
JP 4467094 B2 2010.5.26

10

20

(57)【特許請求の範囲】
【請求項１】
　システムの複数の処理段を有するプロセッサパイプライン（２００）において命令をサ
ンプリングする装置であって、
　パイプラインの第１段へ、サンプルビット（４０１）及びサンプルレジスタファイル識
別フィールド（４０２）を含む複数の指示フィールドをそれぞれが有する命令をフェッチ
する手段（２１０）と；
　現在実行されているフェッチされた命令のいずれかのサブセットをサンプリングのため
に選択された命令としてランダムに識別するのに、その選択された命令中のサンプルビッ
ト（４０１）をアサートすることによりランダムに識別する手段と；
　選択された命令のいずれかがパイプラインのいずれかの段にある間に前記のシステムの
状態情報を与える手段（２８８）と；
　前記状態情報を記憶するための複数のプロファイルレジスタ（３００）と；
　全ての選択された命令がパイプラインを出てしまったことをソフトウェアアプリケーシ
ョンに通知して、ソフトウェアアプリケーションがいずれの状態情報も読み取れるように
する手段と
を備え、
　前記指示フィールド（４０１，４０２）の中の少なくとも一つは、前記の選択された命
令が監視のために選択されたことを指示し、前記指示フィールド（４０２）は前記の選択
された命令と関連する命令番号を指示することを特徴とする装置。

(2) JP 4467094 B2 2010.5.26

10

20

30

40

50

【請求項２】
　前記の選択された命令は、パイプライン（２００）により完全に処理される有効命令と
、パイプラインを出る前にアボートされる有効命令と、パイプラインを出る前に部分的に
処理される無効命令とを含む請求項１に記載の装置。
【請求項３】
　前記の監視のための手段をアクチベートするようサンプルビット（４０１）をアサート
する手段を備える請求項１に記載の装置。
【請求項４】
　それぞれの選択された命令と関連の状態情報を一つもしくはそれ以上の指示フィールド
の中の少なくとも一つによりインデックスされるレジスタ（３００）に蓄積する請求項１
から３のいずれか１項に記載の装置。
【請求項５】
　前記の状態情報は一対の選択された命令の間で生じる事象の事象カウントを含む請求項
１から３のいずれか１項に記載の装置。
【請求項６】
　前記の事象カウントは一対の選択された命令のフェッチ間に生じるクロックサイクルの
数を含む請求項５に記載の装置。
【請求項７】
　前記の事象カウントは一対の選択された命令間にフェッチされた命令の数を含む請求項
５に記載の装置。
【請求項８】
　前記の事象カウントは前記一対の選択された命令間にパイプラインの特定の段に入る命
令の数を含む請求項５に記載の装置。
【請求項９】
　前記の事象カウントは一対の選択された命令間にフェッチされた分岐命令の数を含む請
求項５に記載の装置。
【請求項１０】
　前記の事象カウントはプロセッサ、メモリシステム、ネットワーク又はＩ／Ｏサブシス
テム事象の測定を含む請求項５に記載の装置。
【請求項１１】
　特定の事象をカウントする複数のサンプリングカウンタ（５１０）と、
　各サンプリングカウンタを特定の値に初期化する手段と、
　特定の事象に応答してオーバーフローする前記のサンプリングカウンタの少なくとも１
つのオーバーフローに応答してランダムに識別する前記手段をアクチベートする手段と
を更に含んでいる請求項１から１０のいずれか１項に記載の装置。
【請求項１２】
　ランダムに識別する前記手段は前記の複数のサンプリングカウンタのどれがオーバーフ
ローするかに基づいて別々の指示フィールドで前記の選択された命令を識別する手段を含
む請求項１１に記載の装置。
【請求項１３】
　ランダムに識別する前記手段はアクチベートされる平均頻度数を示すため各特定値をあ
るインターバールもしくは間隔の数字からランダムに選択する請求項１１に記載の装置。
【請求項１４】
　識別する前記手段はアクチベートされる平均頻度数を動的に変えるように前記の数字の
間隔のサイズを変更する請求項１３に記載の装置。
【請求項１５】
　前記のランダムに選択される数字はソフトウェアで計算され、それからハードウェアレ
ジスタに記憶される請求項１３に記載の装置。
【請求項１６】
　前記のランダムに選択される数字はハードウェア回路により発生される請求項１３に記

(3) JP 4467094 B2 2010.5.26

10

20

30

40

50

載の装置。
【請求項１７】
　前記の状態情報は前記の選択された命令を識別する情報を含む請求項１から３のいずれ
か１項に記載の装置。
【請求項１８】
　前記の状態情報は前記の選択された命令のアドレスを含む請求項１７に記載の装置。
【請求項１９】
　前記の状態情報は前記の選択された命令を実行するプロセスの識別を含む請求項１７に
記載の装置。
【請求項２０】
　前記の状態情報はアドレススペース番号を含む請求項１７に記載の装置。
【請求項２１】
　前記の状態情報はハードウェアコンテクスト識別子を含む請求項１７に記載の装置。
【請求項２２】
　前記の状態情報はスレッド識別子を含む請求項１７に記載の装置。
【請求項２３】
　前記のソフトウェアアプリケーションに通知する手段が、全ての選択された命令がパイ
プライン（２００）を出てしまったことを指示するため割り込みを発生する請求項１から
２２のいずれか１項に記載の装置。
【請求項２４】
　全ての選択された命令がパイプラインを出てしまったことを指示するためにソフトウェ
アアプリケーションがポーリングできるフラグを前記のソフトウェアアプリケーションに
通知する手段が含んでいる請求項１から２２のいずれか１項に記載の装置。
【請求項２５】
　前記の特定の事象は有効なフェッチされた命令である請求項１１に記載の装置。
【請求項２６】
　フェッチのレートがクロック（６０９）により決定され、そして前記の特定の事象は単
一の潜在的なフェッチされた命令に対応するクロックサイクルの小区分である請求項１１
に記載の装置。
【請求項２７】
　前記の特定の事象はパイプラインのいずれかの特定の段への命令の導入である請求項１
１に記載の装置。
【請求項２８】
　前記の状態情報は前記の選択された命令の中のリタイア／アボート状態を含む請求項１
から３のいずれか１項に記載の装置。
【請求項２９】
　前記の状態情報は前記の選択された命令を処理する間に検出されるパイプラインの処理
状態を含む請求項１から３のいずれか１項に記載の装置。
【請求項３０】
　前記の状態情報は前記の選択された命令が経験する待ち時間を含む請求項１から３のい
ずれか１項に記載の装置。
【請求項３１】
　前記の事象カウントはパイプラインの特定の段に入る一対の選択された命令間に経過す
るクロックサイクルの数を含む請求項５に記載の装置。
【請求項３２】
　請求項１から３１のいずれか１項に記載の装置を含むコンピュータシステム。
【請求項３３】
　システムの複数の処理段を有するプロセッサパイプライン（２００）において命令をサ
ンプリングするコンピュータにより実行される方法であって、
　パイプライン（２００）の第１段へ、それぞれがサンプルビット（４０１）含む複数の

