PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 93/01563
GOGF 15/78 ‘ AL | (45) International Publication Date: 21 January 1993 (21.01.93)
(21) International Application Number: PCT/JP92/00870 | (74) Agents: SUZUKI, Kisaburo et al.; Seiko Epson Corpora-
tion, 4-1, Nishi-Shinjuku 2-chome, Shinjuku-ku, Tokyo
(22) International Filing Date: 7 July 1992 (07.07.92) 163 (JP).
(30) Priority data: (81) Designated States: JP, KR, European patent (AT, BE, CH,
726,744 8 July 1991 (08.07.91) UGS DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).

(71) Applicant: SEIKO EPSON CORPORATION [JP/JP]; 4-1,
Nishi-Shinjuku 2-chome, Shinjuku-ku, Tokyo 163 (JP).

(72) Inventors: NGUYEN, Le Trong ; 15096 Danielle Place,
Monte Sereno, CA 95030 (US). LENTZ, Derek, J. ;
17400 Phillips Avenue, Los Gatos, CA 95032 (US). MIY-
AYAMA, Yoshiyuki ; 2171 Rancho McCormick Boule-
vard, Santa Clara, CA 95050 (US). GARG, Sanjiv ;
46820 Sentinel Drive, Freemont, CA 94539 (US). HAGI-
WARA, Yasuaki ; 2250 Monroe Street, Apt. 274, Santa
Clara, CA 95050 (US). WANG, Johannes ; 25 King
Street, Redwood City, CA 94062 (US). TRANG, Quang,
H. ; 2045 Mayfield Avenue, San Jose, CA 95130 (US).
LAU, Te-Li ; 411 College Avenue, Apt. E, Palo Alto, CA
94306 (US).

Published
With international search report.

(54) Title: RISC MICROPROCESSOR ARCHITECTURE WITH ISOLATED ARCHITECTURAL DEPENDENCIES

My
1 108
118 122 e eeaay
25 | !
120 ' 7Py |
o TI6_ 7| ! 152 1464 ' |
102 7 INST | ! ‘ 1| 162
. § OACRE [T~ ..?_,E !
126 124 122.1 | 136 1 [PORT ~lid6, | |
3 v |SWITCH [152:' » PR
- DATA |, R . ' MAU-
120 130 — ‘ ,.. S Y
5 X 222
) N2 12 [‘F .;1 p
104 140 1520 pmen et
128 CCu 106 :'
156 " v
]

(57) Abstract

A microprocessor design technique whereby the major functional modules of a microprocessor architecture are divided in-
to front end and back end portions. The back end portion, which interfaces between the front end portion and memory, is com-
mon to two or more microprocessor designs, and the front end portion, which includes all instruction interpretation and execu-

tion facilities, is different for the different microprocessors.

150 i6o
L i ST

l

110

applications under the PCT.

AT
AU
88
BE
BF
BG
BJ

BR
CA
CF
CcG
CH
Cl

C™M
Cs

DE
DK
ES

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the fiont pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Fasv
Bulgarta

Benin

Bravil

Canada
Central African Republic
Congo
Switzerland
Cote dlivoire
Cameroon
Czechoslovakia
Germany
Denmark
Spain

Fl

FR
GA
GB
GN
GR
HU
IE

JP
Kp

KR
Ll
LK
LU
MC
MG

Finland

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Ircland

Italy

Japan

Democratic People’s Republic
of Korea
Republic of Korea
Licchtenstein

Sri Lanka
Luxcmbourg
Monaco
Madagascar

Ml
MN
MR
MW
NL
NO
PL
RO
RU
sD
SE
SN
Su
TD
TG
us

Muli

Mongolia
Mauritania

Malawi
Nctherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Scanegal

Sovict Union

Chad

Togo

United States of America

-

o

-y’

10

WO 93/01563 -1- ' PCT/JP92/00870

DESCRIPTION
RISC MICROPROCESSOR ARCHITECTURE WITH

ISOLATED ARCHITECTURAL DEPENDENCIES

R - °

This Application is related to the following
applications, all of which are assigned to the assignee
of the opresent application, and all of which are
incorporated herein by reference:

1. HIGH-PERFORMANCE RISC MICROPROCESSOR

ARCHITECTURE, invented by Le T. Nguyen et al, SMOS 7984
MCF/GBR, Application Serial Number 07/72%. 006, filed

08 July 1991;

2. EXTENSIBLE RISC MICROPROCESSOR ARCHITECTURE,
invented by Le T. Nguyen et al, SMOS 7985 MCF/GER,
Application Serial Numbexr Q7 /757 ,058, filed (08 July 1991 ;

3. RISC MICROPROCESSOR ARCHITECTURE IMPLEMENTING

MULTIPLE TYPED REGISTER SETS, invented by Sanjiv Garg et al,

WO 93/01563

10

15

20

25

-2
SMOS 7988 MCF/GBR/RCC, Application Serial Number
07/726,773 filed 08 July 1991;

4. RISC MICROPROCESSOR ARCHITECTURE IMPLEMENTING
FAST TRAP AND EXCEPTION STATE, invented by Le T. Nguyen
et al, SMOS 7989 MCF/GBR/WSW, Application Serial Number
Q7,726 . 942, filed Q8 July 1991;

5. SINGLE CHIP PAGE PRINTER CONTROLLER, invented by
Derek J. Lentz et al, SMOS 7991 MCF/GBR/HEKW, Application
Serial Number 077726 929, fileg 08 July 1991,

6. MICROPROCESSOR ARCHITECTURE CAPABLE OF
SUPPORTING HETEROGENEOUS PROCESSORS, invented by Derek

J. Lentz et al, SMOS 7992 MCF/WMB, Application Serial

Number 07 / 726 893, filed 08 July 1991

1. ield he Inven
The present invention relates to microprocessor
architectures, and more particularly, to a modular
microprocessor architecture capable of easy modification

to satisfy differing microprocessor requirements.

2. Description of Related Art

When a manufacturer designs a microprocessor,

the process tvpicallv beains with a new instruction set

PCT/JP92/00870

s

-

o

3

WO 93/01563 7 PCT/JP92/00870

-3-
and architectural definition, setting forth the major
functional blocks and their interconnections. Each of
the functional blocks is then designed at a logic or
circuit level and optimized for the particular
5 microprocessor architecture defined. The entire process
typically begins anew each time a new microprocessor is
to be designed. This process can be very time consuming
and error-prone, which undesirably lengthens the amount
of time necessary to bring the product to market.

10 In the field of integrated circuit design in
general, designers have attempted to reduce the time to
market for the design of new products by creating and
using libraries of macrocells and standard cells. These
are pre-defined and pre-designed circuit portions which

15 a designer can call up on a computer-aided design (CAD)
system and insert as desired in a larger integrated
system. Macrocells and standard cells are often made
available for SSI functional blocks, such as individual
logic gates, as well as some MSI and LSI blocks such as

20 RAMs and PLAs. These small functionmal blocks are useful
for designing new microprocessors and other circuits,
but they do not significantly reduce the overall time
regqguired to comélete the product and bring it to market.
In q' few instances, it is believed that a full

25 microprocessor, or at least a bit-slice portion of a

microprocessor, has been defined as a standard cell.

PCT/JP92/00870

WO 93/01563

10

15

20

25

-4 -
These, however, are limited in application to a single
microprocessor architecture &and minor variations
thereof. Certainly the instruction set and the
resources available cannot be easily changed. Various
VLSI design methodologies are described in Weste, et

al., Pri {p] £ CMOS__VLSI Desji 2 Syst

Perspective, ©pp. 236-255 (1988), incorporated by

reference herein.

UMMAR F_THE

According to the invention, the microprocessor is
designed in a modular fashion which permits major
functional portions of the microprocessor to be reused
with little or no modification in the design of a second
microprocessor architecture. In particular, the
architecture is divided into front end and back end
portions, the front end including an instruction
processor unit (IPU) and the back end including I/0 and
memory interface modules. The front end portion might
include an dinstruction fetch unit (IFU) and an
instruction execution unit (IEU), and possibly a virtual
memory unit (VMU} for translating addresses from a
virtual to a physical form. The back end portion, in
turn“fmay include a cache control unit (CCU) and a
memory control unit (MCU) coupled between the CCU and

memory. The back end portion responds to instruction

-

-

WO 93/01563 , PCT/JP92/00870

-5~

fetch requests from the front end, and returns the
fetched instruction information back to the front end.

The IPU then processes the instruction information
returned from the back end according to its own

5 instruction set and using its own internal techniques.
The IPU does not need to know how the back end is
fetching the instructions, and the back end does not

need to know’,how the IPU is interpreting the
instructions or generating addresses for the CCU. The

10 back end may also respond to read and write data
requests from the IPU. Again, the IPU need not know how

the back end is reading or writing the data pursuant to

the requests, or even whether they are being cached.
Similarly, the back end does not need to know the

15 purpose or use of the read and write requests made by
the IPU. It can be seen that using this modular design
technique, a back end portion designed for one
particular microprocessor arbhitecture can be used
substantially without change to implement a second

20 microprocessor architecture which need not be at all
similar to the first. 1In particular, two different IPUs

can De deéigned to implement entirely different
instruction sets, even with differing fixed or variable
leng;ﬁrinstructions and different addressing schemes.

25 Time to market is significantly reduced because it is

not necessary to.design the back end portion more than

WO 93/01563 PCT/JP92/00870

-6-
once. Similarly, two different back end portions might
be designed for use with a single front end portion to

provide a range of two or more performance options for

customers.
5
BRIEF DESCRIPTION OF THE DRAWINGS

These and other advantages and features of the
present inventi9n will become better understood upon
consideration af the following detailed description of

10 the invention when considered in connection of the
accompanying drawingé, in which like reference numerals
designate like parts throughout the figures thereof, and
wherein:

Figure 1 is a simplified block diagram of the

15 preferred microprocessor architecture implementing the
present invention;

Figure 2 is a detailed block diagram of the
instruction fetch unit constructed in accordance with
the present invention;

20 Figure 3 is a block diagram of the program counter
logic unit constructed in accordance with the present
invention;

Figure 4 is a further detailed block diagram of the
progréﬁ counter data and control path logic;

25 Figure 5 is a simplified block diagram of the

instruction execution unit of the present invention;

r

WO 93/01563

10

15

20

25

-7-

Figure 6a is a simplified block diagram of the
register file architecture utilized in a preferred
embodiment of the present invention. '

Figure 6b is a graphic illustration of the storage
register format of the temporary buffgr register file
and utilized in a preferred embodiment of the present
invention;

Figure 6c igra graphic illustration of the primary
and secondary instruction sets as present in the last
two stages of the instruction FIFO unit of the present
invention;

Figures 7a-c provide a graphic illustration of the
reconfigurable states of the primary integer register
set as provided in accordance with a preferred
embodiment of the present invention;

Figure 8 is a graphic illustration of a
reconfigurable floating point and secondary integer
register set as providéd in accordance with the
preferred embodiment of the present invention;

Figure 9 is a graphic illustration of a tertiary
boolean register set as provided in a preferred
embodiment of the present invention;

Figure 10 is a detailed block diagram of the primary
integé& processing data path portion of the instruction
execution unit constructed in accordance with the

preferred embodiment of the present invention;

PCT/JP92/00870

WO 93/01563

10

15

20

25

-8~

Figure 11 is a detailed block diagram of the primary
floating point data path portion of the instruction
execution unit constructed in accordance with a
preferred embodiment of the present invention;

Figure 12 is a detailed block diagram of the boolean
operation data path portion of the instruction execution
unit as constructed in accordance with the preferred
embodiment of tge present invention;

Figure 13 is a detaileé block diagram of a
load/store unit constructed in accordance with the
preferred embodiment of the present invention;

Figure 14 is a timing diagram illustrating the
preferred sequence of operation of a preferred
embodiment of the present invention in executing
multiple instructions in accordance with the present
invention;

Figure 15 is a simplifieé block diagram of the
virtual memory control unit as comstructed in accordance
with the preferred embodiment of the present invention;

Figure 16 is a graphic representation of the
virtually memory control algorithm as utilized in a
preferred embodiment of the present inventiorn;

Figure 17 is a simplified block diagram of the cache

cont;bl unit as utilized in a preferred embodiment of

the present invention.

PCT/JP92/00870

-

WO 93/01563 7 PCT/JP92/00870

-G~
Figure 18 shows a division of the microprocessor
architecture of Figure 1 into front end and back end
portions; and
Figure 19 is a block diagram of a second
5 microprocessor architecture using the same back end

portion as the architecture of Figure 18.

WO 93/01563
I.
5 II.
10
15
20 III.
25
30
35
Iv.
40 V.

-10-

DETAILED DESCRIPTION OF THE INVENTION

Microprocessor Architectural Overview

Instruction Fetch Unit .

IFU Data Path . . .

IFU Control Path . .

IFU/IEU Controeol Interface

PC Logic Unit Detail
1) PF and ExPC Control/Data Unlt Detall
2) PC Control Algorithm Detail

Interrupt and Exception Handling .

A)
B)
C)
D)

E)

1)
2)
3)
4)
5)
6)

Overview e e e e .
Asynchronous Inter*upts
Synchronous Exceptions
Handler Dispatcb and Return
Nesting . . - - - .

List of Traps - e ..

Instruction Execution Unit

A) IEU Data Path Detail .

1) Register File Detail .

2) Integer Data Path Detail .

3) Floating Point Data Path Detall
4) Boolean Register Data Path Detail
B) Load/Store Control Unit e .

C) IEU

1)
2)

Control Path Detail

EDecode Unit Detail

Carry Checker Unit Detall

Data Dependency Checker Unit Detall
Register Rename Unit Detail
Instruction Issuer Unit Detail

Done Control Unit Detail
Retirement Control Unit Detail . . .
Control Flow Control Unit Detail
Bypass Control Unit Detail . .

Virtual Memory Control Unit .

Cache Control Unit « .+ . .

M

ul

ri

f ign

PCT/JP92/00870

11

14
15
20
29
32
36
43
55
55

59
63
67
68

69
75
75
84
88
90
85
98
89
102
103
104
106
109
109
110
111

112
115

117

L3

WO 93/01563

10

15

20

25

30

-11-

The architecture 100 of the present invention
is generally shown in Figure 1. An Instruction Fetch
Unit (IFU) 102 and an Instruétion Execution Unit (IEU)
104 are the principal operative elements of the
architecture 100. A Virtual Memory Umit (VMU) 108,
Cache Control Unit (CCU) 106, and Memory Control Unit
(MCU) 110 are provided to directly support the function
of the IFU 102 and IEU 104. A Memory Array Unit (MAU)
112 is also provided as a generally essential element
for the operatién of the architecture 100, though the
MAU 112 does not directly exist as an integral component
of the architecture 100. That is, in the preferred
embodiments of the present invention, the IFU 102, IEU
104, VMU 108, CCU 106) and MCU 110 are fabricated on a
single silicon die utilizing a conventional 0.8 micron
design rule low-power CMOS process and comprising some
1,200,000 transistors. The standard processor or system
clock speed of the architecture 100 is 40 MHz. However,
in accordance with a preferred embodiment of the present
invention, the internal processor clock speed is 160
MHz.

The IFU 102 is primarily responsible for the
fetching of instructions, the buffering of instructions
pending execution by the IEU 104, and, generally, the
calculation of the next virtual address to be used for
the fetching of next instructions.

In the preferred embodiments of the present
invention, instructions are each fixed at a length of 32
bits. Instruction sets, or “"buckets" of . four
instructions, are fetched by the IFU 102 simultaneously
from an instruction cache 132 within the CCU 106 via a
128 bit wide instruction bus 114. The transfer of
instruction sets is coordinated between the IFU 102 and

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-12-

CCU 106 by control signals provided via a control bus
116. The virtual address of a instruction set to be
fetched is provided by the IFU 102 via an IFU combined
arbitration, control and address bus 118 onto a shared
5 arbitration, control and address bus 120 further coupled
between the IEU 104 and VMU 108. Arbitration for access
to the VMU 108 arises from the fact that both the IFU
102 and IEU 104 utilize the VMU 108 as a common, shared
resource. In the preferred embodiment of the
10 architecture 100, the low order bits defining an address
within a physf&al page of the virtual address are
transferred directly by the IFU 102 to the Cache Control
Unit 106 via the control lines 116. The virtualizing,
high order bits of the virtual address supplied by the
15 IFU 102 are provided by the address portion of the buses
118, 120 to the VMU 108 for translation into a
corresponding physical page address. For the IFU 102,
this physical page address is transferred directly from
the VMU 108 to the Cache Control Unit 106 via the
20 address control lines 122 one-balf internal processor
cycle after the translation recuest is placed with the

VMU 108.
The instruction stream fetched by the IFU 102 is,
in turn, provided via an instruction stream bus 124 to
25 the IEU 104. Control signals are exchanged between the
IFU 102 apd the IEU 104 via controls lines 126. In
addition, certain instruction fetch addresses, typically
those reguiring access to the register file present
within the IEU 104, are provided back to the IFU via a
30 target address return bus within the control lines 126.
The IEU 104 stores and retrieves data with respect
to a data cache 134 provided within the CCU 106 via an
80-bit wide bi-directional data bus 130. The entire
physical address for IEU data accesses is provided via

WO 93/01563

10

15

20

25

30

-13-

an address portion of the control bus 128 to the CCU
106. The control bus 128 also provides for the exchange
of control signals between the IEU 104 and CCU 106 for
managing data transfers. The IEU 104 utilizes the VMU
108 as a resource for converting virtual data address
into physical data addresses suitable for submission to
the CCU 106. The virtualizing ‘portion of the data
address is provided via the arbitration, control and
address bus 120 to the VMU 108. Unlike operation with
respect to the IFU 102, the VMU 108 returns the
corresponding pﬁ}sical address via the bus 120 to the
IEU 104. In the preferred embodiments of the
architecture 100, the IEU 104 reguires the ph}sical
address for use in ensuring that load/store operations
occur in proper program stream order.

The CCU 106 performs the generally conventional
high-level £function of determining whether physical
address defined requests for data can be satisfied from
the instruction and data caches 132, 134, as
appropriate. Where the access reguest can be properly
fulfilled by access to the instruction or data caches
132, 134, the CCU 106 coordinates and performs the data
transfer via the data buses 114, 128.

Where a data access request cannot be satisfied
from the instruction or data caches 132, 134, the CCU
106 provides the porresponding physical address to the

'MCU 110 along with sufficient control information to

identify whether a read or write access of the MAU 112
is desired, the source or destination cache 132, 134 of
the CCU 106 for each request, and additional identifying
information to allow the request operation to be
correlated with the ultimate data request as issued by
the IFU 102 or IEU 104.

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-14-

The MCU 110 preferably includes a port switch unit

142 that is coupled by a uni-directional data bus 136

with the instruction cache 132 of the CCU 106 and a bi-
directional data bus 138 to the data cache 134. The

5 port switch 142 is, in essence, a large multiplexer
allowing a physical address obtained from the control

bus 140 to be routed to any one of a number of ports P,-

P, 146,, and the bi-directional transfer of data from the
ports to the data buses 136, 138. Each memory access

10 request processed by the MCU 110 is associated with one
of the ports 146;\for purposes of arbitrating for access

to the main system memory bus 162 as required for an
access of the MAU 112. Once a data transfer connection

has been established, the MNCU provides control

15 information via the control bus 140 to the CCU 106 to
initiate the transfer of data between either the
instruction or data cache 132, 134 and MAU 112 via the

port switch 142 and the corresponding one of the ports

146,,. In accordance with the preferred embodiments of

20 the architecture 100 the MCU 110 does not actually store
or latch data in transit between the CCU 106 and MAU

112. This is done to minimize latency in the transfer

and to obviate the need for tracking or managing data

that may be uniquely present in the MCU 110.

25
II1. I . Fetch Unit:
The primary elements of the Instruction Fetch
Unit 102 are shown in Figure 2. The operation and
interrelationship of these elements can best be
30 understood by considering their participation in the IFU

data and control paths.

@

WO 93/01563

10

15

20

25

30

-15-
A)_IFU Data Path:

The IPU data path Dbegins with the
instruction bus 114 that receives instruction sets for
temporary storage in a prefetch buffer 260. An
instruction set from the prefetch buffer 260 is passed
through an IDecode unit 262 and then to an IFIFO unit
264. Instruction sets stored in the last two stages of
the instruction FIFO 264 are continuously available, via
the data buses 278, 280, to the IEU 104.

The prefetch buffer unit 260 receives a single
instruction set/at a time from the instruction bus 114.
The full 128 bit wide instruction set is generally
written in parallel to one of four 128 bit wide prefetch
buffer locations in a2 Main Buffer (MBUF) 188 portion of
the prefetch buffer 260. Up to four additional
instruction sets may be similarly written into two 128
bit wide Target Buffer (TBUF) 150 oprefetch buffer
locations or to two 128 bit wids Procedural Buffer
(EBUF) 192 preietch buffer locations. 1In the preferred
architecture 100, an instruction set in any one of the
prefetch buffer locations within the MBUF 188, TBUF 190
or EBUF 192 may be transferred to the prefetch buffer
output bus 196. In addition, a direct fall through
instruction set bus 194 is provided to connect the
instruction bus 114 directly with the prefetch buffer
output bus 196, thereby bypassing the MBUF, TBUF and
EBUY 188, 190, 1892.

In the preferred architecture 100, the MBUF 188 is
utilized to buffer instruction sets ip the nominal or
main instruction stream. The TBUF 190 is utilized to
buffer instruction sets fetched from a tentative target
brancﬁ instruction stream. Consequently, the prefetch
buffer unit 260 allows both possible instruction streams

following a conditional branch instruction to be

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-16-

prefetched. This facility obviates the latency for
further accesses to at least the CCU 106, if not the
substantially greater latency of a MAU 112, for
obtaining the correct next instruction set for execution
5 following a conditional branch instruction regardless of
the particular instruction stream eventually selected
upon resolution of the conditional branch instruction.
In the preferred architecture 100 invention, the
provision of the MBUF 188 and TBUF 190 allow the
10 instruction fetch unit 102 to prefetch both potential
instruction stréams and, as will be discussed below in
relationship to the instruction execution unit 104, to
further allow execution of the ©presumed correct
instruction strean. Where, upon resolution of the
15 conditional branch instruction, the correct instruction
stream has been prefetched into the MBUF 188, any
instruction sets in the TBUF 190 may be simply
invalidated. Alternately, where instruction sets of the
correct instruction stream are present in the TBUF 190,
20 the instruction prefetch buffer unit 260 provides for
the direct, lateral transfer of those instruction sets
from the TBUF 190 to respective buffer locations in the
MBUF 188. The prior M3UF 188 stored instruction sets
are effectively invalidated by being overwritten by the
25 TBUF 190 transferred instruction sets. Where there is
no TBUF instruction set transferred to an MBUF location,

that location is simply marked invalid.
Similarly, the EBUF 192 is provided as another,
alternate prefetch path through the prefetch buffer 260.
30 The EBUF 192 is preferably utilized in the prefetching
of an alternate instruction stream that is used to
implement an operation specified by a single
instruction, a "procedural® instruction, encountered in

the MBUF 188 instruction stream. In this manner,

Pl

WO 93/01563

10

15

20

25

30

-17-

complex or extended instructions can be implemented
through software routines, or procedures, and processed
through the prefetch buffer unit 260 without disturbing
the instruction streams already prefetched into the MBUF
188. Although the present invention generally permits
handling of procedural instructions that are first
encountered in the TBUF 190, prefetching of the
procedural instruction stream is held with all prior
pending conditional branch instructions are resolved.
This allows conditional branch instructions occurring in
the procedural “instruction stream to be consistently
handled through the use of the TBUF 190. Thus, where a
branch is taken in the procedural stream, the target
instruction sets will have been prefetched into the TBUF
190 and can be simply laterally transferred to the EFUF
192.

