发明名称
车辆的转向装置以及该转向装置的设定装置

摘要
车辆的转向装置包括；左右的臂机构（5L，5R），所述臂机构通过前臂（7）和后臂（8）来连结，被安装前轮（2L，2R）的车轮安装部（3L，3R）和作为车身的一部分的臂安装部（14），所述前臂（7）和所述后臂（8）由多个连杆（10～13）构成，并且被配置在车辆的前后方向上，伺服马达（21～23），相互独立地驱动左右的臂机构（5L，5R），以确定与转向角对应的各连杆的角度，当控制各伺服马达（21～23）以能够改变虚拟转向轴的设定位置并且能够得到与转向盘的转向操作量对应的转向角时，使各连杆的角度在维持转向角相对于转向操作量的增加而增加的相关关系的范围内变化。
1. 一种车辆的转向装置，包括：
左右的臂机构，所述臂机构包括前臂和后臂来连接被安装车轮的车轮安装部和车身，所述前臂和所述后臂由相互独立地旋转地连接的多个连杆构成，并且被配置在车辆的前后方向上；臂驱动单元，将所述左右的臂机构相互独立地驱动，以确定与所述车轮的转向角对应的各连杆的角度；虚拟转向轴设定单元，能够改变作为所述转向角的中心的虚拟转向轴的设定位置；以及转向角控制单元，控制所述臂驱动单元，以便能够在所述虚拟转向轴的设定位置得到与针对转向部件的转向操作量对应的所述转向角；
所述转向角控制单元控制所述臂驱动单元，以使各连杆的角度在维持包含所述转向角相对于所述转向操作量的增加而增加的程度的在所述虚拟转向轴的所述设定位置的变更前后发生变化。
2. 如权利要求1所述的转向装置，其中，
互不相同的所述相关关系对应于每个所述设定位置，以使所述转向角相对于所述转向操作量的增加而增加的程度在所述虚拟转向轴的所述设定位置的变更前后发生变化。
3. 如权利要求1所述的转向装置，其中，
还包括：
变更指示单元，向所述虚拟转向轴设定单元指示所述虚拟转向轴的所述设定位置的变更；以及
变更禁止单元，在给予的所述转向角的转向过程中，当进行了来自所述变更指示单元的指示时，禁止所述虚拟转向轴设定单元对所述设定位置的变更。
4. 如权利要求3所述的转向装置，其中，
当从所述转向过程中复原到使所述车辆的所述转向部件的中立位置时，所述变更禁止单元解除对所述虚拟转向轴设定单元变更所述设定位置的禁止。
5. 如权利要求3所述的转向装置，其中，
还包括强制解除单元，该强制解除单元在所述转向过程中强制地解除所述变更禁止单元对所述设定位置变更的禁止。
6. 如权利要求1所述的转向装置，其中，
还包括变更延迟时间设定单元，在给予的所述转向角的转向过程中，该变更延迟时间设定单元设定使所述虚拟转向轴的所述设定位置的变更延迟的延迟时间，使得针对所述转向部件的操作速度越快则该延迟时间越长。
7. 如权利要求1所述的转向装置，其中，还包括：
几何形状设定单元，能够通过改变各连杆的角度来变更轮距和束角中的至少一个；以及
变更延迟时间设定单元，在给予的所述转向角的转向过程中，设定使所述几何形状设定单元对所述轮距和所述束角中的每一个的变更延迟的延迟时间，使得针对所述转向部件的操作速度越快则该延迟时间越长。
8. 如权利要求1所述的转向装置，其中，还包括：
显示单元，被设置成所述车辆的使用者能够视觉辨认的状态，并可视地显示能够设定为所述虚拟转向轴的设定位置的多个位置；
显示控制单元，使显示单元在所述显示单元上能够移动地显示，所述显示单元选择性地指示所述多个位置中的任一个；

2
输入单元，接受使用者将所述多个位置中的任一个与所述指示单元的指示位置相关联的预定操作;以及

设定控制单元，在所述输入单元接受了所述预定操作时使所述虚拟转向轴设定单元将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。

9. 如权利要求 8 所述的转向装置，其中，
所述显示单元显示与左右的任一个车轮相关的位置作为所述多个位置，
所述设定控制单元在所述输入单元接受了所述预定操作时使所述虚拟转向轴设定单元针对左右的车轮的每一个将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。

10. 如权利要求 1 所述的转向装置，其中，
所述前臂和所述后臂各自的一个端部通过在所述车辆的前后方向上离开的一对车轮侧连结点可自由旋转地连结到所述车辆安装部，所述前臂和所述后臂各自的一个端部通过在所述前后方向上离开的一对车轮侧连结点可自由旋转地连结到所述车身，
所述多个连杆通过中间连结点可自由旋转地相互连结。

11. 如权利要求 10 所述的转向装置，其中，
所述臂驱动单元具有连杆驱动装置，所述连杆驱动装置与从各臂机构中的所述车身侧连结点、所述中间连结点以及所述车轮侧连结点的总数减去 3 而得的个数的连结点的每一个对应地配置，
各连杆驱动装置绕对应的连结点旋转驱动所述连杆来规定所述连杆的角度。

12. 一种设定装置，被应用于车辆的转向装置，所述转向装置能够变更作为车轮的转向角的中心的虚拟转向轴的设定位置，所述设定装置包括：
显示单元，可视地显示能够设定为所述虚拟转向轴的设定位置的多个位置；
显示控制单元，使指示单元在所述显示单元上能够移动地显示，所述指示单元选择性地指示所述多个位置中的任一个；
输入单元，接受使用者将所述多个位置中的任一个和所述指示单元的指示位置相关联的预定操作;以及
设定控制单元，在所述输入单元接受了所述预定操作时输出设定指示信号，该设定指示信号用于使所述转向装置将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。

13. 如权利要求 12 所述的设定装置，其中，
所述显示单元显示与左右的任一个车轮相关的位置作为所述多个位置，
在所述输入单元接受了所述预定操作时，所述设定控制单元将以下的信号作为所述设定指示信号而输出，该信号用于使所述转向装置针对左右的车轮的每一个将与所述操作对应的任意的位置设定为所述虚拟转向轴的所述设定位置。
车辆的转向装置以及该转向装置的设定装置

技术领域
[0001] 本发明涉及用于对车辆的车轮进行转向的装置及其设定装置。

背景技术
[0002] 公知有以下的转向装置，所述转向装置由可伸缩的一对前后臂来连结车身和单侧的车轮安装部，通过适当地改变所述前后臂的长度，使虚拟转向轴可变（例如参照专利文献1）。
[0003] 现有技术文献
[0004] 专利文献1：日本专利文献特开2007-8285号公报。

