wo 2014/031833 A1 [N PO OO O O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2014/031833 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Filing Date:
22 August 2013 (22.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/592,891 23 August 2012 (23.08.2012) US

Applicant: CITRIX SYSTEMS, INC. [US/US]; 851
West Cypress Creek Road, Fort Lauderdale, Florida 33309

(US).

Inventors: PETROV, Julian; Citrix Systems, INC., 14
Crosby Drive, Bedford, Massachusetts 01730 (US). STUT-
SMAN, Sandy; Citrix Systems, INC., 14 Crosby Drive,
Bedford, Massachusetts 01730 (US).

Agent: THOMPSON, ESQ., James F.; Bainwood, Huang
& Associates, LLC, Highpoint Center, 2 Connector Road,
Westborough, Massachusetts 01581 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

27 February 2014 (27.02.2014) WIPO | PCT
International Patent Classification:
GO6F 9/455 (2006.01)
International Application Number:
PCT/US2013/056145

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SPECIALIZED VIRTUAL MACHINE TO VIRTUALIZE HARDWARE RESOURCE FOR GUEST VIRTUAL MA-

(57) Abstract: A computing system includes a graphics
processing unit (GPU) and main processing circuitry to
execute computer program instructions forming a hyper-

visor, a control virtual machine (VM) and a specialized
rendering VM for graphics processing. An application
program of a guest VM generates graphics commands
and data according to a graphics API such as Direct 3D.
The rendering VM includes a graphics driver native to
the GPU and is assigned pass-through access to the GPU
by the control VM. The rendering VM receives the
graphics information from the application program via
an inter-VM communication channel, and it uses the

graphics driver to control the GPU to perform graphics

CHINES
22 - CoNTROL
RENDERING VM GUEST VM GUEST VM
16 181 18-2
| APPL. 26 | | APPL. 26 |
018 36
CONTROL VM o524 o524
14 NTV PSEUDO PSEUDO
DRV DRV 28 DRV 28
34 I I
vv | vv V-V V-
as || a3 31 a1
= —
~—30
— 30
32—
HYPERVISOR 12
VIDEO
HARDWARE 10 GPU20 INTFC 19

Fig. 1

rendering. The use of the rendering VM enables native
graphics performance to be achieved without constrain-
ing the control VM to use a compatible operating sys-
tem. The technique is generally applicable to virtualiza-
tion of hardware resources by specialized VMs.

10

15

20

25

WO 2014/031833 PCT/US2013/056145

SPECIALIZED VIRTUAL MACHINE TO VIRTUALIZE HARDWARE RESOURCE
FOR GUEST VIRTUAL MACHINES

BACKGROUND

The present invention is related to the field of computer systems, and in one
aspect to processing of specialized hardware resources such as computer graphics units.

In the field of computer graphics, it is known to use specialized graphics
processing units or GPUs to provide hardware-based acceleration of certain graphics
operations. As an example, a contemporary GPU may perform operations such as texture
mapping, high-speed polygon rendering, and shading in hardware circuitry having a highly
parallel structure for high processing throughput. Processing performed by a GPU is
generally for purposes of rendering graphical images of an application program on a
graphical display. GPUs are especially useful for many graphics-intensive computer
applications, including video games and high-end graphical composition and editing tools

for example.

SUMMARY

There can be challenges to efficient use of a GPU or similar specialized hardware
resource in computer systems that employ "virtualization" technology, i.e., computer
systems having host hardware and software that supports execution of multiple virtual
computers or "virtual machines" (VMs). A GPU is not divisible like memory or storage,
and thus cannot be assigned for use by different VMSs on that basis.

One approach to GPU virtualization is used in virtual-computing systems based on
the so-called XEN architecture, which features an open-source hypervisor and a control
VM running the Linux operating system. Linux provides native support for a graphics
application programming interface (API) known as OpenGL. Systems running the
Windows® operating system generally utilize a different graphics API of a family referred
to as DirectX. In particular, a specific DirectX API used for three-dimensional graphics is
referred to as "Direct 3D" or "D3D". In a XEN virtual computing system in which guest
VMs are running Windows, it has been necessary to employ an open-source conversion

program known as "Wine" to provide conversion between the D3D API and OpenGL.

S1-

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

The Wine program is deployed in the control VM, and the guest VMs are configured with
special drivers that route D3D function calls generated by application programs to the
control VM. At the control VM, Wine processes the D3D function calls using OpenGL
operations.

