a2 United States Patent

US009270643B2

(10) Patent No.: US 9,270,643 B2

Sahita (45) Date of Patent: Feb. 23, 2016
(54) STATE-TRANSITION BASED NETWORK (56) References Cited
INTRUSION DETECTION
U.S. PATENT DOCUMENTS
(75) Inventor: Ravi L. Sahita, Beaverton, OR (US) 6,289,013 B1* 9/2001 Lakshman etal. 370/389
6,798,777 B1* 9/2004 Fergusonetal. 370/392
2002/0112189 A1* 82002 Syvamne GOGF 11/1662
(73) Assignee: Intel Corporation, Santa Clara, CA 726/12
(as) 2002/0143955 Al* 10/2002 Shimada HO4L 29/06
709/227
2003/0053448 Al* 3/2003 Craigetal.cccooeeene. 370/353
(*) Notice: Subject to any disclaimer, the term of this 2004/0010545 Al1* 1/2004 Pandya HO4L 29/06
patent is extended or adjusted under 33 2004/0098617 Al* 5/2004 Sekar ;(l)gggi
U.S.C. 154(b) by 1429 days. 2004/0252837 Al* 12/2004 Harvey ... HO4L 63/1416
380/270
(21) Appl. No.: 10/718,843 * cited by examiner
Primary Examiner — Jason K Gee
(22) Filed: Nov. 21, 2003 (74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP
(65) Prior Publication Data (57) ABSTRACT
US 2005/0111460 A1l May 26, 2005 A network intrusion detection unit (NIDU) identifies a pro-
tocol used to transmit a packet and the flow to which the
packet belongs. The NIDU determines whether a rules table
(51) Int.CL exists for the protocol, and determines, if the rules table
HO4L 29/06 (2006.01) exists, whether a state table includes a matching flow entry
(52) US.Cl corresponding to the flow. If the state table includes the
N matching flow entry, the NIDU determines whether a state of
CPC ... HO4L 63/0254 (2013.01); HO4L 63/1416 the flow will transition from a current state indicated in the
(2013.01) matching flow entry to a valid destination state indicated in a
(58) Field of Classification Search state-transition rule in the rules table. If the state of the flow
CPC HO4L 63/0254 will not transition to a valid destination state, the NIDU
L1 G 726/22 discards the packet.

See application file for complete search history.

29 Claims, 8 Drawing Sheets

/ 300
/(]<1yrhing /reset
begin »{ CLOSED }«

passive open

syn /syn + ack

reset

syn/syn + ack

active open /syn

close /fin

close /fin

fin / ack

ack/ fin-ack / ack

ack /

timeout after 2 segm_e'ﬁt lifetimes

v J

FIN fin /ack
WAIT-2 WAIT

US 9,270,643 B2

Sheet 1 of 8

Feb. 23, 2016

U.S. Patent

l "Old

00¢

NAIN

801
NOILYNILS3A

901
301A3d
NHOMLIN

vol
WNIAI
NOISSINSNVYL

20t
304N0OS

US 9,270,643 B2

Sheet 2 of 8

Feb. 23, 2016

U.S. Patent

¢ 9Old

\474
37N NOILISNVYHL J1VLS

e
37NY NOILISNVYIL 3LVLS

| 0572 40L¥OIONI L0IAT | N-¥I¥d LVLS NOILYNILS3A - 3LvLS 304NOS|

| 7572 4oLw0IONI 101AT | Z-dIvd 3LvLS NOILYNILSAA -31vLS F0uNOs|

| 5572 ¥o1wDIONI 101AT | 1-¥Ivd 31vLS NOILYNILS3A - 31v1S F08N0S|
PP SNOILISNYYL ALVLS

Sv¥e 4474 4414
dOL1vIIaNI Nd3L1vd S31VLS
EINEL NOILISNVYL| | 304N0OS AINIGINOD
b=¥¥e
37Ny NOILISNVYL 31VIS

t474
d314I1LN3AI

314v1

J1VLS INFHHNO

¢cte
SANTVA
NOILVHANIO-AY LN

434
AJLNT MO

i34
379VL 31VLS

A

144

ove
319v1L S31NY

A

ANIONT S31NY

ﬂ

¥
H314ISSVYTO

U.S. Patent Feb. 23,2016 Sheet 3 of 8 US 9,270,643 B2

/300

anything / reset

begin CLOSED

passive open

active open /syn
syn /syn + ack

send /syn
reset

syn /syn + ack close/

syn /syn + ack

close / fin fin /ack

close /fin
close /fin

Y,

US 9,270,643 B2

Sheet 4 of 8

Feb. 23, 2016

U.S. Patent

¥ "Old

0sve
4OL1VOIANI LOIAG

a4

00000100 0001 0000
Z-dIvd aa-ss
¢€A1VIS |« 831VLS
0001 0000 0010 0000
¢-d1vd da-ss
g3J1VIS |« P 3ILVLS
00100000 0100 0000
|-dIvd dd-SS
7 3LVLS |« ¢3LvIS —— ZAX
9v¥e
SNOILISNVYL
e
aLvis NY3LLYd
NOILISNVHL
0
1) 474 Zvve
HO1VIIANI 31v3d0 04110000 S31VLS I9NN0S
J3aNIgNoD

U.S. Patent

Feb. 23, 2016

Sheet 5 of 8

START

US 9,270,643 B2

IDENTIFY PROTOCOL USED TO
TRANSMIT PACKET

502

504

RULES
TABLE EXISTS
FOR PROTOCOL?

520
DISCARD |~/
PACKET
A 4
END

508
~

NO
SEND PACKET | 930
TO TRANSMIT [
BUFFER
IDENTIFY FLOW TO WHICH
PACKET BELONGS
END
510
STATE
NO TABLE INCLUDES

MATCHING FLOW ENTRY
CORRESPONDING TO
FLOW?

U.S. Patent Feb. 23, 2016

/540

Sheet 6 of 8

/512

IDENTIFY RULES WHOSE
CREATE BITS ARE SET

PACKET
NCLUDES THE TRANSITION
PATTERN IN A ROLE IN THE
SET OF CREATE
RULES

YES

CREATE
FLOW
ENTRY

END
546

SET OF
CREATE RULES
INCLUDES ANOTHER
RULE?

GOTO
520

YES

IDENTIFY RULES WHOSE COMBINED
SOURCE STATES INCLUDED THE CURRENT
STATE OF THE MATCHING FLOW ENTRY

514

PACKET
INCLUDES TRANSITION
PATTERN IN A RULE WHOSE
COMBINED SOURCE
STATES INCLUDE THE
CURRENT
STATE?