发明内容
[0005] 发明要解决的问题
[0006] 在上述的现有的转向装置中，在转弯时臂长度不足，从而有时不能得到大的转向角。另外，现有的转向装置根据驾驶者对转向盘的转向操作量与车轮的转向角建立关联，但是当转向操作量变化时，不能明确相对于该变化如何地改变转向角，因此转向感可能不稳定。另外，现有的转向装置通过怎样的方法设定虚拟转向轴的位置以任意改变虚拟转向轴的位置是不明确的。
[0007] 因此，本发明的目的在于提供一种能够确保比现有的转向角更大的转向角且转向感稳定的车辆的转向装置及其设定装置。
[0008] 用于解决问题的手段
[0009] 本发明的车辆的转向装置包括：左右的臂机构，所述臂机构通过前臂和后臂来连接被安装车轮的车轮安装部和车身，所述前臂和所述后臂由可相互自由旋转地连结的多个连杆构成，并且被配置在车辆的前后方向上；臂驱动单元，将所述左右的臂机构相互独立地驱动，以确定与所述车轮的转向角对应的各连杆的角度；虚拟转向轴设定单元，能够改变作为所述转向角的中心的虚拟转向轴的设定位置；以及转向角控制单元，控制所述臂驱动单元，以便能够在所述虚拟转向轴的所述设定位置得到与针对转向部件的转向操作量对应的所述转向角；所述转向角控制单元控制所述臂驱动单元，使各连杆的角度在维持所述转向角相对于所述转向操作量的增加而增加的相关关系的范围内变化。
[0010] 根据该转向装置，通过臂驱动单元驱动各臂机构，来多种地改变各连杆的角度，由此能够给予车轮以任意设定的虚拟转向轴的位置为中心的需要的转向角。前臂和后臂的每个具有可自由旋转地连结多个连杆的结构，因此与通过单一的连杆构成前臂和后臂的每个的情况相比，能够在更大的范围内调整车身和车轮安装部之间的距离。因此，能够给予车轮比以往更大的转向角。给予车轮的转向角在维持转向角相对于对转向部件的转向操作量的增加而增加的相关关系的范围内变化，因此转向感稳定。
[0011] 转向操作量和转向角的相关关系如果是一方增加、另一方增加的关系，则也可能是非线性的。另外，设定了包含所述转向角相对于所述转向操作量的增加而成比例地增加
的区间的关系作为所述相关关系。在该方式中，包含转弯操作量和转弯角成比例的区间，因此在该区间中转弯部件的操作与车辆的行为自然地对应，因此转弯感良好。

[0012] 在本发明的转向装置的一个方式中，也可以是：互不相同的所述相关关系对应于每个所述设定位置，以使所述转向角相对于所述转向操作量的增加而增加的程度在所述虚拟转向轴的所述设定位置的变更前后发生变化。由于虚拟转向轴的位置变化，因此相对于同一转向角产生的车辆的横力的大小变化。因此，如果将转向操作量和转向角的相关关系固定为一个，则转向感的变化在虚拟转向轴的设定位置的变更前后可能变大。根据该方式，互不相同的转向操作量和转向角的相关关系对应于每个虚拟转向轴的位置，因此能够抑制在该设定位置的变更前后转向感的变化。由此，转向感的稳定性提高。

[0013] 在本发明的转向装置的一个方式中，也可以是：还包括：变更指示单元，向所述虚拟转向轴设定单元指示所述虚拟转向轴的所述设定位置的变更；以及变更禁止单元，禁止在给予了所述转向角的转向过程中当进行了来自所述变更指示单元的指示所述虚拟转向轴设定单元对所述设定位置的变更。根据该方式，能够禁止在转向过程中变更虚拟转向轴的位置。即，即使是在转向过程中指示了虚拟转向轴的设定位置的变更的情况下，虚拟转向轴的位置也被保持为变更前的状态。因此，能够防止车辆在转向过程中产生意想不到的行为。

[0014] 也可以在除转向过程中以外的适当时机解除禁止虚拟转向轴的设定位置的变更。例如，也可以是：当从所述转向过程中复原到使所述车辆直行的所述转向部件的中立位置时，所述变更禁止单元解除禁止所述虚拟转向轴设定单元位置所述设定位置。在此情况下，响应于复原到转向部件的中立位置而解除禁止变更并且能够变更虚拟转向轴的设定位置，因此在如 S 字弯道等那样具有变曲点的连续弯道中，能够在前半弯道与后半弯道之间在不同的虚拟转向轴的位置转动。在这样的连续弯道中，即使在越过了前半弯道时残留横 G，也有时向后半弯道在相反方向上强制转向，但是在这样的情况下，能够将虚拟转向轴的设定位置变更为适合于后半弯道的位置，因此是有效的。

[0015] 在转向过程中禁止虚拟转向轴的设定位置的变更在使转向过程中的车辆的行为稳定方面是有利的，但是在如汤匙弯（spoon corner）等那样转向方向相同、需要转向增加或转向返回的弯道中，也有时在转向增加或转向返回时想要改变虚拟转向轴的设定位置或者在转向过程中特意引起车辆的行为变化有利。为了应对这样的情况，还包括强制解除单元，该强制解除单元在所述转向过程中强制地解除所述变更禁止单元禁止变更所述设定位置。在此情况下，能够通过强制解除单元在转向过程中解除禁止虚拟转向轴的设定位置的变更。因此，当设置了强制解除单元时，能够满足上述的需求，因此能够提高转向装置的便利性。作为强制解除设定位置的变更的条件，例如可以将车辆所搭载的输入按钮等操作单元被使用者操作了作为该条件。

[0016] 在本发明的转向装置的一个方式中，也可以是：还包括变更延迟时间设定单元，该变更延迟时间设定单元将延迟在给予了所述转向角的转向过程中所述虚拟转向轴的所述设定位置的变更的延迟时间设定成对所述转向部件的操作速度越快则越长。如果虚拟转向轴的设定位置在转向过程中被突然改变则容易产生意想不到的行为。根据该方式，随着对转向部件的操作速度越快则延迟时间越长，因此能够缓和在转向过程中改变虚拟转向轴的设定位置时的车辆的行为变化。
在本发明的转向装置的一个方式中，也可以是：还包括几何形状设定单元，能够通过改变各连杆的角度来改变轮距和束角中的至少一个；以及变更延迟时间设定单元，将延迟在设定了所述转向角的转向过程中所述几何形状设定单元对所述轮距和所述束角的每一个的变换的延迟时间设定成对所述转向部件的操作速度越快则越长。在S字弯道等连续弯道中，有时针对每个弯道改变轮距或束角等几何形状会提高转弯性能。例如，通过在转向过程中改变轮距以使转弯外轮向外侧走，能够降低侧倾并也可减少车轮的接地载荷，因此与恒定地维持轮距的情况相比，转弯速度变快。但是，如果在转向过程中突然改变轮距或束角等几何形状，则容易产生意想不到的行为。根据该方式，对转向部件的操作速度越快几何形状变换速度越长，从而能够防止几何形状的骤变，因此能够缓和随着转向过程中的几何形状变更的行为变化。

在本发明的转向装置的一个方式中，也可以是：还包括显示单元，被设置成所述车辆的使用者能够视觉辨认的状态，并可视地显示能够设定为所述虚拟转向轴的设定位置的多个位置：显示控制单元，使指示单元在所述显示单元上能够移动地显示，所述指示单元选择性地指示所述多个位置中的任一个；输入单元，接受使用者将所述多个位置中的任一个和所述指示单元的指示位置相关联的预定操作；以及设定控制单元，在所述输入单元接收了所述预定操作时使所述虚拟转向轴设定单元将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。根据该方式，能够通过使用者（驾驶者或同乘者）的视觉操作进行虚拟转向轴的位置的变更或设定。因此，使用者的操作变得直观，因此容易设定虚拟转向轴的位置的优点。作为显示单元，可以利用车辆所搭载的导航系统所利用的液晶显示器等显示装置，也可以独立地设置成虚拟转向轴的设定用。另外，作为输入单元，可以作为接受使用者在显示单元上触摸的触摸操作的触摸面板式的装置来实现，也可以作为能够接受对与显示单元分开设置的开关等操作部的操作的操作的装置来实现输入单元。

在该方式中，也可以是：所述显示单元显示与左右的任一个车轮相关的位置作为所述多个位置，所述设定控制单元在所述输入单元接受了所述预定操作时使所述虚拟转向轴设定单元对于左右的车轮的每一个将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。在此情况下，通过进行与单侧的车轮相关的预定操作，能够设定与左右的车轮相关的虚拟转向轴的设定位置，因此与对于左右的车轮强迫使用者进行同样的操作的情况相比，能够缓和操作的烦杂。

在本发明的转向装置的一个方式中，也可以是：所述前臂和所述后臂各自的一个端部可自由旋转地与相对于所述车轮安装部在所述车辆的前后方向上离开的一对车轮侧连结点连结，另一个端部可自由旋转地与相对于所述车身在所述前后方向上离开的一对车身侧连结点连结，所述多个连杆与中间连结点可自由旋转地相互连结。根据该方式，通过单一的连杆组成前臂和后臂的每一个的连杆数相比较，能够在更大的范围内调整车身侧连结点和车轮侧连结点之间的距离。由此，能够给与车轮比以往更大的转向角。

