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MODIFICATION OF CODEWORDS IN DICTIONARY USED FOR
EFFICIENT CODING OF DIGITAL MEDIA SPECTRAL DATA
Technical Field

The technology relates generally to coding of spectral data by representing
certain portions of the spectral data as modified versions of other previously coded
portions.

Background

The coding of audio utilizes coding techniques that exploit various
perceptual models of human hearing. For example, many weaker tones near strong
ones are masked so they do not need to be coded. In traditional perceptual audio
coding, this is exploited as adaptive quantization of different frequency data.
Perceptually important frequency data are allocated more bits and thus finer
quantization and vice versa.

Perceptual coding, however, can be taken to a broader sense. For example,
some parts of the spectrum can be coded with appropriately shaped noise. When
taking this approach, the coded signal may not aim to render an exact or near exact
version of the original. Rather the goal is to make it sound similar and pleasant
when compared with the original.

All these perceptual effects can be used to reduce the bit-rate needed for
coding of audio signals. This is because some frequency components do not need
to be accurately represented as present in the original signal, but can be either not
coded or replaced with something that gives the same perceptual effect as in the
original.

Summary

An audio encoding/decoding technique described herein utilizes the fact that
some frequency components can be perceptually well, or partially, represented
using shaped noise, or shaped versions of other frequency components, or the
combination of both. More particularly, some frequency bands can be perceptually
well represented as a shaped version of other bands that have already been coded.
Even though the actual spectrum might deviate from this synthetic version, it is still
a perceptually good representation that can be used to significantly lower the bit-

rate of the audio signal encoding without reducing quality.
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Various optional features are described for modifying the code-vectors (e.g.,
codewords) in the codebook according to some rules which allow the code-vector
to better represent sub-band data. The modification can consist of either a linear or
non-linear transform, or by representing the code-vector as a combination of two
other code-vectors. In the case of a combination, the modification can be provided
by taking portions of one code-vector and combining it with portions of other code-
vectors.

A codeword is from a baseband, a fixed codebook, and/or a randomly
generated codeword. Additionally, a codeword can also be from a band that was
previously coded by either a baseband coder or extended band coder. References to
codewords herein, include all of these potential sources for codewords, although
any particular embodiment may only use a subset of these sources for codewords.
Various linear or non-linear transformations are performed on one or more
codewords in a library to obtain a greater or more diverse set of shapes for
identifying a best shape for matching a vector being coded. In one example, a
codeword is reversed in coefficient order to obtain another codeword for shape
matching. In another example, a codeword’s variance is reduced using
exponentiation of coefficients with an exponent less than one. Similarly, a
codeword’s variance is exaggerated using an exponent greater than one. In another
example, the coefficients of a codeword are negated. Of course, many other linear
and non-linear transformations can be performed on one or more codewords in
order to provide a larger or more diverse universe for matching sub-bands, or other
vectors.

In another example, an exhaustive search is performed along a baseband
and/or other codebooks to find a best match codeword. For example, a search is
performed comprising an exhaustive search of a codeword library, including all
combinations of exponential transform (p=0.5, 1.0, 2.0), sign transform (+/-), and
direction transform (forward/reverse). Similarly, this exhaustive search may be
performed along the noise codebook spectrum, other codebooks, or random noise
vectors.

In general, a close match can be provided by determining a lowest variance

between the sub-band being coded and a transformed codeword. An identifier of
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the codeword and transform, along with other information such as a scale factor, is
coded in the bitstream and provided to the decoder.

In another example, two or more codewords are combined to provide a
model for encoding. For example, two codewords b and n, are provided b = <b, b,
... by>and n=<mng, n; ... n, > to better describe a sub-band being coded. Vector b
may be from the baseband, a noise codebook, or a library, and vector n may
similarly be from any such source. A rule is provided for interleaving coefficients
from each two or more codewords b and n, such that the decoder implicitly or
explicitly knows which coefficient to take from the codewords b and n. The rule
may be provided in the bitstream or may be known by the decoder implicitly.
Alternatively, "b" may be the actual coding using waveform coding instead of a
codeword.

Thus, an encoder can send two or more codeword identifiers, and optionally,
arule to decode which coefficients to take to create the sub-band. The encoder will
also send scale factor information for codewords, and optionally if relevant, any
other codeword transform information.

Additional features and advantages of the invention will be made apparent
from the following detailed description of embodiments that proceeds with
reference to the accompanying drawings.

Brief Description of the Drawings

Figures 1 and 2 are a block diagram of an audio encoder and decoder in
which the present coding techniques may be incorporated.

Figure 3 is a block diagram of a baseband coder and extended band coder
implementing the efficient audio coding using modified codewords and or variable
frequency segmentation that can be incorporated into the general audio encoder of
Figure 1.

Figure 4 is a flow diagram of encoding bands with the efficient audio coding
using the extended band coder of Figure 3.

Figure 5 is a block diagram of a baseband decoder, an extended band
configuration decoder, and extended band decoder that can be incorporated into the

general audio decoder of Figure 2.
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Figure 6 is a flow diagram of decoding bands with the efficient audio coding
using the extended band decoder of Figure 5.

Figure 7 is a graph representing a set of spectral coefficients.

Figure 8 is a graph of a codeword and various linear and non-linear
transformations of the codeword.

Figﬁre 9 is a graph of an exemplary vector that does not represent peaks
distinctly.

Figure 10 is a graph of Figure 9 with distinct peaks created via codeword
modification by exponential transform.

Figure 11 is a graph of a codeword as compared to the sub-band it is
modeling.

Figure 12 is a graph of a transformed sub-band codeword as compared to the
sub-band it is modeling.

Figure 13 is a graph of a codeword, a sub-band to be coded by the
codeword, a scaled version of the codeword, and a modified version of the
codeword.

Figure 14 is a diagram of an exemplary series of split and merge sub-band
size transformations.

Figure 15 is a block diagram of a suitable computing environment for
implementing the audio encoder/decoder of Figure 1 or 2.

Detailed Description

The following detailed description addresses audio encoder/decoder
embodiments with audio encoding/decoding of audio spectral data using
modification of codewords and/or modification of a default frequency
segmentation. This audio encoding/decoding represents some frequency
components using shaped noise, or shaped versions of other frequency components,
or the combination of both. More particularly, some frequency bands are
represented as a shaped version or transformation of other bands. This often allows
a reduction in bit-rate at a given quality or an improvement in quality at a given bit-
rate. Optionally, an initial sub-band frequency configuration can be modified based

on tonality, energy, or shape of the audio data.
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Brief Overview

In the patent application, “Efficient coding of digital media spectral data
using wide-sense perceptual similarity,” U.S. Patent Application No. 10/882,801,
filed June 29, 2004, an algorithm is provided which allows the coding of spectral
data by representing certain portions of the spectral data as a scaled version of a
code-vector, where the code-vector is chosen from either a fixed predetermined
codebook (e.g., a noise codebook), or a codebook taken from a baseband (e.g., a
baseband codebook). When the codebook is adaptively created, it can consist of
i)reviously encoded spectral data.

Various optional features are described for modifying the code-vectors in the
codebook according to some rules which allow the code-vector to better represent
the data they are representing. The modification can consist of either a linear or
non-linear transform, or representing the code-vector as a combination of two or
more other original or modified code-vectors. In the case of a combination, the
modification can be provided by taking portions of one code-vector and combining
it with portions of other code-vectors.

When using code-vector modification, bits have to be sent so that the
decoder can apply the transformation to form a new code-vector. Despite the
additional bits, codeword modification is still a more efficient coding to represent
portions of the spectral data than actual waveform coding of that portion.

The described technology relates to improving the quality of audio coding,
and can also be applied to other coding of multimedia such as images, video, and
voice. A perceptual improvement is available when coding audio, especially when
the portion of the spectrum used to form the codebook (typically the lowband) has
different characteristics than the portion being coded using that codebook (typically
the highband). For example, if the lowband is “peaky” and thus has values which
are far from the mean, and the highband is not, or vice-versa, then this technique
can be used to better code the highband using the lowband as a codebook.

A vector is a sub-band of spectral data. If sub-band sizes are variable for a
given implementation, this provides the opportunity to size sub-bands to improve
coding efficiency. Often, sub-bands which have similar characteristics may be

merged with very little effect on quality, whereas sub-bands with highly variable
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data may be better represented if a sub-band is split. Various methods are
described for measuring tonality, energy, or shape of a sub-band. These various
measurements are discussed in light of making decisions of when to split or merge
sub-bands. However, smaller (split) sub-bands require more sub-bands to represent
the same spectral data. Thus, the smaller sub-band sizes require more bits to code
the information. In cases when variable sub-band sizes are employed, a sub-band
configuration is provided for efficient coding of the spectral data, while considering
both the data required to ¢ode the sub-bands and the data required to send the sub-
band configuration to a decoder. The following paragraphs proceed through more
generalized examples to more specific examples.

Generalized Audio Encoder and Decoder

Figures 1 and 2 are block diagrams of a generalized audio encoder (100) and
generalized audio decoder (200), in which the herein described techniques for audio
encoding/decoding of audio spectral data using modification of codewords and/or
modifications of an initial frequency segmentation. The relationships shown
between modules within the encoder and decoder indicate the main flow of
information in the encoder and decoder; other relationships are not shown for the
sake of simplicity. Depending on implementation and the type of compression
desired, modules of the encoder or decoder can be added, omitted, split into
multiple modules, combined with other modules, and/or replaced with like
modules. In alternative embodiments, encoders or decoders with different modules
and/or other configurations of modules measure perceptual audio quality.

Further details of an audio encoder/decoder in which the wide-sense
perceptual similarity audio spectral data encoding/decoding can be incorporated are
described in the following U.S. patent applications: U.S. Patent Application
No. 10/882,801, filed 6/29/2004; U.S. Patent Application No. 10/020,708, filed
12/14/2001; U.S. Patent Application No. 10/016,918, filed 12/14/2001; U.S. Patent
Application No. 10/017,702, filed 12/14/2001; U.S. Patent Application No. 10/017,861,
filed 12/14/2001; and U.S. Patent Application No. 10/017,694, filed 12/14/2001.

Exemplary Generalized Audio Encoder
The generalized audio encoder (100) includes a frequency transformer (110),

a multi-channel transformer (120), a perception modeler (130), a weighter (140), a
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quantizer (150), an entropy encoder (160), a rate/quality controller (170), and a
bitstream multiplexer ["MUX"] (180).

The encoder (100) receives a time series of input audio samples (105). For
input with multiple channels (e.g., stereo mode), the encoder (100) processes
channels independently, and can work with jointly coded channels following the
multi-channel transformer (120). The encoder (100) compresses the audio samples
(105) and multiplexes information produced by the various modules of the encoder
(100) to output a bitstream (195) in a format such as Windows Media Audio
[“WMA”] or Advanced Streaming Format [“ASF”]. Alternatively, the encoder
(100) works with other input and/or output formats.