YES

516

\ 4

IDENTIFY SOURCE STATE-
DESTINATION STATE PAIR
WHOSE SOURCE STATE
MATCHES THE CURRENT STATE

v

REPLACE THE CURRENT STATE
WITH THE DESTINATION STATE
IN THE SOURCE STATE-
DESTINATION STATE PAIR

550

EVICT
INDICATOR

YES

) SET?
EVICT FLOW
ENTRY NO
| GOTO

530

TRANSITION RULES WHOSE

THE CURRENT STATE BEEN
CHECKED?

GOTO
520

FIG. 6

US 9,270,643 B2

U.S. Patent Feb. 23,2016 Sheet 7 of 8 US 9,270,643 B2

700 732

/ 7324

TCP Xyz @

0000 0010
744-10
COMBINED
SOURCE STATES 0000 1110
raaz STATE
TRANSITIONS 55-DD PAIR-1
7448
XyZ— STATE 2 »(STATE 4
TRANSITION
PATTERN 0000 0010 0000 0100
7444 SS-DD PAIR-2
STATE 4 — »{ STATE 8
0000 0100 0000 1000
SS-DD PAIR-3
STATE 8 »(STATE 32
0000 1000 0010 0000

FIG. 7

US 9,270,643 B2

Sheet 8 of 8

Feb. 23, 2016

U.S. Patent

8 '9OId

008
WALSAS DINOYLOT T
%% Om|Boo 018 9%
JOVAALNI T0NIN 30IA3A 1NN
MHOMLIAN HOSHNO OI4ANNNYHA Y PINIAAVISI
018
sng
m%_wwo _\m% E%A,_w W %mmmmomn_
JOVHOLS VLVQ

US 9,270,643 B2

1
STATE-TRANSITION BASED NETWORK
INTRUSION DETECTION

TECHNICAL FIELD

Embodiments of the invention are generally related to the
field of networking and, in particular, to network intrusion
detection.

BACKGROUND

In general, a network is a group of two or more electronic
systems linked by a wired or wireless transmission medium to
transmit data, commonly referred to as a data packet or a
packet, from a source electronic system to a destination elec-
tronic system. Data packets are transmitted based on a set of
rules, commonly referred to as a protocol, that are used by the
source and the destination during a communication session.
Examples of networks include a personal area network, a
local area network, a metropolitan area network and a wide
area network, such as the Internet. Examples of electronic
systems include a personal computer, a personal digital assis-
tant (PDA), a laptop or palmtop computer, a cellular phone, a
computer system, a network access device, and a television
set-top box.

A data packet may travel through one or more intermediate
electronic systems, commonly referred to as network devices,
during transmission from a source to a destination. Examples
of network devices include, but are not limited to, a switch, a
router or a bridge. In general, a network device is a packet-
forwarding device that receives a data packet and determines
an electronic system (either another network device or a des-
tination) to which to forward the data packet.

An unauthorized user may attempt to access a network.
Unauthorized access of a network is commonly referred to as
network intrusion. A network intruder may attempt to inhibit
the ability of authorized users to access the network, or
attempt to prevent the use of a service on the network, for
example, electronic mail (or e-mail). Such an attack on a
network is commonly referred to as a denial-of-service (DoS)
attack.

One technique for implementing a DoS attack is to send a
large amount of data to a service that is unable to handle the
data and thus begins dropping data. For example, a network
intruder may transmit a large number of requests to connect to
an e-mail server that is unable keep up with the connection
requests. As a result, the e-mail server may start dropping
connection requests, including legitimate requests, thereby
inhibiting authorized users’ access to e-mail service.

A network intrusion detection system (NIDS) is a system
used to determine whether a network is under attack. Typi-
cally, a NIDS examines packets entering a network to deter-
mine whether an unauthorized user is attempting to access the
network. For example, a NIDS may determine whether there
are a large number of connection request packets, which may
indicate an attempted DoS attack. A NIDS may run either at
a destination, where the destination’s incoming traffic is
examined, or on a network device between a source and a
destination, in which case all network traffic is examined.

One type of NIDS is a signature-based NIDS, where the
NIDS determines whether a packet includes a particular
string of data that associates the packet with a network attack.
Because the signature-based approach is based on data in the
packet, only known attacks, i.e., attacks where a particular
string of data is known to be associated with particular net-
work attack, may be addressed. In addition, a signature-based
NIDS examines an intrusive packet’s data after the packet

20

25

30

35

40

45

50

55

60

65

2

reaches an application that provides a service, which means
that the attack is successful. Consequently, the goal of a
signature-based approach is to prevent future attacks from
being successful.

Another type of NIDS is an anomaly-based NIDS, in which
network behavior is predicted and modeled, and certain
behavior is identified as abnormal. An anomaly-based
approach may be based on known protocol behavior, rather
than on packet data known to be associated with a network
attack. Consequently, an anomaly-based NIDS can address
unknown, as well as known, attacks. In addition, an anomaly-
based NIDS can prevent an attack before an intrusive packet
reaches an application that provides a service. An anomaly-
based NIDS is difficult to implement because of the difficulty
in predicting and modeling network behavior and identifying
abnormal behavior.

A conventional NIDS is susceptible to an attack in which
packets are transmitted at high rates of speed, sometimes
referred to as a saturation attack. A conventional NIDS exam-
ines the packets of each flow. In general, a flow is a stream of
packets transmitted between a source and a destination during
a communication session. If packets are transmitted faster
than the NIDS is able to examine them, the NIDS may start
dropping packets or even completely shut down. A conven-
tional NIDS is not able to throttle flow examination, i.e.,
examine the packets of fewer than all flows, which would
reduce the likelihood of a successful saturation attack.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings in which like reference numerals
refer to similar elements.

FIG. 1 is a block diagram illustrating an example of a
network.

FIG. 2 is a block diagram illustrating an example embodi-
ment of a network intrusion detection unit.

FIG. 3 illustrates an example of a finite state machine.

FIG. 4 illustrates an example embodiment of a state tran-
sition rule.

FIG. 5 and FIG. 6 are a flow chart illustrating an example
embodiment of a method of network intrusion detection.

FIG. 7 illustrates an example embodiment of determining a
valid state transition.

FIG. 8 is a block diagram illustrating an example embodi-
ment of an electronic system.

DETAILED DESCRIPTION

State-transition based network intrusion detection is
described. In the following description, for purposes of expla-
nation, numerous specific details are set forth. It will be
apparent, however, to one skilled in the art that embodiments
of the invention can be practiced without these specific
details. In other instances, structures and devices are shown in
block diagram form in order to avoid obscuring the under-
standing of this description.

FIG. 1 is a block diagram illustrating an example of a
network. Network 100 may be any type of wired or wireless
network, including, but not limited to, a personal area net-
work, a local area network, a metropolitan area network, or a
wide area network. Network 100 includes source 102, which
transmits data packets over transmission medium 104
through network device 106 to destination 108. For simplic-
ity, network 100 is shown with one source, one network

US 9,270,643 B2

3

device and one destination. However, network 100 may
include more than one source, network device and/or desti-
nation.