在该方式中，也可以是：所述偏动单元具有连杆驱动装置，所述连杆驱动装置与从各臂机构中的所述车身侧连结点、所述中间连结点以及所述车轮侧连结点的总长减去3而得的个数的连结点的每一个对应地配置，各连杆驱动装置的连结点的旋转驱动所述连杆来设定所述连杆的角度。作为该连杆驱动单元，也可以利用伺服马达。另外，即使不在全部的连结点上设置连杆驱动装置，也可以通过规定绕多个连结点的连杆的角度，能够同
义地确定未设置连杆驱动装置的连接点的位置。

[0022] 例如，也可以是：所述臂驱动单元具有连杆驱动装置，所述连杆驱动装置与从各臂机构中的所述车身侧连接点、所述中间连结点以及所述车轮侧连接点的总数减去 3 而得的个数的连接点的每一个对应地配置，各连杆驱动装置绕对应的连接点旋转驱动所述连杆来规定所述连杆的角度。在本发明中，前臂和后臂的每个最低包括两个连杆，因此各臂机构成为具有合计了一对车身侧连接点、一对车轮侧连接点以及一对中间连结点的六个连接点的连杆机构。车轮侧连接点间可以看作一个连杆，并且车身侧连接点间可以看作固定于车身的一个连杆，因此如果绕从连接点的总数除去 3 的个数的连接点规定连杆的角度，则剩下的三个连接点的位置也同义地确定。即，如果通过连杆驱动装置规定连杆的角度，则绕其他的三个连接点的连杆的角度也同义地确定，因此无需能动地控制这些连接点的位置。因此，能够使用于操作臂机构所需要的连杆驱动装置的个数成为最小，能够实现装置的小型化，容易控制。

[0023] 本发明的设定装置被应用于车辆的转向装置，所述转向装置能够改变作为车轮的转向角的中心的虚拟转向轴的设定位置，所述设定装置包括：显示单元，显示单元，可视地显示能够设定为所述虚拟转向轴的设定位置的多个位置；显示控制单元，使显示单元在所述显示单元上能够移动地显示，所述显示单元选择性地指示所述多个设置中的任一个；输入单元，接受使用者将所述多个位置中的任一个和所述显示单元的选择位置相关联的数据，并且，设定控制单元，用于在所述输入单元接受了所述预定位置时使所述转向装置与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。

[0024] 根据该设定装置，能够通过使用者的视觉操作进行虚拟转向轴的位置的变更或设定。因此，使用者的操作变得直观，因此有容易设定虚拟转向轴的位置的优点。作为该设定装置，可以作为车辆所搭载的车载装置来实现，也可以作为与车辆分开设置的个人电脑或能够对车辆的转向装置进行远程控制的程序装置等与车载装置区分开的设定装置来实现。作为输入单元，可以作为接受使用者在显示单元上触摸的触摸操作的触摸面板式的装置来实现，也可以作为能够接受与显示单元分开设置的开关等操作部的操作的装置来实现。

[0025] 在本发明的设定装置的一个方式中，也可以是：所述显示单元显示与左右的任一个车轮相关的位置作为所述多个位置，所述设定控制单元将以下的信号作为所述设定指示信号而输出，该信号用于在所述输入单元接受了所述预定操作时使所述转向装置对于左右的车轮的每一个将与所述操作对应的位置设定为所述虚拟转向轴的所述设定位置。在此情况下，通过使用者对于单侧的车轮进行预定的操作，能够使转向装置设定与左右的车轮相关的虚拟转向轴的设定，因此与对于左右的车轮强迫使用者进行同样的操作的情况相比，能够缓和使用者的烦恼。

附图说明

[0026] 图 1 是表示本发明的一个方式涉及的转向装置在车辆直行时的状态的图；
[0027] 图 2 是表示将虚拟转向轴分别设置在前轮的前轮端和后转弯的情况的图；
[0028] 图 3 是表示将转弯内轮的虚拟转向轴设定在前轮的中央、将转弯外轮的虚拟转向轴设定在前轮前轮并左转弯的情况的图；
[0029] 图 4 是表示第一方式涉及的转向装置的控制系统的简要结构的框图；
具体实施方式

[0041] (第一方式)

[0042] 图1示出了本发明的一个方式涉及的转向装置在车辆直行时的状态。另外，在附图中，对表示各构成要素的参照标号标注下标L、R，以区分左右。但是在以下的说明中，当无需特别区分左右时有时省略下标。图1的转向装置1用于对乘用车左右的前轮2L、2R进行转向。为车前的前轮2L、2R分别被安装在车轮安装部3L、3R上。车轮安装部3L、3R构成包括前车前轮2L、2R的旋转中心的转轴4L、4R的装配部件。或者，车轮安装部3也可以是轮内装式电动机，在此情况下，轮内装式电动机的输出轴构成转轴4。

[0043] 转向装置1包括分别与左右的车轮安装部3对应地设置的左右的臂机构5L、5R。臂机构5L、5R被构成为隔着车辆的前后方向中心线CL对称。左侧的臂机构5L具有排列在车辆的前后方向（在图1中上下方向）上的一对前臂7L和后臂8L。前臂7L具有通过中间连结点Mf可自由旋转地相互连结两个内侧连杆10L和外侧连杆11L的各自的一端的结构，后臂8L具有在中间连结点Mr可自由旋转地相互连结两个内侧连杆12L和外侧连杆13L的各自的一端的结构。内侧连杆10L、12L的另一端通过一对车身侧连结点BF、BR可自由旋转地连结，所述一对车身侧连结点BF、BR相对于作为车身的一部分的臂安装部14在前后方向上分离开。外侧连杆11L、13L的另一端通过一对车轮侧连结点WF、WR可自由旋转地连结，所述一对车轮侧连结点WF、WR相对于车轮安装部3L在前后方向上分离开。即，前臂7L和后臂8L的每个具有从车身侧连结点BF、BR经由中间连结点Mf、Mr到车轮侧连结点WF、WR串联地连结多个连杆10L、11L或12L、13L的结构。前臂7L和后臂8L被构成为相对于车身车轮中心线AX前后对称。车轮中心线AX是连结前轮2L、2R处于直行状态时的转轴4L、4R的车宽方向的直线。

[0044] 右侧的臂机构5R具有排列在车辆的前后方向上的一对前臂7R和后臂8R。前臂7R具有通过中间连结点Mf可自由旋转地相互连结两个内侧连杆10R和外侧连杆11R的各自的一端的结构，后臂8R具有通过中间连结点Mr可自由旋转地相互连结两个内侧连杆12R和外侧连杆13R的各自的一端的结构。内侧连杆10R、12R的另一端通过一对车身侧连结点...
Bf、Br 可自由旋转地连结，所述一对车身侧连结点 Bf、Br 相对于作为车身的一部分的臂安装部 14 在前后方向上分离。外侧连杆 11R、13R 的另一端通过一对车轮侧连结点 Wf、Wr 可自由旋转地连结，所述一对车轮侧连结点 Wf、Wr 相对于车轮安装部 3R 在前后方向上分离。即，前臂 7R 和后臂 8R 的每个具有从车身侧连结点 Bf、Br 经由中间连结点 Mf、Mr 到车轮侧连结点 Wf、Wr 串联地连结多个连杆 10R、11R 或 12R、13R 的结构。前臂 7R 和后臂 8R 被构成为相对于轴中心线 AX 前后对称。

