WO 2006/094366 A1 || 0000000 0 000 O 000 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

B

G
)

2
&

(19) World Intellectual Property Organization (3
International Bureau

(43) International Publication Date
14 September 2006 (14.09.2006)

) I OO A0 0

(10) International Publication Number

WO 2006/094366 Al

(51) International Patent Classification:
GOGF 12/12 (2006.01)

(21) International Application Number:
PCT/AU2006/000327

(22) International Filing Date: 10 March 2006 (10.03.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2005901174
60/660,961

11 March 2005 (11.03.2005)
11 March 2005 (11.03.2005)

AU
Uus

(71) Applicant (for all designated States except US): ROCK-
SOFT LIMITED [AU/AU]; Level 7, Shell House, 170
North Terrace, Adelaide, S.A. 5000 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): WILLIAMS, Ross,
Neil [AU/AU]; Level 7, Shell House, 170 North Terrace,
Adelaide, S.A. 5000 (AU).

(74) Agent: MADDERNS; Level 1, 64 Hindmarsh Square,
Adelaide, S.A. 5000 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR INDEXING IN A REDUCED-REDUNDANCY STORAGE SYSTEM

BLOB
Name
or
Hash

fBLOB Table
30

Subblock
Hash

[Subblock
3 Pool

(57) Abstract: This invention provides a method and apparatus for indexing subblocks in a reduced-redundancy storage system.
Each subblock is hashed to an K-bit key and an entry for the subblock added to an index data structure comprising of a tree of hash
tables. In a further aspect, by replacing the top of the tree with an array, the data structure can achieve O(l) access time for random
keys while still providing relatively smooth growth.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

Method for Indexing in a Reduced-Redundancy Storage System
1 Field

This invention provides a method and apparatus for indexing subblocks of

data in a reduced-redundancy computer storage system.

2 Background

In a reduced-redundancy computer storage system, each BLOB (Binary Large
OBject — a finite sequence of zero or more bytes (or bits)) is represented as a
sequence of subblocks from a pool of subblocks. Figure 1 (prior art) shows a
pool of subblocks ﬁnd two BLOBs that are represented as lists of subblocks

from the pool.

Each BLOB of data to be stored is divided into subblocks and matched against
the subblocks in the pool. Each subblock in the new BLOB that is already
present in the pool is replaced by a reference to the subblock in the pool. Each
subblock in the new BLOB that is not in the pool is added to the pool. By
storing only new unique subblocks, the storage system forms a reduced-
redundancy representation of the BLOBs stored, and thereby reduces the
amount of storage space used. Figure 2 depicts the addition of a new BLOB 20
consisting of the subblocks ABCXY into a pool that already contains
subblocks A, B and C 22. The new BLOB 24 is represented as a list of
subblocks consisting first of the existing subblocks A, B and C and then of two
new subblocks X and Y that are added to the subblock pool as a result of
adding the new BLOB. |

To implement this method, a reduced-redundancy storage system typically
consists of the following components: a BLOB table 30 (to represent the
BLOBs and allow them to be retrieved), a subblock pool 32 (to hold the actual
subblock content), and a subblock index 34 (to quickly identify whether a

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

2

subblock is present in the store and locate it if it is) (Figure 3). Each of these

components can be implemented in a wide variety of ways.

Of critical importance to the speed of a reduced-redundancy storage system is
the subblock index. Whereas the BLOB table is typically accessed just once or
twice for each BLOB stored, and the subblock pool can operate on subblocks
in groups for greater efficiency, the subblock index is accessed (at least in a
simplistic implementation) for every subblock that is presented to the system
for storage. If the subblocks are a kilobyte each, this is about twenty thousand
index lookups just to store twenty megabytes of data. It is therefore vital that
the subblock index is fast.

The actual speed of access to the index depends on whether the index is held
in memory or on disk, as a random memory access takes of the order of fifty
nanoseconds whereas a random disk access takes of the order of ten
milliseconds (about 200,000 times longer). The index could be held completely
on disk, partially on disk, or entirely in memory. While it is clearly desirable
for the index to reside entirely in memory, this may be impractical or too
expensive if the index is large. If some part of the index is to be held on disk,
then it is important to design the index so as to minimize disk accesses, and in

particular random access disk accesses.

Another requirement of an index data structure is that it be capable of scaling,
and of scaling smoothly, as storage systems often grow to sizes that are larger

than expected.

The present invention provides a data structure that can grow smoothly while
providing high speed access with a low number of random access disk

operations.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

3 Summary

This specification discloses a data structure for implementing an index of
blocks of data, where a block includes BLOBs and subblocks. For the purpose
of exposition, this specification describes, without limitation, indexes of

subblocks.

A subblock index maps keys derived from subblocks to subblock storage
locations. Figure 18 shows this, with a depiction of a mapping method. Keys
180 are typically fixed-length hashes (e.g. 128-bit MD5 hashes 182) of
subblocks 184. Subblock storage locations may take many forms, but all assist
in locating the subblock. For the purposes of exposition, the hashes will be

referred to as keys and the subblock locations will be referred to as values 186.

In some aspects of the invention where the sole purpose of the data structure
is to record the presence or absence of keys, there will be no values. Another

way or expressing this is that the values are all zero bytes long. An example,

without limitation, is when one computer is keeping track of the subblocks

held in another computer.

In an aspect of the invention, the key/value mapping is implemented using a
data structure comprising of a binary digital search tree (over successive bits
of the key) whose leaves each contain a hash table that maps keys falling into
the leaf to their corresponding values (Figure 4). The non-leaf nodes 50 do not
contain entries. As entries are added to the data structure, each leaf node 52,
54 whose hash table becomes full 54 (to a particular fullness level) is replaced
by a non-leaf node 56 with two leaf node descendents 58, 59 (Figure 5).
During this splitting process, the contents of the hash table are split between

the two new leaf nodes, with each entry being allocated to one of the two new

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

4

leaves in accordance with the next unused (by the tree) bit of its key

(Figure 6). The keys of each leaf's hash table entries should be based only on
those bits of the original key not already constrained by the position of the
leaf in the tree (Figure 7).

