WORLD INTELLECTUAL PROPERTY ORGANIZATION

PCT International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : WO 00/54149
GOG6F 9/445

(11) International Publication Number:

A2

(43) International Publication Date: 14 September 2000 (14.09.00)

(21) International Application Number: PCT/US00/06322 | (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU,
AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ
(Utility model), DE, DE (Utility model), DK, DK (Utility
model), DM, DZ, EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO,
RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, T™,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO

(22) International Filing Date: 10 March 2000 (10.03.00)

(30) Priority Data:

60/123,592 10 March 1999 (10.03.99) UsS

(71) Applicant (for all designated States except US): AUTOMA-
TION CONTROL PRODUCTS LLC [US/US]}; Suite 200,
6865 Shiloh Road East, Alpharetta, GA 30055 (US).

patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,

(72) Inventors; and BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,

(75) Inventors/Applicants (for US only): CRANDELL, Matthew, TD, TG).
O. [US/US]; 128 Shady Grove Lane, Alpharetta, GA
30004 (US). CAINE, Timothy, A. [US/US]; 270 Mayfield
Farms Drive, Lawrenceville, GA 30043 (US). HORTMAN, | Published

Matthew, B. [US/US]; 1210 Avalon Drive, Lawrenceville,
GA 30044 (US). CANNADY, Randy [(US/US]; 385
Twin Brook Way, Lawrenceville, GA 30043 (US).
BARKER, Matthew, E. [US/US]; 871 Hampton Hill Court,
Lawrenceville, GA 30044 (US). JOHNSON, Thor, M.
[US/US]; 1086 Realm Lane, Lawrenceville, GA 30044
(US).

Without international search report and to be republished
upon receipt of that report.

(74) Agents: GRIFFIN, Malvern, U., III et al.; Alston & Bird LLP,
P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).

(54) Title: METHODS AND SYSTEMS FOR REDUCED CONFIGURATION DEPENDENCY IN THIN CLIENT APPLICATIONS
(57) Abstract

A computer network comprising a client and a server is provided, wherein a client session is initiated. The client executes a local
boot image associated with the client and sends a startup request to the server over a computer network. In response to the request, the
server transmits a client boot image to the client. The client boot image comprises a client operating system. After receiving the client boot
image, the client initiates operation of the client operating system by executing the boot image. The client boot image may also comprise a
client-side manager that is installed when the client executes the client boot image. In this embodiment, the client—side manager transmits
a configuration request to the server which includes a unique client identifier. The server receives the configuration request and retrieves
a configuration profile for the client using the unique client identifier. The server then uses the configuration profile to determine client
configuration data and transmits the configuration data to the client. In one embodiment, the client configuration data comprises all of the
software necessary for client operation. The client receives the configuration data and the client manager uses the configuration data to
configure the client.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl

CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
18
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™
TG
T
™
TR
TT
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/54149 PCT/US00/06322

METHODS AND SYSTEMS FOR REDUCED CONFIGURATION
DEPENDENCY IN THIN CLIENT APPLICATIONS

FIELD OF THE INVENTION
The present invention relates to thin client/server systems in a network
environment. In particular, the present invention relates to a thin client application

with reduced client configuration requirements.

BACKGROUND OF THE INVENTION

During the 1960's, when computers began to become a permanent and
widespread feature of the business environment, the accepted model for computing
was a large mainframe computer, which acted as a host or server that provided
computer services for a large number of dumb terminal clients. This model became
the iﬁdustry standard in the 1970’s. The mainframe computers of that era typically
contained a large main memory, and extensive repertoire of instructions. The
mainframe computers were also very large and expensive. The mainframe's operating
system allowed each user to access the mainframe from a terminal having limited
hardware and software intelligence on a time-sharing basis. With the high cost/high
capability of the host making for a relatively rich server, it only made sense to have
low cost/low capability of relatively "thin" clients.

With the advent of the personal computer, and its virtual explosion of
popularity following the introduction of the IBM Personal Computer (IBM PC) in
1981, the computing model began to change. Through the 1980's personal computers
grew in popularity and the price of computing hardware, including memory, dropped
dramatically. The model for computing shifted to accommodate powerful user-
centralized systems, as individual users harnessed more and more raw computing
power on their desktops. The need for centralized management and control of
resources such as printers and certain software still left a place for a host/ or
server/client providing access to many clients. However, the clients were no longer
dumb terminals, instead the clients were relatively powerful themselves, having large

capacity main memory as well as storage memory, usually in the form of a well-

10

IS

20

25

30

WO 00/54149 PCT/US00/06322

known hard disk. Thus the server/client model commonly became one involving,
relatively speaking, "fat" clients.

The 1990's have witnessed a growing popularity of the Internet and the World
Wide Web, a multimedia subset of the Internet. The Internet serves as a worldwide
network linking computers all over the globe to each other. The 1990°s have also
witnessed a return to networked environments to facilitate the free exchange of
information among users. As the speed at which information can be communicated
over a network increases, the ability to maintain centralized control over a networked
environment becomes more feasible. It also alleviates the need for networked clients
to maintain powerful computing systems. Thus, the client computing model has once
again turned to the need to support thin clients. Such modern thin clients have little
need for very much electronic or main memory and practically no need for a hard
disk. |

The computing model for many servers over the Internet or local area network
serving a plurality of thin clients is attractive because it reduces the cost of ownership
for computer users and reduces the threat of their workstations becoming obsolete due
to computer programs requiring more and more memory for execution. The memory
demands may now be satisfied at the servers while the same thin clients may be used
for years to come.

This is particularly true in the field of industrial automation control where it is
important to maintain uniformity among the thin clients and provide a means for easy
system-wide upgrades. As a result, many industrial automation systems could be
implemented at a lower cost by implementing thin client/server systems. Recent
efforts, however, still suffer from the impact of the low-cost personal computer
revolution because the thin terminals routinely include unnecessary software and non-
volatile memory means such as hard disk drives. The thin clients also typically
include an operating system, device drivers, basic software applications, and other
components that are stored on the thin clients and increase the costs of the thin client
hardware unnecessarily. There is also a very high degree of variation between the-
hardware and software components in individual thin clients making it difficult for a
server to communicate properly with thin clients containing different hardware and
software packages. For example, if a server utilizes Windows NT as its operating
system, it must be configured to communicate properly with the thin clients in the

network. Typically, thin clients contain limited non-volatile memory space which

10

15

20

25

30

WO 00/54149 PCT/US00/06322
stores an operating system, hardware device drivers, and basic application software.