Finally, each of the MBUF 188, TBUF 190 and EBUF -
192 are coupled to the prefetch buffer output bus 196 so
as to provide any instruction set stored by the prefetch

unit onto the output bus 196. In addition, a flow

through bus 194 is provided to directly transfer an
instruction set from the instruction bus 114 directly
to the output bus 196.

In the preferred architecture 100, the prefetch
buffers within the MBUF 188, fBUF 190, EBUF 192 do not
directly form a FIFO structure. Instead, the provision
of an any buffer location to output bus 196 connectivity
allows substantial freedom in the prefetch ordering of
instruction sets retrieved from the instruction cache
132. That is, the instruction fetch unit 102 generally
determines and regquests instruction sets in the
appropriate instruction stream order of instructions.
However, the order in which instruction sets are

returned to the IFU 102 is allowed to occur out-of-

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-18-

order as appropriate to match the circumstances where
some requested instruction sets are available and
accessible from the CCU 106 alone and others require an
access of the MAU 112.

5 Although instruction sets may not be returned in
order to the prefetch buffer unit 260, the sequence of
instruction sets output on the output bus 196 must
generally conform to the order of instruction set
requests issued by the IFU 102; the in-order instruction

10 stream sequence subject to, for example, tentative
execution of a target branch stream.

The IDecode unit 262 receives the instruction sets,
generally one ©per cycle, IFIFO unit 264 space
permitting, from the prefetch buffer output bus 196.

15 Each set of four instructions that make up a single
instruction set is decoded in parallel by the IDecode
unit 262. While relevant control flow information is
extracted via lines 318 for the benefit of the control
path portion of the IFU 102, the contents of the

20 instruction set is not altered by the IDecode unit 262.

Instruction sets from the IDecode Unit 162 are
provided onto a 128 bit wide input bus 198 of the IFIFO
unit 264. Internally, the IFIFO unit 264 consists of a
sequence of master/slave registers 200, 204, 208, 212,

25 216, 220, 224. Each register is coupled to its
successor to allow the contents of the master registers
200, 208, 216 to be transferred during a first half
internal processor cycle of FIFO operation to the slave
registers 204, 212, 220 and then to the next successive

30 master register 208, 216, 224 during the succeeding
half-cycle of operation. The input bus 198 is connected
to the input of each of the master registers 200, 208,
216, 224 to allow loading of an instruction set from the

IDecode unit 262 directly in to a master register during

¥}

WO 93/01563

10

15

20

25

30

-19-

the second half-cycle of FIFO operation. However,
loading of a master register from the input bus 198 need
not occur simultaneously with a FIFO shift of data
within the IFIFO unit 264. Consequently, the IFIFO unit
264 can be continuously filled from the input bus 198
regardless of the current depth of instruction sets
stored within the instruction FIFO unit 264 and,
further, independent of the FIFO shifting of data
through the IFIFO unit 264.

Each of the master/slave registers 200, 204, 208,
212, 216, 220, “224, in addition to providing for the
full parallel storage of a 128 bit wide instruction set,
also provides for the storage of several bits of control
information in the respective control registersrébz,
206, 210, 214, 218, 222, 226. The preferred set of
control bits include exception miss and exception
modify, (VMU), no memory (MCU), branch bias, stream, and
offset (IFU). This control information originates from
the control path portion of the IFU 102 simultaneous
with the loading of an IFIFO master register with a new
instruction set from the input bus 198. Thereafter, the
control register information is shifted .in parallel
concurrently with the instruction sets through the IFIFO
unit 264.

Finally, in the preferred architecture 100, the
output of instruction sets from the IFIFO unit 264 is
obtained simultaneously from the last two master
registers 216, 224 on the I_Bucket 0 and I_Bucket_ 1
instruction set output buses 278, 280. 1In addition, the
correspénaing control register information is provided
on the, IBASVO and IBASV1 control field buses 282, 284.
These;output buses 278, 282, 280, 284 are all provided
as the instruction stream bus 124 to the IEU 104.

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-20-

iF ntrol

The control path for the IFU 102 directly

supports the operation of the prefetch buffer unit 260,
IDecode unit 262 and IFIFO unit 264. A prefetch control

5 logic unit 266 primarily manages the operation of the
prefetch buffer unit 260. The prefetch control logic
unit 266 and IFU 102 iﬁ general, receives the system
clock signal via the clock line 290 for synchronizing

IFU operations with these of the IEU 104, CCU 106 and

10 VMU 108. Control signals appropriate for the selection
and writing of i#hstruction sets into the MBUF 188, TBUF

190 and EBUF 192 are provided on the control lines 304.

A number of control éignals are provided on the

control 1lines 316 to the prefetch control logic unit
15 266. Specifically, a fetch request control signal is
provided to initiate a prefetch operation. Other
control signals provided on the control line 316
identify the intended destination of the requested
prefetch operation as being the MBUF 188, TBUF 190 or
20 EBUF 192. In response to a prefetch reguest, the
prefetch control logic unit 266 generates an ID value
and determines whether the prefetch reguest can be
posted to the CCU 106. Generation of the ID value is
accomplished through the use of a circular four-bit
25 counter.

The use of a four-bit counter is significant in
three regaréds. The first is that, typically a maximum
of nine instruction sets may be active at one time in
the prefetch buffer unit 260; four instruction sets in

30 the MBUF 188, twc in the TBUF 190, two in the EBUF 192
and one provided directly to the IDecode unit 262 via
the flow through bus 194. Secondly, instruction sets
include four instructions of <four bytes each.

Consequently, the least significant four bits of any

¥

WO 93/01563

10

15

20

25

30

-21-

address selecting an instruction set for fetching are
superfluous. Finally, the prefetch request ID value can
be easily associated with a prefetch request by
insertion as the least significant four bits of the
prefetch request address; thereby reducing the total
number of address lines required to interface with the
CCU 106.

To allow instruction sets to be returned by the CCU
106 out-of-order with respect to the sequence of
prefetch reguests issued by the IFU 102, the
architecture léb provides for the return of the 1ID
request value with the return of instruction sets from
the CCU 106. However, the out-of-order instruction set
return capability may result in exhaustion of the
sixteen unique 1IDs. A combination of conditional
instructions executed out-of-order, resulting in
additional prefetches and instruction sets requested but
not yet returned can lead to potential re-use of an ID
value. Therefore, the four-bit counter is preferably
held, and no further instruction set prefetch requests
issued, where the next ID value would be the same as
that associated with an as yet outstanding fetch request
or another instruction set then pending in the prefetch
buffer 260.

The prefetch control 1logic unit 266 directly
manages a prefetch status array 268 which contains
status storage locations logically corresponding to each
instruction set prefetch buffer location within the MBUF
1868, TBUF 190 and EBUF 192. The prefetch control logic
unit 266, via selection and data lines 306, can scan,
read and write data to the status register array 268.
Withiﬁ the array 268, a main buffer register 308
provides for storage of four, four-bit ID values (MB
ID), four singlejbit reserved flags (MB RES) and four

PCT/JP92/00870

PCT/JP92/00870

WO 93/01563

10

20

" 25

30

-22-

single-bit valid flags (MB VAL), each corresponding by
logical bit-position to the respective instruction set
storage locations within the MBUF 180. Similarly, a
target buffer register 310 and extended buffer register
312 each provide for the storage of two four-bit 1ID
values (TB ID, EB ID), two single-bit reserved flags (TB
RES, EB RES), and two single-bit valid flags (TB VAL, EB
VAL) . Finally, a flow through status register 314
provides for the storage of a single four-bit ID value
(FT ID), a single reserved flag bit (FT RES)}, and a
single valid flag bit (FT VAL).

The status register array 268 is first scanned and,
as appropriate, updated by the prefetch control logic
unit 266 each time a prefetch request is placed with the
CCU 106 and subsequently scanned and updated each time
an instruction set is returned. Specifically, upon
receipt of the prefetch request signal via the control
lines 316, the prefetch control 1logic unit 216
increments the current circular counter generazted ID
value, scans the status register array 268 to determine
whether the ID value is available for use and whether a
prefetch buffer location of the type specified by the
prefetch request signal is available, examines the state
of the CCU IBUSY control line 300 to determine whether
the CCU 106 can accept a prefetch reguest and, if so,
asserts a CCU IREAD control sigmal on the control line
298, and places the incremented ID value on the CCU ID
out bus 294 to the CCU 106. 2 prefetch storage location
is availabie for use where both of the corresponding
reserved and valid status flags are false. The prefetch
request ID is written into the ID storage location
within the status register array 268 corresponding to
the intended storage location within the MBUF 188, TBUF
190, or EBUF 192 concurrent with the placement of the

L3}

WO 93/01563

10

15

20

25

30

-23-

request with the CCU 106. In addition, the
corresponding reserved status flag is set true.

When the CCU 106 is able to return a pfeviously
requested instruction set to the IFU 102, the CCU IREADY
signal 1is asserted on control line 302 and the
corresponding instruction set ID is provided on the CCU
ID control lines 296. The prefetch control logic unit
266 scans the ID values and reserved flags within the
status register array 268 to identify the intended
destination of the instruction set within the prefetch
buffer unit 260. Only a single match is possible. Once
identified, the/instruction set is written via the bus
114 into the appropriate location within the prefetch
buffer unit 260 or, if identified as a flow through
request, provided directly to the IDecode unit 262. 1In
either case, the valid status flag in the corresponding
status register array is set true.

The PC logic unit 270, as will be described below
in greater detail, tracks the virtual address of the
MBUF 188, TBUF 190 and EBUF 192 instruction streams
through the entirety of the IFU 102. 1In performing this
function, the PC logic block 270 both controls and
operates from the IDecode unit 262. Specifically,
portions of the instructions decoded by the IDecode unit
262 potentially relevant to a change in the program
instruction stream flow are provided on the bus 318 to
a control flow detection unit 274 and directly to the PC
logic block 270. The control flow detection unit 274
identifies each instruction in the decoded instruction
set that constitutes a control flow instruction
including conditional and unconditional branch
instructions, call type instructions, software traps
procedural instructions and various return instructions.
The control flow detection unit 274 provides a control

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-24-

signal, via 1lines 322, to the PC logic unit 270 to
identify the location and specific nature of the control

flow instructions within the instruction set pfesent in

the IDecode unit 262. The PC logic unit 270, in turn,

5 determines the target address of the control flow
instruction, typically from data provided within the
instruction and transferred to the PC logic unit via

lines 318. Where, for example, a branch logic bias has

been selected to execute ahead for conditional branch

10 instructions, the PC logic unit 270 will begin to direct
and separately track the prefetching of instruction sets

from the conditf;nal branch instruction target address.

Thus, with the next assertion of a prefetch request on

the control 1lines 316, the PC logic unit 270 will

15 further assert a control signal, wvia lines 316,
selecting the destination of the prefetch to be the TBUF

190, assuming that prior prefetch instruction sets were
directed to the MBUF 188 or EBUF 192. Once the prefetch
control 1logic unit 266 determines that a prefetch

20 request can be supplied to the CCU 106, the prefetch
control 1logic unit 266 provides an enabling signal,

again via lines 316, to the PC logic unit 270 to enable

the provision of a page offset portion of the target
address (CCU PADDR {13:4])) via the address lines 324

25 directly to the CCU 106. At the same time, the PC logic
unit 270, where a new virtual to physical page
translation is regquired further provides a VMU request
signal via control line 328 and the virtualizing portion

of the target address (VMU VADDR ([31:14]) wvia the

30 address lines 326 to the VMU 108 for translation into a
pbysical address. KRhere a page translation is not
recuired, no operation by the VMU 108 is required.

Rather, the previous translation result is maintained in

<)

WO 93/01563

10

15

20

25

30

-25-

an output latch coupled to the bus 122 for immediate use

by the CCU 106. ' ,
Operational errors in the VMU 108 in perqum}ng the

virtual to physical translation requested by the PC

logic unit 270 are reported via the VMU exception and
VMU miss control lines 332, 334. The VMU miss control

line 334 reports a traﬂslation lookaside buffer (TLB)
miss. The VMU exception control signal, on VMU exception
line 332, is raised for all other exceptions. In both
cases, the PC logic unit handles the error condition by
storing the currlent execution point in the instruction
stream and then prefetching, as if in response to an
unconditional branch, a dedicated exception handling
routine instruction stream for diagnosing and handling

the error condition. The VMU exception and miss control

"signals identify the general nature of the exception

encountered, thereby allowing the PC logic unit 270 to
identify the prefetch address of a corresponding
exception handling routine.

The IFIFO control logic unit 272 is provided to
directly support the IFIFO unit 264. Specifically, the
PC logic unit 270 provides a control signal via the
control lines 336 to signal the IFIFO control logic unit
272 that an instruction set is available on the input
bus 198 from the IDecode unit 262. The IFIFO control
unit 272 is responsible for selecting the deepest
available master register 200, 208, 216, 224 for receipt
of the instruction set. The output of each of the
master control registers 202, 210, 218, 226 is provided
to the IFIFO control unit 272 via the control bus 338.
The control bits stored by each master control register
includes a two-bit buffer address (IF_Bx_ADR), a single
stream indicator bit (IF_Bx_STRM), and a single valid
bit (IF_Bx_VLD). The two bit buffer address identifies

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-26-

the first valid instruction within the corresponding
instruction set. That is, instruction sets returned by
the CCU 106 may not be aligned such that the target
instruction of a branch operation, for example, is

5 located in the initial instruction location within the
instruction set. Thus, the buffer address value is
provided to uniquely identify the initial instruction
within an instruction set that is to be considered for
execution.

10 The stream bit is used essentially as a marker to
identify the ldéation of instruction sets containing
conditional control flow instructions, and giving rise

to potential control flow changes, in the stream of

instructions +through the IFIFO unit 264. The main
15 instruction stream is processed through the MBUF 188
generally with a stream bit value of O. On the

occurrence of a relative conditional branch instruction,
for example, the corresponding instruction set is marked
with a stream bit value of 1. The conditional branch

20 instruction is detected by the IDecode unit 262. Up to
four conditional control flow instructions may be
present in the instruction set. The instruction set is
then stored in the deepest available master register of
the IFIFO unit 264. .

25 In order to determine the target address of the
conditional branch instruction, the current IEU 104
execution point address (DPC), the relative location of
.fie conditional instruction containing instruction set
as identified by the stream bit, and the conditional

30 instruction location offset in the instruction set, as
provided by the control flow detector 274, are combined
with the relative branch offset value as obtained from
a corresponding branch instruction field via control

lines 318. The. result is a branch target wvirtual

)

WO 93/01563 ' PCT/JP92/00870

-27~

address that is stored by the PC logic unit 270. The
initial instruction sets of the target instruction
stream may then be prefetched into the TBUF 190
utilizing this address.

5 Depending on the preselected branch bias selected
for the PC logic unit 270, the IFIFO unit 264 will
continue to be loaded from either the MBUF 188 or TBUF
190. If a second instruction set containing one or more
conditional flow instructions is encountered, the

10 instruction set is marked with a stream bit value of 0.
Since a second ‘target stream cannot be fetched, the
target address is calculated and stored by the PC logic
unit 270, but no prefetch is performed. 1In addition, no
further instruction sets can be processed through the

15 IDecode unit 262, or at least none that are found to
contain a conditional flow control instruction.

The PC logic unit 270, in the preferred embodiments
of the present invention, can manage upto eight
conditional £flow instructions occurring in upto two

20 instruction sets. The target addresses for each of the -
two instruction sets marked by stream bit changes are
stored in an array of four address registers with each
target address positioned logically with respect to the
location of the corresponding conditional flow

25 instruction in the instruction set.

Once the branch result of the first in-order
conditional flow instruction is resolved, the PC logic
unit 270 will direct the prefetch control unit 260, via
control signals on lines 316, to transfer the contents

30 of the TBUF 190 to the MBUF 188, if the branch is taken,
and to mark invalid the contents of the TBUF 190. Any
instrﬁction sets in the IFIFO unit 264 from the
incorrect instruction streanm, target stream if <the
branch is not taken and main stream if the branch is

WO 93/01563 PCT/JP92/00870

-28-

taken, are cleared from the IFIFO unit 264. If a second
or subsequent conditional flow control instruction
exists in the first stream bit marked instruction set,
that instruction is handled in a consistent manner: the
5 instruction sets from the target stream are prefetched,
instruction sets from the MBUF 188 or TBUF 190 are
processed through the IDecode unit 262 depending on the
branch bias, and the IFIFO unit 264 is cleared of
incorrect stream instruction sets when the conditional
10 flow instruction finally resolves.

If a secondary conditional flow instruction set
remains in the IFIFO unit 264 once the IFIFO unit 264 is
cleared of incorrect stream instruction sets, and the
first conditional flow instruction set contains no

15 further conditional flow instructions, the target
addresses of the second stream bit marked instruction
set are promoted to the first array of address
registers. In any case, a next instruction set
containing conditional flow instructions can then be

20 evaluated through the IDecode unit 262. Thus, the
toggle usage of the stream bit allows potential control
flow changes to be marked and tracked through the IFIFO
unit 264 for purposes of calculating branch target
addresses and for marking the instruction set location

25 above which to <clear where the branch bias is
subsequently determined to have been incorrect for a
particular conditional flow control instruction.

Rather than actually clearing instruction sets from
the master registers, the IFIFO control logic unit 272

30 simply resets the valid bit flag in the control
registers of the corresponding master registers of the
IFIFO unit 264. The clear operation is instigated by
the PC logic unit 270 in a control signal provided on
lines 336. The inputs of each of the master control

&

)

WO 93/01563

10

15

20

25

30

-29-

registers 202, 210, 218, 226 are directly accessible by
the IFIFO control logic unit 272 via the status bus 230.
In the preferred architecture 100, the bits within these
master control registers 202, 210, 218, 226 may be set
by the IFIFO control unit 272 concurrent with or
independent of a data shift operation by the IFIFO unit
264. This capability allows an instruction set to be
written into any of the master registers 200, 208, 216,
224, and the corresponding status information to be
written into thg,master control registers 202, 210, 218,
226 asynchronously with respect to the operation of the
IEU 104.

Finally, an additional control line on the control
and status Dbus 230 enables and directs the FIFO
operation of the IFIFO unit 264. An IFIFO shift is
performed by the IFIFO control 1logic unit 272 in
response to the shift regquest control signal provided by
the PC logic unit 270 via the control lines 336. The
IFIFO control unit 272, based on the availability of a
master register 200, 208, 216, 224 to receive an
instruction set provides a control signal, via lines
316, to the prefetch control unit 266 to request the
transfer of a next appropriate instruction set from the
prefetch buffers 260. On transfer of the instruction
set, the corresponding valid bit in the array 268 is

reset.

C) IFU/IEU Control Interface;

The control interface between the IFU 102 and
IEU 104 is provided by the control bus 126. This
control bus 126 is coupled to the PC logic unit 270 and
consiéts of a number of control, address and specialized
data lines. Interrupt request and acknowledge control
signals, as passed via the control lines 340, allow the

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-30-

IFU 102 to signal and synchronize interrupt operations
with the IEU 104. An externally generated interrupt
signal is provided on a line 292 to the logic unit 270.
In response, an interrupt request control signal,
5 provided on lines 340, causes the IEU 104 to cancel
tentatively executed . instructions. Information
regarding the nature of an interrupt is exchanged via
interrupt information lines 341. When the IEU 104 is
ready to begin receiving instruction sets prefetched

10 from the interrupt service routine address determined by
the PC logic unit 270, the IEU 104 asserts an interrupt
acknowledge control signal on the lines 340. Execution
of the interrupt service routine, as prefetched by the
IFU 102, will then commence.

15 An IFIFO read (IFIFO RD) control signal is provided
by the IEU 104 to signal that the instruction set
present in the deepest master register 224 has been
completely executed and that a next instruction set is
desired. Upon receipt of this control signal, the PC

20 logic unit 270 directs the IFIFO control logic unit 272
to perform a IFIFO shift operation on the IFIFO unit
264.

A PC increment request and size value (PC INC/SIZE)
is provided on the control lines 344 to direct the PC

25 logic unit 270 to update the current program counter
value by a corresponding size number of instructions.
This allows the PC logic unit 270 to maintain a point of
execution program counter (DPC) that is precise to the
location of the first in-order executing instruction in

30 the current program instruction stream.

2 target address (TARGET ADDR) is returned on the
address lines 346 to the PC logic unit 270. The target
address is the virtual target address of a branch

instruction that depends on data stored within the

@

WO 93/01563

10

15

20

25

30

-31-

register file of the IEU 104. Operation of the IEU 104
is therefore required to calculate the target address.

Control flow result (CF RESULT) control signals are
provided on the control lines 348 to the PC logic unit
270 to identify whether any currently pending
conditional branch instruction has been resolved and
whether the result is either a branch taken or not
taken. Based on these control signals, the PC logic
unit 270 can determine which of the instruction sets in
the prefetch buffer 260 and IFIFO unit 264 must be
cancelled, if aﬁrall, as a consequence of the execution
of the conditional flow instruction.

A number of IEU instruction return type control
signals (IEU Return) afe provided on the control lines
350 to alert the IFU 102 to the execution of certain
instructions by the IEU 104. These instructions include
a return from procedural instruction, return from trap,
and return from subroutine call. The return from trap
instruction is used equally in hardware interrupt and
software trap handling routines. The subroutine call
return is also used in conjunction with jump-and-link
type calls. In each case, the return control signals
are provided to alert the IFU 102 to resume its
instruction fetching operation with respect to the
previously interrupted instruction stream. Origination
of the signals from the IEU 104 allows the precise
operation of the system 100 to be maintained; the
resumption of an “interrupted* instruction stream is
performed at the point of execution of the return
instruction.

