The invention consists of methods by which agar or an agaroid is hydrolysed under controlled conditions to give materials which form very low strength gels when 1% solutions in water are cooled, and which, at near zero gel strengths, give dispersions which act like creams. These can be used as bases for skin treatment products, cosmetics, food and have the advantage for skin preparations of being handled like a cream but then behaving like a lotion, the cream leaving no oily residue. Twelve examples are given, including uses for cosmetics, massage gels, etc., and twenty claims are made.

Claim

1. A process by which an agar or or agarose in which the agarobiose content has been maximised by rigorous alkali treatment, and with 0-2 methyl groups per agarobiose unit, is partially hydrolysed or partially depolymerized using acid catalysis such that on neutralisation a solution is obtained which on cooling gives a gel with a dynamic gel strength in the range of 10-100 g/cm² if the gel has 1.5% concentration of the resultant hydrolysed agar, and the resultant solid is readily obtainable as a coarse solid following freeze-thawing.
2. A process by which an agar or agarose in which the agarobiose content has been maximised by rigorous alkali treatment, and with 0-2 methyl groups per agarobiose unit, is partially hydrolysed or partially depolymerized using acid catalysis such as on neutralisation a solution is obtained which on cooling gives a gel with a dynamic gel strength in the range of 0-10 g/cm² if the gel has 1.5% concentration of the resultant hydrolysed agar, and the resultant solid is readily obtainable as a coarse solid following freeze-thawing.

18. Gels containing high levels of alcohols, and alcohol soluble materials, made by blending one part of warm concentrated syrup of 2-20% by weight of aqueous solutions of the products resulting from claims 1 and 2, or the material of claim 5, preferably where the initial agar had 1-2 methyl ethers per agarobiose unit, with hot alcohol or the alcoholic solution such that the final concentration of agar-like products is in the range of 0.5%-3%, preferably 1-1.5%, and allowing the solution to cool.
Title: THE MANUFACTURE OF AND USES FOR LOW MOLECULAR WEIGHT AGARS AND AGAROIDS

The invention consists of methods by which agar or an agaroid is hydrolysed under controlled conditions to give materials which form very low strength gels when 1% solutions in water are cooled, and which, at near zero gel strengths, give dispersions which act like creams. These can be used as bases for skin treatment products, cosmetics, food and have the advantage for skin preparations of being handled like a cream but then behaving like a lotion, the cream leaving no oily residue. Twelve examples are given, including uses for cosmetics, massage gels, etc., and twenty claims are made.
AMENDED DESCRIPTION OF INVENTION

THE MANUFACTURE OF AND USES FOR LOW MOLECULAR WEIGHT AGARS AND AGAROIDS.

This invention relates to methods of making agars with very low gel strengths, and the discovery of uses for these materials.

According to the US Pharmacopeia, agar is a hydrophilic colloid which can be extracted from certain seaweeds of the Rhodophyceae. Its characteristic property is that it is insoluble in cold water, and if 1.5% parts by weight are dissolved in hot water, on cooling it forms a firm gel. Agar is generally considered to be a mixture of agarose and agaropectin. Idealised agarose is a polymer with alternating 3-linked β-D-galactosyl residues and 4-linked α-L,3,6-anhydro-L-galactosyl residues, which can also be thought of as polyagarobiose, and gelation is generally held to arise through the formation of double helices between agarobiose units (Rees, 1969). Agar generally contains a number of agarose precursor units, where the 4-linked residues contain L-galactose-6-sulphate. These 6-sulphated residues cannot form double helices, and hence when these units arise in agar, it is generally held that helix formation terminates, the strands branch, and may form further double helices when strands with appropriate agarobiosyl units can meet. The resultant gel is, accordingly, a large interwoven network. If there are too many L-galactose-6-sulphate units, the amount of double helix structure is too small, and the gel strength weakens. Since L-galactose-6-sulphate units can be converted to anhydrogalactosyl units by treatment with alkali, alkali treatment of agar, or agar bearing seaweeds, is commonly practised in order to improve gel strength (Armisen 1987).
Alkali treatment of agar to improve gel strength is well known to those familiar with the art, and the literature contains a number of procedures. For the purposes of this invention, we define an alkali treatment as "rigorous" if a repeat of the treatment or of a standard alternative alkali treatment to the resultant agar leads to no significant decrease in level of sulphate ester.