The frequency transformer (110) receives the audio samples (105) and
converts them into data in the frequency domain. The frequency transformer (110)
splits the audio samples (105) into blocks, which can have variable size to allow
variable temporal resolution. Small blocks allow for greater preservation of time
detail at short but active transition segments in the input audio samples (105), but
sacrifice some frequency resolution. In contrast, large blocks have better frequency
resolution and worse time resolution, and usually allow for greater compression
efficiency at longer and less active segments. Blocks can overlap to reduce
perceptible discontinuities between blocks that could otherwise be introduced by
later quantization. The frequency transformer (110) outputs blocks of frequency
coefficient data to the multi-channel transformer (120) and outputs side information
such as block sizes to the MUX (180). The frequency transformer (110) outputs
both the frequency coefficient data and the side information to the perception
modeler (130).

The frequency transformer (110) partitions a frame of audio input samples
(105) into overlapping sub-frame blocks with time-varying size and applies a time-
varying MLT to the sub-frame blocks. Exemplary sub-frame sizes include 128,
256, 512, 1024, 2048, and 4096 samples. The MLT operates like a DCT modulated
by a time window function, where the window function is time varying and
depends on the sequence of sub-frame sizes. The MLT transforms a given

x[n],0 £ 1 < subframe _size

overlapping block of samples into a block of frequency

coefficients X[K1.0 <k <subframe_size/2 Tpe frequency transformer (110) can
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also output estimates of the complexity of future frames to the rate/quality
controller (170). Alternative embodiments use other varieties of MLT. In still
other alternative embodiments, the frequency transformer (110) applies a DCT,
FFT, or other type of modulated or non-modulated, overlapped or non-overlapped
frequency transform, or use sub-band or wavelet coding.

For multi-channel audio data, the multiple channels of frequency coefficient
data produced by the frequency transformer (110) often correlate. To exploit this
correlation, the multi-channel transformer (120) can convert the multiple original,
independently coded channels into jointly coded channels. For example, if the
input is stereo mode, the multi-channel transformer (120) can convert the left and
right channels into sum and difference channels:

Xy [R] 4 X g L]

2 (1)
X o [£] = X pigre [K]

2 @

Or, the multi-channel transformer (120) can pass the left and right channels

XSum [k] =

Xy [k] =

through as independently coded channels. More generally, for a number of input
channels greater than one, the multi-channel transformer (120) passes original,
independently coded channels through unchanged or converts the original channels
into jointly coded channels. The decision to use independently or jointly coded
channels can be predetermined, or the decision can be made adaptively on a block
by block or other basis during encoding. The multi-channel transformer (120)
produces side information to the MUX (180) indicating the channel transform
mode used. ,

The perception modeler (130) models properties of the human auditory
system to improve the quality of the reconstructed audio signal for a given bit-rate.
The perception modeler (130) computes the excitation pattern of a variable-size
block of frequency coefficients. First, the perception modeler (130) normalizes the
size and amplitude scale of the block. This enables subsequent temporal smearing
and establishes a consistent scale for quality measures. Optionally, the perception
modeler (130) attenuates the coefficients at certain frequencies to model the

outer/middle ear transfer function. The perception modeler (130) computes the
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energy of the coefficients in the block and aggregates the energies by 25 critical
bands. Alternatively, the perception modeler (130) uses another number of critical
bands (e.g., 55 or 109). The frequency ranges for the critical bands are
implementation-dependent, and numerous options are well known. For example,
see ITU-R BS 1387 or a reference mentioned therein. The perception modeler
(130) processes the band energies to account for simultaneous and temporal
masking. In alternative embodiments, the perception modeler (130) processes the
audio data according to a different auditory model, such as one described or
mentioned in ITU-R BS 1387.

The weighter (140) generates weighting factors (alternatively called a
quantization matrix) based upon the excitation pattern received from the perception
modeler (130) and applies the weighting factors to the data received from the multi-
channe] transformer (120). The weighting factors include a weight for each of
multiple quantization bands in the audio data. The quantization bands can be the
same or different in number or position from the critical bands used elsewhere in
the encoder (100). The weighting factors indicate proportions at which noise is
spread across the quantization bands, with the goal of minimizing the audibility of
the noise by putting more noise in bands where it is less audible, and vice versa.
The weighting factors can vary in amplitudes and number of quantization bands
from block to block. In one implementation, the number of quantization bands
varies according to block size; smaller blocks have fewer quantization bands than
larger blocks. For example, blocks with 128 coefficients have 13 quantization
bands, blocks with 256 coefficients have 15 quantization bands, up to 25
quantization bands for blocks with 2048 coefficients. These block-band
proportions are only exemplary. The weighter (140) generates a set of weighting
factors for each channel of multi-channel audio data in independently or jointly
coded channels, or generates a single set of weighting factors for jointly coded
channels. In alternative embodiments, the weighter (140) generates the weighting
factors from information other than or in addition to excitation patterns.

The weighter (140) outputs weighted blocks of coefficient data to the
quantizer (150) and outputs side information such as the set of weighting factors to

the MUX (180). The weighter (140) can also output the weighting factors to the
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rate/quality controller (140) or other modules in the encoder (100). The set of
weighting factors can be compressed for more efficient representation. If the
weighting factors are lossy compressed, the reconstructed weighting factors are
typically used to weight the blocks of coefficient data. If audio information in a
band of a block is completely eliminated for some reason (e.g., noise substitution or
band truncation), the encoder (100) may be able to further improve the compression
of the quantization matrix for the block.

The quantizer (150) quantizes the output of the weighter (140), producing
quantized coefficient data to the entropy encoder (160) and ‘side information
including quantization step size to the MUX (180). Quantization introduces
irreversible loss of information, but also allows the encoder (100) to regulate the
bit-rate of the output bitstream (195) in conjunction with the rate/quality controller
(170). In Figure 1, the quantizer (150) is an adaptive, uniform scalar quantizer.

The quantizer (150) applies the same quantization step size to each frequency
coefficient, but the quantization step size itself can change from one iteration to the
next to affect the bit-rate of the entropy encoder (160) output. In alternative
embodiments, the quantizer is a non-uniform quantizer, a vector quantizer, and/or a
non-adaptive quantizer.

The entropy encoder (160) losslessly compresses quantized coefficient data
received from the quantizer (150). For example, the entropy encoder (160) uses
multi-level run length coding, variable-to-variable length coding, run length coding,
Huffman coding, dictionary coding, arithmetic coding, LZ coding, a combination of
the above, or some other entropy encoding technique.

The rate/quality controller (170) works with the quantizer (150) to regulate
the bit-rate and quality of the output of the encoder (100). The rate/quality
controller (170) receives information from other modules of the encoder (100). In
one implementation, the rate/quality controller (170) receives estimates of future
complexity from the frequency transformer (110), sampling rate, block. size
information, the excitation pattern of original audio data from the perception
modeler (130), weighting factors from the weighter (140), a block of quantized
audio information in some form (e.g., quantized, reconstructed, or encoded), and

buffer status information from the MUX (180). The rate/quality controller (170)
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can include an inverse quantizer, an inverse weighter, an inverse multi-channel
transformer, and, potentially, an entropy decoder and other modules, to reconstruct
the audio data from a quantized form.

The rate/quality controller (170) processes the information to determine a
desired quantization step size given current conditions and outputs the quantization
step size to the quantizer (150). The rate/quality controller (170) then measures the
quality of a block of reconstructed audio data as quantized with the quantization
step size, as described below. Using the measured quality as well as bit-rate
information, the rate/quality controller (170) adjusts the quantization step size with
the goal of satisfying bit-rate and quality constraints, both instantaneous and long-
term. In alternative embodiments, the rate/quality controller (170) works with
different or additional information, or applies different techniques to regulate
quality and bit-rate.

In conjunction with the rate/quality controller (170), the encoder (100) can
apply noise substitution, band truncation, and/or multi-channel rematrixing to a
block of audio data. At low and mid-bit-rates, the audio encoder (100) can use
noise substitution to convey information in certain bands. In band truncation, if the
measured quality for a block indicates poor quality, the encoder (100) can
completely eliminate the coefficients in certain (usually higher frequency) bands to
improve the overall quality in the remaining bands. In multi-channel rematrixing,
for low bit-rate, multi-channel audio data in jointly coded channels, the encoder
(100) can suppress information in certain channels (e.g., the difference channel) to
improve the quality of the remaining channel(s) (e.g., the sum channel).

The MUX (180) multiplexes the side information received from the other
moduies of the audio encoder (100) along with the entropy encoded data received
from the entropy encoder (160). The MUX (180) outputs the information in WMA
or in another format that an audio decoder recognizes.

The MUX (180) includes a virtual buffer that stores the bitstream (195) to be
output by the encoder (100). The virtual buffer stores a pre-determined duration of
audio information (e.g., 5 seconds for streaming audio) in order to smooth over
short-term fluctuations in bit-rate due to complexity changes in the audio. The

virtual buffer then outputs data at a relatively constant bit-rate. The current fullness
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of the buffer, the rate of change of fullness of the buffer, and other characteristics
of the buffer can be used by the rate/quality controller (170) to regulate quality and
bit-rate.

Exemplary Generalized Audio Decoder

With reference to Figure 2, the generalized audio decoder (200) includes a
bitstream demultiplexer ["DEMUX"] (210), an entropy decoder (220), an inverse
quantizer (230), a noise generator (240), an inverse weighter (250), an inverse
multi-channel transformer (260), and an inverse frequency transformer (270). The
decoder (200) is simpler than the encoder (100) is because the decoder (200) does
not include modules for rate/quality control.

The decoder (200) receives a bitstream (205) of compressed audio data in
WMA or another format. The bitstream (205) includes entropy encoded data as
well as side information from which the decoder (200) reconstructs audio samples
(295). For audio data with multiple channels, the decoder (200) processes each
channel independently, and can work with jointly coded channels before the inverse
multi-channel transformer (260).

The DEMUX (210) parses information in the bitstream (205) and sends
information to the modules of the decoder (200). The DEMUX (210) includes one
or more buffers to compensate for short-term variations in bit-rate due to
fluctuations in complexity of the audio, network jitter, and/or other factors.

The entropy decoder (220) losslessly decompresses entropy codes received
from the DEMUX (210), producing quantized frequency coefficient data. The
entropy decoder (220) typically applies the inverse of the entropy encoding
technique used in the encoder.

The inverse quantizer (230) receives a quantization step size from the
DEMUX (210) and receives quantized frequency coefficient data from the entropy
decoder (220). The inverse quantizer (230) applies the quantization step size to the
quantized frequency coefficient data to partially reconstruct the frequency
coefficient data. In alternative embodiments, the inverse quantizer applies the
inverse of some other quantization technique used in the encoder.