For example, a thin client may contain the Windows CE operating system and the
device drivers necessary to operate the thin clients video card, network interface,
monitor, mouse, and keyboard. The Windows NT server and the Windows CE thin
client must be configured to communicate with each other. If the thin client is
subsequently replaced with another thin client containing different hardware or
software, both the server and the thin client must be reconfigured to account for the
changes in hardware and software. Thus, once a particular system has been formed, it
is difficult to substitute different thin client configurations.

Problems may also arise from changes in the thin client configuration. For
example, if the monitor in a particular thin client is replaced with a different size or
brand of monitor, the thin client must be reconfigured to account for the change.
Thus, every thin client that is fitted with different hardware or softwére must be
reconfigured to account for any changes to the thin client hardware or software.
There currently is no method for automatically configuring a thin client, regardless of
its hardware configuration, directly from the server.

Thus, in current thin client/server systems, the thin clients limit the flexibility
of the networked system because both the server and the client are designed according
to the particular hardware and software configuration of the thin clients in the system.
The thin client configuration also limits the ability of the server to provide system-
wide updates because any updates must remain compatible with the thin client
configuration. Thus, there is a need in the industry to provide a thin client/server
system that is not constrained by the configuration of the thin client and that affords
all of the advantages provided by centralized server control over numerous thin
clients. There is also a need for a thin client/server system that is not platform

dependent so that different client configurations are easily accommodated.

SUMMARY OF THE INVENTION
The present invention solves many of the problems associated with current-
thin client/server systems by providing a platform independent means for
implementing a computer network that is not dependent on the particular
configuration of the thin client. This is accomplished utilizing a thin client that is
configured by the server each time it is powered on. Advantageously, the present

invention also allows the thin client to be configured remotely from the server thus

10

15

20

25

30

WO 00/54149 PCT/US00/06322
centralizing system operation and eliminating many of the problems associated with

conventional networked systems such as those resulting from improper changes to the
thin client. The hardware configuration of the thin client is also immaterial. As long
as the thin client contains enough volatile memory to communicate with the server
and execute the programs downloaded from the server, any suitable computer
hardware configuration will suffice. The present invention is also advantageous
because it decreases the costs associated with systems containing numerous thin
clients. The hardware and software requirements for the thin client are minimal
because the thin client need only comprise volatile memory and a local boot image.

According to one embodiment of the present invention, a method is provided
for initiating a client session in a computer network. The client executes a local boot
image associated with the client and sends a startup request to the server over a
computer network. In response to the request, the server transmits a 'cIient boot image
to the client. The boot image comprises a client operating system. After receiving the
boot image, the client initiates operation of the client operating system by executing
the boot image.

According to an aspect of the invention, the boot image also comprises a
client-side manager which is installed when the client executes the client boot image.
In this embodiment, the client-side manager transmits a configuration request to the
server which includes a unique client identifier. The server receives the configuration
request and retrieves a configuration profile for the client using the unique client
identifier. The server then uses the configuration profile to determine client
configuration data and transmits the configuration data to the client. The client
receives the configuration data and the client manager uses the configuration data to
configure the client.

According to another aspect of the invention, the configuration data comprises
customizable modules that may contain configuration parameters, devices drivers, or

software applications for the client.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a high-level representation of the thin client/server network

according to one aspect of the present invention.

10

15

20

25

30

WO 00/54149 PCT/US00/06322
FIGS. 2A-2B are schematic representations of the memory configuration of a
server of FIG. 1 before and after a client session is initiated in accordance with one
embodiment of the present invention.
FIGS. 3A-3B are schematic representations of the memory configuration of
the thin client of FIG. 1 before and after a client session is initiated in accordance with
one embodiment of the present invention.
FIG. 4 is a flow diagram showing the operation of a thin client and the server

in accordance with one aspect of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention now will be described more fully hereinafter with
reference to the accompanying drawings, in which preferred embodiments of the
invention are shown. This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout.

The present invention is generally implemented as part of a computer network
comprising at least one thin client (hereinafter referred to as either a “thin client” or
“client”) and at least one server interconnected over a computer network. FIG. 1
represents a high-level overview of an embodiment of the present invention. As
shown in FIG. 1, at least one server 10 is connected to at least one thin client 12 over
a computer network 14. Although multiple servers 10 and multiple thin clients 12 are
shown in FIG. 1, it will be appreciated that the number of servers and thin clients may
vary according to the requirements of the application for which the present invention
is being implemented. The number of servers 10, however, must be sufficient to
support the operation of the number of clients 12. Conventional servers are often
capable of supporting up to 50 thin clients so, in its simplest configuration, the present
invention will require only a single server. If a particular application requires more
thin clients than can be supported by a single server, then a second server should be
added. Once the additional server is added (by plugging into the network), the thin
clients can be redistributed evenly across the servers. This can be done either
manually, where a user configures the server directly to logically attach a certain

client to a particular server, or, more probably, by allowing the servers to

10

15

20

25

30

WO 00/54149

automatically share the load as needed. In this way, performance on all of the clients
will remain relatively constant. Even if not required, multiple servers may be desired
to provide a backup system should one server fail. If the load is shared between
servers, the failure of one server can be compensated by shifting the load to the
remaining server(s).

Referring still to FIG. 1, all communications between the server 10 and thin
clients 12 are routed over the computer network 14. The server(s) 10 and the thin
client(s) 12 are connected to the computer network using standard network cables
well known in the art. Both the server 10 and the thin client 12 must include a
network connection such as an Ethernet port to facilitate communication over the
network. It will be appreciated, however, that numerous alternative network
connections may be utilized, such as ATM or Token Ring.