A current instruction execution PC address (Current
IFPC):is provided on an address bus 352 to the IEU 104.
This address value, the DPC, identifies the precise

instruction being executed by the IEU 104. That is,

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-32-

while the IEU 104 may tentatively execute ahead
instructions past the current IFPC address, this address
must be maintained for purposes of precise control of
the architecture 100 with respect to the occurrence of
5 interrupts, exceptions, and any other events that would
require knowing the precise state-of-the-machine. When
the IEU 104 determines that the precise state-of-the-
machine in the currently executing instruction stream
can be advanced, the PC Inc/Size signal is provided to
10 the IFU 102 and immediately reflected back in the
current IFPC address value.
Finally, an address and bi-directional data bus 354
is provided for the transfer of special register data.
This data may be programmed into o:r read from special
15 registers within the IFU 102 by ths IEU 104. Special
register data is generally loaded or calculated by the
IEU 104 for use by the IFU 102.

D) PC Logic Unjit Detajl:
20 A detailed diagram of the PC Logic unit 270

including a PC control unit 362, interrupt control unit
363, prefetch PC control unit 364 and execution PC
control unit 366, is shown in Figure 3. The PC control
unit 362 provides timing control over the prefetch and
25 execution PC control units 364, 366 in response to
control signals from the prefetch control logic unit
266, IFIFO control logic unit 272, and the IEU 104, via
the interface bus 126. The Interrupt Control Unit 363
is responsible for managing the precise processing of
30 interrupts and exceptions, including the determination
of a prefetch trap address offset that selects an
appropriate handling routine to process a respective
type of trap. The prefetch PC control unit 364 is, in

particular, responsible for managing program counters

WO 93/01563 | PCT/JP92/00870

~33-

necessary to support the prefetch buffers 188, 190, 192,
including storing return addresses for traps bandling
and procedural routine instruction flows. 1In support of
this operation, the prefetch PC control unit 364 is

wn

responsible for generating the prefetch virtual address
including the CCU PADDER address on the physical address
bus lines 324 and the VMU VMADDR address on the address
lines 326. Consequently, the prefetch PC control unit
364 is responsible for maintaining the.current prefetch
10 PC virtual address value.

The prefetch operation is generally initiated by
the IFIFO control logic unit 272 via a control signal
provided on the control lines 316. In response, the PC
control unit 362 generates a number of control signals

15 provided on the control 1lines 372 to operzte the
prefetch PC control unit 364 to generaﬁe the PADDR and,
as needed, the VMADDR addresses on the address lines
324, 326. An increment signal, having a value of 0 to
four, may be also provided on the control lines 374

20 depending on whether the PC control unit 362 is re-
executing an dinstruction set fetch at the present
prefetch address, aligning for the second in a series of
prefetch requests, or selecting the next full segquential
instruction set for prefetch. Finally, the current.

25 prefetch address PF_PC is provided on the bus 370 to the
execution PC control unit 366.

New prefetch addresses originate from a number of
sources. A primary source of addresses is the current
IF_PC address provided from the execution PC control

30 unit 366 via bus 352. Principally, the IF_PC address
provides a return address for subSequent use by the
prefeich PC control unit 364 when an initial call, trap
or procedural instruction occurs. The IF_PC address is

stored in registers in the prefetch PC control unit 364

WO 93/01563 . PCT/JP92/00870

-34-

upon each occurrence of these instructions. In this
manner, the PC control unit 362, on receipt of a IEU
return signal, via control lines 350, need merely select
the corresponding return address register within the
5 prefetch PC control unit 364 to source a new prefetch
virtual address, thereby resuming the original program

instruction stream.
Another source of prefetch addresses is the target
address value provided on the relative target address
10 bus 382 from the execution PC control unit 366 or on the
absolute target -address bus 346 provided from the IEU
104. Relative target addresses are those that can be
calculated by the execution PC control unit 366
directly. Absolute target addresses must be generated
15 by the IEU 104, since such target addresses are
dependant on data contained in the IEU register file.
The target address is routed over the target address bus
384 to the prefetch PC control unit 364 for use as a
prefetch virtual address. In calculating the relative
20 target address, an operand portion of the corresponding
branch instruction is also provided on the operand
displacement portion of the bus 318 from the IDecode

unit 262.

Another source of prefetch virtual addresses is the
25 execution PC control unit 366. A return address bus
352’ is provided to tramsfer the current IF_PC value
(DPC) to the prefetch PC control unit 364. This address
is utilized as a return address where an interrupt, trap
or other control flow instruction such as a call has
30 occurred within the instruction stream. The prefetch PC
control upit 364 is then free to prefetch a new
instruction stream. The PC control unit 362 receives an
IEU return signal, via lines 350, from the IEU 104 once

the corresponding interrupt or trap handling routine or

WO 93/01563 PCT/JP92/00870

-35-

subroutine has been executed. In turn, the PC control

unit 362 selects, via one of the PFPC control signals on

line 372 and based on an identification of the return

instruction executed as provided via lines 350, a

5 register containing the current return virtual address.

This address is then used to continue the prefetch
operation by the PC logic unit 270.

Finally, another source of prefetch virtual

éddresses is from the special register-address and data

10 bus 354. An address value, or at least a base address
value, calculated or loaded by the IEU 104 is
transferred as data via the bus 354 to the prefetch PC
control unit 364. The base addresses include the base
addresses for the trap address table, a fast trap table,

15 and a base procedural instruction dispatch table. The
bus 354 also allows many of the registers in the
prefetch and execution PC control units 364, 366 to be
read to allow corresponding aspects of the state-of-
the-machine to be manipulated through the IEU 104.

20 The execution PC control unit 366, subject to the
control of the PC control unit 362 is primarily
responsible for calculating the current IF_PC address
value. In this role, the execution PC control unit 366
responds to control signals provided by the PC control

25 unit 362 on the ExPc —control 1lines 378 and
increment/size control signals provided on the control
lines 380 to adjust the IF_PC address. These control
signals are generated primarily in response to the IFIFO
read control signal provided on line 342 and the PC

w

increment/size value provided on the control lines 344
from the IEU 104.

WO 93/01563 PCT/JP92/00870

-36-

1) PF and ExXPC Control/Data Unit Detail:
Figure 4 provides a detailed block

diagram of the prefetch and execution PC control units

364, 366. These units primarily consist of registers, .
5 incrementors and the like, selectors and adder blocks.
Control for managing the transfer of data between these
blocks is provided by the PC Control Unit 362 via the
PFPC control lines 372, the ExPC Control lines 378 and
the Increment Control lines 374, 380.- For purposes of
10 clarity, those specific control lines are not shown in
the block diagram of Figure 4. However, it should be
understood that these control signals are provided to

the blocks shown as described herein.

Central to the prefetch PC control unit 364 is a
15 prefetch selector (PF_PC SEL) 390 that opefates as a
central selector of the current prefetch wvirtual
address. This current prefetch address is provided on
the output bus 392 from the prefetch selector to an
incrementor unit 394 to generate a mnext prefetch
20 address. This next prefetch address is provided on the
incrémentor output bus 396 to a parallel array of
registers MBUF PFnPC 398, TBUF PFnPC 400, and EBUF PFnPC
402. These registers 398, 400, 402 effectively store
the next instruction prefetch address. However, in
25 accordance with the preferred embodiment of the present
invention, separate prefetch addresses are held for the
MBUF 188, TBUF 190, and EBUF 192. The prefetch
addresses, as stored by the MBUF, TBUF and EBUF PFnPC
registers 398, 400, 402 are respectively provided by the
30 address buses 404, 408, 410 to the prefetch selector
390. _ Thus, the PC control unit 362 can direct an
immediate switch of the prefetch instruction stream
merely by directing the selection, by the prefetch
selector 390, of another one of the prefetch registers

WO 93/01563

15

20

25

30

-37-
398, 400, 402. Once that address value has been
incremented by the incrementor 394, if a next
instruction set in the stream is to be prefetched, the
value is returned to the appropriate one of the piefetch
registers 398, 400, 402. Another parallel array of
registers, for simplicity shown as the single special
register block 412, is provided to store a number of
special addresses. The register block 412 includes a
trap return address register, a procedural instruction
return address register, a procedural instruction
dispatch table “base address register, a trap routine
dispatch table base address register, and a fast trap
routine table base address register. Under the control
of the PC control unit 362, these return address
registers may receive the current IFPC execution address
via the bus 352'. The address values stored by the
return and base address registers within the register
block 412 may be both read and written independently by .
the IEU 104. The register are selected and values
transferred via the special register address and data
bus 354.

A selector within the special register block 412,
controlled by the PC control unit 362, allows the
addresses stored by the registers of the register block
412 to be put on the special register output bus 416 to
the oprefetch selector 390. Return addresses are
provided directly to the prefetch selector 390. Base
address values are combined with the offset value
provided on the interrupt offset bus 373 from the
interrupt control unit 363. Once sourced to the
prefetch selector 390 via the bus 373’, a special
address can be used as the initial address for a new

prefetch instruction stream by thereafter continuing the

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-38-

incremental loop of the address through the incrementor

394 and one of the prefetch registers 398, 400, 402.
Another source of addresses to the prefetch
selector 390 is an array of registers within the target
5 address register block 414. The target registers within
the block 414 provide for storage of, in the preferred
embodiment, eight potential branch target addresses.
These eight storage locations logically correspond to
the eight potentially executable instructions held in
10 the lowest two master registers 216, 224 of the IFIFO
unit 264. Sincé any, and potentially all oI the those
instructions could be conditional branch inctuctions,
the target register block 414 allows for their
precalculated target addresses to be stored awaiting use
15 for fetching of a target instruction stream through the
TBUF 190. In particular, if a conditional branch bias
is set such that the PC Control Unit 362 immediately
begins prefetching of a target instruction stream, the
target address is immediately fed through the target
20 register block 414 via the address bus 418 to the
prefetch selector 390. Once incremented by the
incrementor 394, the address is stored back to the TBUF
PFNPC 400 for use in subsequent prefetch operations of
the target instruction stream. If additionel branch
25 instructions occur within the target instruction stream,
the target addresses of such secondary branches are
calculated and stored in the target register array 414
pending use upon resolution of the first conditional

branch instruction.

30 A calculated target address as stored by the target
register block 414, is transferred from a target address
calculation unit within the execution PC control unit

366 via the address lines 382 or from the IEU 104 via
the absolute target address bus 346.

WO 93/01563 | : PCT/JP92/00870

-39~

The Address value transferred through the prefetch

PP_PC selector 390 is a full thirty-two bit virtual

address value. The page size, in the preferred

embodiment of the present invention is fixed at 16

5 KBytes, corresponding to the ﬁaximum page offset address

value [13:0]. Therefore, a VMU page translation is not

required unless there is a change in the current

prefetch virtual page address [27:14]. A comparitor in

the prefetch selector 390 detects this circumstance. A

10 VHU translation request signal (VMXLAT) is provided via

line 372’ to the PC control unit 362 when there is a

change in the wvirtual page address, either due

incrementing accross a page boundary or a control flow

branch to another page address. In turn, the PC control

15 unit 362 directs the placement of the VM VADDR address

on lines 326, in addition to the CCU PADDR on lines 324,

both via a buffer unit 420, and the appropriate control

signals on the VMU control lines 326, 328, 330 to obtain

a VMU virtual to physical page translation. Where a

20 page translation is not required, the current physical

page address [31:14] is maintazined by a latch at the
output of the VMU unit 108 on the bus 122.

The virtual address provided onto the bus 370 is

incremented by the incrementor 394 in response to a

25 signal provided on the increment control line 374. The

incrementor 394 increments by a value representingban

instruction set (four instructions or sixteen bytes) in

order to select a next instruction set. The low-order

four bits of a prefetch address as provided to the CCU

30 unit 106 are zero. Therefore the actual target address

instruction in a first branch target instruction set may

not be located in the first instruction location.

However, the low-order four bits of the address are

provided to the PC control unit 362 to allow the proper

WO 93/01563 7 PCT/JP92/00870

-40-

first branch instruction location to be known by the IFU

102. The detection and handling, by returning the low

order bits [3:2) of a target addressas the two-bit

buffer address, to select the proper first instruction

5 for execution in a non-aligned target instruction set,

is performed only for the first prefetch of a new

instruction stream, i.e., any first non-sequential

instruction set address in an instruction stream. The

non-aligned relationship between the- address of the

i0 first instruction in an instruction set and the prefetch

address used in.prefetching the instruction set can and

is thereafter ignored for the duration of the current
sequential instruction stream.

The remainder of the functional blocks. shown in

15 Figure 4 comprise the execution PC control unit 366. 1In

accordance with the preferred embodiment of the present

invention, the execution PC control unit 366

incorporates its own independently functioning program

counter incrementor. Central to this function is an

20 execution selector (DPC SEL) 430. The address output by

the execution selector 430, on the address bus 352', is

the present execution address (DPC) of the architecture

100. This execution address is provided to an adder

unit 434. The increment/size control signals provided

25 on the lines 380 specify an instruction increment value

of from one to four that the adder unit 434 adds to the

address obtained from the selector 430. As the adder

432 additionally performs an output latch function, the

incremented next execution address is provided on the

30 address lines 436 directly back to the execution

selector 430 for use in the next execution increment

cycle.
The initial execution address and all subsequent

new stream addresses are obtained through a new stream

WO 93/01563 : . PCT/JP92/00870

-41-~

register unit 438 via the address lines 440. The new
stream register unit 438 allows the new current prefetch
address, as provided on the PFPC address bus 370 from
the prefetch selector 390 to be passed on to the address
5 bus 440 directly or stored for subsequent use. That is,
where the prefetch PC control unit 364 determines to
begin prefetching at a new virtual address, the new
stream address is temporarily stored by the new stream
register unit 438. The PC control unit 362, by its

10 participation in both the prefetch and execution
increment cycles, holds the new stream address in the
new stream register 438 unit until the execution address
has reached the program execution point corresponding to
the control flow instruction that instigated the new

15 instruction stream. The new stream address is then
output from the new stream register unit 438 to the
execution selector 430 to initiate the independent
generation of execution addresses in the new instruction
stream.

20 In accordance with the preferred embodiments of the
present invention, the new stream register unit 438
provides for the buffering of two control flow
instruction target addresses. By the immediate
availability of the new stream address, there is

25 essentially no latency in the switching of the execution
PC control unit 366 from the generation of a current
sequence of execution addresses to a new stream sequence
of execution addresses.

Finally, an IFPC selector (IF_PC SEL) 442 is

30 provided to ultimately issue the current IFPC address
on the address bus 352 to the IEU 104. The inputs to
the IFPC selector 442 are the output addresses obtained
from either the execution selector 430 or new stream

register unit 438. In most instances, the IFPC selector

WO 93/01563 PCT/JP92/00870

-42-

442 is directed by the PC control unit 362 to select the

execution address output by the execution selector 430.

However, in order to further reduce latency in switching

to a new virtual address used to initiate execution of

5 a new instruction stream, the selected address provided

from the new stream register unit 438 can be bypassed

via bus 440 directly to the IFPC selector 442 for
provision as the current IFPC execution address.

The execution PC control unit 366 is capable of

.10 calculating all relative branch target addresses. The

current execution point address and the new stream

register unit 438 provided address are received by a

control flow selector (CF_PC) 446 via the address buses

352¢, 440. Consequently, the PC control unit 362 has

15 substantial flexibility in selecting the exact initial

address from which to czlculate a target address. This

initial, or base, address is provided via address bus

454 to a target address ALU 450. A second input value

to the target ALU 450 is provided from a control flow

20 displacement calculation unit 452 via bus 458. Relative

branch instructions, in accordance with the preferred

architecture 100, incorporate a displacement value in

the form of an immediate mode constant that specifies a

relative new target address. The control flow

25 displacement calculation unit 452 receives the operand

displacement value initially obtained via the IDecode

unit operand output bus 318. Finally, an offset

register value is provided to the target address ALU 450

via the lines 456. The offset register 448 receives an

30 offset value via the control limes 378‘ from the PC

control unit 362. The magnitude of the offset value is

determined by the PC control unit 362 based on the

address offset between the base address provided on the

address lines 454 and the address of the current branch

WO 93/01563

10

15

20

25

30

-43-

instruction for which the relative target address is
being calculated. That is, the PC control unit 362,
through its control of the IFIFO control logic unit 272
tracks the number of instructions separating the
instruction at the current execution point address
(requested by CP_PC) and the instruction thét is
currently being proceséed by the IDecode unit 262 and,
therefore, being processed by the PC logic unit 270 to
determine the target address for that -imstruction.

Once the —relative target address has been
calculated by the target address ALU 450, the target
address is written into a corresponding one of the

target registers 414 via the address bus 382.

2) _PC Control Algorithm Detail:

1. Main Instruction Stream Processing: MBUF PFnPC

1.1 the address of the next main flow prefetch
instruction is stored in the MBUF PFnPC.

1.2 in the absence of a control flow instruction,
a 32 bit incrementor adjusts the address value
in the MBUF PFnPC by sixteen bytes (x16) with
each prefetch cycle.

1.3 when an unconditional control flow instruction
is IDecoded, all -prefetched data fetched
subsequent. to the instruction set will be
flushed and the MBUF PFnPC is loaded, through
the target register unit, PF_PC selector and
incrementor, with the new. main instruction
stream address. The new address is also stored
in the new stream registers.

1.3.1 the target address of a relative
unconditional control flow is
calculated by the IFU from register
data maintained by the IFU and from

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

—44-

operand data following the control flow
instruction.
1.3.2 the target address of an absolute
unconditional control flow instruction
5 is eventually calculated by the IEU
from a register reference, a base
registér value, and an index register
value.
1.3.2.1 instruction prefetch cycling stalls
10 until the target address is
returned by the IEU for absolute
address control flow instruction;
instruction execution cycling
continues.)

15 1.4 the address of the next main flow prefetch
instruction set, resulting from an
unconditional control flow dinstruction, is
bypassed through the target address register
unit, PF_PC selector and incrementor and routed

20 for eventual storage din the MBUF PFnPC;

prefetching continues at 1.2.

2. Procedural Instruction Stream Processing: EBUF
PFnPC '

25 2.1 a procedural instruction may be prefetched in
the main or branch target instruction stream.

If fetched in a target streanm, stall

prefetching of the procedural stream until the

conditional control flow instruction resolves

30 and the procedural instruction is transferred
to the MBUF. This allows the TBUF to be used

in handling of conditional control flows that

occur in the procedural instruction streanm.

WO 93/01563

10

15

20

25

30

PCT/JP92/00870

-4 5~

2.1.1 a procedural instruction should not
appear in a procedural instruction
stream, i.e., procedural instructions
should not be nested: a return from
procedural instruction will return
execution to the main instruction flow.
In order to allow nesting, an
additional, - dedicated return from
nested procedural instruction would be
required. While the architecture can
readily support such an instruction,
the need for a nested procedural
instruction capability will not likely
improve the performance of the
architecture.

2.1.2 in a main instruction stream, a
procedural instruction stream that, in
turn, includes first and second
conditional control flow instruction
containing instruction sets will stall
prefetching with respect to the second
conditional control flow instruction
set until any conditional control flow
instructions in the first such
instruction set are resolved and the
second conditional control flow
instruction set has been transferred to

] the MBUF.

2.2 procedural dinstructions provide a relative
offset, included as an immediate mode operand
field of the instruction, to identify the
procedural routine starting address:

2.2.1 the offset value provided by the

procedural instruction is combined with

WO 93/01563 PCT/JP92/00870

~46-

a value contained in a procedural base
address (PBR) register maintained in
the IFU. This PBR register is readable
and writable via the special address

5 and data bus in response to the
execution of a special register move
instruction.

2.3 when a procedural instruction is encountered,
the next main instruction stream IF_PC address

10 is stored in the uPC return address register
and ‘the procedure-in-progress bit in the
processor status register (PSR) is set.

2.4 the starting address of the procedural stream
is routed from the PBR register (plus the

15 procedural instruction operand offset value) to
the PF_PC selector.

2.5 the starting address of the procedural stream
is simultaneously provided to the new stream
register unit and to the incrementor for

20 incrementing (x16); the incremented address is
then stored in the EBUF PFnPC.

2.6 in the absence of a control flow instruction,
a 32 bit incrementor adjusts address value
(x16) in the EBUF PFnPC with each procedural

25 instruction prefetch cycle.

2.7 when an unconditional control flow instruction
is 1IDecoded, all prefetched data fetched
subsequent to the branch instruction will be
flushed and the EBUF PFnPC is loaded with the

30 new procedural instruction stream address.
2.7.1 the target address of a relative
unconditional control flow instruction
is calculated by the IFU from IFU

maintained register data and from the

WO 93/01563 _ ' PCT/JP92/00870

-47-

operand data provided within an
immediate mode operand field of the
control flow instruction.
2.7.2 the target address of an absolute
5 unconditional branch is calculated by
the IEU from a'register reference, a
base register value, and an index
register wvalue.
2.7.2.1 instruction prefetch cycling stalls
10 until the térget address is
returned by the IEU for absolute
address branches; execution cycling
continues.
2.8 the address of the next procedural flow
15 prefetch instruction set is stored in the EBUF
PFnPC and prefetching continues at 1.2.
2.9 when a return from procedure instruction is
IDecoded, prefetching continues from the
address stored in the uPC register, which is
20 then incremented (x16) and returned to the MBUF
PFnPC register for subsequent prefetches.
3 Branch Instruction Stream Processing: TBUF PFnPC
3.1 wvhen a conditional control flow instruction,
occuring in a first instruction set in the MBUF
25 instruction stream, is IDedoded, the target
address is determined by the IFU if the target
address is relative to the current address or
by the IEU for absolute addresses.

WO 93/01563 PCT/JP92/00870

-48-

3.2 for "branch taken bias":

3.2.1 if the branch is to an absolute
address, stall instruction prefetch
cycling until the target address is

5 returned by the IEU; execution cycling
continues.

3.2.2 load the TBUF PFnPC with the branch
target address by thransfer through the
PF_PC selector and incrementor.

10 3.2.3 target instruction stream instructions
are prefetched into the TBUF and then
routed into the IFIFO for subsegquent
execution; if the IFIFO and TBUF
becomes full, stall prefetching.

15 3.2.4 the 32 bit incrementor adjusts (x16)
the address value in the TBUF PFnPC
with each prefetch cycle.

3.2.5 stall the prefetch operation on IDecode
of a conditional control flow

20 instruction, occuring in a second
instruction set in the target
instruction stream wuntil the all
conditional branch instructions in the
first (primary) set are resolved (but

25 go ahead and calculate the relative
target address and store in target

reisters).

WO 93/01563 , , PCT/JP92/00870

-49-

3.2.6 if conditional branch 4in the first
instruction set resolves to "taken":
3.2.6.1 flush instruction sets fo;lowing
the first conditional flow
5 instruction set in the MBUF or
EBUF, if the source of the branch
was the EBUF instruction stream as
determingd from the procedure-in-

progress bit.