The noise generator (240) receives from the DEMUX (210) indication of

which bands in a block of data are noise substituted as well as any parameters for

12



WO 2007/011657 PCT/US2006/027238

the form of the noise. The noise generator (240) generates the patterns for the
indicated bands, and passes the information to the inverse weighter (250).

The inverse weighter (250) receives the weighting factors from the DEMUX
(210), patterns for any noise-substituted bands from the noise generator (240), and
the partially reconstructed frequency coefficient data from the inverse quantizer
(230). As necessary, the inverse weighter (250) decompresses the weighting
factors. The inverse weighter (250) applies the weighting factors to the partially
reconstructed frequency coefficient data for bands that have not been noise
substituted. The inverse weighter (250) then adds in the noise patterns received
from the noise generator (240).

The inverse multi-channel transformer (260) receives the reconstructed
frequency coefficient data from the inverse weighter (250) and channel transform -
mode information from the DEMUX (210). If multi-channel data is in
independently coded channels, the inverse multi-channel transformer (260) passes
the channels through. If multi-channel data is in jointly coded channels, the inverse
multi-channel transformer (260) converts the data into independently coded
channels., If desired, the decoder (200) can measure the quality of the reconstructed
frequency coefficient data at this point.

The inverse frequency transformer (270) receives the frequency coefficient
data output by the multi-channel transformer (260) as well as side information such
as block sizes from the DEMUX (210). The inverse frequency transformer (270)
applies the inverse of the frequency transform used in the encoder and outputs
blocks of reconstructed audio samples (295).

Exemplary Encoding/Decoding With Modified Codewords
and Wide-Sense Perceptual Similarity

Figure 3 illustrates one implementation of an audio encoder (300) using
encoding with adaptive sub-band configuration and/or modified codewords such as,
with wide-sense perceptual similarity, that can be incorporated into the overall
audio encoding/decoding process of the generalized audio encoder (100) and
decoder (200) of Figures 1 and 2. In this implementation, the audio encoder (300)
performs a spectral decomposition in transform (320), using either a sub-band

transform or an overlapped orthogonal transform such as MDCT or MLT, to
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produce a set of spectral coefficients for each input block of the audio signal. As is
conventionally known, the audio encoder codes these spectral coefficients for
sending in the output bitstream to the decoder. The coding of the values of these
spectral coefficients constitutes most of the bit-rate used in an audio codec. At low
bit-rates, the audio encoder (300) selects to code fewer of the spectral coefficients
using a baseband coder (340) (i.e., a number of coefficients that can be encoded
within a percentage of the bandwidth of the spectral coefficients output from the
frequency transformer (110)), such as a lower or base-band portion of the spectrum.
The baseband coder (340) encodes these baseband spectral coefficients using a
conventionally known coding syntax, as described for the generalized audio
encoder above. This would generally result in the reconstructed audio sounding
muffled or low-pass filtered.

The audio encoder (300) avoids the muffled/low-pass effect by also coding
the omitted spectral coefficients using adaptive sub-band configuration and/or
modified codewords with wide-sense perceptual similarity. The spectral
coefficients (referred to here as the “extended band spectral coefficients”) that were
omitted from coding with the baseband coder (340) are coded by extended band
coder (350) as shaped noise, or shaped versions of other frequency components, or
two or more combinations of the two. More specifically, the extended band
spectral coefficients are divided into a number of sub-bands of various and
potentially different sizes (e.g., of typically 16, 32, 64, 128, 256, ..., etc. spectral
coefficients), which are coded as shaped noise or shaped versions of other
frequency coniponents. This adds a perceptually pleasing version of the missing
spectral coefficient to give a full richer sound. Even though the actual spectrum
may deviate from the synthetic version resulting from this encoding, this extended
band coding provides a similar perceptual effect as in the original.

In some implementations, the width of the base-band (i.e., number of
baseband spectral coefficients coded using the baseband coder 340) as well as the
size or number of extended bands can be varied from a default or initial
configuration. In such case, the width of the baseband and/or number (or size) of
extended bands coded using the extended band coder (350) can be coded (360) into
the output stream (195).
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If desirable, the partitioning of the bitstream between the baseband spectral
coefficients and extended band coefficients in the audio encoder (300) is done to
ensure backward compatibility with existing decoders based on the coding syntax
of the baseband coder, such that such existing decoder can decode the baseband
coded portion while ignoring the extended portion. The result is that newer
decoders have the capability to render the full spectrum covered by the extended
band coded bitstream, whereas the older decoders may render the portion which the
encoder chose to encode with the existing syntax. The frequency boundary (e.g.,
the boundary between baseband and extended portion) can be flexible and time-
varying. It can eifher be decided by the encoder based on signal characteristics and
explicitly sent to the decoder, or it can be a function of the decoded spectrum, so it
does not need to be sent. Since the existiﬂg decoders can only decode the portion
that is coded using the existing (baseband) codec, this means that the lower portion
of the spectrum (e.g., baseband) is coded with the existing codec and the higher
portion is coded usingjthe extended band coding with modified codewords using
wide-sense perceptual similarity.

In other implementations where such backward compatibility is not needed,
the encoder then has the freedom to choose between the conventional baseband
coding and the extended band (with modified codewords and wide-sense perceptual
similarity approach) solely based on signal characteristics and the cost of encoding
without considering the frequency boundary location. For example, although it is
highly unlikely in natural signals, it may be better to encode the higher frequency
with the traditional codec and the lower portion using the extended codec.

Exemplary Method of Encoding

Figure 4 is a flow chart depicting an audio encoding process (400)
performed by the extended band coder (350) of Figure 3 to encode the extended
band spectral coefficients. In this audio encoding process (400), the extended band .
coder (350) divides the extended band spectral coefficients into a number of sub-
bands. In a typical implementation, these sub-bands generally would consist of 64
or 128 spectral coefficients each. Alternatively, other size sub-bands (e.g., 16, 32
or other numbers of spectral coefficients) can be used. If an extended band encoder

provides the possibility of modifying the size of sub-bands, an extended band
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configuration process (360) modifies the sub-bands and encodes the extended band
configuration. The sub-bands can be disjoint or can be overlapping (using
windowing). With overlapping sub-bands, more bands are coded. For example, if
128 spectral coefficients have to be coded using the extended band coder with sub-
bands of size 64, the method will use two disjoint bands to code the coefficients,
coding coefficients 0 to 63 as one sub-band and coefficients 64 to 127 as the other.
Alternatively, three overlapping bands with 50% overlap can be used, coding 0 to
63 as one band, 32 to 95 as another band, and 64 to 127 as the third band. Various
other dynamic methods for frequency segmentation of sub-bands will be discussed
later in this specification.

For each of these fixed or dynamically optimized sub-bands, the extended
band coder (350) encodes the band using two parameters. One parameter (“scale
parameter”) is a scale factor which represents the total enefgy in the band. The
other parameter (“shape parameter,” generally in the form of a motion vector) is
used to represent the shape of the spectrum within the band. Optionally, as will be
discussed, the shape parameter will require one or more shape transform bits
indicating an exponent, a vector direction (e.g., forward/reverse), and/or a
coefficient sign transformation.

As illustrated in the flow chart of Figure 4, the extended band coder (350)
performs the process (400) for each sub-band of the extended band. First (at 420),
the extended band coder (350) calculates the scale factor. In one implementation,
the scale factor is simply the rms (root-mean-square) value of the coefficients
within the current sub-band. This is found by taking the square root of the average
squared value of all coefficients. The average squared value is found by taking the
sum of the squared value of all the coefficients in the sub-band, and dividing by the
number of coefficients.

The extended band coder (350) then determines the shape parameter. The
shape parameter is usually a motion vector that indicates to simply copy over a
normalized version of the spectrum from a portion of the spectrum that has already
been coded (i.e., a portion of the baseband spectral coefficients coded with the
baseband coder). In certain cases, the shape parameter might instead specify a

normalized random noise vector or simply a vector for a spectral shape from a fixed
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codebook. Copying the shape from another portion of the spectrum is useful in
audio since typically in many tonal signals, there are harmonic components which
repeat throughout the spectrum. The use of noise or some other fixed codebook
allows for a low bit-rate coding of those components which are not well
represented in the baseband-coded portion of the spectrum. Accordingly, the
process (400) provides a method of coding that is essentially a gain-shape vector
quantization coding of these bands, where the vector is the frequency band of
spectral coefficients, and the codebook is taken from the previously coded spectrum
and can include other fixed vectors or random noise vectors, as well. That is each
sub-band coded by the extended band coder is represented as a*X, where ‘a’ is a
scale parameter and ‘X’ is a vector represented by the shape parameter, and can be
a normalized version of (any) previously coded spectral coefficients, a vector from
a fixed codebook, or a random noise vector. Also, if this copied portion of the
spectrum is added to a traditional coding of that same portion, then this addition is a
residual coding. This could be useful if a traditional coding of the signal gives a
base representation (for example, coding of the spectral floor) that is easy to code
with a few bits, and the remainder is coded with the new algorithm.

More specifically, at action (430), the extended band coder (350) searches
the baseband (or other previously coded) spectral coefficients for a vector in the
baseband of spectral coefficients having a similar shape as the current sub-band.
As stated previoﬁsly, a "codeword from the baseband" also includes sources outside
the present baseband. The extended band coder determines which portion of the
baseband (or other previous band) is most similar to the current sub-band using a
least-means-square comparison to a normalized version of each portion of the
baseband. Optionally, a linear or non-linear transform (431) is applied to one or
more portions of the spectrum in the baseband (or other previous band) in order to
create a larger universe of shapes for matching. Again, the baseband includes the
library and other previous bands when discussing sources for codewords.
Optionally, the extended band encoder performs one or more linear or non-linear
transforms on the baseband and/or fixed codebooks in order to provide a larger
library of available shapes for matching. For example, consider a case in which

there are 256 spectral coefficients produced by the transform (320) from an input
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block, the extended band sub-bands (in this example) are each 16 spectral
coefficients in width, and the baseband coder encodes the first 128 spectral
coefficients (numbered 0 through 127) as the baseband. Then, the search performs
a least-means-square comparison of the normalized 16 spectral coefficients in each
extended band to a normalized version of each 16 spectral coefficient portion of the
baseband (or any previously coded band) beginning at coefficient positions 0
through 111 (i.e., a total of 112 possible different spectral shapes coded in the
baseband in this case). The baseband portion having the lowest least-mean-square
value is considered closest (most similar) in shape to the current extended band.
Optionally, the search performs the least-means-square comparison on the linear or
non-linear transformations (431) of the baseband (or other bands). At action (432),
the extended band coder checks whether this most similar band out of the baseband
spectral coefficients is sufficiently close in shape to the current extended band (e.g.,
the least-mean-square value is lower than a pre-selected threshold). If so, then the
extended band coder determines a motion vector pointing to this closest matching
band of baseband spectral coefficients at action (434) and optionally, information
about a linear or non-linear transformation on the best match motion vector. The
motion vector can be the starting coefficient position in the baseband (e.g., 0
through 111 in the example). Other methods (such as checking tonality vs. non-
tonality) can also be used to see if the most similar band out of the baseband (or
other bands) spectral coefficients is sufficiently close in shape to the current
extended band.