However, the use of a converter and separate graphics API (such as Wine and
OpenGL) can impose performance penalties as compared to systems using a native D3D
driver for the GPU. First is the conversion process itself, which imparts extra delay and
may reduce graphics throughput. Additionally, functions provided by D3D but not by
OpenGL must be executed in some alternative manner, such as some form of emulation
for example, which can greatly reduce performance over GPU-assisted execution. It
would be desirable for Linux-based virtual computing systems such as XEN systems to
provide support for the Windows D3D API without unduly sacrificing graphics
performance.

A technique for virtualizing a specialized hardware resource such as graphics
hardware is disclosed that overcomes limitations of prior virtualization techniques, such
as discussed above, providing for flexibility in deployment without a need for
performance-reducing conversion and emulation. While the technique may be particularly
useful in open-source platforms such as XEN-based platforms, it has more general
applicability to systems based on other architectures.

In one respect, a disclosed computing system includes a graphics processing unit
and main processing circuitry that is operative to execute computer program instructions
forming a hypervisor, a control virtual machine and a specialized rendering virtual
machine used for graphics processing. The hypervisor provides for virtualization of
hardware of the computing system as in conventional virtual-computing platforms, while
the control virtual machine manages the rendering virtual machine and guest virtual
machines of the computing system. The technique supports shared use of the graphics
processing unit by application programs of the guest virtual machines that generate
graphics information (generally including graphics commands and graphics data)
according to a specified graphics API such as the D3D API.

The rendering virtual machine includes a graphics driver that is native to the
graphics processing unit, and it is assigned pass-through access to the graphics processing

unit by the control virtual machine. That is, the rendering virtual machine is able to

.

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

directly communicate with the GPU to control its operation, without virtualization by the
hypervisor as is done for other hardware resources. The rendering virtual machine
receives graphics information from an application program via an inter-virtual-machine
communication channel, and uses the graphics driver to control operation of the graphics
processing unit to perform graphics rendering operations based on the graphics
information.

Because the rendering VM is separate from the control VM, it can use an
operating system that supports the native graphics driver (such as Windows) while the
control VM may use a different operating system that may not be compatible with the
driver but has other advantages such as open-source availability (such as Linux). The
control VM is not directly involved in the graphics processing, so that performance-
reducing conversion between different graphics APIs is not necessary. Additionally, due
to its specialized nature, the rendering virtual machine may be realized as a relatively low-
function machine - it may not require functions such as network access, a complicated file
system, a user interface etc. Thus it may use a so-called "embedded" operating system
which is less resource-intensive and less expensive than a full-function operating system
such as normally used in general-purpose VMs.

The disclosed technique has broader application to virtualization of other types of

hardware resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from
the following description of particular embodiments of the invention, as illustrated in the
accompanying drawings in which like reference characters refer to the same parts
throughout the different views.

Figure 1 is a block diagram of a computer system;

Figures 2(a) through 2(c) are schematic depictions of graphical user interface
display screens;

Figure 3 is block diagram of certain elements of the computer system; and

Figure 4 is a flow diagram of certain operations of the computer system.

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

DETAILED DESCRIPTION

Figure 1 shows a computer having a set of hardware resources (or hardware) 10
and software-implemented components including a hypervisor 12 and a collection of
virtual machines (VMs) shown as a control VM 14, a rendering VM 16, and one or more
guest VMs 18 (two guest VMs 18-1 and 18-2 shown). The hypervisor 12, the control
VM 14 and the rendering VM 16 are privileged system components, meaning that they
generally have direct access to some or all of the hardware 10, while the guest VMs 18
are relatively less privileged and rely on virtualization and other functionality of the
privileged system components for their use of the hardware 10. The hardware 10
generally includes one or more processors, memory, and one or more high-speed data
buses providing functional interconnections for data transfer among these components.
For ease of reference herein, the collection of these components is referred to as "main
processing circuitry”, reflecting the function of processing computer program instructions
of software-implemented components including the hypervisor 12 and VMs 14 - 18. The
hardware 10 also generally includes 1/O circuitry which may include, for example,
network interface circuitry, storage device(s) such as flash memory or magnetic disk(s),
and interface circuitry to user interface devices such as a pointing device, keyboard, and
graphical display device.

As shown, the hardware 10 includes video interface circuitry (VIDEO INTFC) 19
including a graphics processing unit (GPU) 20. The video interface circuitry 19 provides
an interface to a graphical display device such as an LCD display (not shown). The GPU
10 includes circuitry specially tailored to performing graphics rendering operations. Such
circuitry may also be referred to as a "graphics accelerator”. In particular, in one
embodiment the GPU 20 includes a capability of three-dimensional (3-D) rendering.