The computer network 14 may comprise any of several well-known network
schemes such as the Internet, a local area network, or a wide area network. The
configuration of the computer network is unimportant so long as it allows the
server(s) to communicate with the thin term(s) as required by the present invention.
The network configuration will be determined, in large part, by what type of system is
best suited to the particular application of the invention. The computer network may
also allow communication from thin client to thin client but such communication is

not necessary to practice the present invention.

L. Server Description

Referring still to FIG. 1, the server 10 is a computer with sufficient resources
to support the desired number of thin clients. In a preferred embodiment, the server is
a computer comprising a 32-bit x86 processor, a hard disk with 128 megabytes (MB)
or more of free space, a network interface card, a CD-ROM drive, 32 MB or more of
random access memory (RAM) plus an additional 4 to 12 MB or more of RAM for
every thin client supported by the server, a mouse, a keyboard, and a monitor. It will
be appreciated, however, that this system is provided merely for illustrative purposes.
The server may also be a unix-based system such as the Sparcstation provided by Sun
Microsystems or any other computer system with sufficient resources to operate as a
server. The particular configuration of the server is also unimportant so long as the

server contains enough resources to support the thin clients it controls.

PCT/US00/06322

10

15

20

25

30

WO 00/54149 PCT/US00/06322
Turning now to FIG. 2A, there is shown a schematic diagram representing the

functional components of the server prior to the initiation of a thin client session
according to one embodiment of the present invention. The server 10 is configured
with an operating system 26 and software to facilitate server operation and
communication with the thin clients. The server software may be part of the
operating system or added as a plug-in or additional software program on top of the
operating system. The operating system 26 shown in FIG. 2A is assumed to include
the software necessary to facilitate operation as a server. In a preferred embodiment,
the server utilizes Microsoft Windows NT Terminal Server Edition or Microsoft 2000
Server operating system. Again, it will be appreciated that this embodiment is merely
illustrative and is not intended to be limiting. The operating system need only contain
sufficient functionality for the server to operate in a server/client environment and
sufficient resources to support the server-side manager (as described below) and the
demands of the thin clients.

The server should also contain a network connection protocol (not shown) to
facilitate communication over the network 14 (as shown in FIG. 1). Preferably, the
server uses TCP/IP protocol. In the embodiment shown in FIG. 2A the network
communication protocol agent is assumed to be part of the operating system 26, but it
could also be added as a separate component if necessary. In the preferred
embodiment described above, the Windows NT operating system includes the TCP/IP
protocol. It will be appreciated, however, that different servers may employ other
types of network connection protocols such as NetBeui or NWLink IPX/SPX.

Referring still to FIG. 24, the server should also contain a client/server
communication protocol agent 24 that facilitates communication between the server
and the client and allows the client access to the server. The communication protocol
agent also facilitates communication of the user’s mouse movements and keyboard
commands between the thin client and the server. This communication protocol agent
may be built into the server and client operating systems or configured as a separate
application. Thus, although the communication protocol agent is shown as a separate
component in FIG. 24, it may in operation be included as part of the server operating
system 26.

In a preferred embodiment the server utilizes Citrix Metaframe (or Citrix
Device Services), both off-the-shelf products, as the communication protocol agent

24. The Citrix product uses the Independent Computing Architecture (ICA) protocol

10

15

20

25

30

WO 00/54149 PCT/US00/06322
to facilitate remote presentation services and allow the thin client access to the server.

The Citrix product also extends the functionality of Microsoft’s Terminal Server
product with additional client and server functionality, as is well known in the
industry. It provides the functionality to make the system responsive enough for true
thin client operation.

It will be appreciated, however, that numerous other communication protocol
agents may be utilized without altering the novel aspects of the present invention. If
the communication protocol agent is built into the client and server operating systems,
it may be unnecessary to add an additional protocol if the desired level of client/server
functionality is included. For example, if the server is configured with Windows NT
and the thin client is configured with Windows CE, these two operating systems
contain a built in protocol known as RDP to facilitate server/client communication. In
this configuration, a separate communication protocol agent may not‘be necessary.

The server 10 also contains a server-side manager 22. The server-side
manager 22 comprises computer code that may be located on the server hardware or
software that is executed to provide control over the thin clients and oversee
initialization and configuration of the thin client 12. In a preferred embodiment the
server-side manager 22 is software resident on the server 10. The server-side
manager 22 is responsible for configuring each thin client in response to a request
from the client for configuration data (which may be part of a startup request
described further below) to insure that the thin client boots properly. The server-side
manager 22 determines the appropriate configuration for the thin client 12 and sends
the proper environment variables, device drivers, and device parameters for the thin
client. Preferably, the server-side manager 22 also monitors the thin client 12 and
allows for various remote functions such as thin client 12 remote reboot and
touchscreen calibration.. The server-side manager 22 also allows for auto
configuration of initial client terminal settings, drop-in replacement of terminals (with
the new terminal receiving the configuration and session of its predecessor) and
configuration of terminals using default or group-wide properties, server side load -
balancing and broadcast boot of clients.

In a preferred embodiment of the invention, the server-side manager 22
includes a graphical user interface (GUI) that allows a user (such as the server
administrator) to remotely configure the thin clients from the server 10. The GUI

may also include the details of the networked system such as the number of thin

10

15

20

25

30

WO 00/54149 PCT/US00/06322
clients, the working groups in which the thin clients are arranged, and configuration

information and other details about the thin clients 12 currently connected to the
server 10 such as the client’s identifier, network address, and operating system and
version.

Referring still to FIG. 2A, the server 10 also comprises a client boot image 20.
This boot image is distinct from the server’s own boot image that facilitates start-up
of the server 10. The client boot image 20 comprises the components necessary to
initiate operation of the thin client. In a preferred embodiment, the client boot image
20 comprises a client operating system and a client-side manager.