If no sufficiently similar portion of the baseband is found, the extended band
coder then looks to a fixed codebook (440) of spectral shapes to represent the
current sub-band. The extended band coder searches this fixed codebook (440) for
a similar spectral shape to that of the current sub-band. Optionally, the search
performs the least-means-square comparisons on the linear or non-linear
transformations (431) of the fixed codebook. If found, the extended band coder
uses its index in the code book as the shape parameter at action (444) and
optionally, information about a linear or non-linear transform on the best match

index in the codebook. Otherwise, at action (450), the extended band coder may
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also determine to represent the shape of the current sub-band as a normalized
random noise vector.

In alternative implementations, the extended band encoder can decide
whether the spectral coefficients can be represented using noise even before
searching for the best spectral shape in the baseband. This way even if a close
enough spectral shape is found in the baseband, the extended band coder will still
code that portion using random noise. This can result in fewer bits when compared
to sending the motion vector corresponding to a position in the baseband.

At action (460), extended band coder encodes the scale and shape
parameters (i.e., scaling factor and motion vector in this implementation, and
optionally, linear or non-linear transform information) using predictive coding,
quantization and/or entropy coding. In one implementation, for example, the scale
parameter is predictive coded based on the immediately preceding extended sub-
band. (The scaling factors of the sub-bands of the extended band typically are
similar in value, so that successive sub-bands typicaily have scaling factors close in
value.) In other words, the full value of the scaling factor for the first sub-band of
the extended band is encoded. Subsequent sub-bands are coded as their difference
of their actual value from their predicted value (i.e., the predicted value being the
preceding sub-band’s scaling factor). For multi-channel audio, the first sub-band of
the extended band in each channel is encoded as its full value, and subsequent sub-
bands’ scaling factors are predicted from that of the preceding sub-band in the
channel. In alternative implementations, the scale parameter also can be predicted
across channels, from more than one other sub-band, from the baseband spectrum,
or from previous audio input blocks, among other variations.

The extended band coder further quantizes the scale parameter using
uniform or non-uniform quantization. In one implementation, a non-uniform
quantization of the scale parameter is used, in which a log of the scaling factor is
quantized uniformly to 128 bins. The resulting quantized value is then entropy
coded using Huffman coding.

For the shape parameter, the extended band coder also uses predictive

coding (which may be predicted from the preceding sub-band as for the scale
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parameter), quantization to 64 bins, and entropy coding (e.g., with Huffman
coding).

In some implementations, the extended band sub-bands can be variable in
size. In such cases, the extended band coder also encodes the configuration of the
extended band.

More particularly, in one example implementation, the extended band coder
encodes the scale and shape parameters as shown by the pseudo-code listing in
Table 1. More than one scale or shape parameter may be sent for the multiple

codeword case.

Table 1

for each tile in audio stream

for each channel in tile that may need to be coded (e.g. subwoofer
may not need to be coded)

{
1 bit to indicate if channel is coded or not.

8 bits to specify quantized version of starting position of
extended band.

'n_config' bits to specify coding of band configuration.
for each sub-band to be coded using extended band coder

{

'n_scale' bits for variable length code to specify scale
parameter (energy in band) .

'n_shape' bits for variable length code to specify shape
parameter.

'n_transformation' bits for non/linear transform
parameters.

}
}

In the above code listing, the coding to specify the band configuration (i.e.,
number of bands, and their sizes) depends on the number of spectral coefficients to
be coded using the extended band coder. The number of coefficients coded using
the extended band coder can be found using the starting position of the extended
band and the total number of spectral coefficients (number of spectral coefficients
coded using extended band coder = total number of spectral coefficients - starting
position). In one example, the band configuration is then coded as an index into
listing of all possible configurations allowed. This index is coded using a fixed
length code with n_config=log2(number of configurations) bits. Configurations
allowed is a function of number of spectral coefficients to be coded using this

method. For example, if 128 coefficients are to be coded, the default configuration
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is 2 bands of size 64. Other configurations might be possible, for example, Table 2

shows a listing of band configurations for 128 spectral coefficients.

Table 2
0: 128
l: 64 64
2: 64 32 32
3: 32 32 64
4: 32 32 32 32

Thus, in this example, there are 5 possible band configurations. In such a
configuration, a default configuration for the coefficients is chosen as having n'
bands. Then, allowing each band to either split or merge (only one level), there are
502 possible configurations, which requires (1/2)log2(5) bits to code. In other
implementations, variable length coding can be used to code the configuration.

No specific method of extended band configuration is required to benefit from
codeword modification. Additionally, various other methods for extended band
configuration are discussed later that do not require any such codeword
modification methods in order to be beneficial.

As discussed above, the scale factor is coded using predictive coding, where
the prediction can be taken from previously coded scale factors from previous
bands within the same channel, from previous channels within same tile, or from
previously decoded tiles. For a given implementation, the choice for the prediction
can be made by looking at which previous band (within same extended band,
channel or tile (input block)) provided the highest correlations. In one
implementation example, the band is predictive coded as follows:

Let the scale factors in a tile be x[i][j], where i=channel index, j=band index.

For i==0 && j==0 (first channel, first band), no prediction.

For i!=0 && j==0 (other channels, first band), prediction is x[0][0] (first

channel, first band)

For i!=0 && j!=0 (other channels, other bands), prediction is x[i][j-1] (same

channel, previous band).

In the above code table, the “shape parameter” is a motion vector specifying
the location of previous codeword of spectral coefficients, or vector from fixed
codebook, or noise. The previous spectral coefficients can be from within same
channel, or from previous channels, or from previous tiles. The shape parameter is

coded using prediction, where the prediction is taken from previous locations for
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previous bands within same channel, or previous channels within same tile, or from
previous tiles. Any linear or non-linear transform can be applied to a shape. The
"transformation" parameter indicates such transform information, index to
transform information, or etc.
Exemplary Method of Decoding

Figure 5 shows an audio decoder (500) for the bitstream produced by the
audio encoder (300). In this decoder, the encoded bitstream (205) is demultiplexed
(e.g., based on the coded baseband width and extended band configuration) by
bitstream demultiplexer (210) into the baseband code stream and extended band
code stream, which are decoded in baseband decoder (540) and extended band
decoder (550). The baseband decoder (540) decodes the baseband spectral
coefficients using conventional decoding of the baseband codec. The extended
band configuration decoder (545) decodes the optimized band sizes if optimization
from a default band configuration is utilized. The extended band decoder (550)
decodes the extended band code stream, including by copying over one or more
portions of the original or transformed baseband spectral coefficients (or any
previous band or codebook) pointed to by the motion vector of the shape parameter
(and any optional information about the linear or non-linear transformation of the
coefficient pointed to by the motion vector) and scaling by the scaling factor of the
scale parameter. The baseband and extended band spectral coefficients are
combined into a single spectrum which is converted by inverse transform 580 to
reconstruct the audio signal.

Figure 6 shows a decoding process (600) used in the extended band decoder
(550) of Figure 5. For each coded sub-band of the extended band in the extended
band code stream (action (610)), the extended band decoder decodes the scale
factor (action (620)) and motion vector along with any transformation information
(action (630)). The extended band decoder then copies (action (640)) the baseband
sub-band, fixed codebook vector, or random noise vector identified by the motion
vector (shape parameter and performs any identified transformation). The extended
band decoder scales the copied spectral band or vector by the scaling factor to

produce the spectral coefficients for the current sub-band of the extended band.
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Exemplary Spectral Coefficients

Figure 7 is a graph representing a set of spectral coefficients. For example,
the coetficients (700) are an output of a transform or an overlapped orthogonal
transform such as MDCT or MCT, to produce a set of spectral coefficients for each
input block of the audio signal.

As shown in Figure 7, a portion of the output of the transform called the
baseband (702) is encoded by the baseband coder. Then the extended band (704) is
divided into sub-bands of homogeneous or varied sizes (706). Shapes in the
baseband (708) (e.g., shapes as represented by a series of coefficients) are
compared to shapes in the extended band (710), and an offset (712) representing a
similar shape in the baseband is used to encode a shape (e.g., sub-band) in the
extended band so that fewer bits need to be encoded and sent to the decoder.

A baseband (702) size may vary, and a resulting extended band (704) may
vary based on the baseband. The extended band may be divided into various and
multiple size sub-band sizes (706).

In this example, a baseband segment (from this or any previous band) is
used to identify a codeword (708) to simulate a sub-band in the extended band
(710). The codeword (708) can be linearly transformed or non-linearly transformed
in order to create other shapes (e.g., other series of coefficients) that might more
closely provide a model for the vector (710) being coded.

Thus, plural segments in the baseband are used as potential models (e.g., a
codebook, library, or dictionary of codewords) to code data in the extended band.
Instead of sending the actual coefficients (710) in a sub-band in the extended band
an identifier such as a motion vector offset (712), is sent to the encoder to represent
the data for the extended band. However, sometimes there are no close matches in
the baseband for data being modeled in a sub-band. This may be because of low
bitrate constraints that allow a limited size baseband. As stated, the baseband size
(702) as relative to the extended band may vary based on computing resources such
as time, output device, or bandwidth.

In another example, another codebook (716) is provided or available to the
encoder/decoder, and a best match identifier is provided as an index to a closest

match codeword (718) in the codebook. Additionally, in cases where random noise
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is desirable as-a codeword, a portion of the bitstream (such as bits from the
baseband) can be used to similarly seed a random number generator at both the
encoder and decoder.

These various methods can be used to create a library or dictionary of
codewords to provide a larger universe of codewords for matching a shape, for
coding a sub-band (710) or other vector, so that the coefficients themselves can be
modeled via a motion vector (712) instead of quantized individually.