(4) JP 4467094 B2 2010.5.26

10

20

30

40

50

指示フィールド及びサンプルレジスタファイル識別フィールド（４０２）を有する、現在
実行されている命令をフェッチする段階と；
　そのフェッチされた命令のいずれかのサブセットを選択された命令としてランダムに識
別するのに、その選択された命令中のサンプルビット（４０１）をアサートすることによ
り識別する段階と；
　前記の選択された命令のいずれかがパイプラインのいずれかの段にある間に前記のシス
テムの状態情報を与える段階と；
　前記状態情報を複数のプロファイルレジスタ中に記憶する段階と；
　全ての選択された命令がパイプラインを出てしまったことをソフトウェアアプリケーシ
ョンに通知して、ソフトウェアアプリケーションがいずれの状態情報も読み取れるように
する段階と
を備え、前記指示フィールドの中の少なくとも一つは前記の選択された命令が監視のため
に選択されたことを指示し、前記指示フィールドは前記の選択された命令と関連する命令
番号を指示することを特徴とする方法。
【請求項３４】
　前記指示フィールドの中の少なくとも一つによりインデックスされるレジスタにそれぞ
れの選択された命令と関連の状態情報を蓄積する請求項３３に記載の方法。
【請求項３５】
　前記の識別する段階が少なくとも一つのサンプリングカウンターのオーバーフローに応
答して実施され、サンプリングカウンタを特定の値に初期化し、そして特定の事象をカウ
ントするようにする請求項３３に記載の方法。
【請求項３６】
　前記の識別する段階が実行される平均頻度数を示すため各特定値をあるインターバール
もしくは間隔の数字からランダムに選択する請求項３３に記載の方法。
【請求項３７】
　前記の状態情報が前記の選択された命令を認識する情報を含んでいる請求項３３に記載
の方法。
【発明の詳細な説明】
【０００１】
【発明の属する技術分野】
本発明は、一般に、コンピュータシステムの性能測定に係り、より詳細には、多数の同時
実行命令をサンプリングすることに係る。
【０００２】
【従来の技術】
コンピュータプロセッサは、益々高速になっているが、ソフトウェアアプリケーションの
性能は、それに歩調が合っていない。大型の商業用途の場合に、命令当たりの平均プロセ
ッササイクル（ＣＰＩ）値が２．５ないし３という大きさである。４ウェイ命令イッシュ
ープロセッサでは、ＣＰＩが３であることは、１２ごとに１つのイッシュースロットしか
良好に使用されないことになる。ソフトウェアスループットがハードウェアの改良となぜ
歩調が合わないかを理解することが重要である。
このような問題をメモリの待ち時間に転嫁するのが一般的であり、実際に、多くのソフト
ウェアアプリケーションは、データ転送が完了するのを待機して多数のサイクルを費やす
。しかしながら、分岐予想ミスのような他の問題も、プロセッササイクルを浪費する。一
般的な原因とは独立して、システムアーキテクチャー並びにハードウェア及びソフトウェ
アエンジニアは、複雑なプロセッサを組み込んだ近代的なコンピュータシステムの性能を
改善するために、どの命令がストールしているかそしてなぜかを知る必要がある。
【０００３】
通常、これは、システムが動作している間にその振る舞いの「プロファイル」を発生する
ことにより行われる。プロファイルとは、性能データの記録である。しばしば、プロファ
イルは、性能のボトルネックを容易に識別できるようにグラフ的に発生される。

(5) JP 4467094 B2 2010.5.26

10

20

30

40

50

プロファイル形成は、計装及び模擬により行うことができる。計装では、プログラムの実
行中に特定事象を監視するためにプログラムに付加的なコードが追加される。模擬は、実
際のシステムでプログラムを実行するのではなく、人為的な環境においてプログラム全体
の振る舞いをエミュレートするように試みる。
これら２つの方法は、各々、欠点を有する。計装は、追加命令及び余計なデータ参照のた
めにプログラム真の振る舞いを擾乱させる。模擬は、実際のシステムにおいてプログラム
を実行する場合に比して実質的な性能オーバーヘッドを犠牲にして擾乱を回避する。更に
、計装又は模擬では、大規模なソフトウェアシステム全体、即ちアプリケーション、オペ
レーティングシステム及びデバイスドライバコードをプロファイリングすることが通常困
難である。
【０００４】
プロセッサのプロファイル情報を与えるために、ハードウェア実施の事象サンプリングを
使用することもできる。ハードウェアサンプリングは、模擬及び計装に勝る多数の効果を
有し、即ち性能を測定するためにソフトウェアプログラムを変更する必要がない。サンプ
リングは、比較的低いオーバーヘッドで全システムに作用する。実際に、最近では、低い
オーバーヘッドのサンプリングをベースとするプロファイリングを使用して、パイプライ
ンストール及びそれらの原因に関する詳細な命令レベル情報を収集することができる。し
かしながら、多くのハードウェアサンプリング技術は、特定の事象を測定するように設計
されているので融通性に欠ける。
デジタル社のＡｌｐｈａ　ＡＸＰ２１１６４、インテル社のペンティウイム・プロ及びＭ
ＩＰＳ１００００は、データキャッシュ（Ｄキャッシュ）ミス、命令キャッシュ（Ｉキャ
ッシュ）ミス及び分岐予想ミスのような種々の事象をカウントすることのできる事象カウ
ンタを形成する。これらの事象カウンタは、カウンタがオーバーフローするときに割り込
みを発生し、従って、カウンタの性能データを高レベルのソフトウェアでサンプリングす
ることができる。
【０００５】
事象カウンタは、特定のプログラム又はその一部分を実行する間にシステムが招いた分岐
予想ミスの数のような集合情報を捕獲するのに有用である。しかしながら、既知の事象カ
ウンタは、どの分岐命令が頻繁に予想ミスを生じるかのように状態情報を個々の命令に帰
属させる点で有用性が低い。これは、事象カウンタがオーバーフローしそして割り込みを
生じるときには、その事象を生じた命令のプログラムカウンタ（ＰＣ）がもはや使用でき
ないためである。
命令をアウトオブオーダー（順序ずれして）でイッシューすることのできるプロセッサの
動的なオペレーションを推測することが特に問題である。実際に、アウトオブオーダープ
ロセッサで実行されるソフトウェアプログラムの振る舞いは極めて不可解で且つ理解が困
難である。その具体的な例としてアウトオブオーダーのＡｌｐｈａ２１２６４プロセッサ
での命令の流れについて考える。
【０００６】
スーパースカラープロセッサアーキテクチャー
実行順序
アウトオブオーダープロセッサは、命令を正しい順序でフェッチしそしてリタイアするが
、命令をそれらのデータ依存性に基づいて処理する。命令の処理は、レジスタのマッピン
グ、命令の発生及び実行を含む。命令は、それがフェッチされたときから、それがリタイ
ア又はアボートするときまで、「フライト中」であると言える。
各プロセッササイクル中に、プロセッサパイプラインの第１段は、命令キャッシュ（Ｉキ
ャッシュ）から命令のセットをフェッチする。命令のセットはデコードされる。命令デコ
ーダは、フェッチされたセットのどの命令が命令流の一部分であるかを識別する。
【０００７】
フェッチすべき次の命令のＰＣを分析するには多数のサイクルを要するので、ＰＣは、通
常、分岐又はジャンププレディクタ（予想子）により前もって予想される。予想を誤った