The control VM 14 is a special VM used for management and control of the
computer, including the instantiation of the rendering VM 16 and guest VMs 18 as well
as configuration and control of certain aspects of their operation. This control function is
indicated in Figure 1 by control connections 22.

The control VM 14 may be referred to alternatively as a "control domain",
"domain 0" or "dom0", the latter designations being applicable in a system in which
successively instantiated VMs are given corresponding sequential numbers 0, 1, 2,

The control VM 14 also provides an interface to a human operator of the computer, such

-4 -

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

as by a "console" or similar user interface program as generally known in the art. In one
embodiment, the control VM 14 executes the Linux operating system. Certain specific
functions of the control VM 14 are described below.

The guest VMs 18 are typically full-function VMs that are preferably as close to
fully virtualized as possible, meaning that they can execute software (especially an
operating system) with little modification from a non-virtualized form. As shown, each
guest VM 18 includes an operating system (O/S) 24 and one or more application
programs (APPL) 26. In one embodiment the operating system 24 may be the Windows®
operating system as used in personal computers. It should be noted that different guest
VMs 18 may execute different types of operating systems 24.

The operating system 24 is shown as including a graphics "pseudo driver"
(PSEUDO DRYV) 28 that is operatively coupled to the rendering VM 16 via an inter-
virtual-machine (inter-VM) communication channel 30. The inter-VM communication
channel 30 is realized using a first inter-VM (V TO V) channel interface (V-V) 31 in the
guest VM 18 and a second inter-VM channel interface 33 in the rendering VM 16 (these
are referred to as "client-type" and "server-type" respectively below). In this respect the
operating system 24 is specifically modified for execution in a virtualized computing
system such as that of Figure 1. In a non-virtualized setting, the operating system typically
includes a graphics driver operatively coupled directly to graphics processing circuitry
such as a GPU to control its execution of graphics operations at a fairly low level (e.g.,
programming parameters and operation codes, monitoring status and completion of
operations, etc). The pseudo driver 28, in contrast, functions primarily to merely transfer
graphics commands, responses and data (collectively "graphics information") between the
application program 26 and the rendering VM 16 via the inter-VM communication
channel 30. Actual processing of graphics commands is performed by the rendering VM
16 and GPU 20 as described below.

The rendering VM 16 is a special-purpose VM providing graphics processing
capability to the guest VMs 18. It is assigned direct, "pass-through” access 32 to the GPU
20, meaning that a native driver (NTV DRV) 34 controls and communicates directly with
the GPU 20 as in a conventional non-virtualized setting, with no virtualization being
provided by the hypervisor 12. The rendering VM 16 employs an operating system 36
that may be relatively less functional than the operating system 26 of the guest VMs 18,

-5-

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

because of the special purpose nature of the rendering VM 16. For example, the operating
system 36 may not support a conventional file system or rich user interface, and it may
support only limited storage and provide little or no user extensibility. In one
embodiment, the operating system 36 may be a so-called "embedded” or "real-time"
operating system, a type used for a variety of specialized computing devices including cell
phones as generally known in the art. In one embodiment, the operating system 36 may be
a member of the Windows Embedded family of embedded operating systems.

The operating system 36 is shown as including inter-VM channel interfaces 33
cach operatively coupled to a respective inter-VM communication channel 30 and the
native driver 34. In operation, each inter-VM channel interface 33 operates
complementarily with its corresponding inter-VM channel interface 31, effecting the
transfer of graphics information between the native driver 34 and the application
programs 26 via the inter-VM communication channels 30.

In Figure 1, the hypervisor 12 and VMs 14 - 18 are shown as separate from the
hardware 10, which is a typical and useful depiction for purposes of description. It should
be understood that these software-implemented components effectively include the main
processing circuitry during their execution. Thus the hypervisor 12, for example, includes
the main processing circuitry of the hardware 10 when executing instructions of a
hypervisor program. A similar description can be applied to the VMs 14 - 18.

The arrangement of Figure 1 may be particularly suited for use with application
programs 26 having a graphics-intensive workload, such as video games for example. In
this case, it may be a personal device such as a desktop, console or mobile platform.
Nonetheless, the arrangement may also find use in a server-type computing device, such
as a server providing for remote display of rendered graphics for an application program
executing on the server.