If the hash tables in the leaf nodes are configured to be quite large (e.g.
thousands of entries), then an interesting property of the data structure is that
the non-leaf nodes in the tree occupy very little space in comparison to the
leaf nodes. Therefore, in a further aspect of the invention, the non-leaf nodes
are held in memory and the leaf nodes (or at least the hash tables they
contain) are held on disk (Figure 8). This organisation has several advantages.
First, this organisation uses very little memory. Second, as the width of the
hash (e.g. 128 bits) provides an upper bound on the depth of the tree, tree
traversals are very fast, comprising, in the worst case of a tight loop of about
128 (for a 128-bit key) random access memory seeks (the totality of which is
still about 1500 times faster than a random disk seek). Third, so long as the
hash tables in the leaves are not allowed to become too full, the leaf hash table
lookup that will occur at the end of the binary tree root-to-leaf traversal will
consist of a single random access disk seek. This is time consuming, but far
less time consuming than the several random-access disk seeks that would be

required if the non-leaves of the tree were held on disk too.

In some embodiments, the keys are subblock hashes. As these are (at least in
theory) uniformly randomly distributed, it is likely that the tree will be fairly
well balanced at each stage of its growth. This provides the opportunity to
reduce even the small tree-traversal access time. In a further aspect of the
invention, the top L levels of the tree are replaced by a single array of 2-
entries (Figure 9). This reduces the L steps of traversing the top L levels of the
tree to a single step of looking up the array. As growth of the tree is likely to

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

5

be balanced, it is likely that there will only be a few levels of tree beneath the
array (Figure 9). The choice of how many levels (L) of tree to replace by an
array could be determined by a variety of factors, the most likely one being

the level of fullness of the tree at each level.

While the uniform tree growth that results from the uniformity of hash values
allows the top of the tree to be replaced by an array, the same uniformity
causes discontinuities in the growth of the leaves of the tree. Experiments
have shown that the tree can grow so evenly that the entire bottom layer of
leaf nodes fill up and split at roughly the same time. While this does not
threaten correctness, it does have real-time implications because splitting a
leaf node requires splitting the entries in the node's hash table between the
hash tables of its descendents and this takes much longer than merely adding
anew entry to a table. If all the leaves at one level in a tree split at roughly the
same time, the speed of the system will drop until the splittings are complete
and then will resume its normal level. There are several ways to avoid this dip
in performance. In a further aspect of the invention, a random fullness
threshold is assigned to each leaf when the leaf is created. The leaf is split
only when its hash table’s fullness reaches the threshold. For example, one
leaf might be allocated a 40% threshold and another 80% threshold. The
random values can be chosen according to some distribution that does not
choose values below a minimum (so as not to waste space) or above a
maximum (so as to avoid long overrun chains within the table). Random
thresholds spread out the times when the leaves at a given level split. Another
approach is to create hash tables of random size in each leaf node when the
node is created. The differently-sized hash tables will then fill at different

times.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

6

In summary, a method is provided for indexing subblocks that uses up very
little memory, requires a single random disk access to lookup a key, is
scalable, and grows smoothly with little or no significant real-time impact

along the way.

4 Terminology

Binary Digital Search Tree: A binary tree where the decision made at each

level is determined by successive bits of the key.

BLOB (Binary Large OBject): This is a finite sequence of zero or more bytes
(or bits) of data. Despite its name, a BLOB is not necessarily large; a BLOB

could be as small as a few bits or as large as gigabytes.

Block: A finite sequence of zero or more bytes (or bits) of data. This term is

abstract and includes without limitation BLOBs and subblocks.

Bucket: See Index Bucket.

Collision: A collision occurs in a hash table when two or more keys hash to

the same slot (position) in the table.

Collision Chain: When an entry is to be added to a hash table and the entry
collides with another entry, it can be stored by forming a collision chain of
entries from the original entry. The collision chain can exist within the table or

external to it.

Digital Search Tree: A tree where the decision made at each level is

determined by successive digits of the key.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

7

Disk: A random access storage medium used by computers. Typically, the
term refers to spinning platters of metal holding magnetised data (hard
disks). In the context of this document, the term may more broadly be taken
to mean a random access storage medium that is significantly slower than

Memory.

Entry: See Index Entry.

Hash: A fixed-length sequence of bytes (or bits) generated by a hash
algorithm. Hashes of subblocks may be used as representatives of the

subblocks to index and compare subblocks.

Hash of Subblock: See Subblock Hash.

Hash Table: A means of mapping keys to values using an array, where values
(and sometimes also keys or part of keys) are stored in the array at positions

determined by hashing the key.

Index Bucket: In embodiments that implement the subblock index using a
hash table, the hash table may be organised as an array of buckets each of
which contains a fixed number of entry slots each of which may either be
empty or contain an entry. One purpose of index buckets is to organise a hash
table into pieces that can be read from disk and written to disk as a group so

as to reduce the number of random access disk operations.

Index Entry: A record in the subblock index. In some embodiments an index
record contains an index key and an index value. In some embodiments an

index record contains part of an index key and an index value. In some

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

8

embodiments an index record contains just an index value. In some

embodiments an index record contains no value and some or all of a key.

Index Key: The information about a subblock provided to the subblock index
in order to retrieve information about the subblock. In some embodiments,

the information is retrieved by locating and reading an index entry.