(6) JP 4467094 B2 2010.5.26

10

20

30

40

50

ときには、プロセッサは、「不良」実行経路を占有する予想ミス命令をアボート（中止）
し、そして「良好」経路において命令のフェッチを再スタートする。
命令を順序ずれ状態で実行できるようにするために、命令のオペランドに指定されたレジ
スタは、「読み取り後の書き込み」及び「書き込み後の書き込み」競合を防止するように
動的に名前を付け直される。この名前の付け直しは、アーキテクチャー即ち「仮想」レジ
スタを物理的レジスタへとマッピングすることにより達成される。従って、同じ仮想レジ
スタに書き込む２つの命令は、それらが異なる物理的レジスタに書き込みそして仮想レジ
スタの消費者が適切な値を得るので、順序ずれ状態で安全に実行することができる。
【０００８】
レジスタマップ型命令は、そのオペランドが計算されそして適当な形式の機能的「実行」
ユニットが得られるまで、イッシュー待ち行列に存在する。命令によって使用される物理
的なレジスタは、命令がイッシューされるサイクルで読み取られる。命令は、それらが実
行された後に、リタイアの準備ができたとマークされ、そしてプログラム順序における全
ての手前のリタイア準備命令がリタイアしたときに、即ち命令が正しいプログラム順序で
リタイアするときに、プロセッサによりリタイアされる。リタイアの際に、プロセッサは
、命令によりなされる変更をシステムのアーキテクチャー「状態」へコミットし、そして
命令により消費されたリソースを解除する。
【０００９】
予想ミス
分岐が誤って予想されるようなある場合には、命令をトラップし又は破棄しなければなら
ない。これが生じたときには、現在の推測的な構造状態が、予想ミスが生じた実行点へと
戻され、正しい命令においてフェッチが続けられる。
【００１０】
遅延
多数の事象が命令の実行を遅らせる。パイプラインの前方において、フェッチユニットは
、Ｉキャッシュミスのためにストールするか、又はフェッチユニットは、予想ミスのため
に不良経路に沿って命令をフェッチすることがある。マップ手段は、空いた物理的レジス
タが欠乏するか、又はイッシュー待ち行列に空きスロットが欠乏するためにストールする
ことがある。イッシュー待ち行列の命令はそれらのレジスタ依存性が満足されるか又は機
能的実行ユニットが使用できるようになるのを待機する。
命令は、データキャッシュミスによりストールすることがある。命令は、それらが不良経
路を下るように推測的に発生されるか、又はプロセッサが割り込みを行ったためにとラッ
プされることがある。これら事象の多くは、例えば、コードの検査により静的に予想する
ことが困難であり、それらは全てシステムの性能を低下させる。この形式の状態情報を捕
獲するのに単純な事象カウンタでは不充分である。加えて、遅延の長さを厳密に測定して
、どの遅延に特に注目すべきかを決定することは困難である。
【００１１】
プログラマー又は最適化ツールが、スーパースカラー及びアウトオブオーダープロセッサ
、又はこの点については任意のアーキテクチャー設計のプロセッサのような複雑なコンピ
ュータシステムのソフトウェア及びハードウェア要素の性能を改善できるように、事象を
特定の命令及びマシン状態に直接的に帰属させることが強く望まれる。
【００１２】
【発明が解決しようとする課題】
公知の事象カウンタに伴う問題
既知の事象カウンタに伴う主な問題は、カウンタをオーバーフローさせた事象を生じさせ
た命令が、通常は、例外的ＰＣよりかなり前にフェッチされることであり、即ち、このＰ
Ｃは、オーバーフローを生じさせた命令のものではない。フェッチと割り込みとの間の遅
延の長さは、一般に、予想できない量である。この予想できない事象分布は、事象を特定
の命令に適切に帰属させることを困難にする。順序ずれ及び予測的実行は、この問題を増
幅するが、これは、Ａｌｐｈａ２１１６４プロセッサのようなインオーダー（順序正しい