Agar is generally used industrially because of its rather unusual gelling properties, and the gel strength of an industrial agar of 1.5% concentration generally lies between 600-1100g/cm². An important feature of an agar gel is the property of syneresis, whereby when pressure is applied to it, water is squeezed from the gel. Accordingly in some cases when a weaker binding force is required and the option of using less agar might lead to excess syneresis, an agar which has had its gel strength reduced might be used as increasing the agar content reduces the tendency towards syneresis. The manufacture of a partially hydrolysed agar for this purpose has been proposed (Kojima et al 1993). Of particular interest regarding this material is the proposed means of dehydrating the gel, as shown by the following quote: "When an agar of low gel strength is interposed between dehydrating cloths and pressurized, clogging occurs in the cloths and dehydration is not performed desirably. On the other hand, in the case of employing the freezing/denaturing process, an agar gel of a low gel strength does not have an orderly spongy structure, and it is caused to flow out with water." Accordingly these workers proposed to prepare a low gel strength agar and isolate it by evaporating off water, with the option of alcohol precipitation from concentrated solutions.

It is generally held to be not possible to make an idealized agarose, as there is always some residual sulphate ester, but it becomes clear from the above theory that if sufficient sulphate ester is removed, and sufficient hydrolysis is performed to shorten the polyagarobiose molecules, strands of shorter double
helices may be formed with no defects in their structure. Although the constituent analyses may be little different from a low gel strength agar, significant differences in properties of the material should be expected, since on the molecular level, there will be a minimum of interstrand connectivity, and the molecules will consist of rods of double helix. The purpose of this invention is to show that these expectations can be met, although this invention is not intended to be dependent on the validity of the theory outlined above.

What we have found is that provided there is sufficiently low levels of anionic content arising from sulphate ester, and if the hydrolysis is carried out for a sufficient length of time, what is obtained is a material which behaves in solution like a thick paste. While normal agar, after freeze-thawing, is recovered as leathery spongy-like lumps corresponding to the original lumps of agar, and weak gel-strength agar does not denature at all well, leaving a material with insufficient strength to enable it to be easily recovered, if the product of this invention is freeze-thawed, the polyagarobiose units, assumed to be in the rod-like configuration, form a coarse fibre-like precipitate which can be recovered by straining the water through a gauze. The fibrous material is able to be further dewatered by squeezing it for a few minutes in a filter cloth and the precipitate is sufficiently firm that clogging does not occur. Although the material of this invention does not have to be purified this way, it is characteristic of the material of this invention that it can undergo such a freeze-thawing process. This clearly differentiates it from the weak-gelling agar in the prior art, for which the freeze-thawing process is unavailable.

Gel strengths are usually recorded in terms of the ability of a gel to support a force for 20 seconds. This material has zero rigidity, hence such a measurement would give a result of zero. We have, however, found it possible to
differentiate between such virtually zero strength gels according to their resistance to flow, by placing the gel on a balance pan and penetrating the material with a 1 cm2 plunger within a period of approximately 1 second. The maximum reading from the balance is recorded as a dynamic gel strength, and while it is somewhat arbitrary, it does separate very weak gels into two classes, namely those with such a dynamic gel strength of less than 10 g/cm2, which are essentially thick flowing liquids, and those greater than 10 g/cm2 by this method, in which some gel-like structure is progressively retained as the dynamic gel strength increases so that on stirring some gel-like lumps are retained.

A number of other agar bearing seaweeds give low strengths when extracted, but when treated with alkali following methods known to those practised in the art, give an agar with a higher gel strength. These initial weak gels tend to rupture, and in the limit of weakness flow as a sloppy gel. These initial weak gels generally consist of agar molecules which have high levels of anionic substitution, for example, sulphate ester, and the preparation of such materials are not the subject of this invention.

If, however, the agars from such seaweeds are treated according to the methods of this invention, that is they are subjected to rigorous alkali treatment followed by controlled acid hydrolysis, the resultant gels have a rather unusual creamy texture and with unusual water retention properties. The best gels for some of the purposes of this invention are gels which have a low gel strength specifically because of the lower molecular weight, and paradoxically are best prepared from high gel strength agars. The material of this patent is a low molecular weight agar with negligible amounts of 4-linked residues in any form other than as anhydrogalactosyl. It is characterized by forming an ultraweak gel with a very low gel strength, but which, on freeze-thawing, forms
a readily collectible coarse fibre-like precipitate. Of special note is the absence in the 13CNMR spectrum of any significant signal at 67.9 ppm or at 101.3 ppm which would be due to L-galactose-6-sulphate.