10 3.2.6.2 transfer the TBUF PFnPC value to
-~ MBUF PFnPC or EBUF based on the
state of the procedure-in-progress
bit.
3.2.6.3 transfer the prefetched TBUF
15 instructions to the MBUF or EBUF

based on the state of procedure-
in-progress bit.
3.2.6.4 if a second conditional branch
instruction set has not been
20 IDecoded, continue MBUF or EBUF
prefetching operations based on the
state of the procedure-in-progress
bit.
3.2.6.5 if a second conditional branch
25 instruction has been 1IDecoded,
begin processing that instruction
(go to step 3.3.1).
3.2.7 if the conditional control for
instruction(s) in the first conditional
30 instruction set resolves to ‘“not
taken":
3.2.7.1 flush the IFIFO and 1IEU of

instruction sets and

PCT/JP92/00870

WO 93/01563
-50-
instructions from the target
instruction stream.
3.2.7.2 continue MBUF or EBUF prefetching
operations.
5 3.3 for *branch not taken bias":
3.3.1 stall prefetch of instructions into the
MBUF; execution cycling continues.
3.3.1.1 if the conditional contrel f£flow
instruction in the first
10 conditional instruction set is
relative, calculate the target
address and store in the target
registers.
3.3.1.2 if the conditional control flow
15 instructions in ~ the first
conditional instruction set is
absolute, wait for the IEU to
calculate the target address and
return the address to the target
20 registers.
3.3.1.3 stall the prefetch operation on
IDecode of a conditional control
flow instruction in a second
instruction set until the
25 conditional control flow
instruction(s) in the first
conditional instruction set
instruction is resolved.
3.3.2 once the target address of the first
30 conditional branch is calculated, load

into TBUF PFnPC and also begin
prefetching instructions into the TBUF
concurrent with execution of the main

instruction stream. Target instruction

WO 93/01563 | PCT/JP92/00870

-51-

sets are not loaded into the IFIFO (the

branch target instructions are thus on

hand when each conditional control flow

instruction in the first instruction
5 set resolves).

3.3.3 if a conditional control flow
instruction in the first set resolves
to "taken*:

] 3.3.3.1 flush the MBUF or EBUF, if the

10 source of the branch was the EBUF
instruction stream, as determined
from the state of the procedure-
in-progress bit, and the IFIFO and
IEU of instructions from the main

15 stream following the first
conditional branch instruction set.

3.3.3.2 transfer the TBUF PFnPC value to
MBUF PFnPC or EBUF, as determined
from the state of the procedure-

20 in-progress bit.

3.3.3.3 transfer the prefetched TBUF
instructions to the MBUF or EBUF,
as determined from the state of the
procedure-in-progress bit.

25 - 3.3.3.4 continue MBUF or EBUF prefetching
operations, as determined from the
state of the procedure-in-progress
bit. '

3.3.4 if a conditional control flow

30 instruction in the first set resolves

to "not taken":
3.3.4.1 flush the TBUF of instruction sets

from the target instruction stream.

WO 93/01563

10

15

20

25

30

3.3.4.2

3.3.4.3

PCT/JP92/00870

-52-

if a second conditional branch
instruction has not been IDecoded,
continue MBUF or EBUF, as
determined from the state of the
procedure-in-progress bit,
prefetching operations.

if a second conditional branch
instruction has been IDecoded,
begin processing that instruction

(go to step 3.4.1).

4. Interrupts, Exceptions and Trap Instructions.

4.1 Traps generically include:

4.1.1 Hardware Interrupts.

4.1.1.1

4.1.1.2
4.1.1.3

4.1.1.4

asynchronously (external) occurring
events, internal or external.

can occur at any time and persist.
serviced in priority order between
atomic (ordinary) instructions and
may suspend procedural
instructions.

the starting address of an
interrupt handler is determined as
the vector number offset into a
predefined table of trap handler

entry points.

4.1.2 Software Trap Instructions.

4,1.2.1

synchronously (internal) occurring

instructions.

4.1.2.2 a software instruction that

executes as an exception.

4.1.2.3 the starting address of the trap

handler is determined from the trap
number offset combined with a base

N

WO 93/01563 PCT/JP92/00870

-53-

address value stored in the TBR or
FTB register.
4.1.3 Exceptions.
4.1.3.1 Events occurring synchronously with
5 an instruction.

4.1.3.2 handled at the time the instruction
is executed.

4.1.3.3 due to conseguences of the
exception, the excepted instruction

10 and all subsequent executed

instructions are cancelled.
4.1.3.4 the starting address of the

exception handler is determined

from the trap number offset into a

15 predefined table of trap handler

entry point.

4.2 Trap instruction stream operations occur in-
line with the then currently executing
instruction stream. '

20 4.3 Traps may nest, provided the trap handling
routine saves the xPC address prior to a next
allowed trap -- failure to do so will corrupt
the state of the machine if a trap occurs prior
to completion of the current trap operation.

25
5. Trap Instruction Stream Processing: xPC.
5.1 when a trap is encountered:
5.1.1 if an asynchronous interrupt, the
execution of the currently executing
30 instruction(s) is suspended.

5.1.2 if a synchronous exception, the trap
is processed upon execution of the
excepted instruction.

5.2 when a trap is processed:

WO 93/01563 PCT/JP92/00870

~54-

2.1 interrupts are disabled.

5.2.2 the current IF_PC address is stored in
the xPC trap state return address
register.

5 5.2.3 the IFIFO and the MBUF prefetch buffers
at and subseguent to the IF_PC address
are flushed.

5.2.4 executed instructions at and subseguent
to the address IF_PC and the results of

10 those instructions are flushed from the
IEU.
5.2.5 the MBUF PFnPC is loaded with the
address of the trap handler routine.
5.2.5.1 source of a trap address either the
15 TBR or FTB register, depending on
the type of trap as determined by
the trap number, which are provided
in the set of special registers.

5.2.6 instructions are prefetched and dropped

20 into the IFIFO for execution in a
normal manner.

5.2.7 the instructions of the trap routine
are then executed.

5.2.7.1 the trap handling routine may

25 provide for the xPC address to be

saved to a predefined location and

interrupts re-enabled; the XxPC

register is read/write via a

special register move instruciton

30 and the special register address
and data bus.

5.2.8 the trap state must be exited by the
execution of a return from trap

instruction.

WO 93/01563 | , PCT/JP92/00870

-55-

5.2.8.1 if prior saved, the xPC address
must be restored from its
predefined location before
executing the return from trap
5 instruction.
5.3 when a return from trap is executed:
5.3.1 interrupts are enabled.
5.3.2 the xPC address is returned to the
current instruction -stream register
10 MBUF or EBUF PFnPC, as determined from
the state of the procedure-in-progress
bit, and prefetching continues from
that address.
5.3.3 the xPC address is restored to the
15 IF_PC register through the new stream
register.
E) Interrupt and Exception Handling:
1) Overview;
Interrupts and exceptions will be
20 processed, as long as they are enabled, regardless of
whether the processor is executing from the main
instruction stream or a procedural instruction stream.
Interrupts and exceptions are serviced in priority
order, and persist until cleared. The starting address
25 of a trap handler is determined as the vector number
offset into a predefined table of trap handler addresses
as described below.
Interrupts and exceptions are of two basic types in
the present embodiment, those which occur synchronously
30 with particular instructions in the instruction stream,
and those which occur asynchronously with particular
instructions din the instruction stream. The terms
interrupt, exception, trap and fault ‘are used

interchangeably herein. Asynchronous interrupts are

WO 93/01563

10

15

20

25

30

-56-

generated by hardware, either on-chip or off-chip, which
does not operate synchronously with the instruction
stream. For example, interrupts generated by an on-
chip timer/counter are asynchronous, as are hardware
interrupts and non-maskable interrupts (NMI) provided
from off-chip. When an asynchronous interrupt occurs,
the processor context is frozen, all traps are disabled,
certain processor status information is stored, and the
processor vectors to an interrupt handler corresponding
to the particular interrupt received. After the
interrupt handlér completes its processing, program
execution continues with the instruction following the
last completed instruction in the stream which was
executing when the interrupt occurred.

Synchronous exceptions are those that occur
synchronously with instructions in the instruction
stream. These exceptions occur in relation to
particular instructions, and are held until the relevant
instruction is to be executed. In the preferred
embodiments, synchronous exceptions arise during
prefetch, during instruction decode, or during
instruction execution. Prefetch exceptions include, for
example, TLB miss or other VMU exceptions. Decode
exceptions arise, for example, if the instruction being
decoded is an illegal instruction or does not match the
current privilege level of the processor. Execution
exceptions arise due to arithmetic errors, for example,
such as divide by zero. Whenever these exceptions
occur, the preferred embodiments maintain them in
correspondence with the particular instruction which
caused. the exception, until the time at which that
instruction is to be retired. At that time, all prior
completed instructions are retired, any tentative

results from the instruction which caused the exception

PCT/JP92/00870

0

WO 93/01563

10

15

20

© 25

30

-57-

are flushed, as are the tentative results of any
following tentatively executed instructions. Control is
then transferred to an exception handler corresponding
to the highest priority exception which occurred for
that instruction.

Software trap instructions are detected at the
iDecode stage by CF_DET 274 (Fig. 2) and are handled
similarly to both unconditional call instructions'and
other synchronous traps. That is, a target address is
calculated and prefetch continues to the then-current
prefetch gueue (EBUF or MBUF). At the same time, the
exception is also noted in correspondence with the
instruction and is handled when the instruction is to be
retired. All other types of synchronous exceptions are
merely noted and accumulated in correspondence with the
particular instruction which caused it and are handled
at execution time.

2) Asynchronous Interrupts:

Asynchronous interrupts are signaled
to the PC logic unit 270 over interrupt lines 292. As
shown in Figure 3, these lines are provided to the
interrupt logic unit 363 in the PC logic unit 270, and
comprise an NMI line, an IRQ line and a set of interrupt
level lines (LVL). The NMI 1line signals a nonmaskable
interrupt, and derives from an external source. It is
the highest priority interrupt except for hardware
reset. The IRQ line also derives from an external
source, and indicates when an external device is
requesting a hardware interrupt. The preferred
embodiments permit up to 32 user-defined externally
supplied hardware interrupts and the particular external
device-requesting the interrupt provides the number of
the interrupt (0-31) on the interrupt level lines (LvL).
The memory error line is activated by the MCU 110 to

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-58~

signal various kinds of memory errors. Other
asynchronous interrupt lines (mot shown) are also
provided to the interrupt 1logic unit 363, including
lines for requesting a timer/counter interrupt, a memory
I/0 error interrupt, a machine check interrupt and a
performance monitor interrupt. Each of the asynchronous
interrupts, as well aé the synchronous exceptions
described below, have a corresponding predetermined trap
number associated with them, 32 of these trap numbers
being associated with the 32 available hardware
interrupt levels. A table of these trap numbers is
maintained in the interrupt logic unit 363. The higher
the trap number, in general, the higher the priority of
the trap.

When one of the asynchronou§ interrupts is signaled
to the interrupt logic unit 363, the interrupt control
unit 363 sends out an interrupt reguest to the IEU 104
over INT REQ/ACK lines 340. Interrupt control unit 363
also sends a suspend prefetch signal to PC control unit
362 over lines 343, causing the PC control unit 262 to
stop prefetching instructions. The IEU 104 either
cancels all then-executing instructions, and flushing
all tentative results, or it may allow some or all
instructions to complete. In the preferred embodiments,
any then-executing instructions are canceled, thereby
permitting the fastest <response to asynchronous
interrupts. In any event, the DPC in the execution PC
control unit 366 is updated to correspond to the last
instruction which has been completed and retired, before
the IEU 104 acknowledges the interrupt. All other
prefetched instructions in MBUF, EBUF, TBUF and IFIFO
264 are also cancelled.

Only when the IEU 104 is ready to receive

instructions from an interrupt handler does it send an

PCT/JP92/00870

WO 93/01563 ' PCT/JP92/00870

~59-

interrupt acknowledge signal on INT REQ/ACK iines 340
back to the interrupt control unit 363. The interrupt
control unit 363 then dispatches to the appropriate trap
handler as described below. |

5 3) Synchronous Exceptions:
For synchronous exceptions, the

interrupt control unit 363 maintains a set of four
internal exception bits (not shown) for each instruction
set, one bit corresponding to each instruction in the
10 set. The interrupt control unit 363 also maintains an
indication of “he particular trap numbers, if any
detected for each instruction.
If the VMU signals a TLB miss or another VMU
exception while a particular instruction set is being
15 prefetched, this information is transmitted to the PC
logic unit 270, and in particular to the interrupt
control unit 363, over the VMU control 1lines 332 and
334. VWhen the interrupt control unit 363 receives such
a signal, it signals the PC control unit 362 over line
20 343 to suspend further prefetches. At the same time,
the interrupt control unit 363 sets the VM_Miss or
VM_Excp bit, as appropriate, associated the prefetch
buffer to which the instruction set was destined. The
interrupt control unit 363 then sets all four internal
25 exception indicator Dbits corresponding to that
instruction set, since none of the instructions in the
set are valid, and stores the trap number for the
particular exception received in correspondence with
each of the four instructions in the faulty instruction
30 set. The shifting and executing of instructions prior
to the faulty instruction set then continues as usual
until: the faulty set reaches the lowest level in the
IFIFO 264.

WO 93/01563

10

15

20

25

30

-60-

Similarly, if other synchronous exceptions are
detected during the shifting of an instruction through
the prefetch buffers 260, the IDecode unit 262 or the
IFIFO 264, this information is also transmitted to the
interrupt control unit 363 which sets the internal
exception indicator bit corresponding to the instruction
generating the exception and stores the trap number in
correspondence with that exception. As with prefetch
synchronous exceptions, the shifting and executing of
instructions prior to the <faulty instruction then
continues as usual until the faulty set reaches the
lowest level in the IFIFO 264.

In the preferred embodiments, the only type of
exception which is detected during the shifting of an
instruction through the prefetch buffers 260, the
IDecode unit 262 or the IFIFO 264 is a software trap
instruction. Software trap instructions are detected
at the IDecode stage by CF_DET unit 274. While in some
embodiments other forms of synchronous exceptions may be
detected in the IDecode unit 262, it is preferreé that
the detection of any other synchronous exceptions wait
until the instruction reaches the execution unit 104.
This avoids the possibility that certain exceptions,
such as arrising from the handling of privileged
instruction, might be signaled on the basis of a
processor state which could change before the effective
in-order-execution of the instruction. Exceptions which
do not depend on fBe processor state, such as illegal
instruction, could be detected in the IDecode stage, but
hardware is minimized if the same logic detects all pre-
execution synchronous exceptions (apart from VMU
exceptions). Nor is there any time penalty imposed by

waiting until instructions reach the execution unit 104,

PCT/JP92/00870

©»

WO 93/01563

10

15

20

25

30

-61-

since the handling of such exceptions is rarely time
critical.

As mentioned, software trap instructions are
detected at the IDecode stage by the CF_DET unit 274.
The internal exception indicator bit corresponding to
that instruction in the interrupt logic unit 363 is set
and the software trap number, which can be any number
from 0 to 127 and which is specified in an immediate
mode operand field of the software trap- instruction, is
stored in correspondence with the trap instruction.
Unlike prefetch synchronous exceptions, however, since
software traps are treated as both a control flow
instruction and as a synchronous exception, the
interrupt control unit 363 does not signal PC control
unit 362 to suspend prefetches when a software trap
instruction is detected. Rather, at the same time the
instruction is shifting through the IFIFO 264, the IFU
102 prefetches the trap handler into the MBUF
instruction stream buffer.

When an instruction set reaches the lowest level of
the IFIFO 264, the interrupt logic unit 363 transmits
the exception indicator bits for that instruction set as
a2 4-bit vector to the IEU 104 over the SYNCH_INT INFO
lines 341 to indicate which, if any, of the instructions
in the instruction set have already been determined to
be the source of a synchronous exception. The IEU 104
does not respond immediately, but rather permits all the
instfuétions in the instruction set to be scheduled in
the normal course. Further exceptions, such as integer
arithmetic exceptions, may be generated during
execution. Exceptions which depend on the current state
of the machine, such as due to the execution of a
privileged instruction, are also detected at this time,
and in order to ensure that the state of the machine is

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-62-

current with respect to all previous instructions in the
instruction stream, all dinstructions which have a
possibility of affecting the PSR (such as special move
and returns from trap instructions) are forced to
execute in order. Only when an instruction that is the
source of a synchronous gxception of any sort is about

to be retired, is the occurance of the exception

_signaled to the interrupt logic unit 363.

The IEU 104 retires all instructions which have
been tentatively executed and which occur in the
instruction stream prior to the first instruction which
has a synchronous exception, and flushes the tentative
results from any tentatively executed instructions which
occur subsequently in <the instruction stream. The
particular instruction that caused the exception is also
flushed since that instruction will typically be re-
executed upon return from trap. The IF_PC in the
execution PC control unit 366 dis then updated to
correspond to the last instruction actually retired, and
the before any exception is signaled to the interrupt
control unit 363. '

When the instruction that is the source of an
exception is retired, the IEU 104 returns to the
interrupt logic unit 363, over the SYNCH_INT INFO lines
341, both a new 4-bit vector indicating which, if any,
instructions in the retiring instruction set (register
224) had a synchronous exception, as well as information
indicating the source of the first exception in the
instruction set. The information in the 4-bit exception
vector re<urned by IEU 104 is an accumulation of the
4-bit exception vectors provided to the IEU 104 by the
interrupt logic unit 363, as well as exceptions
generated in the IEU 104. The remainder of the

information returned from the IEU 104 to interrupt

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-63-

control unit 363, together with any information already
stored in the interrupt control unit 363 due to
exceptions detected on prefetch or 1IDecode, is
sufficient for the interrupt control unit 363 to
determine the nature of the highest priority synchronous
exception and its trap pumber.

4) Handler Dispatch and Return:

After an interrupt acknowledge signal
is received over lines 340 from the IEU; or after a non-
zero exception vector is received over lines 341, the
current DPC is témporarily stored as a return address in
an xPC register, which is one of the special registers
412 (Figure 4). The current processor status register
(PSR) is also stored in a previous PSR (PPSR) register,
and the current compare state register (CSR) is saved in
a prior compare state register (PCSR) in the special
registers 412.

The address of a trap handler is calculated as a
trap base register address plus an offset. The PC logic
unit 270 maintains two base registers for traps, both of
which are part of the special registers 412 (Figure 4),
and both of which are initialized by special move
instructions executed previously. For most traps, the
base register used to calculate the address of the
handler is a trap base register TER.

The interrupt control unit 363 determines the
highest priority interrupt or exception currently
pending and, through a look-up table, determines the
trap number associated therewith. This is provided over
a set of INT_OFFSET lines 373 to the prefetch PC control
unit 364 as an offset to the selected base register.
Advantageously, the vector address is calculated by
merely concatenating the offset bits as low-order bits
to the higher order bits obtained from the TBR register.

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-64-

This avoids any need for the delays of an adder. (As
used herein, the 2' bit is referred to as the i’‘th order
bit.) For example, if traps are numbered from 0 through
255, represented as an 8 bit value, the handler address
may be calculated by concatenating the 8 bit trap number
to the end of a 22-bit TBR stored value. Two low-order
zero bits may be appended to the trap number to ensure
that the trap handler address always occurs on a word
boundary. The concatenated handler address thus
constructed is provided as one of the inputs, 373; to
the prefetch seYector PF_PC Sel 390 (Figure 4), and is
selected as the next address from which instructions are
to be prefetched.

The vector handler address for traps using the TBR
registér are 'all only one word apart. Thus, the
instruction at the trap handler address must be a
preliminary branch instruction to a longer trap handling
routine. Certain traps reguire very careful handling,
however, to prevent degradation of system performance.
TLB traps, for example, must be executed very quickly.
For this reason, the preferred embodiments include a
fast trap mechanism designed to allow the calling of
small trap handlers without the cost of this preliminary
branch. In addition, fast trap handlers can be located
independently in memory, in on-chip ROM, for example, to
eliminate memory system penalties associated with RAM
locationmns.

In the preferred embodiments, the only traps which
result in fast traps are the VMU exceptions mentioned
above. Fast traps are numbered separately from other
traps,.and have a range from 0 to 7. However, they have
the sahe priority as MMU exceptions. When the interrupt
control unit 363 recognizes a fast trap as the highest

priority trap then pending, it causes a fast trap base

PCT/JP92/00870

®

WO 93/01563 , PCT/JP92/00870

-65-

register (FTB) to be selected from the special registers
412 and provided on the lines 416 to be combined with-
the trap ofifset. The resulting vector address provided
to the prefetch selector PF_PC Sel 390, via lines 373/,
5 is then a concatenation of the high-order 22 bits from
the FTB register, followed by three bits representing
the fast trap number, followed by seven bits of 0's.
Thus, each fast trap address is 128 bytes, or 32 words
apart. When called, the processor branches to the
10 starting word and may execute programs within the block
or brarch out of"it. Execution of small programs, such
as standard TLB handling routines which may be
implemented in 32 instructions or less, is faster than
ordinary traps because the preliminary branch to the
15 actual exception handling routine is obviated.

It should be noted that although all instructions
bave the same length of 4 bytes (i.e., occupy four
address locations) in the preferred embodiments, it
should be noted that the fast trap mechanism is also

20 useful in nmicroprocessors whose instructions are
variable in length. In this <case, it will be
appreciated that the fast trap vector addresses be
separated by enough space to accommodate at least two of
the shortest instructions available on the

25 . microprocessor, and preferably about 32 average-sized
instructions. Certainly, if the microprocessor includes
a return from trap instruction, the vector addresses
should be separated by at least enough space to permit
that instruction to be preceded by at least one other

30 instruction in the handler.

Also on dispatch to a trap handler, the processor
enter§ both 2 kernel mode and an interrupted state.
Conncurrently, a copy of the compare state register

(CSR) is placed in the prior carry state register (PCSR)

WO 93/01563 PCT/JP92/00870

-66-

and a copy of the PSR is stored in the prior PSR (PPSR)
register. The kernel and interrupted states modes are
represented by bits in the processor status register
(PSR) . Whenever the interrupted_state bit in the

5 current PSR is set, the shadow registers or trap
registers RT[24] through RT(31], as described above and
as shown in Figure 7b,'become visible. The interrupt
handler may switch out of kernel mode merely by writing
a new mode into the PSR, but the only way to leave the

i0 interrupted state is by executing a return from trap
(RTT) instructioch.

When the IEU 104 executes an RTT instruction, PCSR
is restored to CSR register and PPSR register is
restored to the PSR register, thereby automatically

15 clearing the interrupt_state bit in the PSR register.
The PF_PC SEL selector 390 also selects special register
xPC in the special register set 412 as the next address
from which to prefetch. xPC is restored to either the
MBUF PFnPC or <the EBUF PFnPC as appropriate, via

20 incrementor 394 and bus 396. The decision as to whether
to restore xPC into the EBUF or MBUF PFnPC is made
according to the "procedure_in progress* bit of the PSR,
once restored.