In one embodiment, the client boot image 20 may further comprise I/O drivers
which the client 12 may need to communicate with external devices. If the particular
client that is booting does not need the I/O drivers included as part of the client boot
image, then they are simply not used by that client. The boot image fnay also contain
a client communication protocol agent corresponding to the communication protocol
agent 24, if the communication protocol agent is desired to facilitate communication
between the thin client 12 and the server 10. For example, in the preferred
embodiment described above where the server includes the Citrix Metaframe (or
Citrix Device Services) communication protocol agent, the client boot image 20 may
include a Citrix client capable of communicating with the Citrix software located on
the server 10.

Additionally, the client boot image 20 may contain a client GUI to provide an
easy to use interface on the thin client 12. In a preferred embodiment, the software
contained in the client boot image is compressed or packed to facilitate quicker
transport of the client boot image over the network to the client 12. In this
embodiment, the client boot image also preferably contains executable commands
suitable for decompressing and installing the software. Preferably, there is one client
boot image for all of the clients 12 that need to be started; the individual configuration
of each client is handled by initialization files (stored on the Server) that are read and
processed by the server-side manager.

In a preferred embodiment, the client boot image 20 comprises a Linux kernel.
The kernel contains the core portions of the Linux operating system that is installed
when the kernel is unpacked executed at the client 12. Linux is a free computer
operating system (derived from UNIX) with an open architecture that allows for easy

customization. In this embodiment, the client boot image 20 may also comprise the

10

15

20

25

30

WO 00/54149

PCT/US00/06322
X-Windows environment as the client GUI and a Citrix client as the client

communication protocol agent. The X-Windows environment is a free GUI
developed to provide a windows-based interface for Unix and Linux operating
systems. The Citrix client provides client-side support for the Citrix Metaframe
communication protocol agent installed on the server as described above. The Citrix
client is preferably configured to operate via the X-Window GUI.

After the server has completed the thin client initialization and configuration
process (as described below), the server then waits for the client to logon to the
server. When the client logs on, the server initiates a client session. FIG. 2B shows
the functional components of the server after several client sessions have been
initiated. Referring to FIG. 2B, the server allocates a portion of its memory for client
workspaces 28 for each client. As more fully discussed below, the client workspaces

28 allow client applications to be run directly from the server.

IL Client Description

The thin client may be any of several commercially available computing
products or a specially designed “dumb terminal” suitable for operation according to
the present invention. The physical box comprising the client may be smaller than a
standard desktop computer, and will preferably include connections for power, a
monitor, network, a keyboard and a mouse. Additionally, if a client is being used for
input/output (I/O) to a special piece of equipment, that Client will have whatever
connections are required to communicate with that equipment. It will be appreciated
that the particular physical configuration of the thin client is not important to
operation of the present invention so long as the thin client contain the components
necessary to provide the functionality described below.

FIG. 3A is a schematic diagram representing the functional components of the
thin client 12 before it is powered on. At this stage, the thin client comprises only
volatile memory 32, such as random access memory (RAM), and a local boot image
30 residing in non-volatile memory associated with the thin client, such as read only
memory (ROM). The volatile memory 32 is typically random access memory such as
the memory provided by SIMM or DIMM circuit chips. The thin client must contain
enough volatile memory 32 to allow the thin client’s operating system and the
software necessary for network communication and interaction to load and run. Ina

typical configuration, the thin client will contain approximately 32 MB of volatile

10

10

15

20

25

30

WO 00/54149 i PCT/US00/06322
memory. It will be understood, however, that this amount of volatile memory is

merely illustrative and different applications of the present invention may contain thin
clients with significantly more or less volatile memory.

As shown in the embodiment illustrated in FIG. 3A, the local boot image 30 is
located on a small physical read-only memory device such as an EPROM that is
located within the thin client 12. The local boot image, however, may be located in
numerous locations so long as it is associated with the thin client. In one
embodiment, the boot image is included as part of the Basic Input Output System
(BIOS) of the client. Alternatively, the local boot image may reside on a network
connection component of the thin client 12 such as an Ethernet card. In another
embodiment, if the thin client 12 comprises a floppy disk drive, the local boot image
may reside on a floppy disk that is inserted into the thin client 12 prior to start-up. It
will be appreciated that the local boot image requires minimal memdry space and thus
may be located in numerous locations. The only requirement is that the thin client 12
be configured such that it locates the local boot image after it is powered-on.

The local boot image 30, contains executable commands that direct the thin
client 12 upon startup. When the thin client 12 receives power, it locates the local
boot image 30 and begins to execute the executable commands therein that direct the
thin client 12 to contact the server 10 and load the client boot image 20 (as shown in
FIG. 2A) located on the server. The client boot image 20 preferably contains
instructions for unpacking and installing the software programs (including the client
operating system) contained within the client boot image 20. The local boot image
may also contain the necessary commands to begin execution of those instructions.
After the client is booted, the local boot image plays no other role until the next time
the thin client is powered-on.

Advantageously, the thin client 12 does not need to store any other software,
device parameters, or local environment variables. In one embodiment, however, the
thin client may store network address information.. All of these components are stored
on the server 12. In a preferred embodiment, the thin client contains only the local
boot image 30 and volatile memory 32 such as random-access memory (RAM)
sufficient to load and execute the software downloaded from the server. When the
thin client is powered down, all of the RAM is erased. This configuration is unique
because the thin client is automatically configured by the server each time it is

powered on. This allows the server to automatically detect changes to the thin client

11

10

15

20

25

30

WO 00/54149 PCT/US00/06322

and properly configure the client without requiring any user action on the client side.
It also allows for client replacement, where the replacement client receives a
configuration which makes it the functional equivalent of its predecessor.

This configuration is also advantageous because the thin client 12 does not
have to be a powerful or complex computer system to operate the programs
downloaded from the server 10. It also does not have to be configured with any
particular hardware or software. This affords great hardware flexibility because
numerous types of thin client machines may be used ranging from outdated computer
systems to specially designed thin terminals.

After the client downloads the client boot image from the server, it stores the
software contained in the client boot image into the volatile memory. FIG. 3B shows
the functional component of the thin client after the client boot image has been
downloaded and the client software has been installed. In the embodiment illustrated
in FIG. 3B, the thin client downloads a client operating system 34, a client-side
manager 36, a communication protocol 38, and I/O drivers 40. These components are
temporarily stored in the client volatile memory space. As discussed above, in a
preferred embodiment, the client operating system 34 is Linux and the communication
protocol 38 is a Citrix client. The /O drivers 40 vary according to the particular
configuration of the thin client and the external I/O devices that it communicates with.