There are already a number of thickeners and gels on the market which have a number of uses, particularly in the food industry, and the uses are generally based on water retention properties, gelling ability, emulsifying properties, and stabilizing properties. Many of these properties depend on the specific chemical nature of the colloid, and because the different agents have different properties, each find specific niche uses. Most of the colloids in current use either give viscous solutions, strong gels, or have chemical functional groups which specifically interact with other materials. While this may be useful for certain applications, it can be a disadvantage on other occasions.

The materials described in this invention are neutral non-interacting colloids with low gel strength and which have properties which are either difficult to obtain with other materials, or which will at least provide the public with a useful choice. There are a range of products with a narrow range of properties which depend on the origin of the material. Whereas the normal purpose of agars is to give a firm texture in the end result, to suspend materials or to hold them together, in other words the focus is generally on the solid components, the most common use envisaged for these materials is for carrying and releasing fluid, especially water and materials dissolved in it, in other words the focus is generally on the fluid it contains. It is for this reason that the gel is made deliberately weak, namely to make it easy for the controlled release of liquid.

The preferred material for many applications is a polymer with as little substitution as possible, and with the highest anhydrgalactosyl content, and
this type of polymer is best obtained by hydrolysis of an agar of high gel strength under controlled acidic conditions. Acid hydrolysis is a well known method for degrading agar, and generally it has been used to determine the constituent sugar in agar. The essence of this invention is that it is possible to control such a hydrolysis, to prepare new materials suitable for use to which agar itself is far less suitable.

Alternative methods of obtaining the low gel strength polymer are available, however, and include oxidative degradation, fractionation of the polymer and also alkali treatment of the agaropectin molecules. A further method is to heat the moist solid in the presence of certain inorganic materials, which is a variation of the hydrolysis method. The acid hydrolysis is, however, the most readily controlled method of obtaining this material.

The starting material for the preparation of the low gel strength agars of this invention can also be specific seaweeds which produce relatively low gel strength agars naturally as a consequence of a naturally low molecular weight and/or excess sulphate ester. For these polysaccharides, rigorous alkali treatment is required, but the following acid hydrolysis may have to be carried out for a relatively short time. Without limit to the generality, these seaweeds may include certain Gracilaria species, especially those whose gel strength has otherwise been considered too weak to be of commercial interest, including as an example, but without limit on the generality, Gracilaria secundata which when extracted, even after rigorous alkali treatment yields an agar with a gel strength in the order of 35g/cm², and also species from from the Ceramiaceae and Rhodomelaceae, where specific substitution on the resultant agar-type molecule may give properties of specific interest. Of particular interest is the presence of natural methylation. A specific example is the
agar from Euptilota formosissima, which, following alkali treatment and extraction, has a gel strength up to 140g/cm², and has the 6-hydroxyl group of the D-galactose units almost completely methylated, which in turn will give the material more hydrophobic properties. This agar, following short acid hydrolysis, gives a very low gel strength agar with the creamy nature, but the more hydrophobic nature of the agar gives this agar a different texture, and it should also be more useful for dispersing more hydrophobic components, such as oils and some flavours. A further example which demonstrates the key feature of this invention is the agar from Curdicia coriacea. The natural extract either does not gel, or it gels very weakly, but the weak natural gel, with its high level of 6-sulphate ester, cannot be easily purified by freeze-thawing and the material is unsuitable for the purposes of this invention. Following alkali treatment, a gel strength of well over 1000 g/cm² is readily obtainable, and following acid hydrolysis as described herein, a weak gel is again obtained, but this time on freeze-thawing it forms the coarse precipitate-like material which is easily recovered. This material has two methyl groups per agarobiosyl unit (Furneaux, Miller & Stevenson, 1990) and is even more suitable for dispersing hydrophobic materials.