It should be noted that the processor does not use

25 the same special register xPC to store the return
address for both traps and procedural instructions. The
return address for a trap is stored in the special
register xPC, as mentioned, but the address to return to
after a procedural instruction is stored in a different

30 special register, uPC. Thus, the interrupted state
remains available even while the processor is executing
an emﬁlation stream invoked by a procedural instruction.
On the other bhand, exception handling routines should

not include any procedural instructions since there is

WO 93/01563 _ | PCT/JP92/00870

-67-

no special register to store an address for return to
the exception handler after the emulation stream is

complete.
5) Nesting:

3 Although certain processor status

information is automatically backed up on dispatch to a
trap handler, in particular CSR, PSR, the return PC, and
in a sense the "av register set ra(24] through ral31],
other context information is not protected. For

10 example, the contents of a floating point status
register (FSR)/}S not automatically backed up. If a
trap handler intends to alter these registers, it must
perform its own backup.

Because of the limited backup which is performed

15 automatically on a dispatch to a trap handler, nesﬁing
of traps is not automatically permitted. A trap handler
should back up any desired registers, clear any
interrupt condition, read any information necessary for
handling the trap from the system registers and process

20 it as appropriate. Interrupts are auvtomatically
disabled upon dispatch to the trap handler. After
processing, the handler can then restore the backed up
registers, re-enable interrupts and execute the RTT
instruction to return from the interrupt.

25 If nested traps are to be allowed, the trap handler
should be divided into first and second portions. 1In
the first portion, while interrupts are disabled, the
XPC should be copied, using a special register move
instruction, and pushed onto the stack maintained by the

30 trap handler. The address of the beginning of the
second portion of the trap handler should then be moved
using the special register move instruction into the
XxPC, and a return from trap instruction (RTT) executed.
The RTT removes the interrupted state (via the

PCT/JP92/00870

WO 93/01563

10

15

20

-68-

restoration of PPSR into PSR) and transfers control to
the address in the xPC, which now contains the address
of the second portion of the handler. Thé second
portion may enable interrupts at this point and'continue
to process the exception in an interruptable mode. It
should be noted that the shadow registers RT[24] through
RT(31] are visible only. in the first portion of this
handler, and not in the second portion. Thus, in the
second portion, the handler should preserve any of the
"A" register values where these register values are
likely to be altered by the handler. When the trap
handling procedé;e is finished, it should restore all
backed up registers, pop the original xPC off the trap
handler stack and move it back into the xPC special
register using a special register move instruction, and
execute another RTT. This returns control to the
appropriate instruction in the main or emulzation
instruction stream.
6) List of Traps:

The following Table I sets forth the trap

numbers, priorities and handling modes of traps which

are recognized in the preferred embodiments:

50

PCT/JP92/00870

WO 93/01563
~69-
TABLE I
Handiing Asynch/
5 Imp # Mode Synch Irap Name
0-127 normal Synch Trap instruction
128 normal Synch FP exception
0 129 normal Synch Integer arithmetic exceptions
130 normal Synch MMU (except TLB miss or modified)
15 135 normal Synch Unaligned memory aodress
136 normal Synch lllegal instruction
137 normal .Synch * Privileged instruction
20 138 normal Synch Debug exception
144 normal Asynch Performance monitor
25 145 normal Asynch Timer/Courter
146 normal Asynch Memory 1/0 error
160-191 normal Asynch Hardware irterrupt
30 182-253 reserved
254 normal Asynch Machine check
35 255 normal-- Asynch NMI
0 fasttrap = Synch Fast MMU TLB miss
1 fasttrap Synch Fast MMU TLB modifed
40 23 fastrap Synch Fast MMU (reserved)
&7 fasttrap Synch Fast (reserved)
45 .
III. Instruction Execution Unit:

The combined control and datz path portions of

IEU 104 are shown in Figure 5.

. The primary data path

begins with the instruction/operand ¢éata bus 124 from
the IFU 102.

As a data bus, immediate operands are

provided to an operand alignment unit 470 and passed on

to a register file (REG ARRAY) 472.

Register data is

provided from the register file 472 through a bypass

unit 474,

via a register file output bus 476, to a

WO 93/01563

10

15

20

25

30

-70-

parallel array of functional computing elements (FU.,)
478,,, via a distribution bus 480. Data generated by the
functional units 478,, is provided back to t@é bypass
unit 474 or the register array 472, or both, via an
output bus 482.

A load/store unit 484 completes the data path
rertion of the IEU 104. The load/store unit 484 is
responsible for managing the transfer of data between
the IEU 104 and CCU 106. Specifically, load data
obtained from the data cache 134 of the CCU 106 is
transferred by the load/store unit 484 to an input of
the register aréay 472 via a load data bus 486. Data to
be stored to the data cache 134 of the CCU 106 is
received from the functional unit distribution bus 480.

The control path portion of the IEU 104 is
responsible for issuing, managing, and completing the
processing of information through the IEU data path. Imn
the preferred embodiments of the present invention the
IEU control path is capable of managing the concurrent
execution of multiple instructions and the IEU data path
provides for multiple independent data transfers between
essentially all data path elements of the IEU 104. The
IEU control path operates in respomse to instructions
received via the instruction/operand bus 124.
Specifically, dinstruction sets are received by the
EDecode unit 490. In the preferred embodiments of the
present invention, the EDcode 490 receives and decodes
both instruction sets held by the IFIFO master registers
216, 224. The results of the decoding of all eight
instructions is variously provided to a carry checker
(CRY CHEKR) unit 492, dependency checker (DEP CHKR) unit
494, register renaming uwnit (REG RENAME) 496,
instruction issuer (ISSUER) unit 498 and retirement
control unit (RETIRE CTL) 500.

PCT/JP92/00870

WO 93/01563 : _ | PCT/JP92/00870

-71-

The carry checker unit 492 receives decoded
information about the eight pending instructions from
the EDecode unit 490 via control 1lines 502. The
function of the carry checker 492 is to identify those

(81}

ones of the pending instructions that either affect the

carry bit of the processor status word or are dependent

on the state of the carry bit. This control information
is provided via control lines 504 to the instruction

issuer unit 498.

10 Decoded information identifying the registers of
the register file 472 that are used by the eight pending
instructions a; provided directly to the register
renaming unit 496 via control lines 506. This
information is also provided to the dependency checker

15 unit 494. The function of the dependency checker unit
494 is to determine which of the pending instructions
reference registers as the destination for data and
which instructions, if any, are dependant on any of
those destination registers. Those instructions that

20 have register dependencies are identified by control
signals provided via the control lines 508 to the
register rename unit 496.

Finally, the EDecode unit 490 provides control
information identifying the particular nature ang

25 function of each of the eight pending instructions to
the instruction issuer unit 498 via control lines 510.
The issuer unit 498 is responsible for determining the
data path resources, particularly of the availability of
particular functional wunits, for the execution of

30 pending instructions. In accordance with the preferred

embodimehts of the architecture 100, instruction issuer

unit 498 allows for the out-of-order execution of any of
the eight ©pending instructions subject to the

availability of data path resources and carry and

WO 93/01563 PCT/JP92/00870

-72-

register dependency constraints. The register rename

unit 496 provides the instruction issuing unit 498 with

a bit map, via control lines 512 of those ins;%uctions

that are suitably unconstrained to allow execution.

S Instructions that have already been executed (done) and

those with register or carry dependancieslare logically

removed from the bit map.

Depending on the availability of required

functional units 478,,, the instruction issuer unit 498

10 may initiate the execution of multiple instructions

durizg each system clock cycle. The status of the

functional units 478, are provided via a status bus 514

to the instruction issuer unit 498. Control signals for

initiating, and subsequently managing the execution of

15 instructions are provided by the instruction issuer unit

498 on the control lines 516 to the register rename unit

496 znd selectively to the functional units 478,,. 1In

response, the register rename unit 496 provides register

selection signals on a register file access control bus

20 518. The specific registers enabled via the control

signzls provided on the bus 518 are determined by the

selection of the instruction being executed and by the

determination by the register rename unit 496 of the
registers referenced by that particular instruction.

25 A bypass control unit (BYPASS CTL) 520 generally

controls the operation of the bypass data routing unit

474 via control signals on control lines 524. The

bypass control unit 556 monitors the status of each of

the functional units 478, , and, in conjunction with the

30 register references provided from the register rename

unit 496 via control lines 522, determines whether data

is to be routed from the register file 472 to the

functional units 478, or whether data being produced by

the functional units 478, can be immediately routed via

[4

WO 93/01563

i0

15

20

25

30

-73-

the bypass unit 474 to the functiomal unit distribution
bus 480 for use in the execution of a newly issued
instruction selected by the instruction issuer unit 498.
In either case, the instruction issuer unit 498 directly
controls the routing of data from the distribution bus
480 to the functional units 478,, by selectively enabling
specific register data to each of the functional units
478,,.

The remaining units of the IEU control path include
a retirement control unit 500, a control flow control
(CF CTl) unit 528, and a done control (DONE CTL) unit
536. The retirément control unit 500 operates to void
or confirm the execution of out-of-order executed
instructions. Where an instruction has been executed
out-of-order, that instruction can be confirmed or
retired once all prior instructions have also been
retired. Based on an identification of which of the
current set of eight pending instructions have been
executed provided on the control lines 532, the
retirement control unit 500 provides control signals on
control lines 534 coupled to the bus 518 to effectively
confirm the result data stored by the register array 472
as the result of the prior execution of an out-of-order
executed instruction.

The retirement control unit 500 provides the PC
increment/size control signals on control lines 344 to
the IF0 102 as it retires each instruction. Since
multiple instructions may be executed out-of-order, and
therefore ready for simultaneous retirement, the
retirement control unit 500 determines a size value
based on the number of instructions simultaneously
retired. Finally, where all instructions of the IFIFO
master register 224 have been executed and retired, the
retirement control unit 500 provides the IFIFO read

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-74-

control signal on the control line 342 to the IFU 102 to
initiate an IFIFO unit 264 shift operation, thereby
providing the EDecode unit 490 with an additional four
instructions as instructions pending execution.

The control flow control unit 528 performs the
somewhat more specific function of detecting the logical
branch result of each conditional branch instruction.
The control flow control unit 528 receives an 8 bit
vector identification of _the currently pending
conditional branch instructions from the EDecode unit
490 wvia the control 1lines 510. An 8 bit wvector
instruction don;’control signal is similarly received
via the control lines 538 from the done control unit
540. This done control signal allows the control flow
control unit 528 to identify when a conditionzl branch
instruction is done at least to a point sufficient to
determine a conditional control flow status. The
control flow status result for the pending conditional
branch instructions are stored by the control flow
control wunit 528 as they are executed. The data
necessary to determine the conditional control flow
instruction outcome is obtained from temporary status
registers in the register array 472 via the control
lines 530. As each conditional control flow instruction
is executed, the control flow control unit provides a
new control flow result signal on the control lines 348
to the IFU 102. This contrel -flow result signal
preferably includes two 8 bit vectors defining whether
the status results, by respective bit position, of the
eight potentially pending control flow instruction are
known and the corresponding status result states, also
given by bit position correspondence.

Lastly, the done control unit 54C is provided to

monitor the operational execution state of each of the

PCT/JP92/00870

[

WO 93/01563

10

15

20

25

30

-75-

functional units 478,,. As any of the functional unitg
478,, signal completion of an instruction execution
operation, the done control unit 540 pro%ides a
corresponding done control signal on the control lines
542 to alert the register rename unit 496, instruction

issuer unit 498, retirement control unit 500 and bypass

control unit 520.

A) TEU Data Path Detail:
The central element of the IEU data path
is the register file 472. Within the IEU data path,
however, the preéent invention provides for a number of

parallel data paths optimized generally for specific
functions. The two principal data paths are integer and
floating point. Within each parallel data path, a
portion of the register file 472 is provided to support
the data manipulations occurring within that data path.

1)_Register File Detail:

The preferred generic architecture of

2 data path register file is shown in Figure 6a. The
data path register file 550 includes a temporary buffer
552, a register file array 564, an input selector 559,
and an output selector 556. Data ultimately destined
for the register array 564 is typically first received
by the temporary buffer 552 through a2 combined data
input bus 558‘. That is, all data directed to the data
path register file 550 is mult@plexed by the input
selector 559 from a number Ef input buses 558,
preferably two, onto the input bus 558'. Register
select and enable control signals provided on the
control bus 518 select the register location for the
received data within the temporary buffer 552. On
retirement of an instruction that produced data stored
in the temporary buffer, control signals again provided

PCT/JP92/00870

WO 93/01563

10

15

20

25

30

-76-

on the control bus 518 enable the transfer of the data
from the temporary buffer 552 to 2 logically
corresponding register within the register file array
564 via the data bus 560. However, prior to retirement
of the instruction, data stored in the registers of the
temporary buffer 552 may be utilized in the execution of
subsequent instructions by routing the temporary buffer
stored data to the output data selector 556 via a bypass
portion of the data bus 560. The selector 556,
controlled by a control signal provided via the control
bus 518 selects between data provided from the registers
of the temporar} buffer 552 and of the register file
array 564. The resulting data is provided on the
register file output bus 564. Also, where an executing
instruction will be retired on completion, i.e., the
instruction has been executed in-order, the input
selector 559 can be directed to route the result data
directly to the register array 554 via bypass extension
558".

In accordance with the preferred embodiments of the
present invention, each data path register file 550
permits two simultaneous register operations to occur.
Thus, the input bus 558 provides for two full register
width data values to be written to the temporary buffer
552. Internally, the temporary buffer 552 provides a
multiplexer array permitting the simultaneous routing of
the input data to any two registers within the temporary
buffer 552. Similarly, intermal multiplexers allow any
five registers of the temporary buffer 3552 to be
selected to output data onto the bus 560. The register
file array 564 likewise includes input and output
multiplexers allowing_two registers to be selected to
receive, on bus 560, or five to source, via bus 562,

respective data simultaneously. Finally, the register

PCT/JP92/00870

WO 93/01563

rtn

10

15

20

25

30

-77-

file output selector 556 is preferably implemented to
allow any five of the ten register data values received
via the buses 560, 562 to be sihultaneously oﬁtput on
the register file output bus 564. .

The register set within ‘the temporary buffer is
generally shown in Figure 6b. The register set 552
consists of eight single word (32 bit) registers IORD, -
IIRD...I7RD. The register set 552 may also be used as
a set of four double word registers IORD, IORD+1
(IORD4), IIRD, IIRD+1 (ISRD)... I3RD, I3RD+1 (I7RD).

In accordance with the present invention, rather
than provide dhplicate registers for each of the
registers within the register file array 564, the
registers in the temporary buffer register set 552 are
referenced by the register rename unit 496 based on the
relative location of the respective instructions within
the two IFIFO master registers 216, 224. Each
instruction implemented by the architecture 100 may
reference for output up to two registers, or one double
word register, for the destination of data produced by
the execution of the instruction. Typically, an
instruction will reference only a single output
register. Thus, for an instruction two (I,) of the eight
pending instructions, positionally identified as shownm
in Figqure 6C and that references a single output
register, the "data destination register I2RD will be
selected to receive data produced by the execution of
the instruction. Where the data produced by the
instruction I,is used by a subsequent instruction, for
example, I,, the data stored in the I2RD register will be
transferred out via the bus 560 and the resultant data
stored back to the temporary buffer 552 into the
register identified as ISRD. Notably, instruction I, is

dependent on instruction I,. Instruction I; cannot be

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-78-

executed until the result data from I, is available.

However, as can be seen, instruction I, can execute prior

to the retirement of imnstruction I, by obtaifxing its

required input data from the instruction I, data location
3 of the temporary buffer 552°‘.

Finally, as instruction I, is retired, the data from
the register I2RD is written to the register location
within the register file array 564 as determined by the
logical position of the instruction at the point of

10 retirement. That is, the retirement control unit 560
determines the address of the destination registers in
the register f:ile array from the register reference
field data provided from the EDecode unit 490 on the
control -lines 510. Once instructions I,, have been

15 retired, the values in I4RD-I7RD are shifted into IORD-
I3RD simultaneous with a shift of the IFIFO unit 264.

24 complication arises where instruction I, provides

2 double word result wvalue. In accordance with a
preferred embodiment of the present invention, a
20 combination of locations I2RD and I6RD is used to store

the data resulting from instruction I, until that
instruction is retired or otherwise cancelled. 1In the
preferred embodiment, execution of instructions I, are
held where a double word output reference by any of the
25 instructions I,, is detected by the register rename unit
496. This allows the entire temporary buffer 552‘ to be
used as a single rank of double word registers. Once
instructions I,, have been retired, the temporary buffer
552’ can again be used as two ranks of single word
30 registers. Further, the execution of any instruction I_
; is held where a double word output register is required
until the instruction has been shifted into a

corresponding I,, location.

WO 93/01563 7 | PCT/JP92/00870

-79-

The logical organization of the register file array
564 is shown in Figure 7a-b. In accordance with the
preferred embodiments of the present invention, the
register file array 564 for the integer data path
5 consists of 40 32-bit wide registers. This set of
registers, constituting a register set "A", is organized
as a base register set ra[0..23] 565, a top set of
general purpose registers ra[24..31) 566, and a shadow
register set of eight general purpose trap registers
10 rt{24..31]. In normal operation, the general purpose
registers ra[o.;31] 565, 566 constitutes the active "A*"
register set of the register file array for the integer
data path.
As shown in Figure 7b the trap registers rt[24..31])
15 567 may be swapped into the active register set "A" to
allow access along with the active base set of registers
ra[0..23] 565. This configuration of the "a“ register
set is selected upon the acknowledgement of an interrupt
or the execution of an exception trap handling routine.
20 This state of the register set "A* is maintained until
expressly returned to the state shown in Figure 7a by
the execution of an enable interrupts instruction or
execution of a return from trap instruction.
In the preferred embodiment of the present
25 invention as implemented by the architecture 100, the
floating point data path utilizes an extended precision
register file array 572 as genmerally shown in Figure 8.
The iegister file array 572 Eonsists of 32 registers,
rf[0..31), each having a width of 64 bits. The floating
30 point register file 572 may also be logically referenced
as a "B" set of integer registers rb[0..31). In the
architecture 100, this *"B* set of registers is
equivalent to the low-order 32 bits of each of the
floating point registers rf(0..31].

WO 93/01563 PCT/JP92/00870

-80-

Representing a third data path, a boolean operator
register set 574 is provided, as shown in Figure 9, to
store the logical result of boolean comb;ﬁatorial
operations. This *C" register set 574 consists of 32

S single bit registers, rc[0..31]. The operation of the
boolean register set 574 is unique in that the results
of boolean operations can be directed to any instruction
selected register of the boolean register set 574. This
is in contrast to utilizing a single processor status

10 word register that stores single bit flags for
conditions such as equal, not equal, greater than and
other simple boolean status values.

Both the :floating point register set 572 and the
boolean register set 574 are complimented by temporary

15 buffers architecturally identical to the integer
temporary buffer 552 shown in Figure 6b. The essential
difference is that the width of the temporary buffer
registers is defineé to be identical to those of the
complimenting register file array 572, 574; in the

20 preferred implementation, 64 bits and one Dbit,
respectively.

A number of additional special registers are at
least logically present in the register array 472. The
registers that are physically present in the register

25 array 472, as shown in Figure 7c¢, include a kernel stack
pointer 568, processor state register (PSR) 569,
previous processor state register (PPSR) 570, and an
array of eight temporary processor state registers
(tPSR[0..7}) 571. The remaining special registers are

30 distributed throughout various parts of the architecture
100. The special address and data bus 354 is provided
to select and transfer data between the special
registers and the "A" and "B* sets of registers. A

special register move imstruction is provided to select

&

o

WO 93/01563

10

15

20

25

30

-81-

a register from either the "A" or "B" register set, the
direction of transfer and to specify the ‘address
identifier of a special register. '

The kernel stack pointer register and temporary
processor state registers differ from the other special
registers. The kernel stack pointer may be accessed
through execution of a '‘standard register to register
move instruction when in kernel state. The temporary
processor state registers are not directly accessible.
Rather, this array of registers is used to implement an
inheritance mechanism for propagating the value of the
processor staté register for use by out-of-order
executing instructions. The initial propagation value
is that of the processor state register: the value
provided by the last retired instruction. This initial
value is propagated forward through the temporary
processor state registers so that any out-of-order
executing instruction has access to the value in the
positionally corresponding temporary processor state
register. The specific nature of an instruction defines
the condition code bits, if any, that the instruction is
dependent on and may change. Where an instruction is
unconstrained by dependencies, register or condition
code as determined by the register dependency checker
unit 494 and carry -dependency checker 492, the
instruction can be executed out-of-order. Any
modification of the condition code bits of the processor
state register are directed to the logically
corresponding temporary processor state ~register.
Specifically, only those bits that may change are
applied to the value in the temporary processor state
register and propagated to all higher order temporary
processor state registers. Consequently, every out-of-

order executed instruction executes from a processor

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-82-

state register value modified appropriately by any
intervening PSR modifying instructions. Retirement of
an instruction only transfers the corrésponding
temporary processor state registers value to the PSR
5 register 569.
The remaining special registers are described in
Table II.

TABLE JT
Special Regis

Special Mave
15 PC R Program Counters: in general, PCs
maintain the next address of the
currently executing program instruction
stream.

10

20 IF_PC R/W IFU Program Counter: the IF_PC
maintains the precise next execution

address.

PFnPCs R Prefetch Program Counters: the MBUF,
25 TBUF and EBUF PFnPCs maintain the next
prefetch instruction addresses for the
respective prefetch instruction
streams.

30 ukC R/W Micro-Program Counter: maintains the
address of the instruction following a
procedural instruction. This is the
address of the first instruction to be
executed upon return from a procedural

35 routine.

xPC R/W Interrupt/Exception Program Counter:

holds the return address of an

interrupt or and exception. The return

40 address is the address of the IFPC at
the time of the trap.

*

WO 93/01563

WY

3

10

15

20

25

30

35

40

45

50

TBR

FTB

PBR

PSR

PPSR

CSR

PCSR

R/W

R/W

R/W

R/W

PCT/JP92/00870

~83~

Trap Base Register: base address of a
vector table used for trap handling
routine dispatching. Each entry is one
word long. The trap number, provided
by Interrupt Logic Unit 363, is used as
an index into the table pointed to by
this address.

Fast Trap Base Register: base address
of an immediate trap handling routine
table. ©Each table entry is 32 words
and is used to directly implement a
trap handling routine. The trap
number, provided by Interrupt Logic
Unit 363, times 32 is used as an offset
inté the table pointed to by this
address.

Procedural Base Register: base address
of a vector table used for procedural
routine dispatching. Each entry is one
word long, aligned on four word
boundaries. The procecure number,
provided as a procedural instruction
field, is used as an index into the
table pointed to by this address.

Processor State Register: maintzins the
processor status word. Status data
bits include: carry, overflow, zero,

‘negative, ©processor mode, current

interrupt 1level, procedural routine
being executed, divide by 0, overflow
exception, hardware function enables,
procedural enable, interrupt enzble.