(7) JP 4467094 B2 2010.5.26

10

20

30

40

50

）マシンにも存在する。
例えば、Ａｌｐｈａ２１１６４（インオーダー）プロセッサ対ペンチウム・プロ（アウト
オブオーダー）プロセッサに対してＤキャッシュ基準事象カウントを監視しながら、性能
カウンタ割り込みハンドラーに与えられるプログラムカウンタ値を比較する。例示的プロ
グラムは、ランダムメモリアクセス命令、例えば、ロード命令と、それに続く、ナルオペ
レーション命令（ｎｏｐ）のハンドラーとを含むループより成る。
【００１３】
インオーダー型のＡｌｐｈａプロセッサでは、全ての性能カウンタ事象（例えば、キャッ
シュミス）は、事象の６サイクル後に実行される命令に帰属され、ロードアクセス後の７
番目の命令においてサンプルの大きなピークを生じる。このスキューした事象分布は、理
想的なものではない。しかしながら、単一の大きなピークがあるために、静的な分析は、
時々、このピークから後方に作用し、その事象を生じさせた実際の命令を識別することが
できるが、これは、非常に単純なプログラムに対する最良の推測以上のものは何もない。
アウトオブオーダー型のペンティウム・プロで実行される同一のプログラムの場合に、事
象サンプルは、次の２５個の命令にわたって広く分布され、スキューを示すだけでなく、
著しい不鮮明さも示す。サンプルの広い分布は、特定の事象を、その事象を生じた特定の
命令に帰属させるのをほぼ不可能にする。他のハードウェア事象をカウントするときにも
同様の振る舞いが生じる。
【００１４】
スキュー又は不鮮明さのある事象サンプル分布に加えて、従来の事象カウンタは、付加的
な問題で悩まされている。通常、事象カウンタより多くの当該事象があり、全ての当該事
象を同時に監視することは、不可能でないまでも、困難である。プロセッサの複雑さが増
すと、この問題が一層悪化する。
加えて、事象カウンタは、事象が発生したという事実しか記録せず、その事象に関する付
加的な状態情報を与えない。多数の種類の事象に対し、キャッシュミス事象にサービスす
る待ち時間のような付加的な情報が極めて有用である。
更に、公知のカウンタは、一般に、事象をコードの「ブラインドスポット」に帰属させる
ことができない。ブラインドスポットとは、割り込み権が与えられるまで事象が確認され
ないために、高優先順位システムルーチン及びＰＡＬコードのような割り込み不能コード
である。そのときまでに、プロセッサの状態は著しく変化し、おそらく偽の情報を与える
。
【００１５】
ストール対ボトルネック
パイプライン式のインオーダープロセッサにおいて、パイプライン段で１つの命令がスト
ールすると、その後の命令がそのパイプライン段に通過することが妨げられる。それ故、
インオーダープロセッサでは「ボトルネック」命令を識別することが比較的容易であり、
即ちボトルネック命令は、パイプラインのどこかでストールする傾向がある。インオーダ
ープロセッサの場合、命令が各パイプライン段を通るときにその待ち時間を測定し、そし
てその測定された待ち時間を、各パイプライン段におけるその命令の理想的な待ち時間と
比較することにより、ストールを識別することができる。命令は、ある段を通過する最小
待ち時間より長い時間を必要とするときに、その段においてストールしたと仮定すること
ができる。
【００１６】
しかしながら、アウトオブオーダープロセッサでは、あるパイプライン段でストールした
命令に対して他の命令がそのパイプライン段を通過することがある。実際に、ストールし
た命令の付加的な待ち時間は、他の命令の処理によって完全にマスクされ、実際に、スト
ールした命令は、観察されるプログラム完了を遅延しないことがある。
インオーダーシステムにおいても、あるパイプライン段のストールは、別のパイプライン
段がボトルネックであるときにはプログラムの全実行時間に影響しない。例えば、メモリ
集中のプログラムの実行中には、Ｄキャッシュミスにより遅延される実行ユニットからの

(8) JP 4467094 B2 2010.5.26

10

20

30

40

50

「バックプレッシャー」のために、命令パイプラインのフェッチ手段及びマップ手段がし
ばしばストールすることがある。
【００１７】
理想的には、キャッシュミスを生じるメモリオペレーションを一次ボトルネックとして分
類する。フェッチ手段及びマップ手段のストールは、実際には、キャッシュミスによる遅
延の非兆候状態であり、即ち二次ボトルネックである。
ストールが他の命令によりマスクされない命令を識別し、そしてそれらを真のボトルネッ
クとして識別することが望ましい。更に、プログラムの振る舞いを改善するためには、非
兆候（二次）ボトルネックよりもカジュアル（一次）のボトルネックに焦点を合わせるこ
とが必要である。このようにパイプライン段のボトルネックをカジュアル及び非兆候と分
類することは、パイプラインの状態並びにフライト中命令のデータ及びリソース依存性を
詳細に知ることが必要であるが、これらは、良く知られたように、単純な事象カウンタか
ら得ることができない。
【００１８】
１９９２年９月２９日付のウェスコット氏等の「命令サンプリング手段(Instruction Sam
pling Instrumentation)」と題する米国特許第５，１５１，９８１号は、アウトオブオー
ダーの実行マシンにおいて命令ベースのサンプリングを行うハードウェアメカニズムを提
案している。ウェスコット氏等の解決策には多数の欠点がある。第１に、この解決策は、
サンプリングされるコードの長さ及びサンプリングレートに基づいて命令サンプルの流れ
をバイアスし得る。第２に、このシステムは、リタイアした命令のみをサンプリングし、
フェッチした全ての命令をサンプリングするのではなく、その幾つかがアボートされる。
第３に、ウェスコット氏等のメカニズムにより収集される情報は、例えば、キャッシュミ
スのような個々の事象属性に集中するが、命令間の関係を決定するための有用な情報を与
えるものではない。
【００１９】
最近、「ロード通知(informing loads) 」と称するハードウェアメカニズムが提案されて
いる。これについては、１９９６年５月２２日のプロシーディングズ第２３アニュアルイ
ンターナショナルシンポジウム・オン・コンピュータアーキテクチャー、第２６０－２７
０ページに掲載されたホロイッツ氏等の「インフォームドメモリオペレーション：近代的
なプロセッサにおけるメモリ性能フィードバックの供給(Informed memory operations: P
roviding memory performance feedback in modern processors)」を参照されたい。この
場合は、メモリオペレーションに続いて、そのメモリオペレーションがキャッシュにおい
てミスした場合及びその場合にのみ条件分岐オペレーションを行うことができる。プロフ
ァイリングについては特に設計されていないが、このメカニズムは、特にＤキャッシュミ
スの事象情報のみを収集するのに使用できる。
【００２０】
キャッシュミスルックアサイド（ＣＭＬ）バッファと称する他の特殊なハードウェアにお
いては、高いレベル２のキャッシュミスレートに悩まされる仮想メモリページが識別され
る。この詳細な説明については、１９９４年１０月４日のプロシーディングズ・オブ・ザ
・シックスス・インターナショナルコンファレンス・オン・アーキテクチャルサポート・
フォア・プログラミングランゲッジ・アンド・オペレーティングシステム、第１５８－１
７０ページに掲載されたバーシャド氏等の「大型の直接マップ式キャッシュにおける競合
ミスの動的な回避(Avoiding conflict misses dynamically in large direct-mapped cac
hes)」を参照されたい。
インテル社のペンティウムのようなプロセッサは、分岐プレディクタの分岐ターゲットバ
ッファ（ＢＴＢ）の内容をソフトウェアで読み取ることができる。ソフトウェアでＢＴＢ
を周期的に読み取ることにより、コンテ氏等は、プログラムの限界実行頻度を推定するた
めの非常にオーバーヘッドの低い技術を開発した。これについては、１９９４年１１月３
０日のプロシーディングズ・オブ・第２７アニュアルインターナショナルシンポジウム・
オン・マイクロアーキテクチャ、第１２－２１ページに掲載された「プロファイル駆動の