The methylated agars employed here are naturally methylated. Synthetic alkylation is also possible (Guiseley, 1976) but this material differs from currently known natural materials in that alkylation also occurs at the 2-position of the 3-linked residue. It has been shown that such alkylation disrupts the double helix, and incidentally lowers the gelling temperature and the gel strength (Miller, Falshaw and Furneaux, 1994), and such materials are different from those of this invention.

The material can also be obtained from seaweeds which would normally produce agar with a high gel strength, but which have undergone biological degradation,
for example through storage under damp conditions, or through being left for too long on the beach prior to collection, or also from normal agar manufacture where gel degradation has occurred. The invention can also utilize wastes from high quality agar production but which, for some reason, have undergone degradation and are no longer useful for high gel strength applications. Accordingly this product will be expected to be of considerable value in that it permits the use of material which would otherwise be rejected.

The most straightforward hydrolysis technique is to dissolve the agar in boiling water and add an acidic buffer. After a suitable length of time, which depends on the chosen pH of the solution and the initial gel strength of the agar, the solution is made neutral, and for control purposes this neutralization may include the use of a salt, or acid, which has buffering capacity at around pH7, such as phosphate, and the solution is cooled and allowed to gel. One such acid buffer is sodium hydrogen sulphate, which when 0.125% by weight is added, gives a pH in the order of 1.4, and for an agar with a gel strength of 1000g/cm² is reacted at 98 degrees for between 1 minute and 20 minutes, preferably between 5 and 12 minutes, to give a gel with a dynamic gel strength of about 60g/cm² (5 minutes) or 10g/cm² (10 minutes). Certain polyacids such as citric acid, or pyromellitic acid, can act as an acid buffer for the controlled hydrolysis, and also provide buffering to control the neutralization.

The rate of hydrolysis depends on the strength of the acid. Thus when reacting an identical sample under the same conditions as above, at a pH of 2.6, after one hour the dynamic gel strength was 40g/cm², while at pH 4.3, after 1hr 30 mins, there was no significant loss of gel strength when compared with the original sample. A sample of wet powdered agar, pH of approximately 4.5, was held at 60 degrees for two days, and a material with a dynamic gel strength of
approximately 10g/cm² was obtained. These times are given as guides for making the product, however the precise times of reaction will be expected to depend to some extent on the nature of the raw material. The method is applicable to agars with methyl ethers. Thus a 1.5% solution of Gracilaria agar which initially had a gel strength of 600g/cm², when made acid at pH 1.4 for five minutes at 100 degrees, then neutralized, gave a dynamic gel strength of 30g/cm². Similarly, a 1.5% gel made from the alkali treated agar-like extract from Euptilota formosissima, which had a gel strength of 140g/cm², when made acid at pH 1.4 for three minutes at 100 degrees, then neutralized, gave a gel with a dynamic gel strength of 10g/cm².

The rate of hydrolysis also depends on the concentration of the acid, even though the pH is the same. Thus when 25g of agar, gel strength 750g/cm² were dissolved in 1.5 litres of water at 95 degrees C, the addition of 500mg of citric acid, following by adjustment of pH to 3.25, gave a gel with dynamic gel strength 40g/cm² after 25 minutes, and the creamy material with almost zero dynamic gel strength after 35 minutes. If, on the other hand, the experiment was repeated with 300mg of citric acid, and the pH adjusted to 3.25, after 35 minutes the gel had a dynamic gel strength of 50g/cm².

The exact gel strength obtained is dependent on the specific conditions, and the nature and purity of the agar, and these gel strengths should be considered as examples obtained from this specific set of conditions. It is the method of the invention to obtain a low gel strength agar from the high gel strength material by heating it with an acid catalyst, and a very wide range of possible conditions can be expected within the scope of the invention. Thus for practical reasons the pH range of between 1 and 3.5 would seem to be the most
useful, but extremely rapid flash hydrolysis with stronger acid, the use of weaker acids at elevated temperatures in pressurized reactors, or hydrolysis for far longer times with weaker acid is still within the scope of this invention.

Thus if 200ml of a 1.5% solution of a slightly coloured agar of gel strength 800g/cm² is heated at 110 degrees for 2 hr with 0.4g sodium bisulphite, which will have a pH initially below 6, a white agar with a dynamic gel strength of about 10g/cm² was obtained. The use of pressure will be of particular value if the acid catalyst also functions as a preservative, as in this case the hot solution can be immediately used without further purification, and no isolation of the low gel strength agar is required. Accordingly, all uses of acidic preservatives for the preparation of this low gel strength material are within the scope of this invention provided the end product meets the definition above.