Source 102 is intended to represent a broad range of elec-
tronic systems including, but not limited to, a personal com-
puter, a personal digital assistant (PDA), a laptop or palmtop
computer, a computer system, a network access device or a
television set-top box, that transmits data packets to destina-
tion 108. Transmission medium 104 is intended to represent
any wired or wireless transmission medium, or a combination
thereof, including, but not limited to, fiber-optic cable,
coaxial cable, twisted-pair wire, or air, which carries, for
example, radio or satellite signals, over which data packets
are transmitted from source 102 to destination 108.

Network device 106 is intended to represent any number of
network devices including, but not limited to, a router, a
switch or a bridge, that include network intrusion detection
unit (NIDU) 200. As explained in more detail below, the
integration of NIDU 200 in network device 106 enables net-
work device 106 to determine, based on the expected state
transition of a flow, whether to transmit a data packet belong-
ing to the flow to destination 108. Although network 100 is
described in terms of a data packet traveling through network
device 106, a data packet may be transmitted directly from
source 102 to destination 108 without traveling though net-
work device 106.

Destination 108 is intended to represent a broad range of
electronic systems, including, but not limited to, a server, a
personal computer, a personal digital assistant (PDA), a lap-
top or palmtop computer, a computer system, a network
access device or a television set-top box, that include NIDU
200. As explained in more detail below, the integration of
NIDU 200 in destination 108 enables destination 108 to deter-
mine, based on the expected state transition of a flow, whether
to process a data packet belonging to the flow.

Network device 106 and/or destination 108 further
includes a receive buffer (not shown) and a transmit buffer
(not shown). NIDU 200 receives a packet via the receive
buffer, and sends the packet to the transmit buffer if the packet
is to be transmitted to destination 108 or processed at desti-
nation 108, as applicable, rather than discarded. Conse-
quently, if NIDU 200 is running on a separate device, for
example, a network processor or a network interface card,
within network device 106 and/or destination 108, NIDU 200
is able to examine a packet before an intrusive packet reaches
an application that is providing a service on destination 108.

FIG. 2 is a block diagram illustrating an example embodi-
ment of a network intrusion detection unit. NIDU 200 may be
implemented in software, hardware, for example, on a net-
work interface card or network processor, or a combination
thereof. Although embodiments of the invention are
described in terms of network intrusion detection, embodi-
ments of the invention are also applicable to an application-
aware firewall.

NIDU 200 includes classifier 210, rules engine 220, one or
more state tables 230 and one or more rules tables 240.
Although classifier 210 and rules engine 220 are described
below as separate functional elements, they may be combined
into a single multifunctional element that performs the func-
tions of classifier 210 and rules engine 220. In addition, one or
more of the functions described as being performed by clas-
sifier 210 may be performed by rules engine 220, and one or
more of the functions described as being performed by rules
engine 220 may be performed by classifier 210.

As explained in more detail below, classifier 210 identifies
a protocol used to transmit a packet, and a flow to which the
packet belongs. Many flows may exist for a single protocol,

20

25

30

35

40

45

50

55

60

65

4

since any number of sources and destinations may be using a
particular protocol to transmit packets during a communica-
tion session. Identifying the protocol and the flow is com-
monly referred to as classification.

State table (ST) 230 and rules table (RT) 240 are tables or
other data structures related to a protocol used to transmit a
packet. A user configures NIDU 200 to examine the flows of
one or more protocols. ST 230 and RT 240 exist for each
protocol NIDU 200 is configured to examine. ST 230
includes one or more flow entries 232, which identify each
flow being transmitted using the protocol. Each flow entry
232 is an index representing a flow, and includes entry-gen-
eration values 2322, which indicate the values used to gener-
ate flow entry 232. For example, if the protocol is the Trans-
mission Control Protocol (TCP), entry-generation values
2322 may include source address, destination address, source
port number, and destination port. See, e.g., Request for Com-
ments (RFC) 793, “Transmission Control Protocol DARPA
[Defense Advanced Research Projects Agency] Internet Pro-
gram, Protocol Specification,” September 1981. In addition,
each flow entry 232 indicates a current state 2324 of the flow.
Current state 2324 is represented by a bit-vector. For purposes
of illustration and ease of explanation, ST 230 includes one
flow entry. However, ST 230 may include any number of flow
entries.

Rules table (RT) 240 includes table identifier 242 and one
or more state-transition rules 244-1 through 244-N, where N
is any number. Table identifier 242 may be any indicator
known in the art for identifying a table or other data structure.
Each state-transition rule 244 includes combined source
states 2442, transition pattern 2444, state transitions 2446 and
create indicator 2448. For purposes of illustration and ease of
explanation, RT 240 includes one state transition rule, which
is referred to herein generally as state-transition rule 244-N.
However, RT 240 may include any number of state transition
rules.

Typically, the operation of a protocol can be described
based on a theoretical model commonly referred to as a finite
state machine (FSM). A FSM is commonly represented as a
set of unique states for a system, and a set of transitions
between the states. Combined source states 2442 and state
transitions 2446 correspond to states in a protocol’s FSM, and
are represented by bit-vectors.

FIG. 3 illustrates an example of a finite state machine.
Example FSM 300 is a FSM known in the art for TCP. In
general, a flow begins at state 0 and transitions from state to
state, based on data transmitted between source 102 and
destination 108. For example, in order to transition from state
Oto state 1, source 102 sends a SYN packet to destination 108.
The various symbols and notations in FSM 300 are known to
those of ordinary skill in the art, and thus will not be described
in detail.

For purposes of illustration and ease of explanation,
embodiments of the invention will be described in terms of
TCP. However, the protocol may be any protocol whose
operation is capable of being defined by a FSM. Examples of
other protocols include, but are not limited to, File Transfer
Protocol (FTP), Telnet, Hypertext Transfer Protocol (HTTP),
H.323, Real Time Transport Protocol (RTP)/Real Time Con-
trol Protocol (RTCP) and Secure Shell Protocol (SSH). See
e.g., IETF RFC 959, “File Transfer Protocol (FTP),” October
1985; IETF RFC 854, “Telnet Protocol Specification,” May
1983; IETF RFC 2616, “Hypertext Transfer Protocol—
HTTP/1.1,” June 1999; IETF RFC 3550 “A Transport Proto-
col for Real-Time Applications,” July 2003; International
Telecommunication Union-Telecommunication Standard-
ization Sector (ITU-T), “H.323 System Implementers Guide;

US 9,270,643 B2

5

Series H: Audiovisual and Multimedia Systems, Infrastruc-
ture of Audiovisual Services—Communication Procedures,”
May 30, 2003; and IETF Network Working Group, SSH
Communications Security Corp, “SSH Protocol Architec-
ture,” Jul. 14, 2003 (Internet-Draft, Expires: Jan. 12, 2004.

