2011/055818
3/11
300 \ — 310
302 —
104 — 104 — 104 — 306 S04 TN JOURNAL
DATA SET 1 DATASET2 || DATASET3 | TAIL
0x0044 0xAOQF0
ADDRESS 0x0044 0x01A7 0x0045 308 OXO1A7 OXOFEE
VALUE OXAOF0 OXOFFF 0x9FCE HE Aa> /0x0045 /0x9FCE
1107 104V
[— 312
302 —
104 — 104 — 104 — 306 — JOURNAL
DATASET4 || DATASET5 || DATASET6 | TAIL [>
0x0044 0xAOQF0
ADDRESS 0x0046 0x01A7 0x03C0 OXO1A7 OXOFFF
VALUE 0x1000 OxFFFF 0x0000 0x0045 0x9FCE
0x0046 0x1000
308 — 0x01A7 OXFFFF
HEAD 0x03C0 0x0000
/— 314
302 —
TAIL JOURNAL OLD 0x0044
[> OLD 0x0045
OLD 0x0046
0x0044 0xAOQF0
OLD VERIFIER
0x01A7 OXOFFF > COMPUTE
0x0046 | 0x1000 VERIFIER |€— 106 —/
0x01A7 OXFFFF \
HEAD 0x03C0 0x0000 ~N- 112
[— 316
302 —
HEAD JOURNAL NEW 0x0044
0x03C1 0x0000 318 —, NEW 0x0045
0x0044 | OxAOFO > NEW 0x0046
OxOTA7_|_OXOFFF NEW VERIFIER
L | 0X0045 | OxoFCE p| BATCH
0x0046 0x1000 VERIFIER [— 106
0x01A7 OXFFFF \
0x03C0 0x0000 T™— 112
DATA SET 7
ADDRESS 0x03C1
VALUE 0x0000

Fl

G.3

WO 2013/036265 PCT/US2011/055818

4/11

402
(START Y
404
yau

EXECUTE ON PROCESSOR INSTRUCTIONS CONFIGURED TO: 406

GENERATE ON STORAGE DEVICE A JOURNAL CONFIGURED TO
STORE DATA SETS ASSOCIATED WITH A VERIFIER

e 408
UPON RECEIVING REQUEST TO STORE A DATA SET AT A
LOCATION IN THE STORAGE SET, STORE DATA SET IN JOURNAL

410
—

SELECT BATCH OF DATA SETS STORED IN JOURNAL

412
—

FOR RESPECTIVE DATA SETS OF THE BATCH:
414
—

COMPUTE VERIFIER

— 416
STORE VERIFIER IN JOURNAL

STORE DATA SET AND VERIFIER OF DATA ¥ 418
SET IN STORAGE SET

— 420
AFTER STORING DATA SET AND VERIFIER

OF DATA SET IN STORAGE SET, REMOVE
DATA SET FROM JOURNAL

422
END

FIG. 4

WO 2013/036265 PCT/US2011/055818

500 \ 5/11
502
(START Y

504
ya
SEND TO DEVICE INSTRUCTIONS THAT, WHEN EXECUTED ON PROCESSOR:
506
—
GENERATE ON STORAGE DEVICE A JOURNAL COMPRISING
SEQUENCE OF RECORDS, HEAD POINTER, AND TAIL POINTER
508
—
UPON RECEIVING DATA SET TO BE STORED AT A LOCATION IN
STORAGE SET: 510
—
ADVANCE HEAD POINTER OF JOURNAL PAST
NEW RECORD
512
—
STORE DATA SET IN NEW RECORD
514
—
SELECT AT LEAST ONE SELECTED DATA SET NEAR TAIL
POINTER OF JOURNAL
516
—
FOR RESPECTIVE SELECTED DATA SETS:
518
—
COMPUTE VERIFIER
520
—
STORE VERIFIER IN JOURNAL
522
—
COMMIT SELECTED DATA SET AND VERIFIER OF
DATA SET TO STORAGE SET
524
—
ADVANCE TAIL POINTER OF JOURNAL PAST SELECTED DATA
SETS
526
END

FIG. 5

WO 2013/036265

6/11

600
g —— ———— — ——
\[

PCT/US2011/055818

—————1——————’

._____I.____./

I
606 y

COMPUTER

610 ~

DEVICE

)

INSTRUCTIONS

604 ¢

01011010001010
10101011010101
101101011100...