Previous Processor State Register:
loaded from the PSR on successful
completion of an instruction or when
an interrupt or trap is taken.

Compare State (Boolean) Register: the
boolean register set accessible as a
single word.

Previous Compare State Register: loaded
from the CSR on successful completion
of an instruction or when an interrupt
or trap is taken. '

WO 93/01563 PCT/JP92/00870

-84~

2) Integer Data Path Detail:
The integer data path of the IEU 104,

constructed in accordance with the preferred epbodiment

of the present invention, is shown in Figure 10. For

5 purposes of clarity, the many control path connections

to the integer data path 580 are not shown. Those
connections are defined with respect to Figure 5.

Input data for the data path 580 is obtained from

the alignment units 582, 584 and the integer load/store

10 unit 586. Integer immediate data values, originally

provided as an, instruction embedded data field are

obtained from fhe operand unit 470 via a bus 588. The

alignment unit 582 operates to isolate the integer data

value and provide the resulting value onto the output

15 bue 550 to a multiplexer 592. A second imput to the
multiplexer 592 is the special register address and data
bus 354.

Immediate operands obtained from the instruction
stream are also obtained from the operand unit 570 via
20 the data bus 594. These values are again right
justified by the alignment unit 584 before provision

onto an output bus 586.
The integer load/store unit 586 communicates bi-
directionally via the external data bus 598 with the CCU
25 106. Inbound data to the IEU 104 is transferred by the
integer load/store unit 586 onto the input data bus 600
to an input latch 602. Data output from the multiplexer
592 and latch 602 are provided on the multiplexer input
buses 604, 606 of a multiplexer 608. Data from the
30 functional unit output bus 482‘ is also received by the
rultiplexer 608. This multiplexer 608, in the preferred
embodiments of the architecture 100, provides for two
simultaneous data paths to the output multiplexer buses
610. Purther, the transfer of data through the

«

WO 93/01563

10

15

20

25

30

-85-

multiplexer 608 can be completed within each half cycle
of the system clock. Since most instructions
implemented by the architecture 100 utilize a single
destination register, a maximum of four instructions can
provide data to the temporary buffer 612 during each
system clock cycle.

Data from the temporary buffer 612 <can be
transferred to an integer register file array 614, via
temporary register output buses 616 or to a output
multiplexer 620 via alternate temporary buffer register
buses 618. Integer register array output buses 622
permit the transfer of integer register data to the
multiplexer 620. The output buses connected to the
temporary buffer 612 and integer register file array 614
each permit five register values to be output
simultaneously. That is, two instructions referencing
a total of up to five source registers can be issued
simultaneously. The temporary buffer 612, register file
array 614 and multiplexer 620 allow outbound register
data transfers to occur every half system clock cycle.
Thus, up to four integer and floating point instructions
may be issued during each clock cycle.

The multiplexer 620 operates to select outbound
register data values from the register file array 614 or
directly from the temporary buffer 612. This allows
out-of-order executed instructions with dependencies on
prior out-of-order executed instructions to be executed
by the IEU 104. This facilitates the twin goals of
maximizing the execution through-put capability of the
IEU integer data path by the out-of-order execution of
pending instructions while precisely segregating out-
of-order data results from data results produced by
instructions that have Dbeen executed and retired.
Whenever an interrupt or other exception condition

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-86-

occurs that requires the precise state of the machine to

be restored, the present invention allows the data

values present in the temporary buffer 612 to b; simply

cleared. The register file array 614 is therefore left

5 to contain precisely those data values produced only by

the execution of imstructions completed and retired

prior to the occurrence of the interrupt or other

exception condition.

The up to five register data values selected during

10 each half system <clock cycle operation of the

multiplexer 620 are provided via the multiplexer output

buses 624 to an integer bypass unit 626. This bypass

unit 626 is, in essence, & parallel array of

multiplexers that provide for the routing of data

15 presented at any of its inputs to any of its outputs.

The bypass unit 626 Znputs include the special register

addressed data value or immediate integer value via the

output bus 604 from the multiplexer 592, the up to five

register data values provided on the buses 624, the load

20 operand data from the integer load/store unit 586 via

the double integer bus 600, the immediate operand value

obtained from the alignment unit 584 via its output bus

596, and, finally, a bypass data path from the

functional unit output bus 482. This bypass data path,

25 and the data bus 482, provides for the simultaneous

transfer of four register values per systen clock cycle.

Data is output by the Dbypass unit 626 onto an

integer bypass bus 628 that is connected to the floating

point data path, to two operand data buses providing for

30 the transfer out of up to five register data values

simultaneously, and a store data bus 632 that is used to
provide data to the integer load/store unit 586.

The functional unit distribution bus 480 is

implemented through the operation of a router unit 634.

A

WO 93/01563

w

10

15

20

25

30

-87~

Again, the router unit 634 is implemented by a parallel
array of multiplexers that permit five register values
received at its inputs to be routed to the functional
units provided in the integer data path. Specifically,
the router unit 634 receives the five register data
values provided via the buses 630 from the bypass unit
626, the current IF_PC address value via the address bus
352 and the control flow offset value determined by the
PC control unit 362 and as provided on the lines 378'.
The router unit 634 may optionally receive, viz the data
bus 636 an operand data value sourced from a bypass unit
provided within the floating point daté path.

The register data values received by the router
unit 634 may be transferred onto the special register
address and data bus 354 and to the functional units
640, 642, 644. Specifically, the router unit 634 is
capable of providing up to three register operand values
to each of the functional units 640, 642, 644 via router
output buses 646, 648, 650. Consistent with the general
architecture of the architecture 100, up to two
instructions could be simultaneously issued to the
functional wunits 640, 642, 644. , The preferred
embodiment of the present invention provides for three
dedicated integer <functiomal |units, implementing
respectively a programmable shift function and two
arithpetic loéic unit functions.

2An ALDO functional unit 644, ALUl functional unit
642 and shifter functional unit 640 provide respective
output register data onto the functional unit bus 482'.
The output data produced by the ALU0 and shifter
functional unit 644, 640 are also provided onto a shared
integer functional unit bus 650 that is coupled into the
floating point data path. A similar floating point
functional unit output value data bus 652 is provided

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-88-

from the floating point data path to the functional unit
output bus 482°'.
The ALUO functional unit 644 is used also in the
generation of virtual address values in support of both
5 the prefetch operations of the IFU 102 and data
operations of the integer load/store unit 586. The
virtual address value calculated by the ALUO functional
unit 644 is provided onto an output bus 654 that
connects to both the target address bus 346 of the IFU
10 102 and to the CCU 106 to provide the execution unit
physical address.(EX PADDR). A latch 656 is provided to
store the virtualizing portion of the address produced
by the ALUO functional unit 644. This virtualizing
portion of the address is provided onto an output bus
15 658 to the VMU 108.
3) Floating Point Data Path Detail:

Referring now to Figure 11, the
floating point data path 660 is shown. Initial data is
again received from a number of sources including the

20 immediate integer operand bus 588, immediate operand bus
594 ané the special register address data bus 354. The
final source of external data is a floating point
load/store unit 662 that is coupled to the CCU 106 via
the extermnal data bus 598.

25 The immediate integer operand is received by an
alignment unit 664 that functions to right justify the
integer data field before submission to a multiplexer
666 via an alignment output data bus 668. The
multiplexer 666 also receives the special register

30 address data bus 354. Immediate operands are provided
to a second alignment unit 670 for right justification
before being provided on an output bus 672. Inbound
data from the floating point load/store unit 662 is
received by a latch 674 from a load data bus 676. Data

-

WO 93/01563 _ : PCT/JP92/00870

-89-

from the multiplexer 666, latch 674 and a functional
unit data return bus 482" is received on the ipputs of
a multiplexer 678. The multiplexer 678 proyi@es for
selectable data paths sufficient to allow two register
S data values to be written to a temporary buffer 680, via
the multiplexer output buses 682, each half cycle of the
system clock. The temporary buffer 680 incorporates a
register set logically identical to the temporary buffer
552! as shown in Figure 6b. The temporary buffer 680

10 further provides for up to five register data values to
be read from the temporary buffer 680 to a floating
point register file array 684, via data buses 686, and
to an output multiplexer 688 via output data buses 690.
The multiplexer 688 also receives, via data buses 692,

15 up to five register data values from the floating point
register file array 684 simultaneously. The multiplexer
688 functions to select up to five register data values
for simultaneous transfer to a2 bypass unit 694 via data
buses 696. The bypass unit 694 also receives the

20 immediate operand value provided by the alignment unit
670 via the data bus 672, the output data bus 698 from
the multiplexer 666, the load data bus 676 and a data
bypass extension of the functional unit data return bus
482%. The bypass unit 694 operates to select up to five

25 simultaneous register operand data values for output
onto the bypaéé unit output buses 700, a store data bus
702 connected to the floating point load/store unit 662,
and the floating point bypass bus 636 that connects to
the router unit 634 of the integer data path 580.

30 A floating point router unit 704 provides for
simultaneous selectable data paths between the bypass
unit output buses 700 and the integer data path bypass
bus 628 and functional unit input buses 706, 708, 710
coupled to the respective functional units 712, 714,

WO 93/01563 PCT/JP92/00870

-90-

716. Each of the input buses 706, 708, 710, in
accordance with the preferred embodiment of the
architecture 100, permits the simultaneous transfer of
up to three register operand data values to each of the
5 functional unit 712, 714, 716. The output buses of
these functional units 712, 714, 716 are coupled to the
functional unit data return bus 482* for returning data
to the register file input multiplexer 678. The integer
data path functional unit output bus 650 may also be
10 provided to connect to the functional unit data return
bus 482*. Thq,architecture 100 does provide for a
connection of the functional unit output buses of a
multiplier functional unit 712 and a floating point ALU
714 to be coupled via the floating point data path
15 functional unit bus 652 to the functional unit data
return bus 482‘ of the integer data path 580.
4) Boolean Register Data Path Detail:

The boolean operations data path 720

is shown in Figure 12. This data path 720 is utilized

20 in support of the execution of essentially two types of
instructions. The first type is an operand comparison
instruction where two operands, selected from the
integer register sets, floating point register sets or
provided as immediate operands, are compared by

25 subtraction in one of the ALU functional units of the
integer and floating point data paths. Comparison is
performed by a subtraction operation by any of the ALU
functional ﬁnits 642, 644, 714, 716 with the resulting

sign and zero status bits being provided to a combined

30 input selector and comparison operator unit 722. This
unit 722, in response to instruction identifying control
signals received from the EDecode unit 490, selects the
output of an ALU functional unit 642, 644, 714, 716 and

combines the sign and zero bits to extract a boolean

WO 93/01563 : PCT/JP92/00870

-91-

comparison result value. An output bus 723 allows the

results of the comparison operation to be transferred

simultaneously to an input multiplexer 726 and a bypass

unit 742. As in the integer and floating point data

S paths, the bypass unit 742 is implemented as a parallel

array of multiplexers providing multiple selectable data

paths between the inputs of the bypass unit 742 to

multiple outputs. The other inputs of the bypass unit

742 include a boolean operation result return data bus

10 724 and two boolean operands on data buses 744. The

bypass unit 742 permits boolean operands representing up

to two simultaneously executing boolean instructions to

be transferred to a boolean operztion functional unit

746, via operand buses 748. <The bypass unit 746 also

15 permits transfer of up to two single bit boolean operand

bits (CF0, CFl) to be simultaneously provided on the
control flow result control lines 750, 752.

The remainder of the boolean operation data path

720 includes the input multiplexer 726 that receives as

20 its inputs, the comparison and the boolean operation

result values provided on the comparison result bus 723

and a boolean result bus 724. The bus 724 permits up

to two simultaneous Dboolean result bits to be

transferred to the multiplexer 726. 1In addition, up to

25 two comparison result bits may be transferred via the

bus 723 to the multiplexer 726. The multiplexer 726

permits any two single bits presented at the multiplexer

inputs to be transferred via the multiplexer output

buses 730 to a boolean operation temporary buffer 728

30 during each half cycle of the system clock. The

temporary buffer 728 is logically equivalent to the

temporary buffer 752', as shown in Figure 6b, though

differing in two significant respects. The first

respect is that each register entry in the temporary

WO 93/01563 PCT/JP92/00870

-g92-

buffer 728 consists of a single bit. The second

distinction is that only a single register is provided

for each of the eight pending instruction slogé, since

the result of a boolean operation is, by definition,
5 fully defined by a single result bit.

The temporary buffer 728 provides up to four output
operand values simultaneously. This allows the
simultaneous execution of two boolean instructions, each
requiring access to two source registers. The four

10 boolean register values may be transferred during each
half cycle of the system clock onto the operand buses
736 to a multipiexer 738 or to a boolean register file
array 732 via the boolean operand data buses 734. The
boolean register file array 732, as logically depicted

15 in Figure 9, is a single 32 bit wide data register that
permits any separate combination of up to four single
bit locations to be modified with data from the
temporary buffer 728 and read from the boolean register
file array 732 onto the output buses 740 during each

20 half cycle of the system clock. The multiplexer 738,
provides for any two pairs of boolean operands received
at its inputs via the buses 736, 740 to be transferred
onto the operand output buses 744 to the bypass unit
742.

25 The boolean operation functional unit 746 is
capable of performing a wide range of boolean operations
on two source values. In the case of comparison
instructions, the source values are a pair of operands
obtained from any of the integer and floating point

30 register sets and any immediate operand provided to the
IEU 104, and, for a boolean instruction, any two of
boolean register operands. Tables 1II and IV identify
the logical comparison operations provided by the

preferred embodiment of the architecture 100. Table V

WO 93/01563 , PCT/JP92/00870

-93-

identifies the direct boolean operations provided by the
preferred implementation of the architecture 190. The
instruction condition codes and function codes sbecified
in the Tables 1III-V represent a segment of the
5 corresponding instructions. The instruction also
provides an identification of the source pair of operand
registers and the destination boolean register for

storage of the corresponding boolean operation result.

10 TABLE JII
nteger mpari
Instruction
Conditjon* Symbol Condition Code
rsl greater than rs2 > 0000
15 rsl greater than >= 0001
or equal to rs2
rsl less than rs2 < o010
rsl less than >= 0011
or egual to rs2
20 rsl unequal to rs2 != 0100
rsl equal to rs2 == 0101
reserved) 0110
unconditional 1111

25 *rs = register source

PCT/JP92/00870

WO 93/01563
-94-
TABLE IV
Floating Point Comparison :
Instruction
5 Condition Symbol Cond. Code
rsl greater than rs2 > 0000
rsi greater than or egqual to rs2 >= 0001
rsl less than rs2 < 0010
rsl less than or egqual to rs2 >= 0011
10 rsl unequal to rs2 I= 0100
rsl equal to rs2 == 0101
unordered ? 1000
unordered or rsl greater than rs2 ?> 1001
unordered, rsl greater than ?25= 1010
15 or equal to rs2
unordered or rsl, less than rs2 ?2< 1011
unordered, rsl! less than 7<= 1100
or equal to rs2
unordered or rsl equal to rs2 ?= 1101
20 reserved 1110-1111
TABLE V
25 Boolean Qperation
Instruction
Operation* Symbol Function Code
0 Zero 0000
bsl & bs2 AND 0001
30 bsl & -bs2 ANN2 0010
bsl bsi 0011
~bsl & bs2 ANN1 0100
bs2 bs2 0101
bsl ~ bs2 XOR 0110
35 bsl | bs2 OR 0111
~bsl and ~bs2 NOR 1000
~bsl ~ bs2 - XNOR 1001
~bs2 NOT2 1010
bsl |} -bs2 ORN2 1011
40 ~bs1 NOT1 1100
-bsl | bs2 ORN1 1101
~bsl | ~bs2 NAND 1110
1 ONE 1111
45 *bs = boolean source register

WO 93/01563 , PCT/JP92/00870

-95-

B) Load/Store Control Unit:

An exemplary load/store unit 260 is shown
in Figure 13. Although separately shown in'the data
paths 580, 660, the 1load/store units 586 662 are

5 preferrably implemented as a single shared load/store
unit 760. The interface from a respective data path
580, 660 is via an address bus 762 and load and store

data buses 764 (600, 676), 766 (632, 702).
The address utilized by the load/store unit 760 is
10 a physical address as opposed to the virtual address
utilized by the IFU 102 and the remainder of the IEU
104. While the IFU 102 operates on virtual addresses,
relying on coordination between the CCU 106 and VMU 108
to produce a physical address, the IEU 104 requires the
15 load/store unit 760 to operate directly in a physical
address mode. This requirement is necessary to insure
dataz integrity in the presence of out-of-order executed
instructions that may involve overleapping physical
~address data load and store operations and in the
20 presence of out-of-order data returns from the CCU 106
to the load/store unit 760. In order to insure data
integrity, the load/store unit 760 buffers data provided
by store instructions until the store instruction is
retired by the IEU 104. Consequently, store data
25 buffered by the load store unit 760 may be uniquely
present only' in the load/store unit 760. Load

instructions referencing the same phbysical address as
executed but not retired store instructions are delayed
until the store instruction is actually retired. At
30 that point the store data may be transferred to the CCU
106 by the load/store unit 760 and then immediately
loaded back by the execution of a CCU data load

operation.

WO 93/01563 PCT/JP92/00870

-96-

Specifically, full physical addresses are provided

from the VMU 108 onto the load/store address bus 762.

Load addresses are, in general, stored in load:address
registers 768,,. Store addresses are latched into store

5 address registers 770,,. A load/store control unit 774
operates in response to control signals received from

the instruction issuer unit 498 in order to coordinate
latching of load and store addresses into the registers
768,,, 770,,. The load/store control unit 774 pro?ides

10 control signals on control lines 778 for latching load
addresses and og'control lines 780 for 1latching store
addresses. Store data is latched simultaneous with the
latching of store addresses in logically corresponding
slots of the store data register set 782,,. A 4x4x32 bit

15 wide address comparator unit 772 is simultaneously
provided with each of the addresses in the load and
store address registers 768,,, 770,,- The execution of
a full matrix address comparison during each half cycle
of the system clock is controlled by the load/store

20 control unit 774 via control lines 776. The existence
and logical location of a load address that matches a
store address is provided via control signals returned
to the load store control unit 774 via control lines
776.

25 Where a load address is provided from the VMU 108
and there are no pending stores, the load address is
bypassed directly from the bus 762 to an address
selector 786 concurrent with the initiation of a CCU
load operation. However, where store data is pending,

30 the load address will be latched in an available load
address latch 768,,. Upon receipt of a control signal
from the retirement control unit 500, indicating that
the corresponding store data instruction is retiring,

the load/store control unit 774 initiates a CCU data

WO 93/01563

10

15

20

25

30

-97-

transfer operation by arbitrating, via control lines 784
for access to the CCU 106. When the CCU 106 signals
ready, the load/store control unit 774 dirécts the
selector 786 to provide a CCU physical address onto the
CCU PADDR address bus 788. This address is obtained
from the corresponding store register 770,, via the
address bus 790. Data from the corresponding store data
register 782,, is provided onto the CCU data bus 792.
Upon issuance of load instruction by the
instruction issuer 498, the load store control unit 774
enables one of the load address latches 768,, to latch
the requested load zddress. The specific latch 768,
selected logically corresponds to the position of the
load instruction in the relevant instruction set. The
instruction issuer 498 provides the load/store control
unit 774 with a five bit vector identifying the 1load
instruction within either of the two possible pending
instruction sets. Where the comparator 772 does not
identify a matching store address, the load address is
routed via an address bus 794 to the selector 786 for
output onto the CCU PADDR address bus 788. Provision of
the address is performed in concert with CCU request and
ready control signals being exchanged between the
load/store control unit 774 and CCU 106. An execution
ID wvalue (ExID) is also prepared and issued by the
load/store control unit 774 to the CCU 106 in order to
identify the load request when the CCU 106 subsequently
returns the requested data including ExID value. This
ID value consists of a four bit vector utilizing unique
bits to identify the respective load address latch 768,
s from which the current load request is generated. A
fifth bit is utilized to identify the instruction set
that contains the load instruction. The ID value is

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-98-

thus the same as the bit vector provided with the load
request from the instruction issuer unit 498.
On subsequent signal from the CCU 106 to the
load/store control unit 774 of the availability of prior
5 requested load data, the load/store control unit 774
enables an alignment unit to receive the data and
provide it on the load data bus 764. An alignment unit
798 operates to right justify the load data.
Simultaneously with the return of data from the CCU
10 106, the load/store control unit 774 receives the ExID
value from the pCU 106. The lozd/store control unit
774, in turn,f provides a control signal to the
instruction issuer unit 498 identifying that load data
is being provided on the loazd datz bus 764 and, further,
15 returns a bit vector identifying the load instruction

for which the load data is being returned.

C) IEU Control Path Detail:
Referring again to Figure 5, the operation

20 of the IEU control path will now be described in detail
with respect to the timing diagram provided in Figure
14. The timing of the execution of instructions
represented in Figure 14 is exemplary of the operation
of the present invention, and not exhaustive of
25 execution timing permutations.

The timing diagram of Pigure 14 shows a sequence of
processor system clock cycles, Pg,. Each processor cycle
begins with an internal T Cycle, T,. There are two T
cycles per processor cycle in a preferred embodiment of

30 the present invention as provided for by the
architecture 100.

In processor cycle zero, the IFU 102 and the VMU
108 operate to generate a physical address. The
physical address is provided to the CCU 106 and an

WO 93/01563

Y

in

10

15

20

-99-

instruction cache access operation is initiated. Where
the requested instruction set is present in the
instruction cache 132, an ipstruction set is reﬁurned to
the IFU 102 at about the mid-point of processor cycle
one. The IFU 102 then manages the transfer of the
instruction set throuch the prefetch unit 260 and IFIFO
264, whereupon the instruction set is first presented to
the IEU 104 for execution.
1) _EDecofe Unit Detzil:

The ZDecode unit 490 receives the full
instruction set in pzrallel for decoding prior to the
conclusion of p&ocessor cycle one. The EDecode unit
490, in the preferred architecture 100, is implemented
as a pure combinatorial 1locic block that provides for
the direct parallel cecoding of all valid instructions
that are received via the bus 124. Each type of
instruction recognized by the architecture 100,
including the specificztion of the instruction, register
requirements and resource needs are identified in
Table VI.

PCT/JP92/00870

PCT/JP92/00870

WO 93/01563
-100-
TABLE VI
Instruction/Specifications
5 Instruction *

10

15

20

25

30

35

40

45

Move Register
to Register

Move Immediate
to Recister

Load/Store
Register

Immediate Call

Control Flow

Logical/Arithmetic Function Code:
specifies Add, Subtract,
Multiply, Shift, etc.