The client-side manager 36 communicates with the server-side manager 22 to
facilitate configuration and operation of the thin client 10 inciuding initiating
download of any software modules and providing an interface for the server-side
manager to receive specifics of client performance. In a preferred embodiment, the
client-side manager 36 is the client side of the ThinManager™ product developed by

Automation Control Products, the assignee of the present invention.

II. Operation Of The Network

For purposes of illustration, the operation of the system will be described from
the initial boot-up of the system. Thus, it is assumed that both the server 10 and the
thin client 12 are initially powered off. It is also assumed that both the server and the
thin client are connected to the computer network as shown in FIG. 1. To simplify the
description of the present invention, it will be described with general reference to

FIG. 4 which is a flow diagram illustrating the basic operation of the thin client 12

12

10

15

20

25

30

WO 00/54149 PCT/US00/06322
and the server 10 by providing an illustrative sequence of communications when

beginning a client session according to one aspect of the present invention.

The first step in implementing the network is to start-up the server. The server
boots up as would any server well known in the art. The server operating system runs
just as it would on any server well known in the art and includes server software to
allow it to properly function. The server-side manager is also loaded at start-up. If a
communication protocol agent is required or desired to facilitate communication
between the client and the server (as is the case if the operating systems of the server
and thin client do not include a built-in protocol such as RDP), a communication
protocol agent, such as Citrix Metaframe, should be loaded on the server at startup as
well.

Referring now to FIG. 4, after the server is operational, one or more of the thin
clients are powered-on. The following discussion details the startup'process fora
single thin client but, because the operation of the system is identical for each thin
client started, the process followed may be duplicated for as many clients as required.
When power is applied to the thin client as shown in block 42 of FIG. 4, the BIOS
located on the client’s processor searches for a unique code that indicates a local boot
image. As described above, depending on the configuration of the thin client, the
local boot image may be located in local, non-volatile memory resident on the client
or on an Ethernet card, floppy disk, etc. It is assumed that the thin client’s BIOS is
configured so that it is able to locate the local boot image. In a preferred embodiment,
the local boot image is located in a local (E)PROM stored on the thin client. As
shown in block 44, once the local boot image is located, the processor begins
executing the code contained in the boot image.

At this time, the server is still unaware of the thin client’s existence. Very
early in the client’s boot process (i.e., its execution of the local boot image
commands), the client sends a startup request to the server, shown as block 46, which
may comprise numerous sub-requests. At a minimum, the startup request includes
information sufficient to prompt the server to send the thin client’s operating system
that is stored in the client boot image stored on the server. In a preferred embodiment,
the startup request is accomplished by first sending a signal to the server identifying
the thin client and requesting a network address for the client. The network address
allows the client to connect to the server and communicate with the server over the

network. In a preferred embodiment, the network address comprises an Internet

13

10

15

20

25

30

WO 00/54149 PCT/US00/06322
protocol (IP) address. The thin term client can use any one of several protocols to

receive an IP address such as Dynamic Host Configuration Protocol (DHCP), Static
IP assignment, BootP, and Reverse Address Resolution Protocol (RARP). The
remainder of the discussion herein assumes that the DHCP protocol is used but it will
be appreciated by those of skill in the art that the other protocols could be easily
substituted without altering the present invention.

When the server receives the DHCP request from the client, depicted in block
48, it determines an IP address for the thin client. In this embodiment, the server
assigns the thin client an available IP address, but it will be understood that other
methods may be employed if a different protocol is used. Once an IP address is
determined, the server transmits the IP address with the IP address of the server where
the client boot image is stored and transmits this information back to the thin client.
Once the client receives its network address (IP address) and the loéation of the client
boot image at the correct server, the client transmits a signal to the server requesting
that the server send the client boot image, which preferably contains all of the
software that the client needs to operate, including the client operating system. It will
be understood, however, that the request for the bootable image may be included as
part of the initial request for a network address. Regardless, the request for the client
boot image is considered part of the startup request for purposes of the illustration in
FIG. 4. The server responds to the client’s request by transmitting the client boot
image to the client as shown by block 50 in FIG 4. The transfer of the client boot
image may be accomplished using any of several well-known file transfer methods,
but is preferably achieved using Trivial File Transfer Protocol (TFTP). It should be
noted however, that the client boot image does not necessarily reside locally at the
server but may reside at a location remote from the server from which it is sent to the
client. Accordingly, any other references herein to data being sent by the server or
located on the server may optionally be located at or sent from a location remote to
the server as is well known by those skilled in the art.

In a preferred embodiment, the client boot image is compressed. Thus, when
the client finishes downloading the client boot image it must decompress (unpack) the
boot image and create the necessary memory space in available volatile memory to
store the software contained in the client boot image in local volatile memory. The
commands required to decompress the client boot image may be contained within the

client boot image or included as part of the thin client’s local boot image. After the

14

10

15

20

25

30

WO 00/54149 PCT/US00/06322

client boot image has been downloaded from the server and stored in local volatile
memory, the thin client begins executing the executable commands contained in the
client boot image.

In one embodiment, the client boot image comprises a Linux kernel which is
executed to initiate operation of the thin client’s operating system. The Linux kernel
sets up a local RAM disk (i.e., a logical file system) on the thin client and unpacks
(decompresses) the rest of the client boot image which comprises all of the programs
necessary for thin client operation. In this embodiment, the Linux kernel installs a file
system into the RAM and executes the startup scripts found in the client boot image to
configure the local environment variables such as the thin client’s network connection
device, local sound or video cards, and any other local devices. In this embodiment,
the client boot image also preferably contains a client-side manager which is installed
when the client boot image is executed. The client boot image may élso contain I/O
drivers. If the thin client is connected to an I/O device, the Linux system is also
configured to install the I/O drivers need to facilitate communication between the I/O
device and the thin client.