State transitions 2446 include source state-destination
state (SS-DD) pair 1 through SS-DD pair N, where N is any
number. An SS-DD pair indicates a source state of a flow and
a valid destination state to which the state of the flow will
transition. State transitions 2446 may include any number of
SS-DD pairs. For purposes of illustration and ease of expla-
nation, one or more SS-DD pairs are referred to herein gen-
erally as SS-DD Pair N. Transition pattern 2444 indicates a
pattern that is included in a packet if the state of the packet’s
flow is going to transition from a source state to a destination
state included in an SS-DD Pair N. Combined source states
2442 indicates all of the source states in each SS-DD pair.

One or more state transitions 2446 further include evict
indicator 2450. Evict indicator 2450 is used to indicate that a
SS-DD pair corresponds to a final transition, and will cause a
flow entry associated with the state-transition rule 244-N for
the SS-DD pair to be removed from ST 230 or marked as
invalid. Evict indicator 2450 may be, but is not limited to, a bit
that when set indicates that a flow entry is to be evicted. For
purposes of illustration and ease of explanation, evict indica-
tor 2450 will be described in terms of an evict bit.

Create indicator 2448 indicates that a flow entry is to be
created for a flow. Create indicator 2448 may be, but is not
limited to, a bit that when set indicates that a flow entry is to
be created in ST 230. This applies when a flow is to be
examined, but NIDU 200 has not yet received a packet
belonging to the flow. As explained in more detail below, if a
packet belonging to the flow includes the correct transition
pattern 2444, a flow entry corresponding to the flow will be
created in ST 230. Once the flow entry has been created, the
create bit is set so that rules engine 220 does not create
another flow entry corresponding to the flow. For purposes of
illustration and ease of explanation, create indicator 2448 will
be described in terms of a create bit.

FIG. 4 illustrates an example embodiment of a state tran-
sition rule. State-transition rule 244-N indicates the source
states of a flow as states 2, 4 or 8. Thus, state-transition rule
244-N indicates combined source states 2442 as bit-vector
00001110, which shows, by the 1 in the bit positions corre-
sponding to binary numbers 2, 4 and 8, that states 2, 4 and 8
are source states.

State transition rule 244-N further includes state transitions
2446, which includes three SS-DD Pairs: SS-DD Pair 1 indi-
cates state 2 as a source state and state 4 as its destination
state; SS-DD Pair 2 indicates state 4 as a source state and state
8 asits destination state, and SS-DD Pair 3 indicates state 8 as
a source state and state 32 as its destination state. Although
state bit-vectors in FIG. 4 are described in terms of binary
format, other formats may be used, for example, hexadecimal
format.

Each SS-DD Pair includes evict indicator 2450, which in
this case is an evict bit. Evict indicator 2450 for SS-DD Pairs
1 and 2 are set to 0 to indicate non-eviction, while evict
indicator 2450 for Pair 3 is set to 1 to indicate eviction.
Although FIG. 4 is described in terms of 0 for non-eviction
and 1 for eviction, embodiments of the invention may be
implemented using 1 to indicate non-eviction and 0 to indi-
cate eviction.

For state-transition rule 244, transition pattern 2444 is
XYZ. This means that if a packet belonging to a flow whose
source state is 2, 4 or 8 includes the pattern XYZ, then the
flow’s next state is 4, 8 or 32, respectively. In addition, create

20

25

30

35

40

45

50

55

60

65

6

indicator 2448 is set to 0. This indicates that a packet belong-
ing to the flow corresponding to state-transition rule 244-N
has been examined at NIDU 200, and thus a flow entry for the
flow exists in ST 230.

As described in more detail below, rules engine 220 per-
forms a hashing function based on data in a packet, and
determines whether flow entry 232 in ST 230 matches the
result of the hashing function. A matching flow entry 232
identifies a flow to which the packet belongs. If a matching
flow entry 232 exists, rules engine 220 identifies current state
2324 of the flow.

Rules engine 220 uses current state 2324 to identify one or
more state-transition rules 244-N having combined sources
states 2442 that includes a source state corresponding to
current state 2324. Rules engine 220 determines whether the
packet includes transition pattern 2444 included in the state-
transition rule 244. If the packet includes the transition pat-
tern 2444, the packet is a valid packet, i.e., is not associated
with an attempted network intrusion. However, if the packet
does not include the transition pattern 2444, the packet is
deemed to be associated with an attempted network intrusion.

Therefore, unlike a conventional network intrusion detec-
tion system, NIDU 200 is able to predict and model network
behavior, and identify abnormal behavior. NIDU 200 does not
detect network intrusion based solely on data in a packet, but
rather also based on known protocol behavior. Consequently,
NIDU 200 is able to prevent unknown and known network
attacks, and can prevent network intrusions before an invasive
packet reaches an application that provides a service.

A state-transition rule 244-N that has create bit 2448 set
may also have additional values associated with it, specifi-
cally, a threshold value T and a step value S. T indicates a
threshold number of flows being transmitted using the same
protocol, while S indicates a step increment of flows, both
measured in connections-per-second. Once a flow entry is
created for a flow, the T and S values may be used to determine
which flows to examine, and a number of hashing functions to
perform when determining whether a flow entry 232 corre-
sponding to a flow is present in ST 230.

As explained in more detail below, rules engine 220 may
use a skip count to determine whether to examine a flow and
thus examine a packet belonging to that flow. A skip count
indicates the number of flows to skip before examining a flow.
Rules engine 220 determines the skip count N to generate a
1-in-N (1/N) flow examination function, where N indicates
the number of flows to examine after skipping N-1 flows. For
example, if N is set to a default rate equal to 1, rules engine
220 examines every flow that is being transmitted using a
particular protocol, and thus every packet for that protocol is
examined. If N is set to 3, rules engine 220 examines a packet
belonging to 1 out of every 3 flows, after skipping 2 flows.

Rules engine 220 can adjust N from a user-configured
default value to another value, based on user-configured val-
ues for S and T. If the current number of actual flows C is less
than T, rules engine 220 examines every 1-in-N flows. For
example, if N is set to a default value of 1, T is set to a default
value of 200, and the current number of actual flows C is
below 200, rules engine 220 examines each flow ofa protocol.
Once C exceeds T, as indicated, for example, by a new flow
entry having been created, rules engine 220 increases N to
reduce number of flows examined. In other words, unlike a
conventional network intrusion detection system, NIDU 200
is able to throttle flow examination, which reduces the like-
lihood of a successful saturation attack on NIDU 200.