In prior systems, it has been known to provide a graphics driver within a control
VM to provide guest VMs with shared access to graphics hardware (e.g., using an inter-
VM channel similar to the inter-VM channel 30). Such a control VM may employ the
Linux operating system, and with it an open-source graphics driver operating according
to the so-called OpenGL application programming interface (API). In contrast, guest
VMs may use other operating systems, such as those of the Windows® family, that may

use a different graphics API of a proprictary family known as DirectX, one version of

-6-

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

which is called Direct 3D or "D3D" and used for 3-dimensional graphics rendering. In
these kinds of systems it has been necessary to employ a conversion program known as
Wine to convert between the D3D and OpenGL APIs. Because not all graphics functions
provided by D3D are available in OpenGL, graphics performance in such systems is
typically lower than in non-virtualized systems using native D3D drivers for the graphics
hardware.

One of the advantages of the structure of Figure 1 is the ability to use the native
driver 34 for the GPU 20 (e.g., a D3D driver) notwithstanding that the driver may be
incompatible with the operating system (e.g., Linux) of the control VM 14. The native
driver 34 is placed within the specialized rendering VM 16 which uses a compatible
operating system (e.g., Windows), and the control VM 14 establishes the inter-VM
communication channels 30 to enable graphics information (e.g., D3D function calls and
data) to be transferred between the guest VMs 18 and the shared native driver 34. The
native driver 34 is also provided with the pass-through access to the GPU 20 as described
above. The use of a Linux-based control VM 14 does not affect graphics performance,
because it is not directly involved in graphics processing as in prior systems using
OpenGL and Wine.

Figures 2(a) through 2(¢) provide a simplified depiction of operation of the
computer system from a user's perspective. In particular, each of these represents a screen
of a graphical display device, such as an LCD display, during operation. Figure 2(a)
shows a control screen 40 forming part of a user interface for a system control program
executed by the control VM 14. Among other things, the screen 40 is used by a user to
select which of the guest VMs 18 is in "focus", i.e., has its graphics output appearing on
the display device and accepts input from the user input device(s) (keyboard, mouse etc.).
The control screen 40 may have an area 42 where control features such as icons, pull-
down menus etc. may be located and/or activated from. It may also include respective
icons 44 (44-1 and 44-2) representing the VMs that are running (in this case, for the two
guest VMs 18-1 and 18-2). A user selects the focus by activating a corresponding icon
44. As shown, activation of the icon 44-1 causes a screen 46-1 for the guest VM 18-1 to
be displayed (Figure 2(b)), while activation of the icon 44-2 causes a screen 46-2 for the
guest VM 18-2 to be displayed (Figure 2(c)). In the illustrated example, the screen 46-1
includes two windows 48, 50 laid on a desktop background for the guest VM 18-1, while

-7 -

10

15

20

25

30

WO 2014/031833 PCT/US2013/056145

the screen 46-2 shows one large window 52 for guest VM 18-2. With the display in either
of the states of Figures 2(b) and 2(¢), a user command to change focus may be
accomplished using just the keyboard, such as by a sequence of keys representing a
system-level control command, or by use of the mouse by bringing it to an edge of the
screen to cause a control screen or toolbar to appear.

Figure 3 illustrates the set of components involved in graphics processing,
arranged vertically to reflect functional location relative to the application programs 26
and GPU 20 of Figure 1. At an upper location facing the applications 26 are the pseudo-
drivers 28. Each pseudo-driver 28 communicates with a client-type inter-VM interface
31, which in term communicates with a server-type inter-VM interface 33 via the
respective inter-VM communication channel 30. Each server-type inter-VM interface 33
communicates with the native driver 34 that controls operation of the GPU 20.

Figure 4 is a simplified flow diagram illustrating pertinent operation of the
computer of Figure 1, specifically graphics-related operation of the rendering VM 16. At
60, the rendering VM 16 receives graphics information from an application program 26 of
a guest VM 18 via an inter-VM communications channel 30. The graphics information is
in accordance with a graphics API supported by the graphics processing unit 20, ¢.g., the
above-mentioned D3D graphics API. As described above, the rendering VM 16 employs
the server-type inter-VM interface 33 to the inter-VM communications channel 30. The
graphics information is sent using transport messages of the inter-VM communications
channel 30.

At 62, the server-type inter-VM interface 33 passes the received graphics
information to the native driver 34.