If the system requires the use of a communication protocol agent, the client
boot image may also contain the software necessary to install the protocol on the
client. The client boot image may also contain the client GUIL. In one embodiment,
the client GUI is an X-windows environment and the communication protocol agent is
a Citrix client which is installed as part of the client boot image and which
communicates with the Citrix software on the server to transfer all of the video
displays, mouse movements, keyboard activity and any data required to make the thin
client appear to the user to be a Windows NT session.

In an alternative embodiment, the client boot image contains only a Linux
kernel and a client-side manager. In this embodiment, the Linux kernel contains only
the core Linux operating system and does not include local environment variables or
local device drivers and configuration information. In this embodiment, as illustrated
by block 54, the core Linux kernel is executed to initiate the basic operating system.
Additionally, the client-side manager is also installed when the client boot image is
executed. The client-side manager is then used to communicate with the server to
complete configuration of the thin client.

To accomplish this, the client-side manager transmits a configuration request

to the server as depicted in block 56. The configuration request contains a unique

15

10

15

20

25

30

WO 00/54149 PCT/US00/06322
client identifier which identifies the client to the server. The unique client identitier

may be associated with the client as part of the local boot image which is then passed
on to the client-side manager after it is loaded. Alternatively, the unique identifier
may be determined by the client-side manager. In a preferred embodiment, the
unique client identifier is the thin client’s MAC (Media Access Control) address (i.e.,
hardware address). The MAC address is unique to each device attached to a network,
is stored in non-volatile memory associated with the client, and is used to identify
each network device for the purpose of directing network traffic.

The server receives the configuration request at block 58 and uses the unique
client identifier to retrieve a configuration profile for the thin client as shown in block
60. Preferably, the configuration profile contains information concerning all of the
drivers, device parameters, local environment variables, etc. that are necessary to
configure the thin client. The configuration profile may also contain information
concerning the client communication protocol agent, GUI, or any other software
necessary for client operation. The configuration profiles for the thin client may be
stored on the server in a look-up table. Using the unique client identifier, the server
can locate the configuration profile for a particular client and obtain a list of the
configuration data (i.e., software, drivers, device parameters, local environment
variables, etc.) necessary to complete initialization and configuration of the thin
client. The configuration data is then transmitted by the server to the client as shown
in block 62. The client receives the configuration data and the client-side manager
configures the thin client using the data as shown in block 64.

In one embodiment, the configuration data may also include any additional
software necessary for particular thin client applications. This includes any necessary
I/O drivers needed by the thin client to communicate with any external devices. These
drivers will initialize the external I/O device (regardless of whether it is connected
through a serial port, a card slot, or any other mechanism) initiate communication
between the client and the I/0 device. At this point the I/O device is ready to
communicate with the I/O server located on the server (as described below). The.
configuration data may also include any other software necessary for client operation.
This may include a client communication protocol agent, a client GUI, and any
software applications used by the client for particular applications.

In another embodiment of the present invention, the thin client 12 is

configured using software modules. In this embodiment, the configuration profile for

16

10

15

20

25

30

WO 00/54149

the client includes a list of the modules that the client requires for proper
configuration. Each module is specifically designed for a particular thin client
configuration. For example, if the thin client contains a 17 inch monitor with a
touchscreen, modules for that client might include one module containing all of the
device drivers and parameters for the monitor and another module containing the
device driver and parameters for the touchscreen. Additionally, hardware devices
added at a later date to the client 12 can be accommodated by simply downloading
modules for that device. Modules may also comprise the client GUI, the
communication protocol agent, or particular software applications for the client.

This is advantageous because mulitiple device drivers and configuration
parameters need not be included in the client boot image. The client boot image need
only contain the basic core operating system for the client and the client-side
manager. The complete thin client configuration is then performed By downloading
the appropriate modules using the client-side and server-side managers. The scope of
potential modules is enormous and will vary from application to application. For
example, any I/O drivers or parameters needed by the client may be included in a
module. Additionally, the client communication protocol agent, client GUI, or any
other software applications used by the client may be included in one or more
modules. Modules also provide a high degree of flexibility. For example, if a
particular system uses two basic configurations for its thin clients, a module can be
developed which contains all of the local environment variables, device drivers,
device parameters, etc. necessary for each type of client. Thus, the client is
configured automatically upon startup and the only the software necessary for client
operation is downloaded onto the client.

In an embodiment of the present invention, the server-side manager
communicates with the client-side manager to facilitate easy (“drop in”) replacement
of terminals. In this embodiment, the server-side manager detects the addition of a
new client when more than one of the previously configured clients has dropped
offline. In this embodiment, the client-side manager transmits a configuration request
to the server-side manager. If the server-side manager detects an unrecognized
unique client identifier, it responds with a list of all of the offline clients. The client-
side manager then allows the user (local to the client) to indicate the client that is
being replaced. The server-side manager then sends the configuration data and

programs that were being used by the preceding client and associates the

17

PCT/US00/06322

10

15

20

25

30

WO 00/54149 PCT/US00/06322
configuration of the preceding client with the new client base on the unique client
identifier of the new client.

In another embodiment, the server-side manager communicates with the
client-side manager to facilitate default configuration of multiple thin clients. In this
embodiment, the server-side manager sends a configuration to each unknown client
(when it boots) based on properties as described in a default configuration profile.
The default configuration profile may be stored on the server or retrieved from
another location on the network. The default configuration may also be stored in a
look-up table under a default client identifier. For unknown terminals that are booted
and designated as members of a group of already configured clients, the server-side
manager creates a new configuration by inheriting configuration parameters from
properties common to the clients in that group. This may be achievg:d by comparing
the configuration profiles of the clients connected to the group or by using a
configuration profile that is uniquely associated with the group itself.

At this point, the thin client is booted and it now waits for a stimulus from a
user. FIG. 3B shows the functional components of the thin client after it has been
booted according to one possible configuration. It will be appreciated that all of the
software residing on the thin client including the operating system 34, client-side
manager 36, communication protocol agent 38 and I/O drivers 40 are resident in
volatile memory and are not permanently stored on the thin client. When the thin
client is powered down, all of these components will be erased from the volatile
memory of the thin client; only the local boot image 30 remains present in the non-
volatile memory of the thin client after it is powered down (if the local boot image is
initially stored there). Also, it will also be understood that the components shown in
FIG. 3B are merely illustrative and are not required for every application of the
present invention. The actual components resident in the volatile memory of the thin
client will depend on the particular application for which it is used.