Exemplary Transformations of Codewords

Figure 8 is a graph of a codeword and various linear and non-linear
transformations of the codeword. For example, a codeword (802) is from a
baseband, a fixed codebook, and/or a randomly generated codeword. Various
linear or non-linear transformations are performed on one or more codewords in a
library to obtain a greater or more diverse set of shapes for identifying a best shape
for matching a vector being coded. In one example, a codeword is reversed (804)
in coefficient order to obtain another codeword for shape matching. A reverse of a
codeword containing the coefficient values < 1, 1.5, 2.2, 3.2 > becomes < 32,22,
1.5, 1>. In another example, the dynamic range or variance of a codeword is
reduced (806) using exponentiation with an exponent less than one on each
coefficient. Similarly, a codeword's variance is exaggerated (e.g., increased
variance) using an exponent greater than one, not shown. For example, a codeword
containing the coefficients < 1, 1, 2, 1, 4, 2, 1 > is raised to the power of 2 to create
the codeword < 1, 1, 4, 1, 16, 4, 1 >. In another example, the coefficients of a
codeword <-1, 1, 2, 3 > (802) are negated < 1, -1, -2, -3 > (808). Of courée, many |
other linear and non-linear transformations (e.g., 806) can be performed on one or
more codewords in order to provide a larger or more diverse universe or library for
matching sub-bands, or other vectors. Additionally, one or more transforms may
also be applied in combination to the codewords in order to provide greater
diversity of available shapes.

In one example, an encoder first determines a codeword in the baseband that
is a closest match to a sub-band being encoded. For example, a least-means-square
comparison of coefficients in the baseband can be used to determine a best match.

For example, after comparing (708) to (710), the comparison moves one coefficient
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down the spectrum, one coefficient at a time, to obtain another codeword to
compare to (710). Then when a closest match is found, in one example, the shape
of the best match codeword is varied by non-linear transform to see if the match
can be improved. For example, using an exponent transform on the coefficients of
a best match codeword can provide refinement on the match. There are two
methods to finding the best code-word match and exponent. In the first method, a
best code-word is found typically using the Euclidean distance as the metric
(MSE). After the best code-word is found, the best exponent is found. The best
exponent is found using one of the following two methods.

One method is to try all the exponents available and see which one gives the
minimum Euclidean distance, the other method is to try exponents to see which
exponent gives the best histogram or probability mass function (pmf) match. The
pmf match can be computed using the second moment about the mean (the
variance) for the pmf of the original vector and for each of the exponentiated
vectors. The one with the closest match is chosen to be the best exponent.

The second method of finding the best code-word and exponent match is to
do an exhaustive search using many combinations of code-words and exponents.

If, for example, X provides a better comparison than X', a sub-band is
coded using the offset to that codeword in the baseband (712), along with a
transformation (linear or non-linear) x*, where one or more bits indicating p=0.5 is
sent to and applied at the decoder. In this example, the search proceeded with
finding a codeword first, and then varying with a transform, but no such order is
required in practice.

In another example, an exhaustive search is performed along the baseband
and/or other codebooks to find a best match. For example, a search is performed
comprising an exhaustive search along the baseband of all combinations of
(exponential transform (p=0.5, 1.0, 2.0), sign transform (+/-), direction
(forward/reverse). Similarly, this exhaustive search may be performed along the
noise codebook spectrum, or codewords.

In general, a close match can be provided by determining a lowest variance
between the sub-band being coded and the codeword and transformation selected to

model a sub-band. An identifier or coded indication of the codeword and/or
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transform, along with other information such as a scale factor, is coded in the
bitstream and provided to the encoder.
Exemplary Multiple Codeword Coding

In one example, two different codewords are utilized for providing a sub-
band encoding. For example, given two codewords b and n of length u, are
provided b = <by, by, ... b, >and n=<ng, ny, ... n, > to better describe a sub-band
being coded. Vector b may be from the baseband, any prior band, a noise
codebook, or a library, and vector n may similarly be from any such source. A rule
1is provided for interleaving coefficients from each two or more codewords b and n,
such that the decoder implicitly or explicitly knows which coefficient to take from
the codewords b and n. The rule may be provided in the bitstream or may be
known by the decoder implicitly.

The rule and two or more vectors are used at the decoder to create the sub-
based s = <ny, by, 0y, 03, by, ... n, >. For example, a rule is established based on
the order of the codewords sent, and a percentage value "a". The encoder delivers
information in the order (b, n, a). The decoder translates the information into a
requiremeht to take any coefficient from the first vector b if that coefficient is less
than 'a' multiplied by the highest coefficient value M in vector b. Thus, if a
coefficient by is greater than a*M, then b, is in vector s, otherwise n; is in s.
Another rule may require that in order for b; to be in vector s, it has to be part of a
group of T adjacent coefficients with a value less than a*M. If a default value for
'a' is set, then 'a' does not need to be sent to the decoder, since it is implicit,

Thus, a decoder can send two or more codeword identifiers, and optionally,
a rule to decode which coefficients to take to create the sub-band. The encoder will
also send scale factor information for codewords, and optionally if relevant, any
other codeword transform information since b and/or n may be linearly or non-
linearly transformed.

Using two or more codewords b and n above, an encoder would send an
identifier (e.g., a motion vector, codebook index, etc.) of the codewords, a rule
(e.g., index to rulebook) or the rule will be implicitly known by both the encoder
and decoder, any additional transform information (e.g., x”, p=0.5, assuming b or n

also requires additional transform), and information about scale factors (e.g., sp, Sp,
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etc.). Scale factor information may also be a scale factor and a ratio (e.g., sp, Sp/Sp,
etc.). With one vector scale factor and a ratio, the decoder will have enough
information to compute the other scale factor.
Exemplary Enhancement of Baseband

Under certain conditions, such as low bitrate applications, the baseband
itself may not be well coded (e.g., several consecutive or intermingled zero
coefficients). In one such example, the baseband represents peaks of intensity well,
but does not well represent subtle variances at coefficients representing lower
intensities between peaks. In such a case, the peaks of a codeword from the
baseband itself are selected as a first vector (e.g., b), and the zero coefficients, or
very low relative coefficients are replaced with a second vector (e.g., n) that more
closely resembles the low energy between peaks. Thus, the two codeword method
can be used on the baseband or sub-band of the baseband, to provide baseband
enhancement. As béfore, the rule used for selecting from the first, or second
vector, may be explicit and sent to the decoder, or implicit. In some cases the
second vector may best be provided via a noise codeword.

Exemplary Transformations

A baseband, previous band or other codebook provides a library of
consecutive coefficients, each coefficient potentially serving as the first coefficient
in a series of consecutive coefficients that may serve as a codeword. A best match
codeword in the library is identified and sent to a decoder, along with a scale factor,
and is used by the decoder to create a sub-band in the extended sub-band.

Optionally, one or more codewords in the library are transformed to provide
a larger universe of available codewords to find a best match for a shape being
coded. In mathematics, a universe of linear and non-linear transformations exists
for shapes, vectors, and matrices. For example, a vector can be reversed, negated
across an axis, and shape can be otherwise altered with linear and non-linear
transformations such as by applying root functions, exponents, etc. A search is
performed on the library of codewords, including applying one or more linear or
non-linear transforms on the codewords, and a closest match codeword is

identified, along with any transform. An identifier of a best match, codeword, a
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scale factor, and a transform identifier is sent to a decoder. A decoder receives the
information and reconstructs a sub-band in the extended band.

Optionally, an encoder selects two or more codewords that together best
represents a sub-band being coded and/or enhanced. A rule is used to select or
interleave individual coefficient positions in the sub-band being coded. The rule is
implicit or explicit. The sub-band being coded may be in the extended band, or
may be a sub-band in the baseband being enhanced. The two or more codewords
being used may be from a baseband or any other codebook, and one or more of the
codewords may be transferred linearly or non-linearly.

Exemplary Envelope Matching

A signal called "an envelope" (e.g., Env(i)) is generated by running a

weighted average on the input signal x(i) (e.g., audio, video, etc.) as follows:
Env(i) = iLw(j)l x(i+j)|

where w(j) is a weighting function (presently a triangle shape) and L is the number
of neighborhood coefficients to be considered in the weighted analysis. Previously,
and example of an exhaustive search waé discussed using an input universe of
codewords, exponent transformation (0.5, 1.0, 2.0), coefficient negation (sign +/-)
and codeword coefficient direction (forward, reverse). Instead a best 'Q' number of
codewords are first selected (combinations of codeword, exponent, sign, and/or
direction) are selected using a Euclidean distance between the envelopes of the sub-
band being coded, and the codeword. The original unquantized versions of the
codewords may be useful to measure the envelope Euclidean distance. From these
Q closest candidates determined based on Euclidean distance, a best match is
selected. Optionally, after envelopes are considered, a method (such as previously
described codeword comparison methods) may return to examine which of the Q
candidates best fit.

Exemplary Codeword Modification

Given a codebook consisting of code vectors, a modification of the code-
vectors in the codebook is proposed such that they better represent the vector being
:ode’:d. The codebook/codeword modification can consist of any combination of

»ne or more of the following transformations.
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. Linear transform applied to a code-vector.
. Non-linear transform applied to a code-vector.
. Combining more than one code-vector to obtain a new code-vector

(the vectors being combined can come from the same codebook,
different codebooks, or be random).

. Combining a code-vector with a base coding.

'The information relating to which transformation, if any, is used and which
code-vectors are used in the transformation is either sent to the decoder in the
bitstream or computed at the decoder using knowledge that it already has (data that
it has already decoded). A vector is typically a certain band of spectral coefficients
which are to be coded.

Three examples in particular are given for codeword modifications:

(1) exponentiation applied to each component of the vector (non-linear transform),
(2) combining of Mo (or more) vectors to form a new-vector, where each of the
two vectors is used to represent portions of the vector which have different
characteristics, and (3) combining a code-vector with a base coding. In the
following discussi;)n, v will be used to represent the vector to be coded, x will be
the code vector or codeword being used to code v, and y will be the modified code
vector. Vector v will be coded using an approximation v’ = Sx, where S is a scale
factor. The scale factor used is a quantized version of the ratio of power between v

and x,

where Q(.) is quantization, and ||.|| represents the norm, which is the power in the
vector. A quantized version of the power in the original vector is sent. The
decoder computes the scale factor to use by dividing by power in the code-vector.
Exemplary Non-linear Transformation
A first example consists of applying an exponent to each component in the
code-vector. Table 3 provides a non-linear transformation of a series of

coefficients in a codeword.

Table 3
3 2 1 1
9 4 1 1 4 9

Codeword 1
Transformation 1

3]
[\
w

I
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In this example, each coefficient in a codeword (code-vector) is raised to the
power of exponent two (x°). In such an example, if the shape of the transformed
codeword is a best fit for a vector to be coded, then the encoder will provide an
identification of the codeword and the transformation leading to a best match.