Index Value: The information yielded about a subblock by the index when
the subblock (or a derivative of the subblock, an example of which is its hash)
is looked up in the index. In some embodiments, the value consists of the
location of the subblock on disk. In other embodiments there may be no value

if the sole purpose of the index is to record the presence or absence of a key.
Keys: See Index Key.
Leaf: The leaf of a search tree is a node that does not have any descendents.

Memory: A random access storage medium used by computers, typically
referring to Random Access Memory (RAM). In the context of this document,
the term may more broadly be taken to mean a random access storage

medium that is significantly faster than Disk.

Partitioning Method: A method for dividing a BLOB into one or more
subblocks such that every byte (or bit) in the BLOB falls within exactly one
subblock.

Reduced-Redundancy Store: A storage system that eliminates, in its
representation of data, some of the duplicated data within the set of data that

it stores.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

Slot: A position in a hash table. A slot may be empty or it may contain an

enftry.

Store: See Reduced-Redundancy Store.

Subblock: A sequence of bytes (or bits) that has been identified as a unit for
the purpose of indexing, comparison and/ or redundancy elimination. A

BLOB may be partitioned into subblocks.

Subblock Hash: The result of applying a hash algorithm to a subblock.
Hashes of subblocks may be used, for example, as representatives of the

subblocks to index and/ or compare the subblocks.
Subblock Index: A data structure that maps (or otherwise associates) a
subblock's hash (or the subblock itself) to the location of the subblock (e.g.,

without limitation, a cluster number (and possibly also a subblock identifier)).

Subblock Pool: A collection of subblocks in a reduced-redundancy storage

system.

Traversal: See Tree Traversal.

Traverse: See Tree Traversal.

Tree Traversal: "Traversing a tree" usually means visiting every node of the

tree, but in the context of this document, it means following the path from the

root of the tree to a leaf.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

10

Values of the Index: See Index Value.

Throughout this specification and the claims that follow, unless the context
requires otherwise, the words 'comprise' and 'include' and variations such as
'comprising' and 'including' will be understood to be terms of inclusion and
not exclusion. For example, when such terms are used to refer to a stated
integer or group of integers, such terms do not imply the exclusion of any

other integer or group of integers.

The claims that follow in Section 7 of this specification are broad statements of
the invention/s disclosed herein and are incorporated into the body of the

specification by reference.

The reference to any prior art in this specification is not, and should not be
taken as, an acknowledgement or any form of suggestion that such prior art

forms part of the common general knowledge.

5 Brief Description of Figures

Figure 1 depicts the representation of two BLOBs of data as sequences of
subblocks, some of which appear in both BLOBs.

Figure 2 shows how only new unique subblocks (X and Y) of a new BLOB
consisting of subblocks ABCXY need be added to the subblock pool
(subblocks A, B and C already being present).

Figure 3 depicts a reduced-redundancy storage system comprising of a BLOB

table, a subblock pool, and a subblock index.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

11

Figure 4 depicts a data structure used for mapping subblock hashes to
subblock storage locations, being a binary digital search tree (over successive
bits of the subblock hash) whose leaves are hash tables that contain key/value

pair entries.

Figure 5 shows how a leaf node on the tree splits when its hash table becomes

sufficiently full.

Figure 6 depicts the splitting of a leaf node of the binary search tree, causing
the leaf node to convert into a non-leaf node and its entries within the hash
table to be split between two new descendent leaf nodes. Because the new leaf
nodes are one level deeper in the tree, accessing entries in these leaf nodes

involves using an additional bit of the subblock hash.

Figure 7 depicts a subblock hash and shows how a left part of it may be used
to traverse the binary digital search tree, with the remainder being available

to access the hash table in the leaf.

Figure 8 shows how the binary digital search tree may be held in memory and
the hash tables in the leaves on disk, here in a file containing an array of hash

tables.

Figure 9 shows how the top of the binary digital search tree can be replaced

by an array.

Figure 10 depicts a quaternary digital search tree in which successive pairs of

bits deterﬁﬁne the choice made at each level.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

12

Figure 11 (prior art) depicts a hash table collision in which two keys hash to

the same position in the table.

Figure 12 (prior art) depicts a hash table with an external overflow area.

Figure 13 (prior art) depicts in-table overflow where overflowing entries are

stored in the next empty slot (linear probing).

Figure 14 depicts a hash table organised as an array of buckets, each of which

contains a fixed number of entry slots.

Figure 15 depicts how, when a leaf node splits, its existing hash table can be
used as the hash table of the left leaf.

Figure 16 depicts a binary digital search tree with leaves containing hash

tables of varying sizes.

Figure 17 depicts how level numbers make it possible to replace the first L.
levels of a binary digital search tree by an array, even if level L is not yet full.

In this figure the first two levels are replaced.

Figure 18 depicts a mapping method where the keys are derived from the

subblock and the values are the locations of the subblocks.

Figure 19 depicts the splitting of a hash table by loading it from disk to

memory, splitting it in memory, then writing the two hash tables to disk.

Figure 20 depicts the hashing of a key with a secret key to prevent a
complexity attack on the data structure.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

13

Figure 21 shows how an embodiment might be deployed on typical computer
hardware. All the data structures reside on disk. The binary digital search tree
is held in memory along with some caches that store working copies of some

BLOB records and parts of the subblock pool.

Specific embodiments of the invention will now be described in some further
detail with reference to and as illustrated in the accompanying figures. These
embodiments are illustrative, and are not meant to be restrictive of the scope
of the invention. Suggestions and descriptions of other embodiments may be
included within the scope of the invention but they may not be illustrated in
the accompanying figures or alternatively features of the invention may be

shown in the figures but not described in the specification.

The reference to any prior art in this specification is not, and should not be
taken as, an acknowledgement or any form of suggestion that such prior art

forms part of the common general knowledge.