Operation from this point on is similar to the operation of conventional
client/server systems. Typically, a user attempts to log-on to the thin client and the
client transmits a login request to the server. In a preferred embodiment of the present
invention, this is achieved using the Citrix communication protocol agent. Once a
user attempts to log-on to the client, the Citrix software sends a message to the server,
and the server processes this request and provides the Citrix services to the client.

The client starts a Windows Terminal Session and the user is now able to begin

18

10

15

20

25

30

WO 00/54149 PCT/US00/06322

normal activity on the client. As discussed above, any of several well-known
communication protocol agents may be used to facilitate user login at the thin client.

FIG. 2B shows the functional components of the server after several thin
clients have started. As in shown in FIG. 2B, the server retains all of the functionality
it contained prior to initiating the thin client session. However, after the client
initialization process is complete, the server allocates workspace 28 for each thin
client connected to the server. The server uses this space to load any software needed
by the client as determined by the particular client application.

If the thin client is being used for local I/O, then the server will also start an
I/O server either in the client workspace 28 or in a common area of the system
memory. The I/O servers will transfer data and requests from the server to the local
I/O devices located on the thin client. The I/O server is also used to make the data
read locally by the client available to the server and any other client. that needs access
to that I/O device. Advantageously, the server controls the local I/O operations on the
client through the 1/0 servers located on the server. This allows the data collected
from the local I/O devices to be stored on the server. Thus, if a particular client is
shut down, the data collected is not lost because it is maintained on the server.

The client workspace 28 is also used to provide any additional services
required by the client such as HMI (Human Machine Interface) software, Word
Processors, etc. These programs are started in the client’s session on the server and
run directly from the server. Advantageously, these programs continue to run in the
client’s workspace on the server regardless of whether or not the thin client is
powered down. Thus, if a task running in the thin client session is being used to
control or monitor equipment, power interruption on the client will not disrupt this

operation because the server will continue running the operation.

IV. Particular Application Of The Present Invention

The present invention is especially suited for application in factory automation
systems. The present invention allows manufacturers to use a very low cost
workstation that requires no operator configuration, can be powered down and
replaced at any time (without interrupting the manufacturing process), and allows for
a single copy of all of the factory control software.

Individual clients are placed at equipment as needed and connected to a server,

which is preferably located away from the manufacturing environment and in a

19

10

15

20

25

30

WO 00/54149 PCT/US00/06322

secure, clean computer room. The server is also managed by the company’s IT
department, allowing easy upgrades and reliable backups. As all of the operator
interface screens for the individual clients are located in a single copy on a single
machine (the server), the client software can be easily updated and is automatically
distributed.

Additional clients are added by simply running a network cable from the
nearest hub, plugging in the new client and turning it on. The server detects the new
client and sends it the client boot image required to have it up and running in
moments without any prior configuration of the new client. If the client load becomes
to heavy for the installed server, an additional server can be added which will then be
able to share the load with the original server. Additional clients and servers can
continue to be added in this manner as required.

For high reliability installations (frequently found in the maﬁufacturing
industry), a user can start with more servers than would be required for a standard
installation, and use the load sharing capabilities of the server-side software to shift all
of the client load to the backup server in the event of primary server failure. The
failed server can then be replaced at a convenient time. With the low cost and high
reliability of the thin clients, they can also be used in the manufacturing environment
to simply perform distributed data acquisition, achieved by using the I/O local to the
client. This saves the manufacturer from having to run special communications
cables — the data can be gathered by the thin client located near the equipment and
then transmitted over a standard network back to the central server. Likewise, data
and commands can be sent from the server for equipment local to any client.

The present invention is also well-suited for implementation in office and
school environments due to its relatively low cost, easily distributed applications,
centrally managed software and easy replacement and addition of clients.

When implemented over any type if Wide Area Network (including the
Internet), the present invention can be used as an application service provider (ASP)
to distribute software to clients on an as needed basis. The customer, running a thin
client, connects to a managed server at a remote location and requests the use of any
in stock software product. The software is instantly turned on for that client, and the
client can use it just as if he had installed the product locally. Once the software is no
longer needed, the client indicates that he has finished with it and the software is

deactivated for his client. The time that the software product was used is recorded,

20

10

15

20

WO 00/54149

and the user is billed a predetermined rate for use of the software. The customer can
get any software package available without having to purchase and install the
software on his local machine, but is able to run this package as if he had actually
installed it on his local machine.

This mechanism allows for a supervisory program running at the remote
location (considered the centrally managed site) to control and monitor the use of any
software that it has available. In one embodiment, several servers would be used to
serve customers located in various locations. The server at each customer’s site
accesses, through the Internet or a direct connection, the server at the central site
whenever it is in need of new or updated software. The supervisory management
program running on an ASP server then verifies and records the customer’s
identification, along with the current time and date, and then makes the software
available to the customer either directly (where the customer runs thé software
directly on the ASP server) or by setting it up on a local server at the customer’s site.
1t also records the number of users that the customer needs, and records this
information in the customer’s file.

Many modifications and other embodiments of the invention will come to
mind to one skilled in the art to which this invention pertains having the benefit of the
teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the invention is not limited to the specific
embodiments disclosed and that modifications and other embodiments are intended to
be included within the scope of the appended claims. Although specific terms are
employed herein, they are used in a generic and descriptive sense only and not for

purpose of limitation.

21

PCT/US00/06322

10

15

20

25

30

WO 00/54149 ‘ PCT/US00/06322

THAT WHICH IS CLAIMED:

1. In a computer network comprising a thin client connected to a server, a
method for initiating a client session comprising:

executing a local boot image associated with the client;

sending a startup request from the client to the server;

receiving at the client a client operating system in response to said startup
request;

initiating operation of the client operating system.