At 64, the native driver 34 controls operation of the graphics processing unit 20 to
perform graphics rendering operations using the received graphics information. This
control will be in the form of programming parameters and operation codes, monitoring
status and completion of operations, etc. as discussed above.

In a system such as shown in Figure 1 in which the GPU 20 is part of local video
interface circuitry 19, the result of the rendering operations by the GPU 20 may represent
a screen to be displayed on a local display device, such as the screens 42, 46 discussed
above. In some cases, the result may be used in a different manner. One general

alternative is the use of a remote display device, i.¢., a local application 26 generates

-

10

15

20

25

WO 2014/031833 PCT/US2013/056145

graphics information for a screen to be displayed on a display device attached to another
physical computer. In this case, the result of the rendering operations may be returned to
the requesting application 26, for example, to enable the application 26 to send the result
to the other computer where the result will be displayed. Other back-end processing of
the rendering result is possible.

While the above description focuses on methods and apparatus to support
graphics operations in particular, these may be slightly generalized to provide for shared
access to a hardware resource for other than graphics operations. With respect to GPUs,
for example, there is increasing use of contemporary GPUs for non-graphics tasks that
employ vector and other calculations that are performed in hardware by the GPU. In this
type of use, the GPU may be referred to as a "general-purpose GPU". With respect to the
structure of Figure 1, the only major modification to support such use is that the drivers
28 and 34 support whatever API is used by an application program 24 to access the
hardware resource.

The disclosed technique may also be generalized to take advantage of the use of a
specialized VM (analogous to the rendering VM 18) that is more compatible with the
guest VMs 18 than is the control VM 14. In this respect it is assumed that guest VMs 18
employ an operating system of a first type (such as Windows), while the control VM 14
uses a second operating system of a different type (such as Linux), and that there is either
no support or only limited support under the second operating system for a system
function that is more fully supported by the first operating system. In this case, the system
function (or control software for the system function, such as a device driver) can be
deployed on a specialized VM (akin to the rendering VM 16) which runs the first
operating system, and an inter-VM communication scheme can be employed to enable the
function to be accessed from the guest VMs 18. This arrangement enables a virtualizing
computer which is based on the second operating system to support functions of the first

operating system in a native fashion.

WO 2014/031833 PCT/US2013/056145

CLAIMS

What is claimed is:

1. A computing system, comprising:
a graphics processing unit; and
main processing circuitry operative to execute a set of computer program
instructions to form:
a hypervisor operative to virtualize hardware of the computing system;
a control virtual machine; and
a rendering virtual machine,
the control virtual machine being operative to manage the rendering virtual
machine and a guest virtual machine, the guest virtual machine including an
application program generating graphics information,
the rendering virtual machine including a graphics driver native to the
graphics processing unit and being assigned pass-through access to the graphics
processing unit by the control virtual machine, the rendering virtual machine being
operative to (i) receive the graphics information from the application program via
an inter-virtual-machine communication channel, (ii) provide the received graphics
information to the graphics driver, and (iii) use the graphics driver to control
operation of the graphics processing unit to perform graphics rendering operations

based on the graphics information.

2. A computing system according to claim 1, wherein the guest virtual machine and the
rendering virtual machine execute respective operating systems of a first type compatible
with the native graphics driver, and the control virtual machine executes an operating

system of a second type not compatible with the native graphics driver.

3. A computing system according to claim 1, wherein the application program executes a

graphics-intensive workload.

4. A computing system according to claim 3, wherein the graphics-intensive workload

includes a video game.

-10 -

WO 2014/031833 PCT/US2013/056145

5. A computing system according to claim 3, being a personal desktop or mobile device

normally used by a single user.

6. A computing system according to claim 1, wherein the rendering virtual machine

executes an embedded operating system.

7. A method of operating a computer system to enable use of a graphics processing unit
by an application program executing in a guest virtual machine, comprising:
by a control virtual machine, assigning pass-through access to the graphics
processing unit to a rendering virtual machine, the rendering virtual machine including a
graphics driver native to the graphics processing unit; and
by the rendering virtual machine:
receiving the graphics information from the application program via an
mter-virtual-machine communication channel,
providing the received graphics information to the graphics driver; and
using the graphics driver to control operation of the graphics processing

unit to perform graphics rendering operations based on the graphics information.

8. A method according to claim 7, wherein the guest virtual machine and the rendering
virtual machine execute respective operating systems of a first type compatible with the
native graphics driver, and the control virtual machine executes an operating system of a

second type not compatible with the native graphics driver.