The exponent can be sent to the decoder using a fixed number of bits, or can
be sent from a codebook of exponents, or can be implicitly calculated at the
decoder using previously seen data. For example, for an L dimensional vector, let
the components of the ‘i’th code-vector in a codebook be xi[0], x;[1], ..., x;[L-1].
Then, the exponentiation applies an exponent ‘p’ to modify the vector to get a new
vector yi,

Y1=@D", for =0, L-1
where j’ is the component index. This non-linear transformation allows a code
vector which has peaks to be used to code a vector which does not by using a value
of p which is less than 1. Similarly, it allows a non-peaky code-vector to be used to
represent one with peaks by usi'ng p>1L

Figure 9 is a graph of an exemplary vector that does not represent peaks
distinctly.

Figure 10 is a graph of Figure 9 with distinct peaks created by exponential
transform.

As an example, see Figure 9 and Figure 10. In Figure 9, a vector which is
fairly random and is shown has no distinct peaks. When an exponent p=5 is
applied, then Figure 10 represents the desired peaks better. Similarly, if the
original code-vector was that shown in Figure 10, then an exponent p=1/5=0.2,
would provide Figure 9. The scale factor of course is recomputed since the norm
(or energy) in the codevector has changed during the transformation fromxtoy. In
particular, S=Q(|[v|)/{[y| is now used for the scale factor. The actual scale factor
that is sent Q(||v]]) is ﬁot changed with the exponent, but the decoder has to
compute a different scale factor due to the change in the power in the code-vector.

A codeword may have several exponents applied to it, each providing
different results. The method used to calculate the best exponent is to find an
sxponent such that the histogram (or probability mass function (i)mf)) of the values

yver the code-vector best match that of the actual vector. In order to do this, a
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variance of the symbol values for both the vector and the code-vector is computed
using exponentiation. For example suppose the set of possible exponents is py,
where k is used to index the set of possible exponents, k=0,1,....,P-1. Then the
normalized second moment about the mean for the codevector resulting from each

of possible exponents is computed (Vy), and compared to the actual vector (V).

12 (18, Y
Z;Mﬂ _Z;Mﬂ

V.= = k=0L...,P-1
- 1225
L;le[J]l
1& e (18 Y
N L 20T | 22

1 2
=2
J=0 ~
The best exponent is chosen to minimize the difference between V;, and V, and is

given by py, where b is defined as:

b=argmin(V -V, )
k .

As previously stated, a best match exponent can also be found using an

exhaustive search.
Exemplary Codeword Modification Via Combining

Another transformation combines multiple vectors to form a new code-
vector. This is essentially a multistage coding, where at each stage a match is
found which best matches the most important portion of the vector not yet coded.
As an example for two vectors, we first find the best match and then see which
portion of the vector is being coded well. This segmentation can be explicitly sent,
but this may take too many bits. Therefore, the segmentation is implicitly
provided, in one example, by indicating which portion of the vector to use. The
remaining portion is then represented using either a random code-vector, or another
code-vector from a codebook which represents the remaining components better.
Let x be a first code vector, and let w be a second code vector. Let the set T specify

the portion of the vector which is considered to be coded using the first code-
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vector. The cardinality of set T will be between 0 & L, i.e. it will have between 0
and L elements which represent the indices of the vector which are considered to be
coded using this first code-vector. A rule is provided for figuring out Which‘
components are well represented by the first vector and the rule can use metrics,
such as, determining if a potential coefficient is larger than a certain percentage of
the maximum coefficient in the first vector. Thus, for any coefficient in the first
vector that is within a percentage of the highest coefficient in the first vector, that
coefficient will be taken from the first vector, else, that codeword coefficient is
taken from the second codeword. Let M be the maximum value in the first code
vector X. Then the set T can be defined using the following:

T= {j:x[j]>aM,j=O,1,...L—1}’
where ‘a’ is some constant between 0 & 1. For example, if a=0, then any non-0
value is considered to belong to the set T of coded vectors. If a=1-g, then only the
maximum value itself is considered to be coded, if ¢ is taken to be sufficiently
small. Then given the set T, a set N is the complimentary and remaining set taken

from vector w, as follows:

N={j:djl<aM,j=0},.,L-1}

Thus, a coefficient of x[j] is taken from x or w depending on the value of
aM. Note that N or T can be further split using other similar rules to get more than
two vectors. Given T & N as the sets of indices coded using the first codevector (x)
and second codevector (w) respectively, a new vector y is defined:

_ Sx[jl,if jeT
y[J]z{Sww[j],ifjeN
’

where S, and S,, are the scale factors for x and w, respectively. Since a scale factor
for the entire code-vector is typically sent, which represents a quantized version of
the power in the entire vector being coded, a ratio between the two scale factors
(Sw/Sy) in addition to the scale factor for the entire code-vector needs to be sent in
his case. In general, if a vector is created using ‘m’ codevectors, then ‘m’ scale
factors would have to be sent including the one for the entire vector. For example,

or the two vector case, note that,
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M’ = ZV [1=— Zv [1+— ZV [J]

JEN

Suppose v; and v, are defined as the two vectors, then their power may be
defined as,

VI v = | NIZ [J]

.l =
I Tja P
where |T} and |N| are the cardinality of the two sets (the number of elements).
Given the values for ||v|| (the total power in the vector), and ||v,|| (the power in the
second component of the vector), a decoder can compute,
A\

”"1"2 = ]

Thus, if a quantized version of the power in set N is sent (Q(||v4||), and the
total power is sent Q(j|v|]), it is sufficient information for the decoder.

It is important to note that, by using the code-vector x itself to perform the
segmentation, the encoder avoids having to send any information relating to
segmenting because the coefficient selected from each vector x and w is implicit in
the rules (e.g., x[j] > aM). Even in cases when the code-vector index or motion
vector corresponding to x is not sent (it is a random code-vector), segmentation of
sets T and N can be matched between encoder and decoder by using a random
vector with the state of the random vector generator being deterministic based upon
information that both the encoder and decoder have. For example, the random
vector can be determined by using some combination of the least significant bits
(LSB) of data that has been coded and sent to the decoder (such as in the encoded
baseband) and then using that to seed a pseudo-random number generator. This
way the segmentation can be implicitly controlled even if the actual code-vector is
not sent.

This transformation by combining two vectors allows better representation
of the vector that is to be coded. The vector w can be from a codebook and an
index can be sent to represent it, or it can be random, in which case no additional
information needs to be sent. Note that in the example given above, the
segmentation is implicit since it is done using a comparison rule on the coefficients

(e.g., x[j] > aM) using vector X, so no information regarding the segmentation
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needs to be sent. This transformation is useful when the vector to be coded has two
different distributions.

Figure 11 is a graph of a codeword as compared to the sub-band it is
modeling. In this example (1100), the code-vector has been chosen to best match
the peaks in the vector. However, although the peaks are matched well, the rest of
the vector does not have similar power. The remaining portion of the code-vector
has much less power relative to the peaks than the actual vector does. This results
in noticeable compression artifacts. However, when the portion of v that is well
coded by the code-vector is selected out of the first vector and then a second éode-
vector is applied to the remaining portion, a much better result is obtained.

Figure 12 is a graph of a transformed codeword as compared to the sub-band
it is modeling. The modeled sub-band is modeled by a codeword created from two
codewords.

Figure 13 is a graph of a codeword, a sub-band to be coded by the
codeword, a scaled version of the codeword, and a modified version of the
codeword.

Exemplary Codeword Modification Via Selective Operations

An alternate version of the multi codevectors (e.g., multi-codewords) adds
the first codevector rather than replacing it for certain selected coefficients. This
can be done applying the following equation:

L[Sl ifjel
el ={Sww[j]+Sxx[j],ifj eN
Exemplary Enhancement of the Baseband

In this example, a code-vector is combined with a base coding. This is
similar to the two vector (or multi vector) approach, except that the first vector x is
both the vector being coded and is itself used as one of the two vectors to encode
itself. For example, a base coding is modified to include those coefficients where
the base coding is working well and better coefficients are taken from the second
vector, as before. For each vector (sub-band) that is coded, if a base coding already
exists, this base coding then is the first code-vector in the multi-vector scheme,

where it is segmented into regions T & N (or more regions). The segmentation
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(e.g., coefficient selection) can be provided using the same techniques as in the
multi code-vector approach.

For example, for each base coding, if there are any coefficients with a value
of 0, all of these will then go into set N which are then coded by an enhancement
layer (e.g., second vector). Such a method can be used to fill in large spectral holes
which often result from coding at very low bitrates. Modifications can include not
filling in holes or 'zero' coefficients unless they are larger than some threshold,
where the threshold can be defined to be a certain number of Hertz (Hz) or
coefficients (multiple zero coefficients). There can also be limitations on not filling
of holes that are below a certain frequency. These limitations modify the implicit
segmentation rules given above (e.g., x[j] > aM, etc.). For example, if a threshold
“T’ on a minimum size of a spectral hole is provided, then this essentially changes
the definition of set N to the following:
N={j:xj-K]<aM & &x[j-K+1]<aM & &K & &x[j—-K+T -1]<aM,

j=0L.,L-1}
for some K between 0,...,T-1. So in order for x[j] to be‘in set N, it has to be part of
a group of T consecutive coefficients, all of which have a value less than or equal
to (aM). This can be computed in two steps, first computing for each coefficient
whether its value is less than the threshold, and then grouping them together to see
if they meet the 'consecutive' requirements. For a true spectral hole of size T, a=0.
Other conditions such as minimum frequency constraints add the additional
constraint that in order to belong to set N, j > Trinfreq.

The above rule provides a filter that requires that multiple coefficients in a
row (e.g., T consecutive coefficients) satisfy the condition x[j] < aM, before the
rule signals replacing the coefficients with values from the second vector.

Another modification that may need to be made is due to the fact that base
coding also codes the channels after applying a channel transform. Thus, after a
channel transform the base coding and enhancement coding might have different
channel groupings. So, instead of just looking at the base coding for the particular
channel upon which the enhancements is applied, the segmentation might look at
more than the base coding channel. This again modifies the segmentation

constraint. For example, suppose channels 0 and 1 are jointly coded. Then the rule
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to apply the enhancement is changed to the following. In order to apply the
enhancement, the spectral hole has to be present in both the baseband coded
channels since both the coded channels contribute to both the actual channels.
Exemplary Optimization of Segmentation of Sub-Bands

Good frequency segmentation is important to the quality of encoding
spectral data. Segmentation involves breaking the spectral data into units called
sub-bands or vectors. A simple segmentation is to uniformly split the spectrum into
a desired number of homogeneous segments or sub-bands. Homogeneous
segmentation may be suboptimal. There may be regions of the spectrum that can
be represented with larger sub-band sizes, and other regions are better represented
with smaller sub-band sizes. Various features are described for providing spectral
data intensity dependent segmentation. Finer segmentation is provided for regions
of greater spectral variance and coarser segmentation is provided for more
homogeneous regions. For example, a default or initial segmentation is provided
initially, and an optimization or subsequent configuration varies the segmentation
based on an intensity of spectral data variance.