6 Detailed Description

Figure 21 shows how an embodiment might be deployed on typical computer
hardware 210. All the data structures reside on disk 212. The binary digital
search tree 214 is held in memory 216 along with some caches 218 that store

working copies of some BLOB records and parts of the subblock pool.

6.1 Index Keys

The subblock index data structure is used to determine the existence and
location of a subblock. This suggests that the data structure's keys be derived
from the subblock.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

14

The subblocks themselves could be used as keys. However, this could result
in a very deep tree. For example, if all of the subblocks started with one
thousand bytes that are zero, every access of the tree would have to process
those thousand bytes of data before making ahy real progress (i.e. progress

that distinguishes one subblock from another) down the tree.

Hashes of subblocks make better keys than the subblocks themselves because
hashes are of finite width (e.g. 128 bits (16 bytes)) and because hashes distil (in
a lossy manner) all of the bytes in each subblock. Finite width makes the keys
easier to manipulate and ensures that the tree cannot grow deeper than the
hash width. Hashing all of the bytes of the subblock into a hash key
eliminates the inefficiencies that would arise where the subblocks have long
common prefixes. An advantage of using subblock hashes as keys is that it is
very likely that the resultant keys will be randomly and uniformly distributed
within the space of possible keys.

6.2 Index Values

Each value of an index consists of a record containing one or more subblock

attributes.

In a reduced-redundancy storage system, the value could be the location of a
subblock being indexed. Examples of storage location values are, without
limitation: a position on a disk, a filename, a file number, a subblock cluster
number, a mask identifying a small number of subblock clusters, and the

combination of a cluster number and a subblock identifier within the cluster.

In communications applications, the value could carry the location of a
subblock within a network, or even no information at all, with the application
relying simply on the existence of a subblock’s key in the index to record the

existence of a subblock on a remote computer.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327
15

The nature of the values depends largely on the nature of the indexing

application.

6.3 The Tree

An aspect of the invention consists of a tree of hash tables. There are a wide
variety of trees and a wide variety of hash tables that could be used in each of

these roles.

If the keys are subblock hashes, a digital search tree is particularly effective
because it is very simple to traverse. In a digital search tree, the key is divided
into fixed-width digits and each successive digit is used to choose a branch at
each level of the tree. For example, in a typical embodiment, a binary digital
search tree 40 could be used, with the hash divided up into one-bit digits.
Starting at the root 42 of the binary digital search tree, the leftmost (most
significant) bit 44 of the hash could be used to decide whether to go left or
right. Once at a direct child of the root 46, the next bit would be used to make

the next decision, and so on (Figure 4).

If the hash were divided into groups of two bits 10, each such group could be
treated as a digit and the digital search tree would be a quaternary digital
search tree with four branches 12, 14, 16, 18 emanating from each non-leaf
node (Figure 10). Similarly, digits of three bits each would result in a tree with

a furcation of eight. Any other furcation could be used too.

It is easy to show that, for any non-small hash table size, the non-leaf nodes in
the tree use little memory. Consider the case of a binary digital search tree
and K-bit hashes. If each non-leaf node of the tree consists of eight bytes (two
four-byte pointers), then (taking into account the sharing of ancestor nodes

with other leaf nodes), the total memory cost of each leaf will be 8 x (1/2 +

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

16

1/4+1/8 + ...+ 1/(2L)) where L is the depth of the leaf. Even for infinite L,
this is still only 8 bytes. If the hash table in each leaf is over a megabyte, then
the non-leaf nodes constitute less than one hundred thousandth of the total
space consumed by the entire data structure. This high ratio makes it

economic to store the tree in memory.

Note that all the key/value pair entries stored in a particular leaf have keys
with a common prefix 60, 70. There is therefore no point in using any part of

this common prefix to access the hash table in the leaf (Figure 6, Figure 7).

There are several challenges associated with the use of hash tables: how to
address the table, how to deal with collisions, where to store the table, and

how to split the table.

6.4 Hash Table Addressing

Consider the point during a search for a subblock where the subblock has
been hashed and the first T bits of the hash have been used to traverse the
tree, resulting in the arrival at a leaf. Inside the leaf is a hash table. What

happens next?

First, as the first T bits have been used to arrive at the leaf, it is certain that all
the keys that are stored, or will be stored, in the leaf's hash table have the
same T bit prefix (Figure 6 and Figure 7). It is therefore important not to use
those T bits to select a position within the hash table.

If the hash table contains N=2P slots, where P is a positive integer, it is easy to
hash the key into the hash table. Simply use the P bits 72 of the key that follow
the T bits 70 already used to get to the leaf. If N is not a power of two, a
different approach can be used. Take the next Q bits following the first T bits
and divide them by N. The remainder is the hash table index. This should

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

17

yield a fairly even spread in the table, so long as Qis a few bits higher than
log2(N) (so as not to significantly load one part of the table more than
another). A variety of other hashing methods could be used.

6.5 Hash Table Collisions

A collision occurs in a hash table when two or more keys hash to the same
position (slot) 110 (Figure 11) (prior art). One way to address this situation is
simply to throw away the second entry. This can be an appropriate choice in
some contexts. However, if the hash table is not allowed to be lossy, this
option cannot be used, and one of a wide variety of techniques can be

employed to deal with this "overflow" situation.

One classic technique for dealing with a collision is to have a separate storage
area called an overflow area 120. Each hash table slot 122 contains an
overflow field 124. If a collision occurs in the slot, the overflowing entry is
stored in the overflow area and a pointer to the entry is placed in the slot 126
(Figure 12) (prior art). The overflow area allows entries to point to each other
too, allowing each overflowing slot to point to a list of entries (Figure 12)
(prior art). This technique works well if a separate overflow area is available
(as it might be in the form of a memory heap if the hash table were in
memory). However, if the hash table is on disk, placing overflowing entries in
an overflow area usually involves performing at least one additional random

access seek.