Rules engine 220 increases N based on the product of a
user-defined skip-count modifier A, and a number X of steps
S by which C exceeds T. For example, if T is set to 200, S is

US 9,270,643 B2

7

set to 50, A is set to 2, and C is 200, then X is 2, since C
exceeds T by 100, i.e., 2 times S. Thus, rules engine 220
increases N to A times X, which equals 4, and thus 1 in4 flows
will be examined for a valid state transition. If, for example,
C increases further, to 510, then X is 6, since C exceeds T by
310, which is nearest to 6 times S. Thus, rules engine 220
increases N to 12, and 1 in 12 flows will be examined for a
valid state transition. In one embodiment, rules engine 220
uses the whole number component of X. In another embodi-
ment, rules engine 220 rounds X up or down to nearest whole
number.

As described in more detail below, rules engine 220 per-
forms a hashing function based on values in a packet, to
determine whether a flow entry 232 corresponding to a flow is
present in ST 230. In order for there to be a flow entry 232
corresponding to a flow, the flow entry 232 has to match the
result of the hashing function, and the hashed values from the
packet have to match entry-generation values 2322 indicated
in the flow entry 232.

Any number of values when hashed can generate the same
result. Therefore, it is possible that rules engine 220 fails to
locate a matching flow entry 232 because the hashed values
from the packet fail to match entry-generation values 2322,
though the flow entry 232 matches the result of the hashing
function. If rules engine 220 fails to locate a matching flow
entry 232 after performing a hashing function, rules engine
220 may perform any number of additional hashing functions

The flow examination function 11N can affect the number
of'additional hashing functions R performed. In general, as N
increases, meaning that fewer flows are being examined, R
increases, and thus the probability of locating a flow in ST 230
should increase. It follows that as N decreases, meaning that
more flows are examined, R decreases, since the probability
oflocating a flow in ST 230 should increase as more flows are
examined. This is because performing multiple hashing func-
tions and monitoring fewer flows reduces the probability of
locating a flow entry 232 that matches the result of the hash-
ing function, but whose entry-generation values 2322 do not
match the packet values hashed to generate the result. Simi-
larly, performing fewer hashing functions and monitoring
more flows also reduces this probability.

R,.;, 1s a user-configured minimum number of additional
hashing functions related to N, and R,,, .. is a user-configured
maximum number of additional hashing functions. When N is
at its default value, the number of additional hashing func-
tions performed is R ;.. As rules engine 220 increases N, the
number of additional hashing functions performed increases
to R, which is between R, and R, . As rules engine 220
further increases N, R increases until it reaches R, ., and
does not increase further. Similarly, as rules engine 220
decreases N to its default value, R decreases until it reaches

FIG. 5 and FIG. 6 are a flow chart illustrating an example
embodiment of a method of network intrusion detection. At
502 of method 500, classifier 210 identifies a protocol used to
transit a packet received in a receive buffer. The protocol may
be identified based, for example, on a protocol identifier. A
protocol identifier may be, for example, a protocol flag in the
protocol field of the packet’s header, or other data in the
packet’s header or payload.

Once the protocol is identified, at 504 rules engine 220
determines whether a RT 240 exists for the identified proto-
col. In one embodiment, rules engine 220 determines whether
a RT 240 includes table identifier 242 that corresponds to the
packet’s protocol identifier. In one embodiment, if RT 240
does not exist for the protocol, at 520, rules engine 220

20

25

30

35

40

45

50

55

60

65

8

discards the packet. In another embodiment, if RT 240 does
not exist for the protocol, the packet is transmitted. In yet
another embodiment, if RT 240 does not exist for the proto-
col, rules engine 220 updates statistics regarding the number
of packets belonging to an intrusive flow. If the packet has
caused a user-configured number of intrusive packets to be
reached, the packet is discarded, while the packet is transmit-
ted if it has not caused the number of intrusive packets to be
reached.

At 506, rules engine 220 determines whether the flow is to
be examined to determine whether the flow will transition
from a current state 2324 indicated in ST 230 to a destination
state in valid destination states 2446 indicated in RT 240, and
thus constitutes a valid packet that is not associated with a
network intrusion. Although FIG. 5 and FIG. 6 are described
in terms of rules engine 220 determining whether a flow is to
be examined, embodiments of the invention may be practiced
without rules engine 220 determining whether a flow is to be
examined.

Rules engine 220 determines whether to examine the flow
based on a skip count. Ifthe skip count indicates that a flow is
not to be examined, rules engine 220 increments the skip
count to indicate that a flow has been skipped. If the flow is to
be examined, rules engine 220 resets the skip count to restart
counting the number of flows to skip before examining a flow.

If the flow is not examined, at 530, rules engine 220 sends
the packet belonging to the flow to a transmit buffer, to be
transmitted to destination 108, if NIDU 200 is running on
network device 106, or to be processed at destination 108, if
NIDU 200 is running on destination 108. For purposes of
illustration and ease of explanation, the remainder of FIG. 5§
and FIG. 6 will be described in terms of NIDU 200 running on
destination 108.

Ifthe flow is to be examined, at 508 classifier 210 identifies
the flow to which the packet belongs. Classifier 210 can
identify the flow in any manner known in the art. For example,
the flow may be identified based on the protocol, where, for
example, a flow transmitted using TCP is identified by certain
information in the packet’s header, while a flow transmitted
using FTP is identified by different information in the pack-
et’s header.

Once the flow has been identified, at 510 rules engine 220
determines whether ST 230 includes a matching flow entry
232 corresponding to the flow. In one embodiment, rules
engine 220 performs a hashing function based on values in the
packet, determines whether a flow entry 232 matches the
result of the hashing function, and determines whether the
hashed values from the packet match entry-generation values
2322 indicated in the flow entry 232. For example, if the
protocol is TCP, the source address, destination address,
source port, and destination port values may be entry-genera-
tion values 2322, as well as values in a packet used to perform
a hashing function. Rules engine 220 may perform any hash-
ing function known in the art.

In one embodiment, rules engine 220 performs multiple
hashing functions, that is, one or more hashes where the
values used to perform the hashing function are in their origi-
nal locations in the packet, and one or more hashes where the
values are switched. For example, if the protocolis TCP, rules
engine 220 could perform two hashing functions, the first
hash being a regular four-tuple, as is known in the art, and the
other hash performed with the source and destination fields
switched and the source port and destination port fields
switched. Ifhashing values are switched to perform a hashing
function, rules engine 220 determines whether the order of
entry-generation values 2322 correspond to the order of the
values in the packet as hashed to generate the hash result. In

US 9,270,643 B2

9

another embodiment, rules engine 220 performs a single
hashing function, for example a hashing function with values
in a packet in their regular positions, or a hashing function
with values switched.