Once the hot solution is prepared, it should be neutralized, e.g. by sodium hydroxide or sodium carbonate, and if desirable, the solution can be subjected to chemical reduction, preferably by adding a small amount of sodium borohydride, to remove colour generated from the hydrolysis and stabilize the material. Hydrolysis at elevated temperatures using sodium bisulphite will automatically hydrolyse the material and maintain a white colour to the product.

This solution can be used as is, if the sodium sulphate can be tolerated, the sodium sulphate can be removed by means generally known to those practiced in the art, e.g. by ion exchange, dialysis, washing through ultrafiltration, etc, or the low gelling strength agar can be isolated by means generally known to those practiced in the art, e.g. direct drying, or through prior concentration, e.g. through ultrafiltration. A convenient method of concentration is to allow the solution to gel from a reasonably concentrated solution, then to freeze it.
then to thaw it and wash/dialyse it in warm water. The agar is readily
dialysed, and the solid can be recovered by pouring the solution over a fine
mesh and allowing it to drain. Once drained, gentle squeezing will extrude
further water. This method has the advantage that it allows easy purification
by washing out unwanted salts. However, the method of dewatering the gel can be
chosen for convenience, and is not critical to the subject of this invention.
It is the ability of the material to be successfully purified by freeze-thawing
which partially defines it as being within the scope of this invention.

A further purpose of this invention is to provide uses for these low gel
strength agars, and these uses are claimed irrespective of the source of the
agar. The low gel strength agar, when cooled from solution, gives a weak gel
which can be easily worked to give a paste-like material with unusual
consistency and water retention properties. Uses for this material will
frequently involve the agar as providing a base material which will carry
water, and other materials mixed or dissolved in it.

Thus one novel use for this material is as a base for massage gels. An agar gel
obtained by hydrolysis of Pterocladia agar with a dynamic gel strength of
approximately 40g/cm² is easily worked, and when applied in the course of
massage, provides lubrication for a longer period of time than will other gels.
We interpret this as being due to the ability of the gel to retain water, and
release it slowly through syneresis, although our claim is based on the
observed improved performance and not on this explanation. The gel also acts as
a carrier for any soluble agent which may give other useful benefits, such as
an anti-inflammatory agent, and it will release this more slowly through the
course of the massage than would otherwise be the case. It is also possible to
add an agent such as a carrageenan to the gel which can be released to give the
skin a pleasant rub-out feel following the massage. For a massage gel, the
concentration of low gel strength agar should be in the range of 0.5-20% by weight, although the best effects are found in the range of 1-2% by weight. Increasing the concentration of agar increases the stiffness and reduces the overall lubricating power of the gel, but notwithstanding this, increasing the levels of agar up to the 20% range, which would only be practical if the agar is far more hydrolysed than is indicated elsewhere in this patent, are intended to be included in this claim.

A major benefit of the use of these agents as skin application products, including but not limited to, massage gels, is that the resultant product is non-oily, and when rubbed into the skin, leaves no residue which would stain or otherwise adversely affect clothing, and the gels themselves also leave the skin with no visible sign that anything has been applied.

A further use for these low gel strength agars is to produce a mixture which will behave in texture a little like a cream. The material can be easily deformed, or poured, and it behaves as if it had some thixotropic properties. This is particularly the case for those agars at the lowest useful end of their dynamic gel strength, eg from 1-20 g/cm³. It must be emphasised that at these low gel strengths, the "strength" is as much a resistance to flow, and the measurement depends to quite an extent on the velocity of the plunger. The gel strengths quoted here are intended for guidance, and are not intended to be definitive physical measurements.

These very low gel strength agars are expected to have uses as suspending agents, eg to slow the flow of, say, an ice cream topping. Such a topping can, however, take advantage of the hysteresis effect in agar gelation, in that since the gel does not remelt until about 85 degrees C, depending on the source of agar, a topping could also be usefully applied to a hot desert, without it...
melting and running away as many other such toppings would do. Such a topping could include any normal flavours, including crushed fruit, juice, chocolate flavours, caramels, syrups, and also, taking advantage of the fact that some agars can retain quite high levels of alcohol, liqueurs. It should be emphasised that this invention is that of the base material, and the additives noted here are intended as examples rather than as defining the limits of the usefulness of the material.