\ /
\ /
\ /

\ y i
\ [4

602 -/

-

COMPUTER READABLE MEDIUM

FIG. 6

PCT/US2011/055818

WO 2013/036265
7/11
7 702
00~ 70
104 —~ 112
DATA SET 1 ON MEDIA (\)/ERN'IFE'S&
rd Y
? ? ? ? ?
704
104 112
\DATA SET 1 ON MEDIA (\)/EF;/'IFE'E&/_
rd Y
? ? ? ? ?
4 4 o A
11 HoH 00— 1
| N R —— 0
N J NEW VERIFIER
NEW DATA SET 1 (120)7 (0" 0)
((KNOWN DATA) XOR (DEFAULT VALUES))
7
706
104 — —~112
DATA SET 1 ON MEDIA (\)/EF;/'IFE'SIRA
/7 N\
1 0 ? ? 1
A A A A A
11 H1HoHob—lo
\\ —/ NEW VERIFIER
NEW DATA SET 1 1A1AQAQ
(XOR NEW DATA)
7
708
104 — 112
DATA SET 1 ON MEDIA (\)/EF;/'IFE'E&/_
rd Y
41 H 1 0 0 0
A A -I vA
10 H 1 <|g
g J NEW VERIFIER

NEW DATA SET 1

0A(1A1)A(140)

((OLD VERIFIER) XOR (OLD DATA) XOR (NEW DATA))

FIG. 7

WO 2013/036265 PCT/US2011/055818
8/11
500 804
610 ~ 802 —,)/_
DEVICE VOLATILE MEMORY 302 —| JOURNAL
REPRESENTATION TAIL[>
S00AA- 0x0044 | OxAOFO
0x0047 Ox01A7 | OXOFFF
X < 0x0045 | OxOFCE
ST 0x0046 | 0x1000
Ox01A7 HE AD[> Ox01A7 | OXFFFF
806
802 — K
VOLATILE MEMORY 302 — JOURNAL
104 —~ REPRESENTATION TAIL[>
DATA SET SXOTAL gxg?ic; 8XA0 FO
0x03C0 0x03C0 X XOFFF
—> 2‘0“"7\ —————— %0045 | Ox9FCE
0x0000 0x0044- 0x03C0- 0x0047 | 0x1000
0x0047 0x03C3 O0x01A6 | OxFEFFE
HEAD 0x03C0 | _0x0000
802 —, 302 — 808
VOLATILE MEMORY COMMIT > JOURNAL 0x0044
REPRESENTATION
~xOTAZT COMMIT OK | 0x0044 | OxAOFO 0x0045
| OX01AG- < Ox0O1A7 | OXOFFF_| 0x0046
LOXOTAT | 0x0045 | OxOFCE | OX01A7
== =% N — — o 0x0047 | 0x1000 0x03C0
| 8"882‘7" | I gxgggg' | TAIL D 0x01A6 | OXFFFE | VERIFIERS
L 0X0047 ;| 0x03C3 HEAD PP _0x03C0_|_0x0000 —@
106
810
802 — 32—~ &
104 — VOLATILE MEMORY - OJL%URN(;A\H —
REPRESENTATION X X
DATA SET o HEAD [~ 20T OrAGFO
0x0048 > odven 0x0047 | OXOTA7 | OxOFFF
|_/X_ Loty 0x0045 [0x9FCE
0x1010 TR 0x0046 | 0x1000
TAIL Ox01A7 | OXFFFF
0x004B [> 0x03C0 | 0x0000
812
802 ~ 32—~ ¥
READ VOLATILE MEMORY HEAD JOURNAL
0x01A7 € OxXOFFF H REPRESENTATION READ 0x0048 | 0x1010
“OxOTAZ.] 0x03C0 0x0044 OxAOFO
READ [—» l ox01A7 | Ox01A7 | OXOFFF
0x03C0 |&{ 0x0000 LX) 0x0045 | Ox9FCE
. €| 0x0000 50046 | 0x1000
0x0048-
READ [——P 0x004B TAL OX01A7 | OXFFFF
0x0044 |&| oxFFFF H 0x03C0 | 0x0000
READ 106
0x0044 [
FIG. 8 OXAOF0 |—>

WO 2013/036265 PCT/US2011/055818
9/11
900 904
802 \\ 902 — TAIL '/,_— 302
VOLATILE MEMORY D JOURNAL
REPRESENTATION WRITE B EFEE_,R
ADDRESS | STATUS L 9x0044_ HEAD
0x0044 WRITING | o L 0x0045
0x0045 WRITING L 0x0046
0Xx0046 WRITING | SETS [= 50137
L a
Ox01A7 WRITING = S Saae o
0x03C0 WRITING L ===
906
802 — 902 — TAIL [/_— 302
VOLATILE MEMORY | 0x0044 D JOURNAL
REPRESENTATION ok | WRITEBUFFER
ADDRESS | STATUS 0x0044 HEAD
0x0044 BUFFERED | 0x0045| [0x0045 |
0x0045 BUFFERED OK L 0x0046_ DATA
0x0046 WRITING =501 SETS
0x01A7 | BUFFERED | X01A7 [L _0:6360_ . >
0x03C0 WRITING OK L Ox03L0_
908
802 =~ 902 -~ TAIL [/-— 302
VOLATILE MEMORY D JOURNAL
REPRESENTATION WRITE BUFFER
ADDRESS STATUS 0x0044 HEAD
0x0044 BUFFERED u _0)90i5_ | 0x0044
0x0045 BUFFERED L _0x0046 | 0x0045
0x0046 WRITING FLUSH 0x01A7 | 0x01A7
O0x01A7 | BUFFERED S e >
0x03C0 WRITING L =g
910
802 N 902 N\ TAIL [/-_ 302
VOLATILE MEMORY JOURNAL
REPRESENTATION WRITE BUFFER I> 0x0044 | OXAOFO
ADDRESS STATUS FLUSH 0x0045 [Ox9FCE
0x0044 | JOURNALED
0x0045__| JOURNALED | FLusH| [0x0046_] K| OXOTA7 | OXFFFF
0x0046 WRITING OK - [>
0x01A7 | JOURNALED [¢— -~ Bx0aEe T HEAD
0x03C0 WRITING L =g
912
802 — 902 — TAIL — 302
VOLATILE MEMORY JOURNAL
REPRESENTATION | 1 0044 WRITE BUFFER 0x0044 | OxAOFO
ADDRESS STATUS OK FLUSH 0x0045 Ox9FCE
0x0044 | JOURNALED |g—— POINT TR OFEFE
0x0045 | JOURNALED | 0x03C0 0x0046 X
0x0046__| BUFFERED | OK >
Ox01A7 JOURNALED _
0x03C0 | BUFFERED 0x03C0 HEAD