In one embodiment, if matching flow entry 232 is not found
initially, rules engine 220 performs a number of additional
hashes according to R, as described above. In another
embodiment, rules engine 220 does not perform additional
hashes if a match is not found after the initial hashing func-
tion.

If'a matching flow entry 232 is not found after one or more
attempts, at 540, rules engine 220 identifies a set of one or
more state-transition rules 244-N whose create bits 2448 are
set. At 542, rules engine 220 determines whether the packet
includes transition pattern 2444 included in one of the state-
transition rules 244-N in the set of create rules. If the packet
includes transition pattern 2444, at 544 rules engine 220
performs a hashing function based on data in the packet to
create a flow entry 232 corresponding to the packet’s flow.
The hashing function may be any hashing function known in
the art.

However, if the packet does not include transition pattern
2444, at 546 rules engine 220 determines whether the set of
create rules includes another state-transition rule 244. If the
set includes another state-transition rule 244, rules engine 220
returns to 542. Conversely, if the set does not include another
state-transition rule 244-N (or if no state-transition rule indi-
cates creating a flow entry), the packet is deemed to be asso-
ciated with a network intrusion, because the packet’s flow is
neither included in ST 230 nor targeted for inclusion in ST
230. In one embodiment, rules engine 220 discards the packet
at 520. In another embodiment, rules engine 220 discards the
packetifit causes anumber of intrusive packets to be reached,
but otherwise transmits the packet, as described previously.

However, if at 510 ST 230 includes a matching flow entry
232 corresponding to the flow, at 512 rules engine 220 iden-
tifies a set of state-transition rules 244-N whose combined
source states 2442 include current state 2324 of matching
flow entry 232. In one embodiment, rules engine 220 per-
forms an AND operation using combined source states 2442
and current state 2324. Rules engine 220 compares the result
of'the AND operation to current state 2324, to identify state-
transition rules 244-N whose combined source states include
current state 2324. A state-transition rule 244-N includes
current state 2324 if current state 2324 matches the result of
the AND operation performed using the state transition rule’s
combined source states. Although an AND operation is
described, other operations such as, but not limited to, tree
search operations, may be used.

Once the state-transition rules 244-N whose combined
source states 2442 include current state 2324 of matching
flow entry 232, at 514 rules engine 220 determines whether
the packet includes transition pattern 2444 included in one of
the state-transition rules. If the packet does not include tran-
sition pattern 2444, at 516 rules engine 220 determines
whether all state-transition rules that include the matching
flow entry 232 have been checked. If not, rules engine 220
returns to 514. Conversely, all state-transition rules that
include the matching flow entry 232 have not been checked,
rules engine 220 discards the packet at 520. In another
embodiment, rules engine 220 discards the packet if it causes
a number of intrusive packets to be reached, but otherwise
transmits the packet, as described previously.

If at 514 the packet includes transition pattern 2444, at 515
rules engine 220 identifies a SS-DD Pair whose source state
matches current state 2324. At 518, rules engine 220 replaces
current state 2324 with the destination state of the SS-DD Pair

20

25

30

35

40

45

50

55

60

65

10

whose source state matches current state 2324. At 550, rules
engine 220 determines whether evict bit 2450 of the SS-DD
Pair is set. If evict bit 2450 is not set, rules engine 220 sends
the packet to the transmit buffer at 530. If the evict bit is set,
at 552 rules engine 220 evicts matching flow entry 232 from
ST 230 and sends the packet to the transmit bufter at 530.

FIG. 7 illustrates an example embodiment of determining a
valid state transition. A packet that includes a pattern XYZ
arrives in the receive buffer of NIDU 200. A protocol identi-
fier in packet 700 indicates packet 700°s protocol as TCP.
Rules engine 220 determines that the protocol is TCP and
determines based on a table identifier 242, which matches
packet 700’s protocol identifier, that a RT 240 exists for TCP.

Rules engine 220 identifies the flow to which packet 700
belongs, and identifies a flow entry 732 that corresponds to
the flow of packet 700. The current state 7324 is state 2, as
indicated by the bit-vector 00000010. Rules engine 220 per-
forms an AND operation using current state 7324 and com-
bined source states 2442 of state-transition rules 244-N. One
of the state-transition rules whose combined source states
7442 include current state 7324 is state-transition rule 744-
10. Specifically, the result of the AND operation using com-
bined source states 7442 (00001110) and current state 7324
(00000010) is 00000010, which matches current state 7324.
Packet 700 includes transition pattern 7444, i.e., XYZ, in
state transition rule 744-10. Consequently, a destination state
of SS-DD Pair-1 in transition states 7446, i.e., state 4, which
corresponds to source state 2 in SS-DD Pair-1, indicates the
next state of the flow represented by flow entry 732. There-
fore, packet 700 is a valid packet, and rules engine 220
replaces state 2 in current state 7324 with state 4 from SS-DD
Pair-1.

FIG. 8 is a block diagram of one embodiment of an elec-
tronic system. In one embodiment, the technique described
herein can be implemented as sequences of instructions
executed by an electronic system. The electronic system is
intended to represent a range of electronic systems, including,
for example, a personal computer, a personal digital assistant
(PDA), a laptop or palmtop computer, a cellular phone, a
computer system, a network access device, etc. Other elec-
tronic systems can include more, fewer and/or different com-
ponents. The electronic system can be coupled to a wired
network, e.g., via a coaxial cable, fiber-optic cable or twisted-
pair wire, a wireless network, e.g., via radio or satellite sig-
nals, or a combination thereof. The sequences of instructions
can be stored by the electronic system. In addition, the
instructions can be received by the electronic system (e.g., via
a network connection).

Electronic system 800 includes a bus 810 or other commu-
nication device to communicate information, and processor
820 coupled to bus 810 to process information. While elec-
tronic system 800 is illustrated with a single processor, elec-
tronic system 800 can include multiple processors and/or
CO-Processors.

Electronic system 800 further includes random access
memory (RAM) or other dynamic storage device 830 (re-
ferred to as memory), coupled to bus 810 to store information
and instructions to be executed by processor 820. Memory
830 also can be used to store temporary variables or other
intermediate information while processor 820 is executing
instructions. Electronic system 800 also includes read-only
memory (ROM) and/or other static storage device 840
coupled to bus 810 to store static information and instructions
for processor 820. In addition, data storage device 850 is
coupled to bus 810 to store information and instructions. Data

US 9,270,643 B2

11

storage device 850 may comprise a magnetic disk (e.g., a hard
disk) or optical disc (e.g., a CD-ROM) and corresponding
drive.

Electronic system 800 may further comprise a display
device 860, such as a cathode ray tube (CRT) or liquid crystal
display (LCD), to display information to a user. Alphanu-
meric input device 870, including alphanumeric and other
keys, is typically coupled to bus 810 to communicate infor-
mation and command selections to processor 820. Another
type of user input device is cursor control 875, such as a
mouse, a trackball, or cursor direction keys to communicate
direction information and command selections to processor
820 and to control cursor movement on flat-panel display
device 860. Electronic system 800 further includes network
interface 880 to provide access to a network, such as a local
area network or wide area network.