(9) JP 4467094 B2 2010.5.26

10

20

30

40

50

最適化をサポートするための分岐ハンドリングハードウェアの使用(Using branch handli
ng hardware to support profile-driven optimization) 」を参照されたい。
【００２１】
この解決策は、関連サンプリング情報を記憶する「プロファイル記録」に含まれた分岐方
向情報を追跡することにより得られるものと同様の情報を形成する。最近、コンテ氏等は
、分岐が実行される回数及び実行されない回数をカウントするプロファイルバッファと称
する付加的なハードウェアの断片を提案している。これについては、１９９６年１２月２
日のプロシーディングズ・オブ・第２９アニュアルインターナショナルシンポジウム・オ
ン・マイクロアーキテクチャー、第３６－４５ページに掲載された「プロファイルバッフ
ァを使用する正確且つ実際的なプロファイル駆動の編集(Accurate and practical profil
e-driven compilation using the profile buffer)」を参照されたい。
【００２２】
【課題を解決するための手段】
本発明によれば、プロセッサのオペレーションを測定するための装置及び方法であって、
従来のメカニズムとは異なる装置及び方法が提供される。事象をカウントし、そして事象
カウンタがオーバーフローしたときにプログラムカウンタをサンプリングするのではなく
、本発明の装置及び方法は、命令をランダムに選択し、そしてその選択された命令に対し
て詳細な状態情報をサンプリングすることに依存する。
周期的に、プロセッサの動作中に、プロファイリングされるべき命令がランダムに選択さ
れ、そして命令の実行中に何が起きたかのプロファイル記録がプロセッサの内部プロファ
イルレジスタのセットに累積される。選択された命令の処理が終了し、例えば、命令がリ
タイアし、アボートし又はトラップした後に、割り込みが発生される。パイプラインにお
いて命令がいかに処理されたかの詳細を特徴付ける記録情報を内部プロファイルレジスタ
からソフトウェアによりサンプリングすることができる。
【００２３】
プロファイルレジスタは、命令の実行に関する多数の有用な事実を記録することができる
。性能情報は、例えば、選択された命令が実行パイプラインの各段において費やしたサイ
クルの数、即ち段の待ち時間、命令がＩキャッシュ又はＤキャッシュミスを受けたかどう
か、メモリオペランドの有効アドレス又は分岐／ジャンプターゲット、そして命令がリタ
イア又はアボートされたかどうかを含むことができる。
順序正しく実行する（インオーダー型）プロセッサにおいては、サンプルされた命令のフ
ェッチ－リタイア待ち時間が与えられたときに各命令に起因する全ストールサイクル数を
推定することができる。これは、１つのストールした命令が別のストールした命令とオー
バーラップすることがないので、ボトルネックを識別するのに充分である。
【００２４】
順序ずれして実行する（アウトオブオーダー型）プロセッサにおいては、ほとんどのスト
ールがおそらくオーバーラップし、そしてそのストールした命令の周りで順序ずれして発
生される他の命令によりマスクされる。これは、ストールした命令の識別を困難なものに
する。更に、ボトルネックを識別するためには、各命令が実行される間に同時性の平均レ
ベルに関する情報を収集することが必要となる。
特殊目的のハードウェアは、プロファイリングされた命令が実行される間に発生する命令
の数をカウント及び記録して、同時実行のレベルを測定することができる。しかしながら
、これは、発生するがアボートされ、従って、リタイアしない命令を考慮に入れるもので
はない。そこで、有用な同時性の量の測定値が与えられる。有用な同時性は、並列に発生
しそして所与の命令で首尾良くリタイアする命令の平均数である。発生するがその後にア
ボートされる命令は、有用ではない。従って、ストールが有用な同時性によりマスクされ
ない命令をボトルネックとして分類することができる。この別の方法を説明するために、
アウトオブオーダープロセッサにおいて性能ボトルネックの位置を正確に示すための重要
なメトリックは、所与の命令が実行される間に費やされた発生スロットの数である。
【００２５】

(10) JP 4467094 B2 2010.5.26

10

20

30

40

50

従って、有用な同時性を測定するために、「対ごとのサンプリング(pair-wise sampling)
」と称する技術が提供される。基本的な考え方は、ネスト形態のサンプリングを実行する
ことである。ここでは、第１のプロファイリングされた命令と同時に実行できる命令のウ
インドウが動的に定義される。命令のウインドウからプロファイリングするために第２の
命令がランダムに選択される。プロファイリングされた及び第２の命令は、プロファイル
情報を収集できるところのサンプル対を形成する。
対ごとのサンプリングは、各命令に起因する費やされた発生スロットの数を容易に決定す
ると共に、ボトルネックの位置を既知の技術よりもかなり正確に指示する。一般に、対ご
とのサンプリングは、非常に融通性があり、種々様々な当該同時性及び利用メトリックを
決定することのできる分析の基礎を形成する。
【００２６】
より詳細には、プロセッサのパイプラインにより処理される１つ以上の命令を周期的に且
つランダムに選択し、そして実行パイプラインの段を経て命令が進行する間にプロファイ
ル情報を収集するための装置及び方法が提供される。高レベルのソフトウェアは、次いで
、この情報を種々の仕方で後処理することができ、例えば、同じ命令の多数の実行から情
報を収集することにより後処理することができる。
捕獲することのできる情報は、例えば、命令のアドレス（プログラムカウンタ即ちＰＣ）
、命令が命令キャッシュミスを受けたかどうか、及びミスにサービスするために被る待ち
時間を含む。命令がメモリオペレーションを実行する場合には、命令がデータキャッシュ
ミスを受けたかどうか決定し、そしてメモリ要求を満足するための待ち時間を測定する。
更に、命令が各パイプライン段において費やす時間の長さを測定することができる。又、
プロファイル情報は、命令がリタイアしたかアボートしたかを指示すると共に、後者の場
合には、どんな種類のトラップが命令の実行をアボートしたかも指示することができる。
【００２７】
命令が実行パイプラインを経て進行するときにプロファイリングレジスタのセットに情報
が収集される。命令の実行が終了すると、それがリタイアするか又はアボートするために
、上位レベルのソフトウェアに割り込みが与えられる。次いで、ソフトウェアは、プロフ
ァイリングレジスタに存在する情報を種々の方法で処理することができる。
サンプリングされる性能情報は、プロファイルで指示される最適化にとって非常に有用で
あるが、事象の発生を集合的にカウントするようなハードウェア事象カウンタとしても多
数の使い方がある。
ここに開示する技術は、既存の性能監視ハードウェアに対する改良であり、そして命令を
順序ずれして発生できる近代的なマイクロプロセッサにおいて比較的低いハードウェアコ
ストで効率的に実施することができる。
【００２８】
より詳細には、システムのプロセッサパイプラインにおいて多数の同時実行命令をサンプ
リングするための装置が提供される。パイプラインは、複数の処理段を有する。この装置
は、パイプラインの第１段へ命令がフェッチされたときに選択される多数の命令を識別す
る。多数の選択された命令のサブセットは、パイプラインにおいて同時に実行される。多
数の選択された命令のいずれかがパイプラインのいずれかの段にある間にシステムの状態
情報がサンプリングされる。全ての選択された命令がパイプラインを出るときにソフトウ
ェアに通知して、ソフトウェアがいずれの状態情報も読み取れるようにする。
【００２９】
【発明の実施の形態】
システムの概要
図１は、ここに開示するサンプリング方法及び装置を使用することのできるコンピュータ
システム１００を示す。このシステム１００は、バスライン１４０で接続された１つ以上
のプロセッサ１１０、オフチップメモリ１２０及び入力／出力インターフェイス（Ｉ／Ｏ
）１３０を備えている。プロセッサ１１０は、例えば、デジタルイクイップメント社のＡ
ｌｐｈａ２１２６４プロセッサのように、集積半導体チップにおいて、機能的実行ユニッ