The use of such mixture is, of course, not limited to toppings, nor is it limited to desserts. Any food use where a thickened sauce-carrier might be required and where this low gel strength agar is employed is considered within the scope of this invention, and this can include liqueur fillings, fillings for cakes, chocolates, etc, internal sauces for desserts, mayonnaises, etc.

The major advantage for foods that we see in this invention is that it is possible through this invention to make a material of a cream-like texture, but which is neutral, that is it does not react with other foods. Such reactions with other foods can, of course, be useful in themselves, eg the carrageenan-milk reaction is the basis of instant puddings, but equally there are some times in food preparation where a non-interactive food thickener is desirable. This is particularly the case when a range of food mixtures is required, as the thickness of the final product will not depend in any dramatic way as to how the product is made (ie, the order of addition, which is important with some other food additives) or the nature of the additives.

A further advantage lies in the fact that the thickening can be obtained with almost no calories, and totally free of any fat. The only components, besides desired additives, are 98.5% water, or thereabouts, and the remainder an agar which is essentially non-nutritional. Use for preparing diet or diabetic food preparations is clearly indicated.
While describing this invention, reference has been made to a number of subjective terms to describe texture. The descriptions have been given to assist in outlining the nature of the invention, and such terms are to be regarded solely in this light. The purpose of the invention is to provide the low gelling strength agar as a base for various uses, and is not to be defined by whether such descriptive terms could be used by others.

Where in the foregoing description reference has been made to specific components or integers of the invention having known equivalents, then such equivalents are herein incorporated as if individually set forth.

Although this invention has been described by way of example and with reference to possible embodiments thereof it is to be understood that modifications or improvements may be made thereto without departing from the scope or spirit of the invention.
Literature Cited:

Miller, I.J., Falshaw, R., Furneaux, R., 199 Carbohydr Res 262, 127-135

EXAMPLES

When Pterocladia agar is used in the following examples, the agar had previously been alkali treated, and the sample had a gel strength (1.5% solution) of 750g/cm². Other agars were also rigorously alkali treated.

1. 26g Pterocladia agar was dissolved in 1.4 litres of water at 96 degrees C. 500mg of citric acid was added and the pH was adjusted to
3.25 by addition of a few drops of dilute hydrochloric acid. The solution was stood at 96 degrees for twenty-five minutes, then the pH was increased to 7 with sodium carbonate solution. 15mg of sodium borohydride was added, the solution was stirred then poured into containers to gel. The gel was frozen then thawed by immersion in warm water, at which time the agar appeared as a coarse precipitate in the water. The agar was recovered by pouring the liquid onto a gauze, then the agar was dried. On reconstituting, the dynamic gel strength was 40g/cm².

2. The procedure of example 1 was followed, except that the solution was stood at 96 degrees for 35 minutes. This hydrolysed agar could also be isolated from freeze/thawing, and the resultant material, after being recovered from the gauze was placed in a fine cloth and further water pressed from it. The resultant cheese-like material was dried, and on reconstitution by dissolving in hot water (1.5% solids) and cooling gave a cream-like material with zero gel strength.

3. To 1.5 litres of water at 95 degrees was added 22g of the hydrolysed agar obtained from example 1, then 5g of lambda carrageenan and 1.2g of commercial bacteriostat. The solution was stirred until dissolution was complete, then the solution was allowed to gel, to give a massage gel base which has good lubrication properties, and when rubbed dry leaves a non-oily smooth feel to the skin.

4. To the hot gel base of example 3, 45g of the extract from St John's Wort is added and stirred in. When cooled, the gel can be used for massage, while at the same time the essential oil is applied.
5. The procedure of example 3 is followed, except that the hydrolysed agar from example 2 is used. On cooling a gel base is obtained with creamy texture which can be rubbed in and rubbed dry, to give an oil-free skin with a "velvety" feel.

6. The procedures from examples 1 and 2 were followed using agar from Gracilaria chilensis, which also started with a gel strength of 700g/cm². The final products were similar in gel strength to those quoted in these examples, but the weak gels had a different texture, and tended to release water more quickly when the gel was rubbed than the products from Pterocladia.