9. A method according to claim 7, wherein the application program executes a graphics-

intensive workload.

10. A method according to claim 9, wherein the graphics-intensive workload includes a

video game.

11. A method according to claim 9, wherein the computing system is a personal desktop

or mobile device normally used by a single user.

-11 -

WO 2014/031833 PCT/US2013/056145

12. A method according to claim 7, wherein the rendering virtual machine executes an

embedded operating system.

13. A method of operating a computer system to enable use of a hardware resource by an
application program executing in a guest virtual machine, comprising:
by a control virtual machine, assigning control over operation of the hardware
resource to a specialized virtual machine, the specialized virtual machine including a
native driver for the hardware resource; and
by the specialized virtual machine:
receiving input information for the hardware resource from the application
program via an inter-virtual-machine communication channel;
providing the received input information to the native driver; and
utilizing the native driver to control operation of the hardware resource

using the input information.

14. A method according to claim 13, wherein the hardware resource is a general-purpose

graphics processing unit.

15. A method of operating a computer system to enable execution of a system function by
an application program executing in a guest virtual machine, comprising:
by a control virtual machine, assigning control over execution of the system
function to a specialized virtual machine, the specialized virtual machine including a
software component for controlling execution of the system function, the software
component being compatible with respective operating systems of a first type executed by
the specialized virtual machine and the guest virtual machine and incompatible with an
operating system of a second type executed by the control virtual machine; and
by the specialized virtual machine:
receiving input information for the system function from the application
program via an inter-virtual-machine communication channel;
providing the received input information to the software component; and

utilizing the software component to control execution of the system

-12-

WO 2014/031833 PCT/US2013/056145

function of behalf of the application program.

16. A method according to claim 15, wherein the system function includes graphics
functions provided by a graphics processing unit and the software component is a driver
for the graphics processing unit, the driver being native to the graphics processing unit
and operating according to a first application programming interface used by the
application program to invoke the graphics functions, and wherein the operating system
of the second type natively supports a second application programming interface that

lacks at least selected ones of the graphics functions.

- 13-

WO 2014/031833

114

PCT/US2013/056145

o

22 CONTROL
RENDERING VM GUEST VM GUEST VM
16 18-1 18-2
APPL. 26 APPL. 26
oIS 36
CONTROL VM OfS 24 O/S 24
14 B‘;\\i PSEUDO PSEUDO
- DRV 28 DRV 28
34
V-V || V-V [i V-V V-V
33 || 33| | 3 31
! 30
| — 30
32— |
HYPERVISOR 12 i
| VIDEO
HARDWARE 10 GPU 20 INTEC 19

Fig. 1

WO 2014/031833 PCT/US2013/056145

B -

Fig. 2(a)
\\ AN

48— []
Fig. 2(b)

46-2

52 T

Fig. 2(c)

WO 2014/031833 PCT/US2013/056145

B -

APPLICATION IN VM 18-1 APPLICATION IN VM 18-2
PSEUDO-DRIVER PSEUDO-DRIVER
28-1 28-2
VTOV VTOV
(CLIENT) (CLIENT)
31-1 31-2
GUESTS 30 | 30 —|
HOST
VTOV VTOV
(SERVER) (SERVER)
33-1 33-2
NATIVE
DRIVER
34
GPU

WO 2014/031833

-

PCT/US2013/056145

4/4

60
RECEIVE GRAPHICS INFORMATION FROM THE
APPLICATION PROGRAM VIA INTER-VM
COMMUNICATION CHANNEL

62
PROVIDE THE RECEIVED GRAPHICS INFORMATION TO
THE GRAPHICS DRIVER

64
USE THE GRAPHICS DRIVER TO CONTROL OPERATION
OF GPU TO PERFORM GRAPHICS RENDERING
OPERATIONS BASED ON THE GRAPHICS INFORMATION

Fig. 4

o

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/056145

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/455
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

3 March 2011 (2011-03-03)

figures 2-3

paragraph [0021] - paragraph [0030];

X US 2010/262722 Al (VAUTHIER CHRISTOPHE 1-16
[GB] ET AL) 14 October 2010 (2010-10-14)
paragraphs [0031] - [0037]; figures 3-4

A US 2011/650712 Al (JACKSON ADAM D [US]) 1-16

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 December 2013

Date of mailing of the international search report

20/12/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bijn, Koen

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/056145
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2010262722 Al 14-10-2010 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - claims
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - wo-search-report
	Page 20 - wo-search-report