FIG. 9

WO 2013/036265 PCT/US2011/055818
10/11
1000 1002
X 902 —, '3
302 —
aatch | WRITE BUFFER 1 06
JOURNAL — 0x0044
AL [ADDRESS __STATUS 0x0045
0x0044 | JOURNALED 0x0046
0x0045 | JOURNALED 106
Ox1CFE | JOURNALED | BATCH | WRITE BUFFER 2
0x0046 | JOURNALED > OX1CFE @
—0x23C0 | JOURNALED 106
HEAD | WRITE BUFFER 3
1004
902 — K,
302 —
fLush | WRITEBUFFER 1 | pata 106
JOURNAL — 5 0x0044 SETS
TAIL | ADDRESS | STATUS 0x0045 @
0x0044 | BUFFERED 0x0046 DATA
0x0045 | BUFFERED SETS 106
OxICFE | BUFFERED | FLUSH | WRITE BUFFER 2
0x0046__| BUFFERED | > Ox1CFE
HEAD | 0x23C0 | JOURNALED 106
WRITE BUFFER 3
1006
902 — s
302 —~ FLUSH [WRITE BUFFER 1
JOURNAL <« OK 106
AL NJADDRESS | __STATUS @
0x0044 | COMMITTED
FLUSH 0x0045 | COMMITTED 106
POINT OXx1CFE | BUFFERED WRITE BUFFER 2
\— 1008 | 0x0046 | COMMITTED 0x1CFE
HEAD Ox23G0 | JOURNALED 106
WRITE BUFFER 3
1010
902 — K
302 ~ WRITE BUFFER 1 106
JOURNAL
ADDRESS | __STATUS @
0x0044 | COMMITTED
TAIL | 0x0045 COMMITTED 106
OXxICFE | BUFFERED WRITE BUFFER 2
0x0046 COMMITTED 0x1CFE
HEAD | 0x23C0__| JOURNALED 0

WRITE BUFFER 3

4

FIG. 10

WO 2013/036265 PCT/US2011/055818

11/11

1100x

1104
———— —————i _—1110
: /—1106 | STORAGE
| PROCESSING | 1112
I UNIT : OUTPUT DEVICE(S)
I
| I _—1114
| : INPUT DEVICE(S)
| MEMORY
| I _—1116
| I COMMUNICATION
| T~—1108 | CONNECTION(S)
e |
1118

COMPUTING [~—1120
DEVICE

FIG. 11

International application No.

PCT/US2011/055818

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 12/00(2006.01)i, GOGF 9/06(2006.01)i, GOGF 11/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 12/00; GO6F 3/06; GO6F 11/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: journal, bufter, RAID, parity, verifier, batch

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See paragraphs [0045]-[0066]; figures 1-4.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A JP 2001-051806 A (FUJITSU LTD.) 23 February 2001 1-10
See paragraphs [0074]-[0094]; figures 2, 4.
A US 2005-0071593 A1l (VINCENT, PRADEEP) 31 March 2005 1-10
See paragraphs [0027]-[0048]; figures 3A, 3B.
A US 2005-0034012 A1l (BARTLETT, ERIC JOHN et al.) 10 February 2005 1-10

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

than the priority date claimed

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

Date of the actual completion of the international search

27 SEPTEMBER 2012 (27.09.2012)

Date of mailing of the international search report

28 SEPTEMBER 2012 (28.09.2012)

Name and mailing address of the ISA/KR
' Korean Intellectual Property Office

Authorized officer

189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan JANG Ho Keun
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8187

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2011/055818
Patent document Publication Patent family Publication
cited in search report date member(s) date
JP 2001-051806 A 23.02.2001 None
US 2005-0071593 A1 31.03.2005 US 7010721 B2 07.03.2006
US 2005-0034012 A1 10.02.2005 GB 0318384 DO 10.09.2003
US 2008-0091897 A1 17.04.2008
US 2008-0091982 A1 17.04.2008
US 7346810 B2 18.03.2008
US 7523356 B2 21.04.2009
US 7698604 B2 13.04.2010

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report