A more integrated approach to collisions is to store the colliding entry in the
hash table itself. In a classic approach, when a collision occurs, the second
item's key is hashed using a second hash function and the resultant slot
examined. If it is empty, the entry can be stored there. If it is not, a third hash
function can be invoked and so on until an empty slot is found. If the entire

table is full, then in some embodiments the table is split before the new entry

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

18

is added. In general, a hash function H(K,X) can be defined where K is the key
to be hashed and X is a positive integer which can be increased to find
successive candidate locations in the hash table for a colliding entry. To
search for a key K, slots H(K,X) are examined for X=1,2,... until a slot
containing the key is found, or an empty slot is encountered (which indicates

the end of the particular hash overflow chain within the table).

However, if the hash table is large and on disk, following a collision chain
requires performing a series of random access seeks on the disk, which is
extremely time consuming. This can be avoided by defining H(K,X) = H(K,X-
1)+1; in other words, overflowing to the next adjacent slot 130 (Figure 13)
(prior art) (wrapping around at the end of the table). This technique, called
linear probing, keeps the accesses local. If, when reading the first slot
accessed, the next S slots are read as well, for small S the disk operation takes
no extra time (e.g. reading 1K instead of 12 bytes) and provides the overflow
slots as well. Once the new entry is added, the slots can also be written back
to disk as a group. The value S can be adjusted (possibly dynamically) so as to
ensure that it is rare for a collision chain to span more than S slots (and

thereby require an additional disk access).

6.6 Hash Table Buckets

An approach, related to reading more than one hash table entry at a time, is to
divide the table into buckets 140 (Figure 14). For example, one could replace a
table of 1024 slots with a table of 64 buckets each of which contains 16 slots.
To search for an entry, a linear search can be performed within the bucket (or
possibly a binary search if the keys within each bucket are sorted). Only
occasionally does a bucket fill, in which case the overflow can move to the
next bucket. So long as the table is not allowed to grow too full, overflow

chains should not become too long. An advantage of index buckets is that

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

19

they create units for disk access so that the number of random access disk

seeks is reduced.

6.7 Hash Table Storage

Conceptually, each leaf of the tree “contains” a hash table regardless of where
various parts of the tree may be stored. In practice, the leaf node in memory
could contain the actual hash table or the location of the hash table on disk. In
a typical embodiment in which the tree is stored in memory 80 and the hash
table on disk 82, the leaf node 84 in memory would store a pointer to the

position of the leaf's hash table 86 on disk 82 (Figure 8).

Storing the hash tables is simple if they are all the same size. Simply allocate a
file or a portion of a disk and store the hash tables as an array in the file or
portion of disk 88 (Figure 8). The hash tables in the array can be stored in any

order.

In other embodiments in which all the hash tables are not the same size, the

table could be stored using a heap structure on disk.

6.8 Hash Table Splitting

When a leaf 62 is split into a non-leaf 64 and two new leaves 66, 68, the

contents of the leaf's hash table is divided between the two new leaves

(Figure 6).

If leaf hash tables are all of the same size and are stored in an array on disk
150, the existing leaf's hash table can become the new left leaf's 152 hash table
154 and a single extra hash table 156 can be appended to the end of the hash
table array 158. In the embodiment of Figure 15, the leaf node that points to
hash table B splits, becoming a new non-leaf node with two leaf node

descendents. The space used to hold hash table B is used to hold the new left

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

20

hash table B1 and a new hash table is created at the end of the array of hash
tables to contain the new right leaf hash table B2.

One might at first think that, having re-used the original leaf as the new left
leaf and having created a new right leaf, splitting the original leaf would be as
simple as performing a single pass through its hash table and moving the
elements whose next bit is a 1 to the right hash table. However, this approach
suffers two difficulties. The first difficulty is overflow. If entries are removed
from a table, the overflow chains in the table may be broken, rendering some
entries inaccessible. The second difficulty is that if the entries have been
hashed using the K bits following the top T bits used to get to the original leaf,
then the first of those K bits should no longer be used because it is now used

to traverse the final link of the tree to the new leaves.

For all these reasons, the simplest way to split a hash table 190 is to read it
into memory 192, create two new fresh empty hash tables 194, 196 in memory
and perform a single pass through the original hash table and enter each
entry into one or other of the two new hash tables. Then write 197 the two
new tables 198, 199 to disk 191 (Figure 19).

No matter how the splitting is performed, it is advantageous if the entries
themselves contain enough of their keys to enable the splitting to occur

without having to access another data structure, particularly one on disk.

6.9 Growing the Tree

When should a leaf be split? A number of heuristics can be used and each of

these equates to a different concept of “fullness”.

Perhaps the most obvious heuristic is to split the leaf when its hash table is

completely full. While simple, this heuristic is likely to make using the table

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

21

slow because, just prior to the split, the average overflow chain length of the

slots will be about half the length of the table.

A leaf could be split when its hash table is more than a certain proportion full.
For example, a leaf could be split when its hash table becomes more than 80%

full (i.e. contains >= 0.8 S entries where S is the number of slots).

A leaf could be split when the longest overflow chain in the table reaches a
predetermined length — for example 30 overflows. The predetermined length
should be set high enough to yield acceptable densities but low enough to not

to cause overflow chains so long that they are inefficient to traverse.

A leaf could be split when, in the course of adding entires to the leaf’s table,
an overflow chain of length greater than a predefined threshold is
encountered. A leaf could be split with a predetermined probability P each
time a new entry is added, or if the table becomes full. Setting P too low could
waste too much space in the hash tables. Setting P too high could create

overflow chains that may be inefficient to traverse.