7. To the bases of examples 1, 2 and 6 cleansing agents, astringent agents, etc, can be added to allow that function to be completed without leaving an oily residue. Alternatively, small amounts of menthol can be added to give the effect of cooling lotions. The material is applied to the skin the same way a gel or cream is, but on gentle rubbing, it behaves more like a lotion. Thus if 3% of potassium aluminium sulphate and 0.1% bacteriostat are added to a 1.3% solution of the material from example 1, and the solution is allowed to cool, a gel is obtained which when rubbed on the skin behaves in a very similar fashion to an astringent lotion. When dried, gel material is not discernible, and no staining or otherwise objectionable residues remain.

8. The procedures of examples 3 and 5 are followed, but the lambda carrageenan is replaced by the extract from Champa nouvelle-zelandia. The gel is used for the same purpose, but has the advantage that just prior to rubbing dry, the friction on the skin
is much reduced, and the final texture is different. Other sulphated polsaccharides can also be used to replace the carrageenan, each giving slightly different textures and performances.

9. The gel bases can also be used to transport aqueous solutions or emulsions with pharmaceutical or other active ingredients to the skin. Thus a solution was prepared by dissolving 1.3 parts of the material prepared from Gracilaria chilensis, according to example 1, 0.3 parts fucoidan, and 0.1 parts bacteriostat in 100 parts water and to this was added 3 parts juniper oil dispersed in a mixture of 3 parts of Tween 20 and 3 parts Tween 80. The resultant gel was effective at removing acne, but when applied and rubbed in left no traces of the material which had been applied.

10. Hydrolysates were prepared following the procedures of examples 1 and 2 for the agar from Curdita coriaceae, which has almost two methyl groups per biose unit. 0.67g of this hydrolysate were dissolved in 50 ml of water containing 0.05g bacteriostat at 118 degrees in a pressure vessel. The resultant weak gels behave in a similar way to other agars, except that they do not redissolve in boiling water, and they have a different texture.

11. 0.67g of hydrolysate from Curdita coriaceae, as described in example 10, was heated in a pressure vessel at 180 degrees in the presence of 16g water. On cooling a syrup was obtained. To this syrup, 48 ml of ethyl alcohol were added carefully with good stirring, the alcohol having been preheated almost to its boiling point. A weak gel similar to those described above is obtained, except that the fluid being carried is 75% alcohol. The alcohol may
have essential oils dissolved in it, and may be used as a cooling gel, or as a non-spilling fuel.

12. To 80g of boiling water was added 1.3g of the material of example 2 and 0.2g of preservative, and the liquid was boiled until dissolution was complete. If desired, a thickener, such as lambda carrageenan could be dissolved into the solution, and then a fruit essence or concentrate was added. The volume was made up to 100 ml, and the whole allowed to cool, to give a fruit flavoured cream-like material with almost no calories.

Where in the foregoing description reference has been made to specific components or integers of the invention having known equivalents, then such equivalents are herein incorporated as if individually set forth. Although this invention has been described by way of example and with reference to possible embodiments thereof it is to be understood that modifications or improvements mya be made thereto without departing from the scope or spirit of the invention. In particular, since the invention describes a gel for carrying fluids for specific purposes, and where additives known to those familiar with the art are included by way of example, other additives may be used without departing from the scope of the invention.
AMENDED CLAIMS

1. A process by which an agar or agarose in which the agarobiose content has been maximised by rigorous alkali treatment, and with 0-2 methyl groups per agarobiose unit, is partially hydrolysed or partially depolymerized using acid catalysis such that on neutralisation a solution is obtained which on cooling gives a gel with a dynamic gel strength in the range of 10-100 g/cm² if the gel has 1.5% concentration of the resultant hydrolysed agar, and the resultant solid is readily obtainable as a coarse solid following freeze-thawing.

2. A process by which an agar or agarose in which the agarobiose content has been maximised by rigorous alkali treatment, and with 0-2 methyl groups per agarobiose unit, is partially hydrolysed or partially depolymerized using acid catalysis such as on neutralisation a solution is obtained which on cooling gives a gel with a dynamic gel strength in the range of 0-10 g/cm² if the gel has 1.5% concentration of the resultant hydrolysed agar, and the resultant solid is readily obtainable as a coarse solid following freeze-thawing.