Destination Register

Set PSR only

Source Register 1

Source Register 2 or Immediate
constant value

Register Set A/B select

Destination Register

Immediate Integer or Floating Point
constant value

Register Set A/B select

Operation Function Code: specifies
Load or Store, use immediate
value, base and immediate value,
or base and offset

Source/Destination Register

Base Register

Index Register or Immediate constant
value

Register Set A/B select

Signed Immediate Displacement

Operation Function Code: specifies
branch type and triggering
condition

Base Register

Index Register, Immediate constant
displacement value, or Trap
Number

Register Set A/B select

Specizl Register Operation Function Code: specifies

Move

move to/from special/integer
register
Special Register Address Identifier
Source/Destination Register
Register Set A/B select

Pl

WO 93/01563

+a
«)

15

20

25

30

35

40

-101-
Convert Integer Operation Function Code: specifies
Move type of floating point to integer
: conversion

Source/Destination Register
Register Set A/B select

Boolean Functions Boolean Function Code: specifies
And, Or, etc.
Destination boolean register
Source Register 1
Source Register 2
Register Set A/B select

Extended Procedure Procedure specifier: specifies
address offset from
procedural base value

Operation: value passed to procedure

routine

.

Atomic Procedure Procedure specifier: specifies
address value

* - instruction includes these fields in addition to a
field that decodes to identify the instruction.

The EDecode unit 420 decodes each instruction of
an instruction set im ©parallel. The resulting
identification of instructions, instruction functioms,
register references and function requirements are made
available on the outputs of the EDecode unit 490. This
information is regenerated and latched by the EDecode
unit 490 during each helf processor cycle until all
instructions §n the instruction set are retired. Thus,
information regarding all eight pending instructions is
constantly maintained at the output of the EDecode unit
480. This information is presented in the form of eight
element bit vectors where the bits or sub-fields of each
vector logically correspond to the physical locati;n of
the corresponding instruction within the two pending
instruction sets. Thus, eight vectors are provided via
the control lines 502 to the carry checker 492, where
each vector specifies whether the corresponding

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-102-

instruction affects or is dependant on the carry bit of
the processor status word. Eight vectors are provided
via the control 1lines 510 to identify the fkpecific
nature of each instruction and the function unit
5 requirements. Eight vectors are provided via the
control lines 506 specifying the register references
used by each of the eight pending instructions. These
vectors are provided prior to the end of processor cycle
one.
10 2) Cerrv Checker Unit Detail:
_The carry checker unit 492 operates in
parallel with tﬁe dependency check unit 494 during the
data dependency phase of operation shown in Figure 14.
The carry check unit 482 is implemented in the preferred
15 architecture 100 as pure combinatorial logic. Thus,
during each iteration of operation by the carry checker
unit 492, all eight instructions are considered with
respect to whether they modify the carry flag of the
processor state register. This is necessary in order to
20 allow the out-of-order execution of instructions that
depend on the state of the carry bit as set by prior
instructions. Control signals providéd on the control
lines 504 allow the carry check unit 4982 to identify the
specific instructions that are dependant on the
25 execution of prior instructions with respect to the
carry flag.
In addition, the carry checker unit 492 maintains
a temporary copy of the carry bit for each of the eight
pending instructions. For those instructions that do
30 not modify the carry bit, the carry checker unit 492
propagates the carry bit to the next instruction forward
in the order of the program instruction stream. Thus,
an out-of-order executed instruction that modifies the

carry bit can be executed and, further, a subsequent

&

WO 93/01563

wr

10

15

20

25

30

-103~-

instruction that is dependant on such an out-of-order
executed instruction may also be allowed to execute,
though subsequent to the instruction that modifies the
carry bit. Further, maintenance of the carry bit by the
carry checker wunit 492 facilitates out-of-order
execution in that any exception occurring prior to the
retirement of those instructions merely requires the
carry checker unit 492 to clear the internal temporary
carry bit register. Consequently, the processor status
register is unaffected by the execution of out-of-order
executed instructions. The temporary bit carry register
maintained by the carry checker unit 492 is updated upon
completion of each out-of-order executed instruction.
Upon retirement of out-of-order executed instructions,
the carry bit corresponding to the last retired
instruction in the program instruction stream is
transferred to the carry bit location of the processor
status register.
a D da v

The data dependency checker unit 494
receives the eight register reference identification
vectors from the EDecode unit 490 via the control lines
506. Each register reference is indicated by a five bit
value, suitable for identifying any one of 32 registers
at a time, and a two bit value that identifies the
register bank ‘as located within the *"A®, *"B®* or boolean
register sets. The floating pointr register set is
equivalently identified as the *"B" register set. Each
instruction may have up to three register reference
fields: two source register fields and one destination.
Although some instructions, most mnotably the move
register to register instructions, may specify a
destination register, an instruction bit field

recognized by the EDecode unit 490 may signify that no

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-104-

actual output data is to be produced. Rather, execution
of the instruction is only for the purpose of
determining an alteration of the value of the processor
status register.

5 The data dependency checker 494, implemented again
as pure combinatorial logic in the preferred
architecture 100, operates to simultaneously determine
dependencies between source register references of
instructions subsequent in the program instruction

10 stream and destination register references of relatively
prior instructions. A bit array is produced by the data
dependency cheéker 494 that identifies not only which
instructions are dependant on otkers, but also the
registers upon which each dependency arises.

15 The carry and register datsz dependencies are
jGentified shortly after the beginning of the second
processor cycle.

4) Register Rename Unit Detail:

The register rename unit 496 receives

20 the identification of the register references of all
eight pending instructions via the control 1lines 506,

ané register dependencies via the control lines 508. A
matrix of eight elements is also received via the
control lines 542 that identify those dinstructions

25 within the current set of pending instructions that have
been executed (done). From this information, the
register rename unit 496 provides an eight element array

of control signals to the imstruction issuer unit 498

via the control lines 512. The control information so

30 provided reflects the determination made by the register
rename unit 496 as to which of the currently pending
instructions, that have not already beer executed, are

now available to be executed given the current set of

identified data dependencies. The register rename unit

o

WO 93/01563

10

15

20

25

30

-105-

496 receives a selection control signal via the lines
516 that identifies up to six instructions that are to
be simultaneously"issued for execution: two integer,
two floating point and two boolean.

The register rename wunit 496 performs the
additional function of selecting, via control signals
provided on the bus 518 to the register file array 472,
the source registers for access in the execution of the
identified instructions. Destination registers for out-
of-order executed instructions are selected as being in
the temporary buffers 612, 680, 728 of the corresponding
data path. In-érder executed instructions are retired
on completion with result data being stored through to
the register files 614, 684, 732. The selection of
source registers depends on whether the register has
been prior selected as a destination zad the
corresponding prior instruction has not yet been
retired. In such an instance, the source register is
selected from the corresponding temporary buffer 612,
680, 728. Where the prior instruction has been retired,
then the register of the corresponding register file
614, 684, 732 is selected. Consequently, the register
rename unit 496 operates to effectively substitute
temporary buffer register references for register file
register references in the case of out-of-order executed
instructions. ~

As implemented in the architecture 100, the
temporary buffers 612, 680, 728 are not duplicate
register structures of their corresponding register file
i.wrays. Rather, a single destination register slot is
provided for each of eight opending instructionms.
Consequently, the substitution of a temporary buffer
destination register reference is determined by the

location of the corresponding instruction within the

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-106-

pending register sets. A subsequent source register
reference is identified by the data dependency checker
494 with respect to the instruction from which the
source dependency occurs. Therefore, a destination slot
5 in the temporary buffer register is readily determinable
by the register rename unit 496.
n uction uer it D
The instruction issuer unit 498
determines the set of instructions that can be issued,
10 based on the output of the register rename unit 496 and
the function zequirements of the instructions as
identified by fhe EDecode unit 490. The instruction
issuer unit 498 makes this determination based on the
status of each of the functional units 478,, as reported
15 via control lines 514. Thus, the instruction issuer
unit 498 begins operation upon receipt of the available
set of instructions to issue from the register rename
unit 496. Given that a register file access is required

for the execution of each instruction, the instruction

20 issuwer unit 498 anticipates the availability of
functional unit 478,, that may be currently executing an
instruction. In order to minimize the delay in

identifying the instructions to be issued to the
register renmame unit 496, the instruction issuer unit

25 498 is implemented in dedicated combinatorial logic.
Upon identification of the instructions to issue,
the register rename unit 496 initiates a register file
access that continues to the end of the third processor
cycle, P,. At the beginning of processor cycle P,;, the
30 instruction issuer unit 498 initiates operation by one
or more of the functional units 478,,, such as shown as

*Execute 0", to receive and process source data provided

from the register file array 472.

WO 93/01563

(&1

10

15

20

25

30

-107-

Typically, most instructions processed by the
architecture 100 are executed through a functiopal unit
in & single processor cycle. However, some insy}uctions
require multiple processor cycles to complete, such as
shown as *Execute 1«, a simultaneously issued
instruction. The Execute zero and Execute 1
instructions may, for example, be executed by an ALU and
floating point multiplier functional units respectively.
The ALU functional unit, as shown is Figure 14, produces
output data within one processor cycle and, by simple
provision of output latching, available for wuse in
executing another instruction during the fifth processor
cycle, P,. The floating point multiply functional unit
is preferably an internally pipelined functional unit.
Therefore, another additional floating point multiply
instruction can be issued in the next processor cycle.
However, the result of the first instruction will not be
available for a data dependant number of processor
cycles; the instruction shown in Figure 14 requires
three processor cycles to complete processing through
the functional unit.

During each processor cycle, the function of the
instruction issuer unit 498 is repeated. Consequently,
the status of the current set of pending instructions as
well as the availability state of the full set of
functional wunits 478,, are reevaluated during each
processor cycle. Under optimum conditions, the
preferred architecture 100 is therefore capable of
executing up to six instructions per processor cycle.
However, a typical instruction mix will result in an
overall average execution of 1.5 to 2.0 instructions per
processor cycle.

A final consideration in the function of the

instruction issuer 498 is its participation in the

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-108-

bandling of traps conditions and the execution of
specific instructions. The occurrence of a trap
condition requires that the IEU 104 be cleared of all
instructions that have not yet been retired. Such a
5 circumstance may arise in response to an externally
received inferrupt that is relayed to the IEU 104 via
the interrupt request/acknowledge control line 340, from
any of the functional units 478, in response to an
arithmetic fault, or, for example, the EDecode unit 490
10 upon the decoding of an illegal instruction. On the
occurrence of thg trap condition, the instruction issuer
unit 498 is responsible for halting or voiding all un-
retired instructions currently pending in the IEU 104.
211 instructions that cannot be retired simultaneously
15 will be voided. This result is essential to maintain
the preciseness of the occurrence of the interrupt with
respect to the conventional in-order execution of a
program instruction stream. Once the IEU 104 is ready
to begin execution of the trap handling program routine,
20 the instruction issuer 498 acknowledges the interrupt
via a return control signal along the control lines 340.
Also, in order to avoid the possibility that an
exception condition relative to one instruction may be
recognized based on a processor state bit which would
25 have changed before that instruction would have executed
in a classical pure in-order routine, the instruction
issuer 498 is responsible for ensuring that all
instructions which can alter the PSR (such as special
move and return from trap) are executed strictly in-

30 order.
Certain instructions that alter program control
flow are not identified by the IDecude unit 262.
Instructions of this type include subroutine returns,

returns from procedural instructions, and returns from

WO 93/01563 PCT/JP92/00870

-109-

traps. The instruction issuer unit 498 provides
identifying control signals via the IEU return control
lines 350 to the IFU 102. A corresponding one of the
special registers 412 is selected to provide the IF_PC
5 execution address that existed at the point in time of
the call instruction, occurrence of the trap or
encountering of a procedural instruction.
5) D . 1 Unit Detail:
The done control unit 540 monitors the
10 functional units 478,, for the completion status of their
current operations. In the preferred architecture 100,
the done control unit 540 anticipates the completion of
operations by each functional unit sufficient to provide
a completion vector, reflecting the status of the
15 execution of each instruction in the currently pending
set of instructions, to the register rename unit 496,
bypass control unit 520 and retirement contrel unit 500
approximately one -half processor cycle prior to the
execution completion of an instruction by a functional
20 unit 478,,. This allows the instruction issuer unit 498,
via the register rename unit 496, to consider the
instruction completing functional units as available
resources for the next instruction issuing cycle. The
bypass control unit 520 is allowed to prepare to bypass
25 data output by the functional unit through the bypass
unit 474. Finally, the retirement control unit 500 may
operate to retire the corresponding instruction
simultaneous with the transfer of data from the
functional unit 478,, to the register file array 472.
30 7) Retirement Control Unit Detail:
In addition to the instruction done
vector provided from the done control unit 540, the
retirement control wunit 500 monitors the oldest

instruction set output from the EDecode output 490. &as

WO 93/01563

tn

10

15

20

25

30

-110-

each instruction in instruction stream order is marked
done by the done control unit 540, the retirement
control unit 500 directs, via control signals brovided
on control lines 534, the transfer of data from the
temporary buffer slot to the corresponding instruction

specified register file register location within the

register file array 472. The PC Inc/Size control
signals are provided on the control lines 344 for each
one or more instruction simultaneously retired. Up to

four instructions may be retired per processor cycle.

Whenever an entire instruction set has been retired, an
Rd

IFIFO read control signal is provided on the control

line 342 to advance the IFIFO 264.
8) Control Flow Control Unit Detail:

The control flow controel unit 528
operates to continuously provide the IFU 102 with
information specifying whether any control flow
instructions within the current set of pending
instructions have been resolved and, further, whether
the branch result is taken or not taken. The control
flow control unit 528 obtains, via contrel lines 510,
an identification of the control flow branch
instructions by the EDecode 490. The current set of
register dependencies is provided via control lines 536
from the data dependency checker unit 494 to the control
flow control unit 528 to allow the control flow control
unit 528 to determine whether the outcome of a branch
instruction is constrained by dependencies or is now
known. The register references provided via bus 518
from the register rename unit 496 are monitored by the
control flow control 528 to identify the boolean
register that will define the branch decision. Thus,
the branch decision may be determined even prior to the

out-of-order execution of the control flow instruction.

PCT/JP92/00870

WO 93/01563 7 PCT/JP92/00870

-111-

Simultaneous with the execution of a control flow
instruction, the bypass unit 472 is directed by the
bypass control unit 520 to provide the contfol flow
results onto control lines 530, consisting of the

5 control flow zero and control flow ome 1 control lines
750, 752, to the control flow control wunit 528.
Finally, the control flow control unit 528 continuously
provides two vectors of eight bits each to the IFU 102
via control lines 348. These vectors define whether a

10 branch instruction at the corresponding logical location
corresponding to, the bits within the vectors have been
resolved and whéther the branch result is taken or not
taken.

In the preferred architecture 100, the control flow

15 contrel unit 528 is implemented as pure combinatorial
logic operating continuously in response to the input
control signals to the control unit 528.

S) Bypass Control Unit Detail:
The instruction issuer unit 498

20 operates closely in conjunction with the bypass control
unit 520 to control the routing of data between the
register file array 472 and the functional units 478,,.
The bypass control unit 520 operates in conjunction with
the register file access, output and store phases of

25 operation shown in Figure 14. During a register file
access, the bj@ass'control unit 520 may recognize, via
control lines 522, an access of a destination register
within the register file array 472 that is in the
process of being written during the output phase of

30 execution of an instruction. 1In this case, the bypass
control unit 520 directs the selection of data provided
on the functional unit output bus 482 to be bypassed
back to the functional unit distribution bus 480.

WO 93/01563 PCT/JP92/00870

-112-

Control over the bypass unit 520 is provided by the

instruction issuer unit 498 via control lines 542.

IV. Virtual M C 1 Unit:

5 An interface definition for the VMU 108 is

provided in Figure 15. The VMU 108 consists principally

of a VMU control 1logic wunit 800 and a content

addressable memory (CAM) 802. The general function of

the VMU 108 is shown graphically in Figure 16. There,

10 a representation ‘of a virtual address is shown

partitioned into a space identifier (sID{31:28}), a

virtual page onumber (VADDR[27:14]}), ©page offset

(PADDR[13:4)), and a request ID (rID[3:0]). The

algorithm for generating a physical address is to use

15 the space ID to select one of 16 registers within a

space table 842. The contents of the selected space

register in combination with a virtual page number is

used as an address for accessing a table look aside

buffer (TLB) B844. The 34 bit address operates as a

20 content address tag used to identify a corresponding

buffer register within the buffer 844. On the

occurrence of a tag match, an 18 bit wide register value

is provided as the high order 18 bits of a physical

address 846. The page offset and regquest ID are

25 provided as the low order 14 bits of the physical
address 846.

Where there is a2 tag miss in the table look aside
buffer 844, a VMU miss is signalled. This requires the
execution of a VMU fast trap handling routine that

30 implements conventional hash algorithm 848 that accesses
a complete page table data structure maintained in the
MAU 112. This page table 850 contains entries for all
memory pages currently in use by the architecture 100.
The hash algorithm 848 identifies those entries in the

i3

WO 93/01563

e

10

15

20

25

30

-113-

page table 850 necessary to satisfy the current virtual
page translation operation. Those page table entries
are loaded from the MAU 112 to the trap regiéters of
register set *“A* and then transferred by -special
register move instructions to the table look aside
buffer 844. Upon return from the exception handling.
routine, the instruction giving rise to the VMU miss
exception is re-executed by the IEU 104. The virtual to
pPhysical address translation operation should then
complete without exception.

The VMU con}rol logic 800 provides a dual interface
to both the IFU 102 and IEU 104. A ready signal is
provided on control lines 822 to the IEU 104 to signify
that the VMU 108 is available for an address
translation. 1In the preferred embodiement, the VMU 108
is alsways ready to accept IFU 120 translation requests.
Both the IFU and IEU 102, 104 may pose requests via
control line 328, 804. 1In the preferred architecture
100, the IFU 102 has priority access to the VMU 108,
Consequently, only a single busy control line 820 is
provided to the IEU 104.

Both the IFU and IEU 102, 104 provide the space ID
and virtual page number fields to the VMU control logic

- 800 wvia control lines 326, 808, respectively. In

addition, the IEU 104 provides a read/write control
signal via control signal 806 to define whether the
address is to be used for a load or store operation as
necessary to modify memory access protection attributes .
of the wvirtual memory referenced. The space ID and
virtual page fields of the virtual address are passed to
the CAM unit 802 to perform the actual translation
operation. The page offset and ExID fields are
eventually provided by the IEU 104 directly to the cCU
106. The physical page and request ID fields are

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-114-

provided on the address lines 836 to the CAM unit 802.
The occurrence of a table look aside buffer match is
signalled via the hit line and control output lines 830
to the VMU control 1logic unit 800. The resulting

5 physical address, 18 bits in length, is provided on the
address output lines 824.

The VMU control logic unit 800 generates the
virtual memory miss and virtual memory exception control
signals on lines 334, 332 in response to the hit and

10 control output control signals on lines 830. A virtual
memory translat%pn miss is defined as failure to match
a page table identifier in the table look aside buffer
844. All other translation errors are reported as
virtual memory exceptions.

15 Finally, the data tables within the CAM unit 802
may be modified through the execution of special
register to register move instructions by the IEU 104.
Read/write, register select, reset, load and clear
control signals are provided by the IEU 104 via control

20 lines 810, 812, 814, 816, 818. Data to be written to
the CaM unit registers is received by the VMU control
logic unit 800 via the address bus 808 coupled to the
special address data bus 354 from the IEU 104. This
data is transferred via bus 836 to the CAM unit 802

25 simultaneous with control signals 828 that control the
initialization, register selection, and read or write
control signal. Consequently, the data registers within
the CAM unit 802 may be readily written as required
during the dynamic operation of the architecture 100

30 including read out for storage as required for the

handling of context switches defined by a higher level

operating system.

WO 93/01563 , , PCT/JP92/00870

-115-

Y. Cache Control Unit:

The control on data interface for the CCU 106
is shown in Figure 17. Again, separate interﬁ%ces are
provided for the IFU 102 and IEU 104. Further,

5 logically separate interfaces are provided by the CCU
106 to the MCU 110 with respect to instruction and data
transfers.

The IFU interface consists of the physical page
address provided on address lines 324, the VMU converted

10 page address as provided on the address lines 824, and
request IDs as Eransferred separately on control lines
294, 296. A uhidirectional data transfer bus 114 is
provided to transfer an entire instruction set in
parallel to the IFU 102. Finally, the read/busy and

15 ready control signals are provided to the CCU 106 via
control lines 298, 300, 302.

Similarly, a complete physical address is provided
by the IEU 102 via the physical address bus 788. The
request ExIDs are separately provided from and to the

20 load/store unit of the IEU 104 via control lines 796.
An 80 bit wide bidirectional data bus is provided by the
CCU 106 to the IEU 104. However, in the present
preferred implementation of the architecture 100, only
the lower 64 bits are utilized by the IEU 104. The

25 availability and support within the CCU 106 of a full 80
bit data transfer bus is provided to support subsequent
implementations of the architecture 100 that support,
through modifications of the floating point data path
650, floating point operation in accordance with IEEE

30 standard 754.

The IEU control interface, established via request,
busy, ready, read/write and with control signals 784 is
substantially the same as the corresponding control
signals utilized by the IFU 102. The exception being .

WO 93/01563 PCT/JP92/00870

-116-

the provision of a read/write control signal to
differentiate between load and store operations. The
width control signals specify the number of bytés being
transferred during each CCU 106 access by the IEU 104;

5 in contrast every access of the instruction cache 132 is
a fixed 128 bit wide data fetch operation.

The CCU 106 implements a substantially conventional
cache controller function with respect to the separate
instruction and data caches 132, 134. In the preferred

i0 architecture 100, the instruction cache 132 is a high
speed memory prgviding for the storage of 256 128 bit
wide instruction sets. The data cache 134 provides for
the storage of 1024 32 bit wide words of data.
Instruction and data requests that cannot be immediately
15 satisfied from the contents of the instruction and data
caches 132, 134 are passed on to the MCU 110. For
instruction cache misses, the 28 bit wide physical
address is provided to the MCU 110 via thé address bus
860. The request ID and additional control signals for
20 coordinating the operation of the CCU 106 and MCU 110
are providéd on control lines 862. Once the MCU 110 has
coordinated the necessary read access of the MAU 112,
two consecutive 64 bit wide data transfers are performed
directly from the MAU 112 through to the instruction
25 cache 132. Two transfers are regquired given that the
data bus 136 is, in the preferred architecture 100, a 64
bit wide bus. As the requested data is returned through
the MCU 110 the reguest ID maintained during the
pendency of the reguest operation is also returned to
30 the CCU 106 via the control lines 862.

Data transfer operations between the data cache 134
and MCU 110 are substantially the same as instruction
cache operations. Since data load and store operations

may reference a single byte, a full 32 bit wide physical

WO 93/01563

10

15

20

25

30

-117-

address is provided to the MCU 110 via the address bus
864. Interface control signals and the request ExID
are transferred via control lines 866. Bidirectional 64
bit wide data transfers are provided via the data cache
bus 138.