2. The method of claim 1, further comprising:

receiving at the client a client-side manager in response to the startup request;

using the client-side manager to transmit a configuration request from the
client to the server, wherein the configuration request includes a unique client
identifier;

receiving client configuration data at the client in response to the configuration
request,

configuring the client using the configuration data.

3. The method of claim 2, wherein receiving client configuration data in response
to the configuration request includes receiving client configuration data comprising

one of a local environment variable, a device driver, and a device parameter.

4. The method of claim 2, wherein receiving client configuration data in response
to the configuration request includes receiving client configuration data comprising at

least one client module.

5. The method of claim 1, further comprising receiving at the client a
communication protocol agent in response to the startup request, wherein the
communication protocol agent facilitates communication between the client operating

system and the server operating system.

6. In a computer network comprising a client connected to a server, a method for

initiating a client session comprising:

22

10

15

20

25

30

WO 00/54149 PCT/US00/06322

receiving at the server a startup request from the client;
transmitting a client operating system to the client in response to the startup

request.

7. The method of claim 6, further comprising:

receiving at the server a configuration request from the client, wherein the
configuration request includes a unique client identifier;

retrieving a configuration profile for the client using the unique client
identifier;

using the configuration profile to determine client configuration data; and

transmitting client configuration data to the client.

8. The method of claim 7, wherein using the configuration profile to determine
client configuration data includes using the configuration profile to determine client
configuration data comprising one of a local environment variable, a device driver,

and a device parameter.

9. The method of claim 7, wherein using the configuration profile to determine
client configuration data includes using the configuration profile to determine client

configuration data comprising at least one client module.

10. The method of claim 6, further comprises transmitting a communication
protocol agent to the client in response to the startup request, wherein the
communication protocol agent facilitates communication between the client operating

system and the server operating system.

11. A computer network, comprising:
a server comprising a client boot image that includes a client operating system;
a client comprising a local boot image, wherein the client executes the local
boot image when powered on, and wherein the local boot image initiates a request
that the client boot image be downloaded from the server to the client and initiates
operation of the client operating system on the client; and

a network that communicatively connects the client to the server.

23

10

15

20

25

30

WO 00/54149 PCT/US00/06322

12. The computer network of claim 11, wherein the client further comprises
means for transmitting a configuration request to the server and for configuring the

client using configuration data received in response to the configuration request.

13. The computer network of claim 11, wherein the server further comprises
means for determining client configuration data in response to a configuration request

from the client.

14. In a computer network comprising a client connected to a server, a method for
initiating a client session comprising:

sending a startup request from the client to the server;

receiving at the client a client-side manager in response to the startup request;

using the client-side manager to transmit a configuration request from the
client to the server, wherein the configuration request includes a unique client
identifier;

receiving client configuration data at the client in response to the configuration
request;

configuring the client using the configuration data.

15. The method of claim 14, wherein receiving client configuration data in
response to the configuration request includes receiving client configuration data
comprising one of a local environment variable, a device driver, and a device

parameter.

16. The method of claim 14, wherein receiving client configuration data in
response to the configuration request includes receiving client configuration data

comprising at least one client module.

17. Inacomputer network comprising a client connected to a server, a method for
initiating a client session comprising:

receiving at the server a configuration request from the client, wherein the
configuration request includes a unique client identifier;

retrieving a configuration profile for the client using the unique client

identifier;

24

10

WO 00/54149 PCT/US00/06322

using the configuration profile to determine client configuration data; and

transmitting client configuration data to the client.

18. The method of claim 17, wherein using the configuration profile to determine
client configuration data includes using the configuration profile to determine client
configuration data comprising one of a local environment variable, a device driver,

and a device parameter.
19. The method of claim 17, wherein using the configuration profile to determine

client configuration data includes using the configuration profile to determine client

configuration data comprising at least one client module.

25

WO 00/54149 PCT/US00/06322

1/4

[%]
—
D =
[—=Jww]
o=
EO
[-%
==
Ao

6. 1.

00O

SUBSTITUTE SHEET (RULE 26)

PCT/US00/06322

WO 00/54149

2/4

8¢ 9

WALSAS
INILV¥Id0

M

1001044
NOIYDINNWWO)

i

Y19VNYW
301S-¥INNS

e~
N\N

J9VII
1 1008
) INIID

] /
2\ cw\

Ve IH

W3LSAS
INIIVYIdO0

10J0103d
NOIIVJINNWW0)

YI9VNYW
301S-43IAN3S

A

RN

L——1 1001

19V

1IN

N

SUBSTITUTE SHEET (RULE 26)

PCT/US00/06322

WO 00/54149

3/4

g€ IH
\g
u WAISAS B
e INILY¥I40
Ve
SHIAIYG | WIOVNVW | 10)0L0Yd
0/1 | 3ISINIT) | NOLYDINAWNO)
ob cm& amk

VE I

1008
001 AU

J

AIOWIW
1YI0A

A
W01 \K

Nm\

N

SUBSTITUTE SHEET (RULE 26)

WO 00/54149

PCT/US00/06322

A

N

)

SERVER 4/4
POWERED
oN
| J48
MAEINE STARTUP
T REQUEST
¥ jo
T -/ CLIENTBOOT
BOOT IMAGE IMAGE
58
Y
RECEIVE
NFI _ CONFIGURATION
i < REQUEST
y 60
RETRIEVE
CONFIGURATION
PROFILE
I J“
TRANSMIT
CONFIGURATION ~ [——{ CONFISLRATION.
DATA
HG. 4.

SUBSTITUTE SHEET (RULE 26)

Y

CLIENT
1
PoweRed |
oN
Y m
EXECUTELOGAL |
BOOT IMAGE
Y 46
maswr |
STARTUP REQUEST
Y 5
| RECEIVE CLENT J
BOOT IMAGE
' 54
INITIATE CLIENT
0/5 AND CLIENT- _/
SIDE MANAGER
./ 56
TRANSMIT _J
CONFIGURATION
REQUEST
RECENVE
CONFIGURATION
DATA
I 64
CONFIGURE
CLIENT

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