3. A process by which the solutions of partially hydrolysed agar from claim 1 following neutralization may be reduced with sodium borohydride to give a white "agaritol" with improved stability.

4. A process by which the solutions of partially hydrolysed agar from claim 2 following neutralization may be reduced with sodium borohydride to give a white "agaritol" with improved stability.
5. The low molecular weight agaritols which are produced by the processes of claims 3 and 4.

6. A gel base for application to skin prepared by redissolving the agar-product resulting from the process of claims 1 or 2 in hot water and allowing to cool.

7. A gel base for application to skin prepared by redissolving the agaritols of claim 5 in hot water and allowing to cool.

8. A gel for skin application prepared by adding lambda carrageenan to the gel bases of claims 6 or 7.

9. A gel for skin application prepared by adding carrageenans to the gel bases of claims 6 or 7.

10. A gel for skin application prepared by adding fucoidan to the gel bases of claims 6 or 7.

11. A gel for skin application prepared by adding sulphated polysaccharides from red seaweeds from the Lomentariaceae, Cryptonemiaceae, or Kallymeniaceae families (as defined in "The Marine Algae of New Zealand", V.J. Chapman.) to the gel bases of claims 6 or 7.

12. Massage gels prepared by adding essential oils or pharmaceuticals to the gels of claims 8 to 11.

13. Skin cleansing gels by adding water soluble cleansing agents to the gel bases of claims 6 or 7.
14. Skin nutritive, emmollient or moisturizing gels prepared by adding nutrient agents and/or agents which regulate the flow of moisture and which may include, but are not limited to, the sulphated polysaccharides in claims 8-11, to the gel bases of claims 6 or 7.

15. Astringent skin gels prepared by adding astringent agents to the gel bases of claims 6 or 7.

16. Gels for applying insect repellents to the skin by blending the repellents with the gel bases of claims 6 or 7.

17. Gels for applying pharmaceutical products to the skin by blending the pharmaceutical products with the gel bases of claims 6 or 7.

18. Gels containing high levels of alcohols, and alcohol soluble materials, made by blending one part of warm concentrated syrup of 2-20% by weight of aqueous solutions of the products resulting from claims 1 and 2, or the material of claim 5, preferably where the initial agar had 1-2 methyl ethers per agaroobiose unit, with hot alcohol or the alcoholic solution such that the final concentration of agar-like products is in the range of 0.5%-3%, preferably 1-1.5%, and allowing the solution to cool.

19. Readily deformable gels or cream-like materials for containing or holding syrups, juices, essences, flavours and related food products in food applications, using the products arising from claims 1 and 2, and of claim 5.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification of Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>6C08B37/12</td>
<td>A61K7/48</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Minimum documentation searched (classification system followed by classification symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 6 C08B A61K A23L A23G C08L</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are cited in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, O 570 252 (INA FOOD INDUSTRY CO) 18 November 1993</td>
<td>1, 2, 6-8, 12-15, 18-20</td>
</tr>
<tr>
<td></td>
<td>see page 3, line 36 - line 44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 5, line 12 - line 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 7, line 52 - line 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 26, line 19 - page 27, line 23</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

<table>
<thead>
<tr>
<th>Date of actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 November 1994</td>
<td>17.01.95.</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. 31 651 epos ab,
Fax (+31-70) 340-3016

Authorized officer

Lensen, H
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CHEMICAL ABSTRACTS, vol. 92, no. 3, 21 January 1980, Columbus, Ohio, US; abstract no. 20874r, MATSUMOTO HARUMI ET AL. 'Effect of organic acid salt pm the gelatinization of organic acid-agar jelly' page 550; see abstract & KASEIGAKU ZASSHI, vol.30, no.7, 1979 pages 613 - 617</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>CARBOHYDRATE RESEARCH, vol.13, no.2, 1970, AMSTERDAM pages 247 - 256 KENNETH B. GUISELEY 'The relationship between methoxyl content and gelling temperature of Agarose' see page 253; table V see page 256, paragraph THIRD</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US. A. 4 507 472 (USHER ET AL.) 26 March 1985 see column 1, line 35 - line 38</td>
<td>3, 4</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 6056625</td>
</tr>
</tbody>
</table>