6.10 Tree Growth Smoothing Techniques

Experience with the tree structure has shown that in embodiments where the
keys are subblock hashes, the keys are usually so uniformly distributed that
the leaves in the tree all tend to split at roughly the same time. This causes a
temporary reduction in speed while the splitting occurs. These dips in
performance occur at doubling intervals with the spread of the dip becoming
wider with each iteration. Nevertheless, the dip can impact real-time

performance, and so it is worth investigating means for ameliorating it.

One simple way to increase the time period over which each level splits (as

distinguished to the time when it splits) is to assign a random threshold to

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

22

each leaf when it is created. For example, each leaf could be allocated a
uniformly distributed random density threshold between 60% and 90%. The
leaf is then split when its hash table density exceeds the threshold. Because
each leaf splits at its own density, the splitting of a level is diffused over a
greater span of time. An alternative to the static scheme just described is for

the threshold to be changed randomly each time the threshold is tested.

Another approach, which may make better use of space, is to use a constant
splitting threshold (e.g. 80%), but to create different sized hash tables 160, 162,.
164, 166 in each leaf (Figure 16). This causes the leaves to split at different
times. For example the random value can be set between X and Y, where X is
not so low as to cause unnecessary splitting and Y so high as to cause a

disruption to real time processing.

In some embodiments, it may be advantageous to choose for each table a
random size selected from one of a small set of sizes (e.g. 1Kilobyte, 2K, 4K,

8K).

6.11 Replacing the Top of the Tree with an Array

As the hash values keys are very likely to be uniformly distributed, it is likely
that the tree will grow in a very balanced manner. This means that, it is likely
that entire levels (e.g. level 3) 90 of the tree will become full with non-leaf
nodes. When this happens, the entire top of the tree (to (say) level L) can be
replaced with a single array 92 (Figure 9), reducing the access time for that

part of the tree from O(L) to O(1).

A variety of heuristics could be used for determining when to replace the top
of the tree. A simple approach is to replace the top L levels of the tree only

when level L consists entirely of non-leaf nodes. While simple, it is

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

23

coneeivable that this technique could break down as the tree grows because
some nodes of lower levels might "hold out" for a while and not split. To cater
for this, a heuristic could be employed that causes the top L levels of the tree
to be replaced if the top L levels contain more than X% of non-leaf nodes
(where X is a predefined threshold, (e.g. 80%), which is not so low as to waste
space but not so high as to be too stringent a requirement to invoke the
optimisation). One way to implement this is to place a field 170 in each node
being the node's depth. Then, a pointer 172 to a single leaf node could be
placed in multiple slots in the same array. If the leaf fills and splits, pointers to
the resulting two leaves could fill the positions in the array occupied by the
original leaf (Figure 17).

As a theoretical aside, it is possible that the complexity of O(1) is achieved for
a data structure that uses hashes as keys and has an array at the top of the tree
and hash tables in the leaves. The array at the top is clearly O(1). The hash
table in the leaf is also clearly O(1). This leaves only the layers of non-leaf
nodes between the array and the leaves to introduce any complexity of an
order higher than O(1). If the hashes are uniformly distributed, then it seems
likely that a proof could be constructed showing that the average number of
levels between the array and the leaves is O(1) which would mean that the

entire data structure has an O(1) access time.

Of possible theoretical (and possibly practical) concern is the hash table
splitting operation which involves moving every existing element in a leaf's
hash table to one of two different descendent node hash tables. Could the
doubling cause the growing data structure to cost more than O(1) per update?
The answer is no, because, viewed from the perspective of an individual
entry, the splitting operation occurs at time intervals that double. The total
splitting cost per entry for hash tables of length N that are filled before being

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

24

split is therefore 1/N + 1/2N + 1/4N + 1/8N... which adds up to 1 which is
O(1).

6.12 Other Data Structures

An alternative approach to maintaining a tree of hash tables is to replace the
tree with a single master hash table. This could be achieved by creating a hash
entry in the master table for each of the nodes that would otherwise be stored

in a binary search tree.

6.13 Complexity Attacks

A complexity attack occurs on a system when the attacker feeds data into the
system that is designed to drive one of the system's data structures into its
worst case state. For example, if an attacker knows that a web server employs
a non-balanced binary tree, he could feed sorted data into the tree to cause the
tree to become a list. This might yield such bad subsequent search times that

the server grinds to a halt.

The present invention does not appear to be vulnerable to complexity attacks
(for embodiments where the cryptographic hashes are used as keys) in the
long run because, as the tree deepens, it will become more and more
computationally expensive for an attacker to find subblocks that hash to a
particular leaf. However, until that scale is reached, each individual hash
table is vulnerable to a complexity attack if the attacker feeds in subblocks
that hit the same slot repeatedly. This would cause a very long overflow chain
to form within the table which could slow down subsequent searches within

that table.

The soundest way to avoid a complexity attack is to design a data structure
that has a good worst case. Although this is possible with some balanced tree

structures, this is not easy to do with a hash table because, no matter how

10

15

WO 2006/094366 PCT/AU2006/000327

25

chaotic the hash function is, it is possible for an all-knowing attacker to form

the next key in such a way that it will land on the hash table's longest chain.

If we accept that the probability of the hash table's worst (or near worst) case
arising at random is negligible (so long as the table is not approaching its
maximum density), then one way to defend against a complexity attack in a
hash table is to generate a secret random seed when the hash table is created
and hash the subblock hash with the seed to yield the hash table slot (Figure
20). So long as the attacker does not know the seed, a complexity attack will

be practically impossible.