【0045】 由以上可知，各臂机构 5 被构成为通过六个连结点 Bf′、Mf′、Wf′、Mr′、Wr′、Br 相互可旋转地连结六个连杆要素、即车轮安装部 33、连杆 10～13 以及臂安装部 14 的六节连杆机构。在转向装置上设置有臂驱动装置 20 作为相互独立地驱动臂机构 5L、5R 的臂驱动单元。臂驱动装置 20 针对每个臂机构 5 包括第一伺服马达 21、第二伺服马达 22 以及第三伺服马达 23 作为旋转驱动连杆 10、12、13 以规定它们的角度的连杆驱动装置。第一伺服马达 21 相对于臂安装部 14 绕连结点 Bf 相对驱动内侧连杆 10，第二伺服马达 22 相对于臂安装部 14 绕连结点 Br 旋转驱动内侧连杆 12。并且，第三伺服马达 23 相对于后臂 8 的内侧连杆 12 绕连结点 Mr 旋转驱动外侧连杆 13。通过这些伺服马达 21～23 同义地规定连杆 10、12、13 的角度，由此同义地确定五个连结点 Bf′、Br′、Mf′、Mr′、Wr′ 的位置，结果也同义地确定剩下的一个连结点 WF 的位置。即，在各臂机构 5 中，通过伺服马达 21～23 调整连杆 10、12、13 的角度，由此能够同义地确定车轮安装部 3 相对于前轮 2 的虚拟转向轴的位置和前后方向中心线 CL 的倾斜度（前轮 2 的转向轴）。

【0046】在通过伺服马达 21～23 最大限度地折叠了各臂机构 5 的连杆 10～13 的状态下，前轮 2L、2R 朝向直行方向。在该直行状态下，臂机构 5L、5R 的臂 10～13 左右对称。在各臂机构 5 中，车轮侧连结点 Wf、Wr 在前后方向上排列在一条直线上。从车辆的前后方向中心线 CL 到前轮 2L、2R 的中心线 AL、AR 的距离彼此相等。

【0047】图 2 示出了左弯转时的转向装置 1 的状态的一个例子。在该例子中，左前轮 2L 以设定在其后端且中心线 AL 上的虚拟转向轴 KpL 为中心被转向，右前轮 2L 以设定在其前端且中心线 AR 上的虚拟转向轴 KpR 为中心被转向。从图 1 的直行状态向图 2 的状态转向时的伺服马达 21～23 的动作如下。首先，对于左侧的臂机构 5L，第一伺服马达 21L 被以绕连结点 Bf 逆时针方向地旋转连杆 10L 的方式驱动，第二伺服马达 22L 被以绕连结点 Br 顺时针方向地旋转连杆 12L 的方式驱动。第三伺服马达 23L 被以使连杆 13L 逆时针方向地旋转到前臂 7L 的长度（连结点 Bf、Wf 间的距离）成为近似最大的程度的方式驱动。另一方面，对于右侧的臂机构 5R，第一伺服马达 21R 被以绕连结点 Bf 逆时针方向地旋转连杆 10R 的方式驱动，第二伺服马达 22R 被以绕连结点 Br 顺时针方向地旋转连杆 12R 的方式驱动。第三伺服马达 23R 被以使连杆 13R 逆时针方向地旋转到后臂 8R 的长度（连结点 Br、Wr 间的距离）成为近似最大的程度的方式驱动。

【0048】图 2 是前轮 2 的转向的一个例子，根据本方式的转向装置 1，通过适当地驱动各臂机构 5 的伺服马达 21～23，能够将虚拟转向轴 Kp 设定在前轮的前后端等任意的位置。例如，也可以如图 3 所示，作为转弯外轮的左前轮 2L 在其接地面的中央设定虚拟转向轴 KpL，绕该虚拟转向轴 KpL 对前轮 2L 进行转向，另一方面，作为转弯外轮的右前轮 2R 在与图 2 相同的位置设定虚拟转向轴 KpR，并绕该虚拟转向轴 KpR 对前轮 2R 进行转向。因此，根据本方式的转向装置 1，能够在与车辆的积载状况、前后重量分配、车速、路面状况等相应的最适
当的位置设定虚拟转向轴 K_p。作为虚拟转向轴 K_p 的设定，例如当需要大转向角时，可以考虑如图 2 所示的那样设定虚拟转向轴 K_p。或者，在如停车场的静态转向时那样前轮 2 的转向转矩变大的情况下，通过如图 3 的左前轮 2L 那样，在前轮 2 的接地面的大致中心设定虚拟转向轴 K_p，能够在转向转矩抑制到最小量。

[0049] 并且，由图 3 的例子可知，在本方式中，能够相互独立地驱动左右的臂机构 5L、5R，因此也能够调整阿克曼率。阿克曼率是转弯时的左右的转向角的比率。或者，通过将本方式的转向装置 1 应用于前后轮，能够容易地实现四轮转向功能。

[0050] 另外，在本方式的转向装置 1 中，也能够改变前轮 2L、2R 之间的轮距。即，如果驱动伺服马达 21～23 以使车轮侧连结点 W_f、W_r 彼此相等地在车轴中心线 AX 的方向上位变，则不改变前轮 2 的转向角，能够如图 1 中的虚线所示的那样扩大轮距或者能够再次缩小被扩大了的轮距。由此，能够例如在一般道路或市区较小地设定轮距，在高速道路上扩大轮距，来提高车辆的稳定性，能够实现与行驶状况相应的轮距的变化。另外，在转向装置 1 中，也能够改变在使车辆径行的中立位置被规定的前轮 2L、2R 的束角。图 1 所示的状态是束角为 0 的状态，但是通过驱动伺服马达 21～23 以使车轮侧连结点 W_f、W_r 相对于前后方向中心线 CL 左右对称地倾斜，能够将束角改变为前束和后束的状态。在径行行驶中，通过向前束侧增大束角，也能够使转向装置 1 作为减小车速的制动装置而发挥功能。

[0051] 另外，在各连杆 10～13 的连结点 B_f、B_r、M_f、M_r、W_f、W_r 中，以臂 7、8 能够以车辆的上下方向的轴线为基准旋转的方向方式确定连结构造即可。但是，也可以经由轴套、球面轴承等连结，由此臂 7、8 也能够相对于车轮安装部 3 或臂安装部 14 绕水平方向的轴线旋转若干。也能够通过使臂 7、8 相对于车轮安装部 3 或臂安装部 14 在上下方向上位变，来允许前轮 2L、2R 相对于车身上下运动。在此情况下，也可以通过在车身与臂 7、8 之间设置弹簧和衰减装置，使臂机构 5 作为缓冲而发挥功能。但是，也可以通过与转向装置 1 分开设置的悬架机构来支承前轮 2，转向装置 1 仅担当前轮 2 的转向驱动。

[0052] 接着，对为了与作为车辆所搭载的转向部件的转向盘 SH（参照图 5）的操作协作使各臂 7、8 动作而设置在转向装置 1 上的控制系统进行说明。图 4 是该控制系统的框图。转向装置 1 的控制系统包括转向控制器（以下简称为控制器）30 作为与转向盘 SH 的操作协作来控制伺服马达 21～23 的动作的转向角控制单元。控制器 30 被构成为计算机单元。在控制器 30 上连接有作为其控制对象的上述左右的伺服马达 21～23。在控制器 30 上连接有用于检测在伺服马达 21～23 的控制中应参照的各种状态状态检测装置 31。状态检测装置 31 包括转向角传感器 32，该转向角传感器 32 能够分别检测从转向盘 SH 的中立位置（直行时的位置）的操作角度（转向操作量）及其操作速度。这里所说的操作量包括能够识别从转向盘 SH 的中立位置的操作方向的信息。除此以外，状态检测装置 31 也可以包括车速传感器 33、横摆率传感器 34 等检测表示车辆的运动状态的参数（以下称为车辆运动参数）的各种传感器。作为应参照的车辆运动参数，除了车速、横摆率以外，还可以酌情选择车身滑移角、横 G 等。另外，检测车辆的前后轮轴载荷的传感器或检测路面状态的传感器也可以设置在状态检测装置 31 中。