(11) JP 4467094 B2 2010.5.26

10

20

30

40

50

トを含む多数の実行パイプライン１１１、命令キャッシュ（Ｉキャッシュ）１１２及びオ
ンチップデータキャッシュ（Ｄキャッシュ）１１３として実施することができる。又、プ
ロセッサチップ１１０は、以下に詳細に述べるように、選択された命令に対してプロセッ
サ状態をサンプリングするためのハードウェア１１９も備えている。
オフチップメモリ１２０は、汎用キャッシュ（Ｂキャッシュ又はＳＲＡＭ）１２１と、揮
発性メモリ（ＤＲＡＭ）１２２と、永続的メモリ（ディスク）１２３とを含むハイアラー
キー構成をとることができる。Ｉ／Ｏ１３０は、システム１００に対してデータを入力及
び出力するのに使用できる。
【００３０】
オペレーション
システム１００のオペレーション中に、ソフトウェアプログラムの命令及びデータがメモ
リ１２０に記憶される。命令及びデータは、既知のコンパイラー、リンカー及びローダー
技術を使用して従来のやり方で発生される。命令及びデータは、キャッシュ１１２－１１
３を経て１つのプロセッサ１１０の実行パイプライン１１１に転送される。パイプライン
において、命令が実行のためにデコードされる。ある命令は、データに作用する。他の命
令は、プログラムの実行流を制御する。
命令を実行しながら詳細な性能データを収集することが所望される。性能データは、メモ
リオペレーション及び実行流に関連付けることができる。
【００３１】
プロセッサパイプライン
図２ａは、図１の１つのプロセッサ１１０の実行パイプライン２００を示すもので、これ
は、例えば、フェッチ、マップ、イッシュー、実行及びリタイアユニット、各々、２１０
、２２０、２３０、２４０及び２５０としてシリアルに構成された複数の段を有する。パ
イプライン２００が情報（データ及び命令）を処理するレートは、ライン２０１上のシス
テムクロック信号、即ちいわゆるクロック「サイクル」により制御される。
各クロックサイクルは、パイプライン２００の段が個々の量の処理を実行できるときの「
スロット」即ち時間間隔を定義する。処理スロットは、通常、順方向命令を搬送し、そし
て以下に述べる実行ユニットの場合は、以下一般に「データ項目」と称するデータを搬送
する。例えば、分岐予想ミス又はキャッシュミス或いはパイプラインストールのような場
合には、クロックはサイクルを続けるが、有意義な命令は順方向に送られない。
【００３２】
１つの効果として、本発明の装置及び方法は、「廃物(garbage) 」即ち非有効データを搬
送するプロセッサスロットに関する状態情報をサンプリングすることができる。これらは
、「浪費(wasted)」スロットとして知られている。浪費スロットを識別しそしてサンプリ
ングすることは、タスクを最適化するための重要な先駆手段である。というのは、浪費ス
ロットは、有効に機能せず、従って、システム性能を低下するからである。それ故、一般
に、ここでサンプリングされるものは、公知技術のように単なる「事象」又は「命令」で
はなく、プロセッサスロットが有効な命令に関連したものであるか無効の命令に関連した
ものであるかに関わりなくパイプライン２００を経てプロセッサスロットをプッシュする
ことに関連した状態情報をである。
【００３３】
フェッチユニット
Ｂキャッシュ１２１は、データ項目を各々Ｉキャッシュ１１２及びＤキャッシュ１１３に
転送する。フェッチユニット２１０は、仮想アドレスを物理的アドレスへと解析するため
のある形式の変換ルックアサイドバッファ（ＴＬＢ）２０５を使用して、実行されるべき
次の命令をＩキャッシュ１１２からフェッチする。Ｉキャッシュ１１２からフェッチされ
る項目は、一般的に、実行可能な命令である。しかしながら、これらは、Ｉキャッシュが
「廃物」データ即ち非命令をミスする場合のように、無効命令でもよい。
単一のプロセッササイクル中に「命令」のセットがフェッチされるのが好ましい。このセ
ットは、例えば、４つの命令を含むことができる。換言すれば、パイプライン２００は、