Instructions are provided to memory from a machine-ac-
cessible medium, or an external storage device accessible via
a remote connection (e.g., over a network via network inter-
face 880) providing access to one or more electronically-
accessible media, etc. A machine-accessible medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine (e.g.,
a computer). For example, a machine-accessible medium
includes random-access memory (RAM), such as static RAM
(SRAM) or dynamic RAM (DRAM); ROM; magnetic or
optical storage medium; flash memory devices; electrical,
optical, acoustical or other form of propagated signals (e.g.,
carrier waves, infrared signals, digital signals); etc.

In alternative embodiments, hard-wired circuitry can be
used in place of or in combination with software instructions
to implement the embodiments of the invention. Thus, the
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software instructions.

Reference in the foregoing specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
invention. The appearances of the phrase “in one embodi-
ment” in various places in the specification are not necessarily
all referring to the same embodiment.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes can be made thereto without departing from the
broader spirit and scope of the embodiments of the invention.
The specification and drawings are, accordingly, are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method for filtering packets, wherein a flow corre-
sponds to a stream of packets for a particular communication
session, comprising:

identifying a protocol used to transmit a packet;

identifying the flow to which the packet belongs;

determining that a rules table exists for the protocol;
determining that a state table includes a matching flow
entry corresponding to the flow;

determining whether a skip count is reached, wherein the

skip count indicates a flow to examine after skipping a
number of flows;

examining the flow when the skip count has been reached;

resetting the skip count when the flow is examined;

skipping and not examining the flow when the skip count
has not been reached; and

incrementing the skip count when the flow is skipped;

w

20

25

30

35

40

45

50

60

65

12

determining whether the flow will transition from a current
state indicated in the matching flow entry to a valid
destination state indicated in a state-transition rule in the
rules table; and

discarding the packet if the state of the flow will not tran-

sition to the valid destination state.

2. The method of claim 1, wherein the protocol comprises
a protocol whose operation is capable of being defined by a
finite state machine.

3. The method of claim 2, wherein the protocol comprises
one of the following: File Transfer Protocol, Telnet, Hyper-
text Transfer Protocol, H.323, Real Time Transport Protocol/
Real Time Control Protocol and Secure Shell Protocol.

4. The method of claim 1, further comprising discarding
the packet, if no rules table exists for the protocol.

5. The method of claim 1, further comprising transmitting
the packet if no rules table exists for the protocol.

6. The method of claim 1, further comprising transmitting
the packet if the flow will transition to the valid destination
state.

7. The method of claim 1, further comprising:

determining that a number of actual flows fails to exceed a

preset threshold of flows; and

examining flows based on the skip count, as a result of the

number of actual flows failing to exceed the preset
threshold.

8. The method of claim 1, further comprising:

determining that a number of actual flows exceeds a preset

threshold of flows;

determining a number of preset steps by which the number

of actual flows exceeds the preset threshold;
multiplying the number of preset steps by a preset skip-
count modifier; and

changing the skip count to a different skip count equal to

the product of the preset number of steps and the preset
skip-count modifier.

9. The method of claim 1, wherein determining that the
state table includes the matching flow entry comprises:

performing a hashing function based, at least in part, on

values in the packet;

determining that a flow entry matches a result of the hash-

ing function;

determining that the packet values hashed to generate the

result match values used to generate the flow entry; and
determining that the flow entry is the matching flow entry.
10. The method of claim 9, further comprising:
performing one or more additional hashing functions
according to a number of a flow skip count, if no flow
entry matches the result of the hashing function, wherein
the skip count indicates a flow to examine after skipping
a number of flows; and

performing the one or more additional hashing functions
according to the number related to the skip count, if the
flow entry matches the result of the hashing function, but
the packet values fail to match the values used to gener-
ate the flow entry.
11. The method of claim 10, wherein performing the one or
more additional hashing functions according to the number
related to the skip count comprises:
performing a preset minimum number of additional hash-
ing functions, if the skip count comprises a first value;

performing an increased number of additional hashing
functions, if the skip count is increased, wherein the
increased number of additional hashing functions is
greater than the preset minimum number of additional
hashing functions, but less than a preset maximum num-
ber of additional hashing functions; and

US 9,270,643 B2

13

performing the preset maximum number of additional
hashing functions, when the increased number of addi-
tional hashing functions reaches the preset maximum
number of additional hashing functions.

12. The method of claim 9, further comprising:

identifying, if the state table fails to include the matching
flow entry, a set of one or more state-transition rules
having an indication to create an additional flow entry;

determining whether the packet includes a transition pat-
tern indicated in a state-transition rule in the set, wherein
the transition pattern indicates that the additional flow
entry is to be created;

creating the additional flow entry, if the packet includes the
transition pattern; and

discarding the packet, if the packet fails to include the
transition pattern.

13. The method of claim 1, wherein determining the flow

will transition to the valid destination state comprises:
performing an AND operation using the current state and
combined source states indicated in a state-transition
rule;

determining that the current state matches a result of the
operation;

determining that the combined source states include the
current state;

determining that the packet includes a transition pattern
indicated in the state-transition rule; and

determining that the state of the flow will transition from
the current state to the valid destination state in the
state-transition rule in the set.

14. The method of claim 13, further comprising:

identifying in the state-transition rule a source state-desti-
nation state pair that includes the current state; and

replacing the current state with the destination state indi-
cated in the source state-destination state pair.

15. The method of claim 14, further comprising:

determining that the source state-destination state pair
includes an evict indication; and

evicting the matching flow entry from the state table.

16. The method of claim 13, further comprising:

discarding the packet, if the packet fails to include the
transition pattern included in a plurality of state-transi-
tion rules whose combined source states include the
current state.

17. The method of claim 1, wherein discarding the packet

comprises:

determining whether the packet causes a predetermined
number of packets associated with invalid transitions to
be reached; and

discarding the packet, if the packet causes the predeter-
mined number to be reached.