[0053] 另外，在控制器 30 上连接有信息输入装置 35，以能够通过外部输入设定虚拟转向轴的位置、轮距以及束角或者对其进行改变。图 5 是表示信息输入装置 35 的外观的图。信息输入装置 35 被组装到车辆的仪表板 40 所搭载的车载装置 41 中。车载装置 41 是包括导
航系统或音响系统等各种系统的公知的装置。在车载装置 41 上以驾驶者 P1 和同乘者 P2
等使用者能够视觉辨认的状态设置有作为显示单元的液晶显示器 42，所述显示单元为了向
使用者报告各种系统所利用的信息而进行显示。众所周知，液晶显示器 42 的显示内容针对
车载装置 41 执行的每个系统而酌情改变。
[0054] 图 5 的 A 部表示信息输入装置 35 在车载装置 41 上发挥功能时的液晶显示器 42
的显示内容的一个例子。在液晶显示器 42 上显示了描绘包括右侧的前轮和后轮的周边
构造的图像 46，在该图像 46 上重叠显示了作为指示可设定的虚拟转向轴的位置的指示单
元的指示器 47。在液晶显示器 42 的屏幕上 42a 上设置有触摸式的输入单元，通过使用者在
液晶显示器 42 的屏幕上 42a 上描绘，指示器 47 在屏幕 42a 上移动。通过图 4 所示的信息输入
装置 35 所设置的作为显示控制单元的显示控制部 36 进行指示器 47 的移动控制，该显示
控制部 36 基于输入单元的信息来控制指示器 47 的显示。
[0055] 一旦指示器 47 移动到可设定虚拟转向轴的位置，则如图 5 的 A 部所示那样反转显示
该位置，指示器 47 的指示位置被强调。作为该可被反转显示的位置，与可设定虚拟转向轴
的多个位置相对应地存在多个。如果在反转显示了作为设定候补的一个指示位置的状态
下使用者轻轻地在屏幕 42a 上敲打（tap）该指示位置，则该位置确定为虚拟转向轴的设定
位置。该确定信息被暂时保持到设置于信息输入装置 35 的作为设定控制单元的输出部 37
中，该被保持的确定信息通过输出部 37 进行各种处理之后作为设定指示信号 SG1 输出。该
设定指示信号 SG1 被输入到图 4 的控制器 30。
[0056] 通过使用者从在液晶显示器 42 的屏幕上 42a 上描绘到进行轻敲的某一点的的操作，使
得可设定虚拟转向轴的位置的多个位置中的一个与指示器 47 指示的位置相关联。因此，
使用者的上述一连串操作相当于本发明的预定操作。这样，能够通过本方式的信息输入装
置 35 由使用者的视觉操作进行虚拟转向轴的位置的变更或设定，因此使用者的操作变得
直观，从而虚拟转向轴的位置设定变得容易。
[0057] 一旦控制器 30 被输入设定指示信号 SG1，则执行后述的设定处理以在与该设定指
示信号 SG1 相应的位置设定设定虚拟转向轴的位置。这样，信息输入装置 35 能够利用设定指示
信号 SG1 对控制器 30 指示虚拟转向轴的设定位置的变更，控制器 30 基于该设定指示信号
SG1 改变虚拟转向轴的位置，因此信息输入装置 35 也作为本发明的变更指示单元而发挥功
能。另外，一旦在该设定处理中指示右侧的设定位置，则相反侧的左侧的设定位置也被同时
设定。即，输出部 37 输出的设定指示信号 SG1 具有能够通过左右中的一者的设定信息使控
制器 30 设定左右两侧的虚拟转向轴的位置的功能。由此，不会强迫使用者对左右的每个进
行同样的操作，因此能够缓和操作的烦杂。
[0058] 信息输入装置 35 对轮距或束角等几何形状的设定及其变更，也通过对液晶显示
器 42 的屏幕上 42a 与上述相同地进行操作，能够将轮距和束角的设定指示发送到控制器 30。如
图 5 的 A 部所示，屏幕上 42a 显示了与预先规定了轮距和束角的各设定值的多个模式相对应
的多个按钮图像 48。在屏幕上 42a 上的指示器 47 移动的情况下，通过在与按钮图像 48 的
某一重叠的状态下轻敲屏幕上 42a 来确定应设定的模式。作为对信息输入装置 35 预先准备
的多个模式，存在将轮距设定为标准值的标准轮距模式、将轮距设定为比标准值大的值的大
轮距模式、将轮距设定为比标准值小的值的小轮距模式、将束角设定为 0 的束角 0 模式、
将束角设定为小值的小束角模式、将束角设定为大值的大束角模式等。另外，省略了详
细的说明，但是信息输入装置 35 除了模式选择以外也能够对轮距和束角在屏幕 42a 上输入具体的数值。如果通过上述的使用者的操作从这些模式中确定应设定的模式，则该确定信息被暂且保持到输出部 37。该被保持的确定信息通过输出部 37 进行各种处理之后作为设定指示信息 SG21、SG22 而输出，并被输入到控制器 30。设定指示信息 SG21 包括对应于选择出的模式的轮距的信息，设定指示信息 SG22 包括对应于选择出的模式的束角的信息。

[0059] 另外，在本方式中将信息输入装置 35 组装到车载装置 41 中来实施，但是也可以作为与车载装置 41 区别的个人电脑或可远程操作的远程装置等外部输入装置来实现与信息输入装置 35 相同的功能。在这样实施的情况下，信息输入装置 35 作为本发明的设定装置而发挥功能。另外，输入单元不限于触摸面板式，也可以作为接收对与液晶显示器 42 等显示单元分开设置的键盘或按钮等操作部的操作的输入装置或可输入语音的输入装置来实现输入单元。

[0060] 图 6 是表示为了对前轮 2 进行转向而由控制器 30 执行的转向控制例程的流程图。在该例程中，首先在步骤 S11 中基于来自转向角传感器 32 的输出信号来判别转向盘 SH 是否被操作。如果没有转向操作，则保留处理，如果有转向操作，则处理前进到下一个步骤 S12。在步骤 S12 中读取通过前述的虚拟转向轴位置设定例程设定的虚拟转向轴的位置。在下一个步骤 S13 中，读取包括通过前述的轮距设定例程和束角设定例程分别设定的轮距和束角中的至少一个的几何形状。

[0061] 在通过步骤 S12 和步骤 S13 读取出虚拟转向轴的位置和几何形状之后，在步骤 S14 中检测出转向盘 SH 的转向操作量，接着在步骤 S15 中计算与转向操作量、虚拟转向轴位置以及几何形状相应的前轮 2L、2R 的各自的转向角。

[0062] 作为转向操作量和转向角的相关关系，设定了相对于转向操作量的增加增加转向角的关系，在步骤 S15 中在维持该相关关系的范围内计算转向角。该相关关系包含互不相同的多个方式，各自方式与每个虚拟转向轴的设定位置相对应。因此，当改变了虚拟转向轴的设定位置时，在该变更前后相对于转向操作量的增加增加转向角的增加的程度变化。

[0063] 具体地说，预先通过计算机模拟或实验等来确定针对每个虚拟转向轴的位置能够得到最优的转向感的转向操作量和转向角，将这些确定了的值的对应关系针对每个虚拟转向轴的设定位置而保存在控制器 30 的 ROM 中。并且，控制器 30 读出与在步骤 S12 中读出的虚拟转向轴的设定位置对应的表数据，基于该表数据来计算转向角，由此实现了针对每个虚拟转向轴的设定位置不同方式的相关关系。

[0064] 建立这样针对每个虚拟转向轴的设定位置互不相同的相关关系具有以下理由。即，相对于同一转向角而产生的车辆的横向力的大小根据虚拟转向轴的位置变化而变化，如果将转向操作量和转向角的相关关系固定为一个，则在虚拟转向轴的设定位置的变更前后的转向感的变化变大。因此，根据本方式，即使虚拟转向轴的位置变化，也能够抑制转向感的变化，因此可提高转向感的稳定性。