Exemplary Default Segmentation

Spectral data is initially segmented into sub-bands. Optionally, an initial
segmentation may be varied to produce an optimal or subsequent segmentation.
Two such initial or default segmentations are called a uniform split segmentation
and a non-uniform split configuration. These or other sub-band configurations can
be provided initially or by default. Optionally, the initial or default configuration
may be reconfigured to provide a subsequent sub-band configuration.

Given spectral data of L spectral coefficients, a uniform split segmentation

of M sub-bands of data is identified with the following equation:
: JLY .
= d—1;=01.. . M~-1M
s[j] = roun (M) J

For example, if the L spectral coefficients are labeled as points as 0, 1, ...,

L-1, then the M sub-bands start at the *[/] coefficients in the spectral data. Thus,
the °j’th sub-band has coefficients from s[j] to s[j+1]-1, j=0,1,....M-1, with a
sub-band size of s[j+1]-s[j] coefficients.
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The non-uniform split segmentation is done in a similar way, except that
sub-band multipliers are provided. A sub-band multiplier is defined for each of the
M sub-bands, a[j], j=0, 1, ..., M-1. Further, a cumulative sub-band multiplier is

provide as follows:
j-1
blj1= alj1j =0L... M
k=0

The starting point for the sub-bands in the non-uniform split configuration
case is defined as:

bljIL
blM]

s[jl= round[ j,j =0,L,.,.M-1,M

Again, the ‘j’th sub-band includes coefficients from s[j] to s[j+1]-1, where
]=0, 1,..., M-1, with a sub-band size of s[j+1] - s[j] coefficients. The non-uniform
configuration has sub-band sizes which increase with frequency, but it can be any
configuration. Further, if desirable, it can be predetermined, so that no additional
information needs to be sent to describe it. For the default non-uniform case, an
example of sub-band multipliers is provided as follows: '

a= {1,1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, ...}

Thus, the default non-uniform band-size multiplier is a split configuration
where the band sizes are monotonically non-decreasing (the first few sub-bands are
smaller, and the higher frequency sub-bands are larger). The higher frequency sub-
bands often have less variation to begin with, so fewer larger sub-bands can capture
the scale and shape of the band. Additionally, the higher frequency sub-bands have
less importance in the overall perceptual distortion because they have less energy
and are perceptually less important to human ears. Notice that the uniform split can
also be explained using sub-band multipliers, except that afj] = 1 for all j.

Although a default or initial segmentation is often sufficient for coding
spectral data, and in fact the non-uniform scheme can handle a large percentage of
cases, there are signals which benefit from an optimized segmentation. For such
signals, a segmentation is defined that is similar to the non-uniform case, except
that the band multipliers are arbitrary instead of fixed. The arbitrary band
multipliers reflect the splits and merges of sub-bands. In one example, an encoder

signals the decoder with a first bit indicating whether the segmentation is fixed
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(e.g., default) or variable (e.g., optimized or altered). A second bit is provided for
signaling whether the initial segmentation is uniform split or an non-uniform split.
Exemplary Optimized Segmentation

Starting with a default segmentation (such as a uniform or non-uniform
segmentation), sub-bands are split or merged to obtain an optimized or subsequent
segmentation. A decision is made to split a sub-band into two sub-bands, or to
merge two sub-bands into one sub-band. A decision to split or merge can be based
on various characteristics of the slz;ectral data within an initial sub-band, such as a
measurement of intensity of change over a sub-band. In one example, a decision is
made to split or merge based on sub-band spectral data characteristics such as
tonality or spectral flatness in a sub-band.

In one such example, if the ratio of energy is similar between two sub-bands,
and if at least one of the bands is non-tonal, then the two adjacent sub-bands are
merged. This is because a single shape vector (e.g., codeword) and a scale factor
will likely be sufficient to represent the two sub-bands. One example of such a
ratio of energy is provided as follows:

min(E,, E))

>(1- & & (Tonmality, < T Tonality, < T
max(Z,. Z,) (I1-a) ( ty, I ty, <T)

2

In this example, E, is the energy in sub-band 0, E; is the energy in an
adjacent sub-band 1, ‘e’ is a constant threshold value (typically in the range 0 < a
<1) and T is a tonality comparison metric. The tonality measure (e.g., Tonality )
in a sub-band can be obtained using various methods analyzing the spectrum.

Similarly, if splitting a single sub-band into two sub-bands creates two sub-
bands with dissimilar energy, then the split should be made. Or, if splitting a sub-
band creates two sub-bands that are strongly tonal with different shape
characteristics, then the sub-band should be split. For example, such a condition is
defined as follows:

max(£,,E,)

: 2(1+b) || (Tonality, >T & & Tonality, >T & & Different shape)
min(E,, E,) ‘

2

where ‘b’ is a constant greater than zero. For example, two sub-bands may be
defined to have different shape if the shape match significantly improves when the

sub-band is split. In one example, a shape match is considered better if the two
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split sub-bands have a much lower means-square Euclidean difference (MSE)
match after the split, as compared to the match before the split. For example, a
sub-band is compared to a plural codewords to determine a best match codeword
for the single sub-band. Then the sub-band is split into two bands, each sub-band
compared to (half) codewords to find a best match for each split sub-band. The
MSE of the two sub-bands matches is compared to the MSE of the single sub-band
match, and a significantly improved match indicates a improvement worth the extra
overhead of encoding a split. For example, if an MSE improves by 20% or more,
the split is considered efficient. In this example, although not required, the shape
match becomes relevant if both the split sub-bands are tonal.

In one example, an algorithm is run repeatedly until no additional sub-bands
are split or merged in a present iteration. It may be beneficial to tag sub-bands as
split, merge, or original in order to reduce the chance of an infinite loop. For
example, if a sub-band is marked as a split sub-band, then it will not be merged
back with a sub-band it was split from. A block which is marked as merged, will
not be split into the same configuration.

Various metrics are utilized for computing tonality, energy, or different
shape. A motion vector and a scale metric may be used to encode an extended sub-
band. If by splitting a sub-band into two sub-bands creates a significantly different
energy in the scale factor (e.g., > (1 + b), where b is 0.2 - 0.5), then the sub-band
can be split. In one example, tonality is computed in the fast fourier trénsform
(FFT) domain. For example, an input signal is divided into fixed blocks of 256
samples, and the FFT is run on three adjacent FFT blocks. A time average is
performed on three adjacent FFTs outputs to get a time averaged FFT output for the
current block. A median filter is run over the three time averaged FFT outputs to
get a baseline. If a coefficient is above a certain threshold above the baseline, then
the coefficient is classified as tonal, and the percentage that it is above the baseline
is a measure of the tonality. If the coefficient is below the threshold, then it is not
tonal and the measure of tonality is 0. The tonality for a particular time frequency
tile is found by mapping the dimensions of the tile to the FFT blocks and
accumulating the tonality measure over the block. The threshold that a coefficient

has to be over the baseline can be defined to be either an absolute threshold, a ratio
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relative to the baseline, or a ratio relative to the variance of the baseline. For
example, if the coefficient is above one local standard deviation from the baseline
(median filtered, time averaged), it can be classified as being tonal. In such a case,
the corresponding translated sub-band in the MLT representing the tonal FFT
blocks is labeled tonal, and may be split. The discussion is concerned with the
magnitude of the FFT as opposed to the phase. With respect to the MSE metric on
different shapes, a metric of much lower MSE may vary substantially on the bit
rate. For example, with higher bit rates, if the MSE goes down by approximately
20%, then a split determination may make sense. However, at lower bit rates the
split decision may occur at a 50% lower MSE.
Exemplary Variable Band Multiplier and Coding

After sub-bands are split and or merged, the ratio between the original
smallest sub-band size and the new smallest sub-band size is computed. A ratio is
defined as minRatioBandSize = max(1, original smallest sub-band size / new
smallest sub-band size). Then, the optimized sub-band with the smallest size
(e.g., number of coefficients in the sub-band) is assigned a sub-band multiplier of 1,
and the other sub-band sizes have a band multiplier set as round(this sub-band size /
smallest sub-band size). Thus, sub-band multipliers are integers greater than or
equal to 1, and minRatioBandSize is also an integer greater than or equal to 1. The
sub-band multipliers are coded by essentially coding a difference between the
expected sub-band multiplier and the optimized sub-band multiplier using a table-
less variable length code. A difference of 0 is coded with 1 bit, a difference which
is one of the 15 smallest possible differences excluding 0 are coded with 5 bits, and
the rest of the differences are coded using a table-less code.

As an example, consider the following case where the sub-band sizes for a

default non-uniform case are given as shown in Table 4.

Table 4
Bandsizes: 4 4 8 8 16 16 16
Band multipliers: 1 1 2 2 4 4 4

Assume further, that after splitting/merging, the following optimized sub-

band configuration is created as shown in Table 5.
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: Table 5
Bandsizes: 2 [ 4 [ 10 [ 24 [ 8 | 8 [ 16

Figure 14 is a diagram of an exemplary series of sub-band size
transformations. For example, the sub-band sizes in Table 5 can be attained from
the Table 4 via the transformations of Figure 14.

Using the above formula for minRatioBandSize = max(1, 4/2) = 2, the
minimum ratio sub-band size of 2 is provided, and the values for band size

multipliers can be obtained as shown in Table 6.

Table 6
Bandsizes: 2 4 10 24 8 8 16
Band Multiplier: 1 2 5 12 4 4 8
minRatioBandSize: 2

A method is used to calculate the expected sub-band multiplier. First,
assume that blocks which are not split or merged should have the default band size
multiplier (expected band size multiplier = = actual band size multiplier). This
saves bits since only changes from the expected band size multiplier need to be
encoded. Further, the smaller the modification is from the default band
configuration, fewer bits are needed to encode the configuration. Otherwise, the
expected band multiplier is computed at the decoder using the following logic.

e See which sub-band in the default configuration we are currently decoding
by looking at the starting point of the actual band and comparing with the
starting and ending points of the bands in the default band configuration.

o The expected band multiplier is calculated by taking the number of
coefficients left within the band in the default configuration and dividing by
the smallest block (sub-band) size in the actual configuration.

For example, let sq[j] be the starting position of the ‘j’th band in the default
band configuration, let s,[j] be the starting position of the ‘j’th band in the actual
band configuration, let my be the minimum band size in the default case, and let m,
be the minimum band size in the actual case. Then, calculate the following,

r=max(l,m, /m,)
alj1=(s,Lj+1-s,[/D/m,
where ‘r’ is the minRatioBandSize, and a[j] is the band multiplier for the ‘j’th band.
To calculate the expected multiplier for the *j’th band, first compute ‘i’, the index

of the default band configuration which contains the starting position of the actual
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band. Then, compute expected[j] 10 be the expected multiplier of the ‘j’th band. This
can be computed as follows,
sali1<8,[j]< s, [i+1]
Ceopesea 7] = (84 [1+1] =5, [/ m,
Note that if a band is not split or merged, then the expected band multiplier will be
the same as the actual one. Also, so long as sq[i+1] is the same as s,[j+1], then the
expected band multiplier will be the same as the actual one.