6.14 A Note on Scope

It will be appreciated by those skilled in the art that the invention is not
restricted in its use to the particular application described. Neither is the
present invention restricted in its preferred embodiment with regard to the
particular elements and/ or features described or depicted herein. It will be
appreciated that various modifications can be made without departing from
the principles of the invention. Therefore, the invention should be understood

to include all such modifications within its scope.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

26

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for indexing data for the purpose of storing, communicating or
comparing data, by indexing one or more blocks of data, the method
comprising the step of:
creating an index comprising a digital search tree having keys derived
from said blocks, where each leaf of the tree has a table that contains a

index value for each key that falls within that leaf.

2. The method according to claim 1 wherein the digital search tree is a binary

digital search tree.

3. The method according to claim 2 wherein the digits of the digital search

tree correspond to the successive bits of the key.
4. The method according to claim 1 wherein each table is a hash table.
5. The method of claim 4 wherein each hash table comprises buckets.

6. The method of claim 1 wherein each index value comprises the location of a

block.
7. The method of claim 1 wherein the keys are hashes of blocks.

8. The method of claim 7 wherein part of the hash of the block is used to index
the table.

9. The method of claim 1 wherein the tables associated with the leaves are

stored in an array.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

27

10. The method of claim 9 wherein the array is in memory.
11. The method of claim 9 wherein the array is on disk.

12. The method of claim 1 wherein the top L levels of a subtree of the tree are

replaced by an array.

13. The method of claim 12 wherein the top L levels of the tree are replaced by

an array.

14. The method of claim 12 wherein the tree is a binary digital search tree and

the replacement array has 2L elements.

15. The method of claim 12 wherein the replacement is performed when the L

levels of the subtree satisfy a predetermined criterion.

16. The method of claim 15 wherein the predetermined criterion is that the top

L levels of the subtree consists of non-leaf nodes.

17. The method of claim 15 wherein the predetermined criterion is that the top
L levels of the subtree contain at least T percent non-leaf nodes where T is a

predetermined threshold.

18. The method of claim 1 wherein the digital search tree is expanded by
replacing a leaf node with a non-leaf node having a plurality of new leaf
nodes attached, where the contents of the table in the old leaf node is

distributed among the tables of the new leaf nodes.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

28

19. The method of claim 18 wherein expansion occurs when the fullness of a

table exceeds a predetermined threshold.

20. The method of claim 18 wherein the tables are hash tables.

21. The method of claim 20 wherein each hash table has a fullness splitting
threshold.

22. The method of claim 21 wherein the threshold for each hash table has a

random component.

23. The method of claim 18 wherein each new leaf is created with a hash table

of varying size.

24. The method of claim 23 wherein the size of each hash table is chosen

between a predefined minimum and a predefined maximum.

25. The method of claim 24 wherein the size of each hash table is chosen

randomly between a predefined minimum and a predefined maximum.

26. The method of claim 23 wherein the determination of each size has a

random component.

27. The method of claim 18 wherein a hash table is split by reading the hash
table into memory, splitting the hash table into two hash tables, and writing
the two hash tables to disk.

28. The method of claim 18 wherein storage space consumed by the table of

the original leaf is reallocated to be the table of one of the descendent leaves.

10

15

20

25

WO 2006/094366 PCT/AU2006/000327

29

29. The method of claim 18 wherein the table uses overflow chains, and
wherein the table is split when the longest overflow chain reaches a

predetermined threshold.

30. The method of claim 18 wherein the table uses overflow chains, and
wherein the table is split when an overflow chain greater than a

predetermined length is traversed.

31. The method of claim 18 wherein the table is split when it becomes full or
with a predetermined probability P whenever a key/value pair is added to

the table.

32. The method of claim 1 wherein the tree is held in memory and the hash

tables in the leaves are held on disk.

33. The method of claim 1 wherein the keys are first hashed using a secret key

s0 as to prevent a complexity attack on the data structure.

34. A data processing apparatus for indexing data for the purpose of storing,
communicating or comparing data, by indexing one or more blocks of data,
comprising of:
data processing means for creating an index comprising of a digital search
tree having keys derived from said blocks, where each leaf of the tree has a
table that maps the keys that fall within that leaf to their corresponding

index values.

35. A computer readable memory, encoded with data representing a

computer program that can be used to direct a programmable device for

10

15

WO 2006/094366 PCT/AU2006/000327

30

indexing data for the purpose of storing, communicating or comparing data,
by indexing one or more blocks of data, using a processing means for
operating the computer readable memory to use an index comprising of a
digital search tree having keys derived from said blocks, where each leaf of
the tree has a table that maps the keys that fall within that leaf to their

corresponding index values.

36. A computer program element comprising a computer program code
means for indexing data for the purpose of storing, communicating or
comparing data, by indexing one or more blocks of data, to make a
programmable device execute:
a first function of using an index comprising of a digital search tree having
keys derived from said blocks, where each leaf of the tree has a table that

maps the keys that fall within that leaf to their corresponding index values.

WO 2006/094366 PCT/AU2006/000327

1/9

BLOB # 1 il

> Subblock

Pool
Blogg2l VLI CT/7TTT T 11
Figure 1 Prior Art
/20
NewBLOB [A|B|C | X|Y
24 being stored
New BLOB
Record Other BLOB
Records f22
Subblocks A,B,C

already present
in the Pool

Subblocks X and Y
added to Pool as
not already present

Figure 2

PCT/AU2006/000327

WO 2006/094366

2/9

yseH
20iqQns

Xapuj
Xooigns

—_—]

12>

[00d
3o0[qqns

S

¢ o1nbi4

gom
o|ge] dO1d

A

yseH
io
sweN

a014g

WO 2006/094366 PCT/AU2006/000327

3/9
Subblock Hash Bits 42 40

/ Binary Digital Search Tree
keyed on successive bits of

Subblock Hash
2 T
Hash Tables in Tree L.eaves
- (or pointed to by them) map
Subblock to Subblock
Storage Locations
Figure 4
—
Spiit
Figure 5
62
\
Dy
Split
All entries in this Node 66
have Subblock Hashes Prefix Prefix
whose Prefix is 00001.... 000010.... 000011....