[0065] 上述的相关关系所包含的各方式包括转向角相对于转向操作量的增加而成比例增加的区间。因此，在该区间中，转向盘 SH 的操作与车辆的行为自然地对应，因此转向感良好。另外，为了在开始转向时防止产生突然的行为，转向盘 SH 开始转向的区间（接近中立位置的区间）被设定成转向操作量和转向角不成比例的非线性式，并且该区间与上述比例区间连续连结。
在步骤 S16 中，决定伺服马达 21 ～ 23 的各个的驱动量，以得到在步骤 S12 中读出的虚拟转向轴的设定位置由步骤 S15 计算出的转向角，并且按照该决定的驱动量在步骤 S17 中驱动伺服马达 21 ～ 23。之后，处理返回到步骤 S11，反复以下同样的顺序。控制器 30 通过执行图 6 的例程而作为本发明的转向角控制单元发挥功能。另外，当轮距和束角从初始值被改变时，修正各伺服马达的驱动量，以能够实现被计算出的转向角，由此能够反映轮距和束角的设定变更。

图 7 是表示虚拟转向轴位置设定例程的一个例子的流程图。在该例程中，首先在步骤 S21 中判定是否被输入来自信息输入装置 35 的操作指示信号 SG1。如果未输入操作指示信号 SG1，则保留处理，如果有操作指示信号 SG1 的输入，则处理前进到下一个步骤 S22。在步骤 S22 中判定是否是给予了转向角的转向过程中。能够通过参照来自转向角传感器 32 的信号的值是否为 0、即转向盘 SI 是否为中立位置来实现该判定。在处于转向过程中的情况下，处理前进到步骤 S23，在处于转向过程中的情况下处理前进到步骤 S24。

在步骤 S23 中，设置变更禁止标记 F1，该变更禁止标记 F1 是为禁止虚拟转向轴的位置的设定变更而被设定的。变更禁止标记 F1 是被分配在控制器 30 的 RAM 等存储区域中的变量，当设置了该标记 F1 时，意味着禁止设定变更，当被清除了该标记 F1 时，意味着解除该禁止、即允许设定变更。在步骤 S24 中，变更禁止标记 F1 被清除。

接着，在步骤 S25 中，判定是否设置了变更禁止标记 F1。当变更禁止标记 F1 被设置了时，不进行虚拟转向轴的位置的变更，处理返回到步骤 S21。当未设置变更禁止标记 F1 时，允许变更禁止，因此处理前进到步骤 S26，虚拟转向轴的位置被设定在与操作指示信号 SG1 的指示内容相应的位置上。另外，在步骤 S26 中，如上所述对于左右的两前轮进行位置的设定。之后，处理返回到步骤 S21，反复以下相同的顺序。

在该例程中，通过设置变更禁止标记 F1 来禁止转向过程中的虚拟转向轴的位置变更，该禁止响应于从转向过程中向中立位置的复原而被解除。并且，与该解除同时在步骤 S26 中改变设定位置。因此，在如 S 字弯道等那样具有变曲点的连续弯道中，能够在前半弯道与后半弯道之间不同的虚拟转向轴的位置转向。在这样的连续弯道中，即使在越过前半弯道时残留横 G，也有时向后半的弯道在相反方向上强力转向，但是在这样的情况下，能够将虚拟转向轴的设定位置改变为适于后半的弯道的位置，因此是有效的。控制器 30 通过执行图 7 的例程以及图 6 的例程而作为本发明的虚拟转向轴设定单元发挥功能，通过执行图 7 的例程而作为本发明的变更禁止单元发挥功能。

图 8 是表示轮距设定例程的一个例子的流程图。该例程的基本构造与图 7 的例程相同。即，首先在步骤 S31 中判定是否被输入来自信息输入装置 35 的操作指示信号 SG21。如果未输入操作指示信号 SG21，则保留处理，如果有操作指示信号 SG21 的输入，则处理前进到下一个步骤 S32。在步骤 S32 中判定是否是给予了转向角的转向过程中。在处于转向过程中的情况下，处理前进到步骤 S33，在未处于转向过程中的情况下处理前进到步骤 S34。

在步骤 S33 中，设置变更禁止标记 F21，该变更禁止标记 F21 是为禁止轮距的设定变更而被设定的。变更禁止标记 F21 是被分配在控制器 30 的 RAM 等存储区域中的变量，当设置了该标记 F21 时，意味着禁止设定变更，当被清除了该标记 F21 时，意味着解除该禁止、即允许设定变更。在步骤 S34 中，变更禁止标记 F21 被清除。

接着，在步骤 S35 中，判定是否设置了变更禁止标记 F21。当变更禁止标记 F21 被
设置了时，不进行轮距的变更，处理返回到步骤 S31。当未设置变更禁止标记 F21 时，允许设定变更，因此处理前进到步骤 S36，设定与操作指示信号 SG21 的指示内容相应的轮距。之后，处理返回到步骤 S31，反依以上相同的顺序。

0074] 图 9 是表示束角设定例程的一个例子的流程图。该例程的基本构造与图 7 和图 8 的例程相同。即，首先在步骤 S41 中判定是否被输入来自信息输入装置 35 的操作指示信号 SG22。如果未输入操作指示信号 SG22，则保留处理，如果有操作指示信号 SG22 的输入，则处理前进到下一个步骤 S42。在步骤 S42 中判定是否是给予转向角的转向过程中。在处于转向过程中的情况下，处理前进到步骤 S43，在未处于转向过程中的情况下处理前进到步骤 S44。

0075] 在步骤 S43 中，设置变更禁止标记 F22，该变更禁止标记 F22 是为禁止束角的设定变更而被设定的。变更禁止标记 F22 是被分配在控制器 30 的 RAM 等存储区域中的变量。当设置了该标记 F22 时，意味着禁止设定束角。当被清除了该标记 F22 时，意味着解除该禁止，即允许设定束角。在步骤 S44 中，变更禁止标记 F22 被清除。

0076] 接着，在步骤 S45 中，判定是否设置了变更禁止标记 F22。当变更禁止标记 F22 被设置了时，不进行束角的变更，处理返回到步骤 S41。当未设置变更禁止标记 F22 时，允许设定变更，因此处理前进到步骤 S46，设定与操作指示信号 SG22 的指示内容相应的轮距。之后，处理返回到步骤 S41，反依以上相同的顺序。

0077] 根据图 8 和图 9 的例程，在转向过程中禁止轮距和束角等几何形状的设定以及变更。换言之，在车辆直行的中立位置的情况下允许几何形状的设定变更。因此，能够防止由于几何形状在转向过程中变化而车辆生产意想不到的行为。控制器 30 通过执行图 8 和图 9 的例程的至少一者以及图 6 的例程而作为本发明的几何形状设定单元发挥功能。

0078] （第二方式）

0079] 接着，对本发明的第二方式进行说明。该方式的特征在于具有以下的控制：针对第一方式在转向过程中被禁止的虚拟转向轴的位置、轮距以及束角的设定变更能够强制地解除这些禁止。本方式基本的物理结构与第一方式相同，并且将对于基本的控制也进行与第一方式相同的控制作为前提。因此，以下省略与第一方式共同部分的说明。

0080] 图 10 是表示第二方式涉及的转向装置的控制系统的简要结构的框图。如图所示，在本方式的转向装置中设置了为了强制地解除禁止设定变更而被操作的解除开关 51～53。第一解除开关 51 是虚拟转向轴的位置的设定变更解除禁止用的开关，第一解除开关 52 是轮距的设定变更解除禁止用的开关，第一解除开关 53 是束角的设定变更解除禁止用的开关。各解除开关 51～53 均以按钮式构成，通过对各解除开关 51～53 的按下降操作，预定的强制解除信号 SG31、SG32、SG33 被输入到控制器 30。为了提高转向过程中的操作性以及安全性，各解除开关 51～53 被安装在转向盘 SH 上。另外，通过将这些解除开关 51～53 组装到信息输入装置 35 中，也能够在液晶显示器 42 的屏幕 42a 上操作这些解除开关。