Continuing with the example, a default sub-band configuration is shown in °
Table 7. |

Table 7
Bandsizes 4 4 8 8 16 16 16
Band index 0 1 2 3 4 5 6
Startpoint 0 4 8 16 24 40 56
Endpoint : 4 8 16 24 40 56 ° 72

The actual or optimized sub-bands as they map to the default band

configuration is shown in Table 8.

Table 8
Bandsizes 2 4 10 24 8 8 16
Band Multiplier 1 2 5 12 4 4 8
Startpoint : 0 2 6 16 40 48 56
Default Band Index : 0 0 1 3 5 5 6
Coefficients Left : 4 2 2 16 16 8 16
ExpectedBandMulti : 2 1 1 8 8 4 8
Difference : -1 1 4 4 -4 0 0

The Default Band Index is the value of ‘i’ for a given j. Coefficients Left is
sa[1+1] - s4[j]. The Expected Band Multiplier is 8expetealJ], and Band Multiplier is
a[j]. Again, note that any sub-band which is not split or merged will always have a
difference of 0. The coding will code the “Difference” value for each sub-band and
the minRatioBandSize (‘r’) for the configuration using a variable length code for
sach. The use of minRatioBandSize allows coding a band configuration in which
‘he smallest bands are smaller than the bands in the default configuration.

Computing Environment

Figure 15 illustrates a generalized example of a suitable computing
snvironment (1500) in which the illustrative embodiments may be implemented.
The computing environment (1500) is not intended to suggest any limitation as to

icope of use or functionality of the invention, as the present invention may be
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implemented in diverse general-purpose or special-purpose computing
environments.

With reference to Figure 15, the computing environment (1500) includes at
least one processing unit (ISIOj and memory (1520). In Figure 15, this most basic
configuration (1530) is included within a dashed line. The processing unit (1510)
executes computer-executable instructions and may be a real or a virtual processor.
In a multi-processing system, multiple processing units execute computer-
executable instructions to increase processing power. The memory (1520) may be
volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the two. The memory
(1520) stores software (1580) implementing an audio encoder and or decoder.

A computing environment may have additional features. For example, the
computing environment (1500) includes storage (1540), one or more input devices
(1550), one or more output devices (1560), and one or more communication
connections (1570). An interconnection mechanism (not shown) such as a bus,
controller, or network interconnects the components of the computing environment
(1500). Typically, operating system software (not shown) provides an operating
environment for other software executing in the computing environment (1500),
and coordinates activities of the components of the computing environment (1500).

The storage (1540) may be removable or non-removable, and includes
magnetic disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any
other medium which can be used to store information and which can be accessed
within the computing environment (1500). The storage ( 1540) stores instructions
for the software (1580) implementing the audio encoder and or decoder.

The input device(s) (1550) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a voice input device, a scanning device, or another device
that provides input to the computing environment (1500). For audio, the mput
device(s) (1550) may be a sound card or similar device that accepts audio input in
analog or digital form. The output device(s) (1560) may be a display, printer,
;i)eaker, or another device that provides output from the computing environment
1500).
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The communication connection(s) (1570) enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, compressed audio
or video information, or other data in a modulated data signal. A modulated data
signal is a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example, and not
limitation, communication media include wired or wireless techniques
implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.

The invention can be described in the general context of computer-readable
media. Computer-readable media are any available media that can be accessed
within a computing environment. By way of example, and not limitation, with the
computing environment (1500), computer-readable media include memory (1520),
storage (1540), communication media, and combinations of any of the above.

The invention can be described in the general context of computer-
executable instructions, such as those included in program modules, being executed
in a computing environment on a target real or virtual processor. Generally,
program modules include routines, programs, libraries, objects, classes,
components, data structures, etc. that perform particular tasks or implement
particular abstract data types. The functionality of the program modules may be
combined or split between program modules as desired in various embodiments.
Computer-executable instructions for program modules may be executed within a
local or distributed computing environment.

For the sake of presentation, the detailed description uses terms like

29 <¢C 93 €6

“determine,” “get,” “adjust,” and “apply” to describe computer operations in a
computing environment. These terms are high-level abstractions for operations
performed by a computer, and should not be confused with acts performed by a
human being. The actual computer operations corresponding to these terms vary
depending on implementation.

In view of the many possible embodiments to which the principles of our
invention may be applied, we claim as our invention all such embodiments as may

come within the scope and spirit of the following claims and equivalents thereto.
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We claim:
1. An audio encoding method, comprising:

providing codewords comprising a library of codewords;

transforming at least one codeword from the library;

comparing a sub-band to at least one transformed codewords from the
library;

coding the sub-band in an output bitstream comprising coding an identifier
of one or more codewords from the library and a transform identifier.
2. The encoder of claim 1 further comprising:

transforming an input audio signal into a set of spectral coefficients;

coding a baseband portion of the set of spectral coefficients in the output
bitstream;

dividing an extended band of the spectral coefficients into plural sub-bands;

scaling the plural sub-bands in the extended band; and

comparing the sub-band to at least one codeword from the library that has
not been transformed, wherein the library comprises plural codewords from the
baseband portion. )
3. The audio encoding method of claim 1 wherein available transforms for
transforming at least one codeword from the library comprise one or more of the
following transforms:

applying an exponent to each coefficient of a codeword;

negating each coefficient of a codeword; or

reversing the order of coefficients in a codeword.
4. The audio encoding method of claim 1 wherein transforming at least one
codeword from the library comprises creating a codeword with coefficients from
two or more codewords comprising:

from all but the final codeword, selecting coefficients that satisfy a rule;

from a final codeword, providing the other coefficients.
5. The audio encoding method of claim 1 wherein the library further comprises
codewords from a noise codebook or a codeword populated using a determinatively

seeded random number generator.
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6. The audio encoding method of claim 1 wherein coding the sub-band
includes providing an identifier of two or more codewords and the transform
identifier comprises at least one of an exponent indication, a sign indication, a
direction indication, or an ordering of codeword identifiers in the output bitstream,
the ordering indicating an implicit selection of coefficients.
7. The audio encoding method of claim 1 whc;rein coding the sub-band in the
output bitstream includes an identifier of two or more codewords and the transform
identifier is an identifier of an explicit rule for selection of coefficients from the
two or more codewords.
8. The audio encoding method of claim 1 wherein the compared at least one
transformed codeword from the library is two or more codewords created using an
exponential transformation of a closest matching codeword from the library.
9. The andio encoding method of claim 9 wherein the closest matching
codeword from the library is identified using a least-mean square comparison and
the two or more codewords created from the exponential transformation are
compared using a probability mass function.
10.  The audio encoding method of claim 1 wherein the compared codewords
comprise plural codewords from the library and comparing the sub-band to the at
least one transformed codeword from the library comprises an exhaustive search on
the codewords of the library and transformations thereof comprising negation,
reverse direction, and exponential transformations using two or more exponents.
11. The audio encoding method of claim 2, further comprising:

determining that a part of the baseband portion poorly represents the input
audio signal;

enhancing the part of the baseband portion;

the enhancement cornprising, from the poorly represented part of the
baseband portion, selecting coefficients that represent the input audio signal well,
and from a second codeword, selecting all other coefficients; and

coding the enhancement comprising an identifier of the second codeword, an
identifier of the poorly represented part, and a rule for selecting coefficients.
12.  The audio encodiné method of claim 12 wherein the second codeword is

obtained from a noise codebook or random number generator.
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13.  The audio encoding method of claim 1 wherein transforming at least one
codeword from the library comprises creating a codeword with coefficients from
two or more codewords comprising:
from a first codeword, selecting coefficients that satisfy a rule; and
for coefficients in the first codeword that do not satisfy the rule, performing
a mathematical operation to create other coefficients, the mathematical operation
comprising an operator and plural operands,
a first operand being a coefficient from the first codeword that does
not satisfy the rule, and
a second operand being a coefficient obtained from a second
codeword.
14.  The audio encoding method of claim 1, further comprising pre-selecting
codewords before comparing the sub-band to codewords, the pre-selection
comprising:
creating an envelope comprising running a weighted average function on an
audio signal; and -
determining the pre-selected codewords by comparing the envelope to the
sub-band.
15.  The audio encoding method of claim 15 wherein comparing the envelope to
the sub-band further comprises:
transforming the envelope using one or more transforms comprising a
negation transform, a reverse transform, or an exponential transform; and
wherein comparing the envelope to the sub-band comprises determining a
Euclidean distance.
16.  Anaudio decoding method comprising:
decoding encoded spectral coefficients in a bitstream; and
decoding one or more encoded sub-bands in the bitstream comprising,
determining one or more codeword identifiers for each sub-band,
obtaining the one or more determined codewords for each sub-band,
and

for at least one sub-band, determining a transformation rule,
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for the at least one sub-band, transforming a codeword obtained for

the sub-band using the transformation rule.
17.  The audio decoding method of claim 17 wherein the determined
transformation rule comprises one or more of the following transforms:

applying an exponent to each coefficient of a codeword;

negating each coefficient of a codeword; or

reversing the order of coefficients in a codeword.
18.  The audio decoding method of claim 17 wherein the determined
transformation rule creates a codeword from two or more codewords comprising:

from ail but the final codeword, selecting coefficients that satisfy a rule; and

from a final codeword, providing the other coefficients.
19.  An audio encoder comprising:

a transform for transforming an input audio signal block into spectral
coefficients;

a base coder for coding values of a baseband portion of spectral coefficients
into a bitstream,

a divider for dividing a portion of spectral coefficients into sub-bands;

a scaler for scaling sub-bands;

a comparer for comparing sub-bands to codewords from a library of
codewords;

an extended band coder for coding sub-bands into the bitstream, wherein a

coded sub-band comprises an identifier of a codeword and a exponent for

transforming the identified codeword.
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Figure 2

PCT/US2006/027238

Audio
Decoder

o

Entropy
Decoder 220

'

Noise
Generator 240

>

Quantizer 230

Inverse

Bitstream
205 Bitstream
—» DEMUX
210

 y

Inverse

Weighter 250

:

>

Inverse Multi-
Channel
Transf. 260

I

2/11

>

Inv. Frequency
Transformer
270

Y

Reconstructed
Audio Samples
295




WO 2007/011657 PCT/US2006/027238

Figure 3
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Figure 4
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Figure 5
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Figure 7
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Figure 9
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Figure 11 1100
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Figure 13
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Figure 14
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