(12) JP 4467094 B2 2010.5.26

10

20

30

40

50

４スロット巾である。スロットの数は、使用可能な実行ユニットの数に基づく。他の形式
のプロセッサは、単一プロセッササイクル中により少数の又はより多数の命令をフェッチ
することができる。一般に、これは、各サイクルがキャッシュから４つの処理スロットを
満たすことを意味する。あるスロットは、Ｉキャッシュ１１２が使用可能なデータをもた
ないときに浪費される。全ての処理を休止、停止するのではなく、スロットはいかなる場
合にも順方向に搬送されて、サンプリングの目的で使用できるようにされるが、スロット
の廃物「命令」は、実行のために発生されることがない。
フェッチ中に、選択された命令は、サンプリング又はシステムプロファイリングを許すた
めに付加的な情報で増強することができる。増強命令は、図４を参照して以下に説明する
。他の実施においては、選択された命令の増強が、イッシューユニット２３０を含むプロ
セッサのいかなる段でも実行できることに注意されたい。
【００３４】
マップユニット
システム１００では、パイプライン２００の次の段のマップユニット２２０を用いて命令
のオペランドが物理的レジスタに動的に指定又は「マップ」される。マップユニットは、
物理的レジスタをアーキテクチャー即ち「仮想」レジスタに指定する。換言すれば、仮想
レジスタと物理的レジスタとの間には１対１の対応がなくてもよい。
【００３５】
イッシューユニット
次の段において、フェッチされた命令は、イッシューユニット２３０によって順序付けさ
れる。イッシューユニット２３０は、実行されるべき次の命令のための待ち行列ヘッド(a
 head-of-the-queue) エントリ２３１を有するイッシュー待ち行列を備えている。命令に
必要なリソースが使用できないために、イッシューユニット２３０の１つ以上の命令がス
トールされ得ることに注意されたい。それ故、ストールされた命令の「周り」で待ち行列
２３０から他の保留中命令が順序ずれして発生される。正しい実行順序は、以下に述べる
リタイアユニット２５０で確認される。
【００３６】
実行ユニット
命令は、機能的実行ユニット（Ｅ０・・・Ｅ３）２４１及びｌｄ／ｓｔユニット２４２へ
発生される。実行ユニット２４１の各々は、特定形式のオペレータコード（ｏｐコード）
、例えば、整数及び浮動小数点演算、分岐及びジャンプ命令等で命令を取り扱うように設
計される。ｌｄ／ｓｔユニット２４２は、メモリアクセス命令を実行し、例えば、Ｄキャ
ッシュ１１３に対してデータをロード及び記憶する。ｌｄ／ｓｔユニット２４２は、長い
遅延を経験するために特別に識別される。又、長い待ち時間を伴うメモリアクセス命令は
、スループットを改善するために、データがプロセッサに送り込まれるかなり前に「完了
」となる。
【００３７】
リタイアユニット
命令の実行の終了は、リタイアユニット２５０により処理される。リタイアユニット２５
０は、処理状態をコミットする。ある命令は、アボートするか、又はとラップされること
に注意されたい。例えば、実行流は、命令がフェッチされた後に変化するか、又は命令は
、例外トラップを被ることがある。このような場合に、パイプラインに既にある命令及び
全ての後続命令は破棄され、そして推測的処理状態がロールバックされる。ここでの１つ
の効果として、破棄又は「アボート」された命令も、浪費プロセッサスロットと同様にプ
ロファイリングされる。換言すれば、終了とは、完全に実行された有効命令をリタイアし
、部分的に実行された有効命令を後処理し、或いは無効命令又は浪費スロットを破棄する
ことを意味する。
【００３８】
本発明の技術の根底にある基本的な考え方は、パイプライン２００の段を経て進むときに
、選択された「スロット」、主として命令において「データ項目」の処理を行うものであ

(13) JP 4467094 B2 2010.5.26

10

20

30

40

50

る。プロファイリングハードウェアは、詳細な状態情報を動的に収集する。状態情報は、
いずれのパイプライン段からでも又はシステム１００のどこからでも到来することができ
、例えば、第１及び第２レベルキャッシュ又は他のサブシステムから到来することができ
る。状態情報は、特定事象に直接起因し得る。
ここでの設計戦略は、プロファイル記録において静的に決定することが困難な情報を収集
することである。これは、プロファイル記録を性能ツールとして又はプロファイルで指令
される最適化として有用なものにするか、或いはサンプリング及び分析に直接応答する動
的な調整を含むオペレーティングシステム及びアプリケーションレベルソフトウェアにお
けるリソース割り当てポリシー判断を行う上で有用なものにする。本発明の方法及び装置
は、実際の機能的システムにおいて作用するよう設計されることを想起されたい。
【００３９】
プロファイル記録の一部分としてセーブするのにどんな状態情報に関心があるかを決定す
るために、図２ｂに示すように、近代的なアウトオブオーダーマイクロプロセッサのパイ
プライン２００の種々の段に理論的に得られる情報を検査することが有用である。
図２ｂに示すように、パイプラインの段は、フェッチ２１０、マップ２２０、イッシュー
２３０、実行２４０及びリタイア２５０である。これらの段のいずれかの間に、特定の実
施形態に基づき、パイプライン２００で処理されるいずれかの「フライト中」命令２０２
をライン５１２によりサンプリングのために選択することができる。この選択は、カウン
タ５１０の値により制御される。カウンタの値は、ライン（ｉｎｉｔ）により初期化する
ことができる。
【００４０】
命令アドレス（ＰＣ）２８１、分岐経過ビット（ＨＩＳＴ）２８２、段の待ち時間２８３
、分岐実行指示（Ｔ）２８７、データアドレス（ＡＤＤＲ）２８４、データミス（ＭＩＳ
Ｓ）２８５及びリタイア状態２８６のような状態情報は、ライン２８８においてサンプリ
ングすることができる。選択された命令の処理が終了すると、ライン２８９に割り込み信
号を発生することができる。割り込み信号２８９は、ソフトウェアでライン２９９を経て
状態情報２８１－２８６をサンプリングすることができるようにする。或いは又、ソフト
ウェアは、内部プロセッサレジスタ５４１を経てライン２８９をポーリングすることもで
きる。
【００４１】
スーパースカラーのアウトオブオーダープロセッサアーキテクチャー
アウトオブオーダー実行プロセッサは、正しい順序で命令をフェッチ及びリタイアするが
、それらのデータ依存性に基づいて命令を実行する。命令は、それがフェッチされたとき
から、それが終了するまで、例えば、リタイア又はアボートするまで、「フライト中」で
あると言える。命令は、マッピングの後、イッシューユニット２３０に入れられ、そして
入力オペランドを保持するレジスタが更新されるまでそこで待機する。
各プロセッササイクルごとに、フェッチユニット２１０は、命令キャッシュ１１２から命
令のセットをフェッチしてデコードする。フェッチユニット２１０の一部分である命令デ
コーダは、フェッチされたセットの中のどの命令が命令流の一部分であるかを識別する。
フェッチすべき次の命令のプログラムカウンタ（ＰＣ）を分析するには多数のサイクルを
必要とするので、次のＰＣは、フェッチユニット２１０の一部分である分岐又はジャンプ
プレディクタにより予想される。予想が間違っている場合には、プロセッサは、その予想
ミスした命令、即ち「不良」経路においてフェッチされた命令をアボートし、そして「良
好」経路においてフェッチ命令を再スタートする。
命令を順序ずれして実行できるようにするために、レジスタはマップユニット２２０によ
り動的に名前が付け直され、「読み取り後の書き込み」及び「書き込み後の書き込み」競
合を防止する。同じ仮想レジスタに書き込む２つの命令は、順序ずれ状態で安全に実行す
ることができる。というのは、それらは、異なる物理的レジスタに書き込みするのであり
、そして仮想レジスタの消費者が適切な値を得るからである。命令は、正しい順序でフェ
ッチされ、マップされそしてリタイアされるが、順序ずれ状態で実行することができる。