60 Figure 6

WO 2006/094366 PCT/AU2006/000327

Subblock Hash (e.g.128 bits)

—

Some Leftmost ~ Remaining Bits may be used
Bits used to to access l.eaf Hash Table\

Traverse tree
70— 72

Figure 7

80
Memoryf

Disk
AT TT T T L1 T\,

Array of Leaf Hash Tables on DiSk\SB

Figure 8

Bl

Figure 9

92

WO 2006/094366 PCT/AU2006/000327

5/9

10
Subblock Hash /Y

Of(111

Figure 10
Key 1
Hash
Key 2 L—*@D—\—/' Table
110/

Hash Table Collision
Figure 11 Prior Art

Key 1 —r®\ /5'124
Key 2 ‘,®~v Value 1] ~:——~;r>[Value 2|
J 5

122/ Value

Key 3

. Overflow Area
Figure 12 Prior Art \1 20

' Value 1 _
Key 2 M Value 2 Overflowing to
Value 3 the next Slot \
X
Key 3 [— %

130

Figure 13 Prior Art

WO 2006/094366

6/9
0
1
2
Key
3
Hash to
Bucket
Number
5
6
Figure 14
152
—_—

PCT/AU2006/000327

3140
>Bucket

Memory

Disk

[A]B]C][B;
158/ Uj\ws
Figure 15

WO 2006/094366

PCT/AU2006/000327

\

2 2

1

Depth of Node \1 70\1 70\1 70

Figure 17

K164

Figure 16

\166

Z Depth of Node

WO 2006/094366 PCT/AU2006/000327

8/9

184
SubBlock -/ 182

< Function /1 86

>l Key »Value
Derived
from
180 Sublock Location
of
SubBlock
Mapping Method
\
Figure 18
/1 94
§1 92
oL 1 N Memory
""""""""""""""""""""""""""""""" DiskZ
191
Hash Table—"" 120 198" |jash Table Hash Table
Figure 19
Original ‘/l—-l\ |Original
Key \T/ Key
Secret
Key

Figure 20

WO 2006/094366

BLOB
Records

Sublock
Pool

Subblock Index
binary digital
search tree

Subblock
Index Hash
Tables

Disk Memory '
oo/ \\///1216

PCT/AU2006/000327

9/9

(218

-

I a

<

)

/L
Caches

Subblock Index
binary digital
search tree

Figure 21

INTERNATIONAL SEARCH REPORT International application No.

PCT/AU2006/000327
A. CLASSIFICATION OF SUBJECT MATTER
Int. CL.
GO6F 12/12 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DWPI, IEEE, USPTO: G06F-012/ic, US class 711/, blob, block subblock, object, partition, subdivision, redundant, -
duplicate, repeat, hash, index, key, tree, directory, bitfilter, mask, flag, present, absent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

' Category* | Citation of document, with indication, where appr'opriate, of the relevant passages Relevant to.r
: claim No.

A US-6754799-B2 (FRANK) 22 June 2004 ' 136
See whole document

A US-6704730-B2 (MOULTON et al.) 9 March 2004 1-36
See column 11 line 32 to column 12 line 20, and figures 9 to 11 in context of the whole
document

A US-6594665-B1 (SOWA et al.) 15 July 2003 1-36

See whole document

A US-5990810-A (WILLIAMS) 23 November 1999 1-36
See whole document '

D Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:

"A" document defining the general state of the art which is "I later document published after the international filing date or priority date and not in

not considered to be of particular relevance conflict with the application but cited to understand the principle or theory
. underlying the invention ’

"E" earlier application or patent but published on or afier the "X" document of particular relevance; the claimed invention cannot be considered novel

international filing date or cannot be considered to involve an inventive step when the document is taken
alone

"L" document which may throw doubts on priority claim(s) "y document of particular relevance; the claimed invention cannot be considered to
or which is cited to establish the publication date of involve an inventive step when the document is combined with one or more other
another citation or other special reason (as specified) such documents, such combination being obvijous to a person skilled in the art

"Q" document referring to an oral disclosure, use, exhibition o) .
or other means & document member of the same patent family

"P* document published prior to the international filing date
but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
02 June 2006 . b JUN 2006
Name and mailing address of the ISA/JAU Authorized officer

AUSTRALIAN PATENT OFFICE , /\é(f <

Fomel e po@ipasmlingovin MIEHARL HARDY

Facsimile No. (02) 6285 3929 Telephone No : (02) 6283 2547

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/AU2006/000327

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information.

Patent Document Cited in Patent Family Member
Search Report

US 6754799 - US 2002178341

US 6704730 AU 38189/01 AU 38267/01 AU 38269/01
AU 41488/01 AU 43154/01 AU 49987/01
AU 96665/01 CA 2399236 CA 2399522
CA 2399529 CA 2399531 CA 2399555
CA 2426577 EP 1266290 EP 1269316
EP 1269325 EP 1269332 EP 1269350
EP 1344321 US 6810398 US 6826711
US 7000143 US 2001034795 US 2001037323
US 2001042221 US 2001044879 US 2002010797
US 2002048284 US 2002152218 US 2004148306
US 2004225655 US 2005022052 US 2005120137
WO 0161491 WO 0161494 WO 0161495
WO 0161507 WO 0161518 WO 0161563
WO 0237689 ’

US 6594665

US 5990810 AU 46593/96 WO 9625801

| Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