VI. Modularity of Design

As mentioned above, the microprocessor architecture
100 is designed in a modular fashior for easy re-design
to a different microprocessor architectural
specification. Figure 18 shows the architecture of
Figure 1 dividg@ into a front end portion 1010 and a
back end portion 1012. The VMU 10 and the IPU 1008,
consisting of the IFU 102 and the IZU 104, make up the
front end portion 1010, and the CCU 106 and MCU 110 are
in the back end portion 1012.

Figure 19 shows how the modular architecture of
Figure 18 can be easily modified to implement a
different microprocessor architecture.. In this
architecture 100, a new front end 1010’ is designed for
use with the same back end 1012 as in the architecture
100. The front end 1010’ includes z new IPU 1008’ and
a new VMU 108/, aﬁd handles a completely different
instruction set from that imslemented by the
architecture 100. For example, whereas the architecture
100 is considered a RISC design, the architecture 100
emulates a CISC microprocessor design. For example, the
architecture 100? may emulate the Intel 80486
architecture and instruction set. The instruction sets
for the architectures 100 and 100’ are completely
different, and in fact whereas instructions in the
architecture 100 are fixed at four bytes each,
instructions in the architecture 100‘ are of variable
length. In addition, whereas IPU 1008 does not have
segmentation facilities, the IPU 1008’ does. There may

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-118-

be many other differences between the front end portion
1010 and the front end portion 1010‘, but the back end
portions 1012 remain the same. The port by which each
of the front ends 1010 and 1010‘ communicate with the
back end 1012 has a clear, well-defined protocol
previously described. It can be seen that the modular

design technique permits two or more microprocessors

tn

having substantially different architectures and
instruction sets to be designed in much less time than
10 would be necessary if each microprocessor was designed

anew.
It is to be understood that while the foregoing

disclosure describes the preferred embodiment of the
present invention, other variations and modifications
15 may be readily made by those of average skill within the

scope of the present invention.

WO 93/01563 PCT/JP92/00870

-119-
CLAIMS

1. A first modular microprocessor architecture,

for use with memory, comprising on a single chfp:
a memory interface portion including 'a first
c port and first means for fetching information from said
memory in response to instruction fetch requests
received over said first port and returning said fetched

information over said first port; and

a first instruction processor portion coupled

10 to said first port, including first means for providing
instruction fetch requests over said first port and
first means fog processing information returned over
said first port as instructions of a first instruction
set,

15 said first port having well-defined control and
data signals and a well-Gefined protocol such that a
second microprocessor can . be designed using
substantially said same memory interface portion and a
second instruction processor portion which includes

20 second means for processing information returned over
said first port as instructions of a second instruction
set.

2. Apparatus according to claim 1, wherein said
memory interface portion is capable of returning fetched

25 information over said first port in an order different

- from the order in which it receives instruction fetch
requests,

wherein said first means for providing

instruction fetch Tequests comprises first means for

30 providing first instruction fetch addresses and
corrésponding first request IDs, and

wherein said first means for fetching ang

returning returns fetched information in correspondence

WO 93/01563 PCT/JP92/00870

-120-

with the first request IDs to which the fetched
information is responsive.
3. Apparatus according to claim 1, wherein said
memory interface portion further includes a second port,
5 second means for fetching information from said memory
in response to data fetch requests received over said
second port and returning said fetched information over
said second port, and for writing information from said
second port to said memory in response to data write
10 requests received over said second port,
and wherein said first instruction processor
portion is further coupled to said second port and
further includes second means for providing data read
and write requests over said second port in response to
15 said instructions returned over said first port,
said second port also having well-defined
control and data signals and a well-defined protocol.
4. Apparatus according to claim 2, wherein said
memory interface portion is capable of returning fetched
20 information over said second port in an order different
from the order in which it receives data fetch requests,
wherein said second means for providing data
read and write requests comprises second means for
providing second data fetch addresses and corresponding
25 second request IDs, and
wherein said second means for fetching and
returning returns fetched information in correspondence
with the second request IDs to which the fetched
information is responsive.
30 5. Apparatus according to claim 1, wherein said
memory interface portion is capable of returning fetched
information over said first port in an order different

from the order in which it receives instruction fetch

requests,

o

WO 93/01563

10

15

20

25

30

-121-

wherein said first means for providing
instruction fetch requests comprises first means for
providing first instruction fetch addresées and
corresponding first request IDs, and

wherein said first means for fetching and
returning returns fetched information in correspondence
with the first request 1IDs to which the fetched
information is responsive.

6. Apparatus according to claim 1, wherein said
memory interface portion comprises a cache control unit
coupled to said first port and 2 memory and I/0 control
unit coupled bé%ween said cache control unit and said
memory.

7.. Apparatus according to <claim 1, further
comprising a virtual memory unit having a third port
coupled to said first instruction processor portion and
means for performing virtual-to-physical memory address
translations in —response to translation requests
received over said third port, said first instruction
processor portion further including third means for
providing virtual-to-physical address translation
requests over said third port and first means for
generating said virtual addresses in response to said
instructions,

said third port having well-defined control and
data signals and a well-defined prétocol such that a
third microprocessor can be designed using substantially
the same virtuval memory unit as said first
microprocessor and using a third instruction processor
portion which includes third means for generating said
virtual addrésses in response to said instructions, said
third means for generating being different from said
first means for generating.

PCT/JP92/00870

WO 93/01563 PCT/JP92/00870

-122-

8. Apparatus according to claim 7, wherein said
virtual memory unit further includes third means for
returning said translated physical addresses over said
third port.

5 9. Apparatus according to claim 7, wherein said
virtual memory unit further comprises a fourth port
coupled to said memory interface portion, and fourth
means for providing said translated physical addresses
over said fourth port, said fourth port having well-

10 defined control and data signals and a well-defined
protocol.

10. The égmbination of first and second
microprocessors, each formed on a respective single
chip, and each for wuse with memory, said first

15 microprocessor comprising:

a memory interface portion including a first
port, first means for fetching first information from
said memory in response to instruction fetch requests
received over said first port and returning said fetched

20 first information over said first port; and

a first instruction processor portion coupled
to said first port and including first means for
providing instruction fetch requests over said first
port and first means for processing information returned

25 over said first port as instructions of a first
instruction set,

and wherein said second microprocessor
comprises:

a memory interface portion including a second

30 port, second means for fetching second information from
said memory in response to instruction fetch requests
received over said second port and returning said

fetched second information over said second port; and

WO 93/01563 , PCT/JP92/00870

-123-

a second instruction processor portion coupled
to said second port and including second means for
providing instruction fetch requests over sai,é second
port and second means for processing information

5 returned over said second port as instructions of a
second instruction set,

wherein said - first instruction processor
portion is substantially different from said second
instruction processor portion and said first memory

10 interface portion is substantially the same as said
second memory interface portion.

PCT/JP92/00870

1/16

WO 93/01563

a1l

VK

é91
ham =

1914
011
001
uvw—”ir m.| - — — HN | \.
09) e 85"
< m > O\H .)
\ 98T |
————- l , 901 .
vy EN.mﬁ B ' ovl 1NN 821 =
[Wide i“_ﬁmﬂ .wlpv ’ 2
| v 8E1 | el omz a1
I lyer 'L v e >
] . ' VIVQ —
- * .igqrl HOLIAS| 1 . :
140d| - v21~] hozr
iyl 2, 2ol
e 2] v Vil — %
v lropri test | ISNI — *1- 20T
" _Tgm__,\~ > ' 021~ | MNdI
| ! -
S T, L >
Z21 811
80T -
> (KA

R

WO 93/01563 2/16 ~ PCT/JP92/00870

__-—-227—;- CCU.ID OUT[3:0]

CCU DATA _ CLK

CCU 1D IN[3:0]
114 ~] 2% I %
i PREFETCH ——
120’ CTL LDGTC 266 e 'L_'Z—’CCU
188 . A ool
(s e Y 6] & Ty
: NBUE B g M.} e
] NBUF [fres | VAL g 302 1A
260 o R T SRl T
o LT-192 | [BE [0 [EB
196 { L F3—H |0 [REs [VAL [pe-aiz
) J O [FITIRTRT
Y] 305 "ID=RES==yAL— | “314.
1281 194 =z INT
: . 'Kﬁr- ng 292 Ccu
2621 EDECCDE < ~1"324 PADI?R
Lo BEL I ong | BC [13:4]
7 312 =% 74 L o
g C - LOGIC T2 VADDR
y ~199 320 s sde [31:14]
270 7V REQ
5004~ 3 ‘ 230 325
. oo “\336 03—
204> 3 2
= [S—TVMU EXEP
T T 72| LFIFO 332
08 ‘ITL;—’ 2l STV MISS
e] 2 334
264 202 12 _l_‘ij‘
P — B
216l | 272
I 222
= 226 126
\ 340 —
2 34144]’342}344}346- —340}350}35%
.ok 20D R I (R R -7)
225 S = 3 2 2 T
0y SRER- R
' == = g8 7 =2
s gE g > &
« = [l _— =y
= = ;; =
(] (=]

FIG. 2

WO 93/01563 | | PCT/JP92/00870

3/16
326
324 l T s 2 VMU VADDR
CCU PADDR <L 328 -ul—". iU 7B
VAU VHADDR <s—] PREFECH
OvmL Rl
326 UNIT 72| (CIL
- ERAE 216
374 (> PERFETCH £/C
2™ e 322
- CF DETECT
312570 ONIT [T CE/ICECDDE OR
CTERGUN.. . o |
EARCEMENT —F] [362 I
ESE CUTTON e a5
ggNTOROL TT7 e Z348PC INC/SIZE
UNIT ' Ta141FIC0 RD
7 TeuC/CIce [T
366 378 : 342
®T |k |
BIL LT (354
RETURD INT. OFFSET
ADDR 382 AR
e | B,
IFC ~ 346 SPRCIAI L
CURRENT g REE H s

ADDRS ADDRES | INT 240
4 ATt | CONTROL je—s “IiTRBU/ P
270 e %

‘ IRQ

o)
33 MiRs
7V MIRS

332

' T’INTINFO
341

FIG. 3

WO 93/01563 4 / 16 PCT/JP92/00870
%Enghor
SPECIAL
ADDRES ADDRESS IN
IN 346
359
SPECIAL | [TANET I
412 ™| RRGC RSOS |14
. C46 s
,EBUF 1 lUBuF TBuF |
FnPC _DFnP% PFapc_h. 400
B 405
L L |
o —— IUT CFISET
396 VI fary o8 82 i
PFPCSF (—d 10| rie
’ ~TB >(CCU PADDR
oo o 392 £390 —o_|
| +32 2 7~ VAU VADDR
o = 326
gggssmm Tuc INC OPERGNS
7—[:—' Com ¢ ENSPLANCE-
438 L 440 4 315 MENT
. 394
[%
2
CALC
SEL R 430
4
452
(
450
ZOFFSET
434 = — : 378’
7] [¢ |IERC ¢FpC- | | [oFpser
436 ADDER SEL ho449 L
L | 46 7 \ 448
454 ITASOLT 1 456
352 JLU 382
(|
380 c\gm 150
URRENT
INC/SIZE IFPC
FRL
TARECT
ADDRESS

FIG.4

WO 93/01563 5/16 PCT/JP92/00870
= =
2 Z 3
£ 2 B
5 S 5
A 4 A
342 =1 s Mg 7124
LOAD [
490 | FAECODE STORE |-, Ex DATA
y
502 . LI 525 r:_l
: 497 2 FOP |t 46
192 ot DEP | 3384 cp
) 1 kJ\ / ¥
304 ~
506 : 534 =
INTINFD < “E"qu » ICiPTJEIRE i
341 , 3 ~53~200 ARRAY
496 -N+ REG Reuame L 7 v L
510 -4 -l "'532 518
51271 F516 U
—] BYPASS
340.) S
IUT REC/ACN “2.] [
1Sssuer
IEU RETURN ‘?— e - 474
350 ¢ 7 4 .
498]
542 - ' |
A]
Lol (T8 IFUz oo o [FUn
DONE / / ™ ;
CTL o I ;
'/ 2 k L R 4 Ii ~(/'
\
104 540 478, 478, 'L526 178, 118,
—E~—
529 |
530 524

FIG. 5

WO 93/01563 - B8/16 PCT/JP92/00870

558
550 ~ ’
: SEL
558’ 559
PT*IEH}QP TEMF BUF
"-, '1— 14
i > I3RD I7RD
U
52 o | — -
% REG
Z ARANY T11RD I5RD
NE IRD | 14RD
564 5627)
SELh e (
564 552/
FiG. 6b
FIG. 6a G
31 567 | |
n[31] ralaT n[31] | (T,
n[31] S
trap |
ra - 0 e I
| 566 L WO
ra[23] ——
e tPSR[T]
=571
ra[0] 565 0
— ra'['] - tPSRI0]
FIG. Ta FlG. T o
xrf[31] 3 rb[31] 1 tofm]
-1
! 574 =
ri[¢] , rb[¢]
— L] I‘O[O]

FIG. 8 FIG. 9

WO 93/01563 7 / 16 PCT/JP92/00870
o S
=Y e ~m
Sl) =
=2 = S gE
25 o 2 g8
2 = 5 =
588 594 43527 ©
s512~] ALIGN 1~582584-\AjbeN" 398
590 64 |.
Zoor I{gXD Ex DATA
N
592 ~[MUX 1C Rl 598
[Y ﬁ%i y ij 586
608 4 7
615~ TEMPP BUF
616 ™ —
REG
614~ ARRAY .
622 e
620~ MUX |
482"
624 4~
L Ll LD
626 ~ BYPASS
8 77T
INT BYPASS «
FP BYPASS - 550 71 — 580 >
N T —
SPECIAL Rab _P-634
ADDR
T i e 642
ess |ALU9 | JLvi SHFT »
TARAET ADDR ~—2 L | Yoy T s
Y . y J A
EX PADIR 656 T ‘
Ex VADOA 658
650
ENT FU —L
FP FU
T
652

F1G. 10

WO 93/01563 - 8/16 PCT/JP92/00870

-l
8
D: [g
— D
z =8
O e o
= EE S
594 354 588
IGNI ALIGN}~ 664 676
670 668 .\ FP. T Ex DATA
566 {01 o flom | L
> ATCH g74 > STORE
672 - : 1
S MX] (662

678
g “652i

680~ TEMP BUF

698 = 696 489"

674 BYPASS Ll 702
' = FP BYPASS

700 ¥A 63€
’ Z INT BYPASS

660 -— 704 ~4 ROUTER 628

L
~706
mo [T |
' FALU | | weLT
/ALUZ L ALU 719
716" | 714 r 650
1\-‘/INT FU

—YFP FU
z652

FIG- 11

WO 93/01563

ED coot
ALU¢ FU
ALU1 FU
ALU2 FU
FALU FU

9/16
—’\- -‘
17 |16 | I5 14
I3 12 I1 | 1I¢
K 6c s
- <t}
—
R
[« 0g<a
[7pY~
M
1 s 354
o
TEMP BUF
128 [T s 738 20
132706 1736
1 ARRAY [T T
— Eﬁuo
—iSEL MWL__Trz
COND P
| T3)
JR—— ' BYPASS ,.742
¢
7484
722
B ERE
746™ 0P M neo
|
1{ \V
s .,
[EFENCH
OO

FIG. 12

PCT/JP92/00870

PCT/JP92/00870

WO 93/01563 10/ 16
IFU IBU 04
—
702
326
REG
e 472 »
FILE) ‘32
762 _ [31:0]
7 |
7T 7 - 768 ~NTAS }—A2 —@}LA
764: e f __ P 7682/ l 7680
306 SA g~
501 SAL fmls 44
o ST CONFARTOR
503 SA3 | 172
w | Sl o
7820 o Ny FY776
e LOAD/STRC
ALISUER 80 \sh
A A B
64 1
T | 788‘1 784‘1 £'796
cCo CCO ExID
DATA i CIL [4:0]
[31:0]
A
160~

FIG. 13

7178

PCT/JP92/00870

WO 93/01563

11/16

V1°D1a

f i |
WU ! _. “ | ‘. T TOLS
|
R ! . \ | | T 10dI00
] L
_ | . | ! I AL00uXd
] [} 3 _
T | 1 i 4
| —] . _ ! 8018
| !
J ! ' I ¢ 104100
| SR I . |
I | | I | | @ 4LN0AXd
[} . —H— —)
_ | _ | — | SSANIY TN
b | | _ _ | 4ANSSI SNI
_ I) : _ L] i
| _ _ ' _ 0 _ ANVNAY DIY
_ ; ! | \ _ _ daa vViva
! | ' l i _HWH_ |
| ' 1002401
) [" " ” i _U |
| | | ; . !] _ RCEEALS
| I | i) 1 l
) ; | , S99V AHOVOI
._ | “ i i | Hu
[}
| _ | .) , co Y1) “Iqay
! | ! |] i
I
N AN . . . S
2 A A A R B R S VY b1

WO 93/01563 12/ 16 : PCT/JP92/00870

INVH REG XI(I)IIG]ISTL
7 o VHEX
324 800 gho BUIY
ExVMREG —___] =
804~
EXVMRYW = !
A | '
IF VADDR 220} L SPACE 1D L2 VM EN
19 4 ROY
828 71| VIAT PACE 334
EXVADDR ~ R PHYS f\ {——— VM MESE
- BLAR 332
810 % 834836 CIL . |
w R 839 J%IfT 0t = i Epr
nREsEr Sl N o 18 8, PADDOR
Vi LOAD —2— NR

Fi1G..15

WO 93/01563 PCT/JP92/00870
13/ 16
31 28 27 14 13 43 0
¥ sID Virtual Page Number Page Offset r'ID"'L840
" 16 sPACE
832 . Registers I
—>{ Space ID . 834
20 - . fu
< 7 L34
Hash <
848 .| A?:'orithn}' Table Lookaside Buffer 2
844
> . A4 18
Page
850 ~ 1able lg 82
P 18 L 14
/
Physi
hysical Address ~_ 346
31

L

FIG. 16

WO 93/01563 14/ 18 PCT/JP92/00870
/n860
IE PADDR sl |
i PADDR 324 &R —~>NCU ADDR
IF ID QUT -;_-M-q- - pe—==MCU CTL TID
IFIDIN &2 862
IF DATA Hgffgg ‘ 4 zMCU IR0S
LF IAEAD™ "7 ™ ICACHE 64 {36
IF BBUSY ~+5 1
IF IROY P00
802 — 864
134 —«L-}CU ADDR
Ex EDIU fe—NCU CTL TID
Be IOV oo \— 866
Ex DATA <+ DCPCNE + —=~MCU DBUS
Ex KEG ' 64 |
B BUSY < 138
Ex RDY ¢ CCU
Ex F/W
Be VIOW —— -
784 106

FIG. 17

PCT/JP92/00870

15/ 16

WO 93/01563

211

YN

81 914

001

pug yoog pug juoxy
2101 e o101
¢ 01
7911 \ _ 5 V0T
L o N I 821/
8e1 o
) S
__ 081 el
, 201
. { I~
98T "
) orT
nar| [A
- 291 0K 199 | offl &
L 811 ndI
80T
n#A

16/ 16 PCT/JP92/00870

WO 93/01563

QIR

)

61 “914

._

pug yoog| pug juoiyg o
2101 AI._II.v AOT01T
-~/ / - \
0Tt |
. Admﬂ 90T _
P91 - \ k A .
4 091 8l
8¢1 o
¢ | —
081
» |
_
~ v
91 p .
o11” e
291
- oW N0 _ ozi | Y st i
-~/
|
80T ||
A

00T

8001

INTERNATIONAL SEARCH REPORT

International Application No
L. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ail)é
According to International Patent Classification (IPC) or to both National Classification and IPC

Int.C1. 5 GO6F15/78

PCT/JP 92/00870

II. FIELDS SEARCHED

Minimum Documentation Searched’

Classification System Classification Symbols

Int.C1. 5 GO6F

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched®

1. DOCUMENTS CONSIDERED TO BE RELEVANT?
Category ° Citation of Document, 1! with indication, where appropriate, of the relevant passages i2 Relevant to Claim Nol3

X ELECTRO CONFERENCE RECORD . 1,10
vol. 14, 11 April 1989, LOS ANGELES US '
pages 511 - 519

JELEMENSKY 'New microcontroller features
advanced hardware for real-time control
applications’

see page 511, right column, 1ine 14 - page
515, left column, line 2

see page 519, left column, line 14 - right
column, line 22

Y EP,A,0 419 105 (TEXAS INSTRUMENTS) 1,3,10
27 March 1991
see column 2, line 44 - column 5, line 27;

figure 1
° Special categories of cited documents ; 19 0 o Iaterﬂdo;un;enx pubdllshu: after ftul:e i‘l’:lte;nt;donal“ﬁlisg d:u
or priority date and not in conflict with the application but
“A” document defining the generai state of the art which is not : ing th
considered to be of particular rel ;;: tti: :ndastznd the principle or theory underlying the
“E” earlier document but published on or after the internationai “X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L" document wl:lich may !Ilixsr:w tl;‘lmlhtsl on rio;ity c;faim(st)hor invoive an inventive step
which is cited to estab ¢ publication date of another “Y* document of particular relevance; the clained invention
citation or other special reason (as specified) cannot be mmad to involve an inventive step when the
“0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means - ments, such combination being obvious to 2 person skilled
P document published prior to the international filing date but - intheart.
later than the priority date claimed *&" document member of the same patent family
IV. CERTIFICATION
Date of the Actual Completion of the International Search Date of Mailing of this Intemnational Search Report
07 OCTOBER 1992
15.10 2
International Searching Authority Signature of Authorized Officer
EUROPEAN PATENT OFFICE SCHENKELS P.F.

Form PCT/ISA/210 (second shest) (Jammary 1985)

International Application No

PCT/JP 92/00870

1. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category °

Citation of Document, with indication, where appropriate, of the relevant passages

Relevant to Claim No.

COMPUTER DESIGN
vol. 28, no. 9, 1 May 1989, LITTLETON,

MASSACHUSETTS US
pages 86 - 99
ANDREWS 'Distinctions blur between DSP

solutions’
see figure PAGESS

FR,A,2 575 564 (SONY)

4 July 1986

see abstract

see page 7, line 1 - page 8, Tline 14;
figure 1

1,3,10

1,10

Ferm PCT/ISA/210 (exirs sheet) (Jommsry 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO. gx 92002;g78

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 07/10/92

Patent document Publication Patent family Publication

cited in search report date membes(s) date
EP-A-0419105 27-03-91 JP-A- 3214370 19-09-91
FR-A-2575564 04-07-86 JP-A- 61156356 16-07-86

JP-A- 61156361 16-07-86
JP-A- 61156362 16-07-86
AU-B- 582409 23-03-89
AU-A- 5147885 03-07-86
CA-A- 1242803 04-10-88
DE-A- 3545937 10-07-86
GB-A- 2172142 10-09-86
NL-A- 8503492 16~07-86
Us-A- 5025368 18-06-91

EPO FORM P0479

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