0081] 图 11 是表示变更禁止解除例程的一个例子的流程图，该变更禁止解除例程用于强制地解除禁止虚拟转向轴的位置变更并由控制器 30 执行。在该例程中，首先，在步骤 S51 中判定是否输入了强制解除信号 SG31。即，判定是否按下操作了虚拟转向轴的位置的设定变更解除禁止用的第一解除开关 51。当输入了强制解除信号 SG31 时，处理前进到步骤 S52，当未输入强制解除信号 SG31 时，处理前进到步骤 S53。
在步骤 S52 中，清除管理禁止虚拟转向轴的位置变更的变更禁止标记 F1。由此，允许虚拟转向轴的位置变更，因而即使是转向过程中，也由于在图 7 的例程的步骤 S25 中进行否定的判定，因此通过步骤 S26 设定虚拟转向轴的位置。另外，在该设定时设定的虚拟转向轴的位置，选择与强制解除信号 SG31 的输入定时、变更前的虚拟转向轴的位置、以及车速、横摆率等车辆的运动参数相关联并预先存储在控制器 30 中的位置。

以下，同样地，当在步骤 S53 中判定出输入了强制解除信号 SG32 时，处理前进到步骤 S54，清除变更禁止标记 F21。由此，在图 8 的步骤 S35 中进行否定的判定，在步骤 S36 中设定轮距。另外，在步骤 S55 中判定出输入了强制解除信号 SG33 时，处理前进到步骤 S56，清除变更禁止标记 F22。由此，在图 9 的步骤 S45 中进行否定的判定，在步骤 S46 中设定束角。

这样，根据本例程，原则上能够例外地进行在转向过程中被禁止的虚拟转向轴的位置变更。控制器 30 通过执行图 11 的例程而作为本发明的强制解除单元发挥功能。一旦来说，在如汤匙弯 (spoon corner) 等那样转向方向相同、需要转向增加或转向返回的弯道中，也有时在转向增加或转向返回时要改变虚拟转向轴的设定位置或者在转向过程中特意引起车辆的行为起有有利。根据本方式，能够满足这样的需求，因此能够提高转向装置的便利性。另外，在 S 字弯道等连续弯道中，也有时针对每个弯道改变轮距或束角等几何形状会提高转弯性能。例如，通过在转向过程中改变轮距以使转弯外轮向外侧走，能够降低侧倾的接地载荷，因此与恒定地维持轮距的情况相比，转弯速度变快。根据本方式，能够在转向过程中改变轮距或束角等几何形状，因此能够期待恰当地应对上述的状况。

另外，在本实施方式中，作为解除禁止设定变更的条件，设定了对解除开关 51 ～ 53 进行操作，但是也可以除了对这些操作部件进行操作以外，或者代替之，能够在预定的特定条件下解除禁止设定变更。另外，在特定的条件成立的情况下，使用控制器 30 执行被程序化的例程，以与使用者的意图无关地生成相当于上述的解除信号的信号，从而也能够进行设定变更的强制解除。

（第三方式）

接着，对本发明的第三方式进行说明。该方式的特征在于具有以下控制，该控制相当于对第二方式涉及的控制的改良，用于安全地进行转向过程中的各种设定变更。与第二方式相同，本方式基本的物理结构也与第一方式相同，并且将对于基本的控制也进行与第一方式相同的控制作为前提。因此，以下省略与第一方式共同部分的说明。另外，对本方式涉及的控制系统与第二方式相同，因此酌情参照图 10。

图 12 是表示第三方式涉及的变更禁止解除例程的一个例子的流程图。在该例程中，首先在步骤 S61 中检测车辆运动参数。这里检查出的参数是以后处理中使用的车速 V、横摆率 Yr 以及转向轴 SH 的操作速度 Sv。这些参数基于来自图 10 所示的状态检测装置 31 的各传感器 32 ～ 34 的输出信号而被检测。

接着，在步骤 S62 中，判定是否输入了强制解除信号 SG31。当输入了强制解除信号 SG31 时，前进到步骤 S63，当未输入强制解除信号 SG31 时，处理前进到步骤 S67。在步骤 S63 中，判定虚拟转向轴的位置变更许可条件是否成立。该许可条件在车速 V 和横摆率 Yr 满足了以下的条件时成立。即，该条件是 V < Kkpv 以及 Yr < Kkpyr 均成立的情况。这里，Kkpv 是虚拟转向轴的位置变更许可基准速度。该基准速度 Kkpv 相当于即使在转向过程中的
进行虚拟转向轴的位置变更也能够确保一定的安全性的速度的上限值。另外，Kkpyr 是虚拟转向轴的位置变更许可基准横摆率。该基准横摆率 Kkpyr 相当于即使在转向过程中进行虚拟转向轴的位置变更也能够确保一定的安全性的横摆率的上限值。当位置变更许可条件成立时，处理前进到步骤 S64，当位置变更许可条件未成立时，不解除禁止虚拟转向轴的位置变更，处理返回到步骤 S61。

[0090] 在步骤 S64 中设定用于延迟虚拟转向轴的位置变更的延迟变更延迟时间 Tkp。该延迟时间 Tkp 通过在下式 1 中代入步骤 S61 中检测出的操作速度 Sv 而被设定。

\[Tkp = A \cdot Sv \quad \cdots 1 \]

[0092] 这里，A 是缓和系数。如果该缓和系数 A 是正值，则可以是常量，也可以是变量。由式 1 可知，延迟时间 Tkp 被设定成转向盘 SH 的操作速度 Sv 越快则越慢。

[0093] 接着，在步骤 S65 中，执行延迟处理，仅保留步骤 S64 中设定的延迟时间 Tkp 的处理。然后，在下一个步骤 S66 中，清除变更禁止标记 F1。由此，与第二方式相同，在图 7 的步骤 S25 中进行否定的判定，在步骤 S26 中设定虚拟转向轴的位置。这里的设定与第二方式相同，与强制解除信号 SG31 的输入定时、变更前的虚拟转向轴的位置、以及车速、横摆率等车辆的运动参数相关联并预先存储在控制器 30 中的位置被选择为虚拟转向轴的设定位置。

[0094] 在步骤 S67 中，判定是否输入了强制解除信号 SG32。当输入了强制解除信号 SG32 时，处理前进行到步骤 S68，当未输入强制解除信号 SG32 时，处理前进行到步骤 S72。在步骤 S68 中，判定轮距的变更许可条件是否成立。该许可条件在车速 V 和横摆率 Yr 满足了以下条件时成立。即，该条件是 \(V < Ktordv \) 以及 \(Yr < Ktordyr \) 均成立的情况。这里，Ktordv 是轮距的变更许可基准速度。该基准速度 Ktordv 相当于即使在转向过程中进行轮距的变更也能够确保一定的安全性的速度的上限值。另外，Ktordyr 是轮距的变更许可基准横摆率。该基准横摆率 Ktordyr 相当于即使在转向过程中进行轮距的变更也能够确保一定的安全性的横摆率的上限值。当轮距的变更许可条件成立时，处理前进到步骤 S69，当变更许可条件未成立时，不解除禁止轮距的变更，处理返回到步骤 S61。

[0095] 在步骤 S69 中设定用于延迟轮距的变更的延迟变更延迟时间 Tttrd。该延迟时间 Tttrd 通过在下式 2 中代入步骤 S61 中检测出的操作速度 Sv 而被设定。

\[Tttrd = B \cdot Sv \quad \cdots 2 \]