18. An apparatus comprising:

a classifier to identify a protocol used to transmit a packet
and identify a stream of packets to which the packet
belongs, wherein the stream of packets comprises a
flow;

one or more rules tables that include one or more state-
transition rules;

one or more state tables for the protocol that include one or
more flow entries and values used to generate the flow
entries; and

a rules engine to:

determine that a rules table exists for the protocol,

determine that a state table includes a matching flow entry
corresponding to the flow;

20

25

30

35

40

45

50

55

60

14

determine whether a skip count is reached, wherein the
skip count indicates a flow to examine after skipping a
number of flows;

examine the flow when the skip count has been reached;

reset the skip count when the flow is examined;
skip and not examining the flow when the skip count has
not been reached; and
increment the skip count when the flow is skipped;
determine whether the flow will transition from a current
state indicated in the matching flow entry to a valid
destination state indicated in a state-transition rule in the
rules table; and
discard the packet if the state of the flow will not transition
to the valid destination state.
19. The apparatus of claim 18, wherein the rules engine
determines whether the state table includes the matching flow
entry by performing a hashing function based, at least in part,
on values in the packet, determining whether a flow entry
matches a result of the hashing function, determining, if the
flow entry matches the result, whether the packet values
hashed to generate the result match values used to generate
the flow entry, and determining, if the packet values match the
values used to generate the flow entry, that the flow entry is the
matching flow entry.
20. An article of manufacture comprising:
a non-transitory machine-accessible medium including
thereon sequences of instructions that, when executed,
cause an electronic system to:
identify a protocol used to transmit a packet;
identify the flow to which the packet belongs;
determine that a rules table exists for the protocol;
determine that a state table includes a matching flow
entry corresponding to the flow;

determine whether a skip count is reached, wherein the
skip count indicates a flow to examine after skipping
a number of flows;

examine the flow when the skip count has been reached;

reset the skip count when the flow is examined;

skip and not examine the flow when the skip count has
not been reached; and

increment the skip count when the flow is skipped;

determine whether the flow will transition from a current
state indicated in the matching flow entry to a valid
destination state indicated in a state-transition rule in
the rules table; and

discard the packet if the state of the flow will not transi-
tion to the valid destination state.

21. The article of manufacture of claim 20, wherein the
machine-accessible medium further comprises sequences of
instructions that, when executed, cause the electronic system
to:

determine that a number of actual flows fails to exceed a
preset threshold of flows; and
examine flows based on the skip count, as a result of the

number of actual flows failing to exceed the preset
threshold.

22. The article of manufacture of claim 20, wherein the
machine-accessible medium further comprises sequences of
instructions that, when executed, cause the electronic system
to:

determining that a number of actual flows exceeds a preset
threshold of flows;

determine a number of preset steps by which the number of
actual flows exceeds the preset threshold;

multiply the number of preset steps by a preset skip-count
modifier; and

US 9,270,643 B2

15

change the skip count to a different skip count equal to the
product of the preset number of steps and the preset
skip-count modifier.

23. The article of manufacture of claim 20, wherein the
sequences of instructions that, when executed, cause the elec-
tronic system to determine whether the state table includes
the matching flow entry comprise sequences of instructions
that, when executed, cause the electronic system to:

perform a hashing function based, at least in part, on values

in the packet;

determine whether a flow entry matches a result of the

hashing function;

determine, if the flow entry matches the result, whether the

packet values hashed to generate the result match values
used to generate the flow entry; and

determine, if the packet values match the values used to

generate the flow entry, that the flow entry is the match-
ing flow entry.

24. The article of manufacture of claim 23, wherein the
machine-accessible medium further comprises sequences of
instructions that, when executed, cause the electronic system
to:

identify, if the state table fails to include the matching flow

entry, a set of one or more state-transition rules having an
indication to create an additional flow entry;

determine whether the packet includes a transition pattern

indicated in a state-transition rule in the set, wherein the
transition pattern indicates that the additional flow entry
is to be created;

create the additional flow entry, if the packet includes the

transition pattern; and

discard the packet, if the packet fails to include the transi-

tion pattern.

25. The article of manufacture of claim 20, wherein the
sequences of instructions that, when executed, cause the elec-
tronic system to determine whether the state of the flow will
transition to the valid destination state comprise sequences of
instructions that, when executed, cause the electronic system
to:

perform an AND operation using the current state and

combined source states indicated in a state-transition
rule;

determine whether the current state matches a result of the

operation;

determine, if the current state matches the result of the

operation, that the combined source states include the
current state;
determine, as a result of the combined source states includ-
ing the current state, whether the packet includes a tran-
sition pattern indicated in the state-transition rule; and

determine, if the packet includes the transition pattern, that
the state of the flow will transition from the current state
to the valid destination state in the state-transition rule in
the set.

26. A system comprising:

a processor;

a network interface coupled with the processor; and

an article of manufacture comprising a machine-accessible

medium including thereon sequences of instructions
that, when executed, cause k electronic system to:
identify a protocol used to transmit a packet;

identify the flow to which the packet belongs;

determine that a rules table exists for the protocol;

determine that a state table includes a matching flow entry

corresponding to the flow;

25

30

35

40

45

50

55

60

16

determine whether a skip count is reached, wherein the
skip count indicates a flow to examine after skipping a
number of flows;

examine the flow when the skip count has been reached;

reset the skip count when the flow is examined;

skip and not examine the flow when the skip count has not

been reached; and

increment the skip count when the flow is skipped;

determine whether the flow will transition from a current

state indicated in the matching flow entry to a valid
destination state indicated in a state-transition rule in the
rules table; and

discard the packet if the state of the flow will not transition

to the valid destination state.

27. The system of claim 26, wherein the sequences of
instructions that, when executed, cause the electronic system
to determine whether the state table includes the matching
flow entry comprise sequences of instructions that, when
executed, cause the electronic system to:

perform a hashing function based, at least in part, on values

in the packet;

determine whether a flow entry matches a result of the

hashing function;

determine, if the flow entry matches the result, whether the

packet values hashed to generate the result match values
used to generate the flow entry; and

determine, if the packet values match the values used to

generate the flow entry, that the flow entry is the match-
ing flow entry.

28. The system of claim 26, wherein the machine-acces-
sible medium further comprises sequences of instructions
that, when executed, cause the electronic system to:

identify, if the state table fails to include the matching flow

entry, a set of one or more state-transition rules having an
indication to create an additional flow entry;

determine whether the packet includes a transition pattern

indicated in a state-transition rule in the set, wherein the
transition pattern indicates that the additional flow entry
is to be created;

create the additional flow entry, if the packet includes the

transition pattern; and

discard the packet, if the packet fails to include the transi-

tion pattern.

29. The system of claim 26, wherein the sequences of
instructions that, when executed, cause the electronic system
to determine whether the state of the flow will transition to the
valid destination state comprise sequences of instructions
that, when executed, cause the electronic system to:

perform an AND operation using the current state and

combined source states indicated in a state-transition
rule;

determine whether the current state matches a result of the

operation;

determine, if the current state matches the result of the

operation, that the combined source states include the
current state;
determine, as a result of the combined source states includ-
ing the current state, whether the packet includes a tran-
sition pattern indicated in the state-transition rule; and

determine, if the packet includes the transition pattern, that
the state of the flow will transition from the current state
to the valid destination state in the state transition rule in
the set.