[0097] 这里，B 是缓和系数。如果该缓和系数 B 是正值，则可以是常量，也可以是变量。由式 2 可知，延迟时间 Tttrd 被设定成转向盘 SH 的操作速度 Sv 越快则越慢。

[0098] 接着，在步骤 S70 中，执行延迟处理，仅保留步骤 S69 中设定的延迟时间 Tttrd 的处理。然后，在下一个步骤 S71 中，清除变更禁止标记 F21。由此，在图 8 的步骤 S35 中进行否定的判定，在步骤 S36 中设定轮距。

[0099] 在步骤 S72 中，判定是否输入了强制解除信号 SG33。当输入了强制解除信号 SG33 时，处理前进到步骤 S73，当未输入强制解除信号 SG33 时，处理返回到步骤 S61。在步骤 S73 中，判定束角的变更许可条件是否成立。该许可条件在车速 V 和横摆率 Yr 满足了以下条件时成立。即，该条件是 \(V < Ktiov \) 以及 \(Yr < Ktioyr \) 均成立的情况。这里，Ktiov 是束角的变更许可基准速度。该基准速度 Ktiov 相当于即使在转向过程中进行束角的变更也能够确保一定的安全性的速度的上限值。另外，Ktioyr 是束角的变更许可基准横摆率。该基准
横摆率 K_{tioy} 相当于即使在转向过程中进行束角的变更也能够确保一定的安全性的横摆率的上限值。当束角的变更许可条件成立时，处理前进到步骤 S74，当变更许可条件未成立时，不排除禁止束角的变更，处理返回到步骤 S61。

【0100】在步骤 S74 中设定用于延迟束角的变更的变更延迟时间 T_{tio}. 该延迟时间 T_{tio} 通过在下式 3 中代入步骤 S61 中检测出的操作速度 S_v 而被设定。

【0101】$T_{tio} = C \cdot S_v \cdots \cdots \cdot 3$

【0102】这里，C 是缓和系数。如果该缓和系系 C 是正值，则可以是常量，也可以是变量。由式 3 可知，延迟时间 T_{tio} 被设定成转向角 SH 的操作速度 S_v 越快则越慢。

【0103】接着，在步骤 S75 中，执行延迟处理，仅保留步骤 S74 中设定的延迟时间 T_{tio} 的处理。然后，在下一个步骤 S76 中，清除变更延迟标记 F22. 由此，在图 9 的步骤 S45 中进行否定的判定，在步骤 S46 中设定束角。

【0104】根据以上的例程，即使输入强制解除信号 SG31～SG33，也仅限于变更许可条件在步骤 S63、步骤 S68 以及步骤 S73 的每一个中成立的情况下强制地解除禁止设定变更，因此能够在转向过程中的设定变更时确保一定的安全性。另外，通过步骤 S65、步骤 S70 以及步骤 S75 的延迟处理，即使输入强制解除信号 SG31～SG33，也不会直接解除变更禁止，而延迟该解除。该延迟时间随着对转向角 SH 的操作速度越快则越长，因此能够缓和在转向过程中变更虚拟转向轴的设定位置等时的车辆的行为变化，提高安全性。控制器 30 通过执行图 12 的例程作为本发明的变更延迟时间设定单元发挥功能。

【0105】在上述各方式中，均直接地示出了连杆 10～13，但是实际的连杆 10～13 不限于这样单纯的形状。图 13 表示更具体地示出图 1 的转向装置 1 的一个例子。另外，图 13 仅示出了左侧的臂机构 5L，右侧的臂机构 5R 被对称地构成。在图 13 的例子中，后臂 8L 的连杆 12L 作为弯曲成 L 字状的部件形成。在此情况下，连结车身侧连结点 Br 和中间连结点 Mr 的线段相当于图 1 的连杆 12L。

【0106】另一方面，用于实现需要的转向角的伺服马达 21～23 的驱动量（动作角）根据连杆 10～13 的形状和尺寸变化。图 14 和图 15 是表示图 13 的例子中各伺服马达 21L～23L 的驱动量和转向角的对应关系的图，图 14 示出虚拟转向轴的位置设定在前轮 2L 的接地面的中央的情况，图 15 示出虚拟转向轴的位置设定在前轮 2L 的前后端的情况。另外，虚拟转向轴的位置设定在前轮 2L 的前后端意味着后转向时虚拟转向轴的位置设定在前轮 2L 的前端，相反的左转向时虚拟转向轴的位置设定在前轮 2L 的后端（参照图 2）。在这些图中，实线表示第一伺服马达 21L 的驱动量，虚线表示第二伺服马达 22L 的驱动量，点划线表示第三伺服马达 23L 的驱动量。另外，对于各伺服马达 21L～23L 的驱动量，以顺时针为正，转向角以右方向为正。由这些图可知，实现同一转向角的各伺服马达 21L～23L 的驱动量根据虚拟转向轴的位置而分别不同。另外，无论是虚拟转向轴的位置是哪种情况，各伺服马达 21L～23L 均在使转向角变化的过程中进行非线性的动作。当将虚拟转向轴的位置设定在前轮 2L 的前后端时，其设定位置在右转向与左转向之间变换，因此转向角以 0 的中立位置为边界，各伺服马达 21L～23L 的动作随着尖点而变化。

【0107】本发明不限于上述各方式，能够通过各种方式实施。例如，关于伺服马达 21～23 的位置，在车轮侧连结点 Wr、Wn 以及其他的一个连结点分别配置伺伺服马达 21～23 等与六个连结点中的三个连结点分别对应即可。前臂 7 和后臂 8 的每一个也可以具有通过中间连
结点可相互自由旋转地连接三个以上的连杆的结构。即使是在增加了连杆个数的情况下，如果通过连杆驱动装置规定绕从结终点的总数减去 3 而得的个数的结终点的连杆角度，则可以同义地确定绕剩下的三个结终点的连杆的角度。

[0108] 但是，也可以在剩下的三个结终点的至少一个配置连杆驱动装置，控制各连杆驱动装置的动作，以与与结终点的连杆驱动装置之间连杆角度不产生矛盾。例如，也可以设置与车身侧结终点 Bf, Br, 中间结终点 Mf, Mr 以及车轮侧结终点 Wf, Wr 的总数相同数量的结终点的每一个对应配置的连杆驱动装置，绕各连杆驱动装置对应的连终点旋转驱动连杆来规定该连杆的角度。连杆驱动装置不限于利用伺服马达的例子，如果是能够绕结终点旋转驱动连杆来规定其角度的装置，则也可以酌情利用各种执行器、驱动机构。另外，也可以设置通过齿轮机构等运动传递机构将任一个伺服马达的旋转运动传递给其他的连终点来改变连杆绕该结终点的角度这样的连杆驱动装置。另外，也可以作为能够伸缩连杆的至少一个的自动型执行器。

[0109] 也可以将发明的转向装置在车辆的上下方向上设置多组，各组能够相互独立地驱动枢机构。在此情况下，能够相互独立地设定各组的车轮侧结终点 Wf, Wr 的位置，因此能够三维地操作虚拟转向轴来改变外倾角、后倾角以及束角。在此情况下，对于各连终点，需要利用球面轴承、轴套等绕连终点在三维方向上可相对旋转地连接连杆。
图4
转向控制

S11 转向操作？

S12 是 → 读取虚拟转向轴的位置

S13 → 读取几何信息

S14 → 检测转向操作量

S15 → 计算前轮转向角

S16 → 决定各伺服马达的驱动量

S17 → 驱动伺服马达

图 6
图 7
图 8
图 9
图 11
虚拟转向轴的位置：车轮中央

驱动量(deg)

转向角(deg)

--- 第一伺服马达
----- 第二伺服马达
------ 第三伺服马达

图 14
虚拟转向轴的位置：车轮前后端

转向角(deg)
- 第一伺服马达
- 第二伺服马达
- 第三伺服马达

图15