(14) JP 4467094 B2 2010.5.26

10

20

30

40

50

【００４２】
レジスタマップユニット２２０は、フェッチされた命令のオペランドを有効な物理的レジ
スタに指定する。即ち、レジスタオペランドの仮想名は、プロセッサの物理的なレジスタ
スペースに対して名前付けし直される。次いで、命令は命令待ち行列２３０へ送られ、そ
こで、実行の前に２つの事象を待機する。第１に、それらのレジスタ依存性を分析しなけ
ればならない。第２に、命令に必要なリソース、例えば、実行ユニット、レジスタ、キャ
ッシュポート、メモリ待ち行列等が使用できねばならない。これは、現在マップされたい
かなる命令に対しても、必要なリソースを再割り当てできないことを意味する。
ある命令に対してこれら２つの条件が満たされると、命令オペランドが物理的レジスタフ
ァイルにおいて探索される。次いで、オペランドレジスタの内容及び命令に関するある情
報が適当な実行ユニット２４０へ送られて実行される。命令が実行を終了し、そして命令
がプロセッサにおいて最も古い「非リタイア」命令であるときに、命令がリタイアする。
これは、命令により使用されるリソース、例えば、物理的レジスタ及びキャッシュポート
を解放する。
【００４３】
多数の事象が命令の実行を遅延させることがある。パイプラインの前方では、フェッチユ
ニット２１０がＩキャッシュ１１２のミスによりストールするか又はフェッチユニット２
１０が予想ミス経路の命令をフェッチすることがある。マップユニット２２０は、空きの
物理的レジスタの欠乏、又はイッシューユニット２３０における空きスロットの欠乏によ
りストールすることがある。
イッシューユニット２３０における命令は、それらのレジスタ依存性が満足されるのを待
機するか、又は実行ユニット２４０が使用できるのを待機する。命令は、Ｄキャッシュに
おけるミスによりストールすることがある。命令は、それらが不良経路に沿って推測的に
発生されるか、又はプロセッサが不法なオペレーション又はメモリアドレスのような割り
込みを行ったためにトラップされることがある。これら条件の多くは、コンパイル時に予
想することが困難であり、それらは全てシステム１００の性能を低下させる。これにより
、ライン２８８に得られる情報をサンプリングすることが重要となる。
【００４４】
プロファイル情報レジスタ
それ故、図３に示すように、サンプリングされる各命令ごとにプロファイル情報を記憶す
るためのメモリ３００が設けられる。メモリ３００は、レジスタファイル又はバッファの
形態でよい。換言すれば、サンプリングされる選択済み命令は、レジスタファイル３００
で直接識別される。レジスタファイル３００は、複数のレジスタを含むことができる。或
いは又、ファイル３００は、多数のフィールドをもつ単一のインデックス可能なレジスタ
として実施することができる。
ファイル３００は、図２ｂのライン２８８によりパイプライン２００の要素に接続され、
従って、選択された命令に関連した性能情報をパイプライン２００の各段に対して捕獲す
ることができる。プロファイルレジスタ３００は、公知技術で見られる単純な「事象」カ
ウンタ以上のものであり、ここでは、これらレジスタは、特定の既知の命令及び事象に起
因する性能情報を収集することに注意されたい。
【００４５】
図３において、各レジスタに対して割り当てられるビットの数は、そこに記憶される情報
の形式、例えば、命令アドレス（６４ビット）、サイクルカウント、即ち待ち時間（８又
は１０ビット）、個別事象（１ビット／事象）等々に依存している。これらの数は単なる
指針に過ぎない。他の実施形態は、種々のレジスタ３００に対して異なるビット数を使用
することができ、これは設計上の選択肢である。
好ましい実施形態では、プロファイルＰＣレジスタ３１０は、選択された命令のＰＣを記
憶する。以下に述べるように、プロファイリングされている命令は、アサートされた「プ
ロファイル」ビットを有する。又、ＰＣレジスタ３１０は、選択された命令のｏｐコード
を含むこともできる。更に、マルチスレッド式実行を許すプロセッサについては、レジス

(15) JP 4467094 B2 2010.5.26

10

20

30

40

50

タ３１０の付加的なビットがスレッドの識別子を記憶することができる。レジスタ３１０
の他のフィールドは、プロセス識別子、アドレススペース番号、ＣＰＵ番号、及び実行さ
れている命令の命令番号（ｉｎｕｍ）を記憶することができる。更に、多数の論理レジス
タセット、即ちハードウェアコンテクスト及び同時実行スレッドを有するプロセッサでは
、レジスタ３１０がハードウェアコンテクスト及びスレッド識別子である。この情報を記
憶することにより、プロファイル情報を特定の命令に直接起因させることができる。更に
、サンプリングされた情報は、アドレスの範囲、ｏｐコード、実行スレッド、アドレスス
ペース、等々に基づいてフィルタすることができる。
【００４６】
プロファイル有効アドレスレジスタ３２０には、選択された命令に関連したアドレスがロ
ードされる。命令がロード又は記憶のようなメモリアクセス命令である場合には、有効な
６４ビット仮想メモリアドレスが捕獲される。命令がジャンプ又は分岐である場合には、
ターゲットＰＣが記録される。
本発明のサンプリング技術の１つの効果として、パイプライン２００によって処理される
全ての「命令」は、サンプリングレートに関わりなく、サンプリングのために選択される
確率が等しい。命令は、有効な命令、無効の命令、非割り込み命令、又は「廃物」命令で
ある。従って、捕獲された有効アドレスは、プログラムの全体的な振る舞いを統計学的に
表す。サンプリングされた命令の有効アドレスを捕獲することにより、メモリアクセス及
び実行流を、実際の動的な実行に正確に関連付けることができる。
【００４７】
プロファイル事象カウンタ３３０は、例えば、１ビットフィールドに区画化される。１ビ
ットフィールドは、選択された命令に対する事象を記録する。命令が最初に選択されると
きに、レジスタがクリアされる。事象は、キャッシュミス、分岐予想ミス、リソース競合
、トラップ及び例外条件、リタイア／アボート／無効、ＴＬＢミス、実行／非実行、デー
タ依存性ストール、リソース依存性ストール、等々を含む。この実施形態では、多数の事
象を単一の命令に起因させることができる。リタイア及びアボートの両命令に対して事象
情報が収集されることに注意されたい。事象レジスタ３３０のサイズを減少するために、
あるビットフィールドを使用して、命令のｏｐコードに基づき異なる形式の相互に排他的
な事象を記録することができる。
【００４８】
プロファイル経路レジスタ３４０は、分岐経過テーブルから最近の分岐実行／非実行情報
を捕獲するのに使用される。分岐経過テーブルは、他の用途に対して良く知られている。
グローバルな分岐実行経過は、選択された命令をフェッチした実行経路を指示するのに使
用できる。命令は、この情報を有効なものにするために分岐命令である必要はないことに
注意されたい。経路情報の使用は、以下で詳細に説明する。
待ち時間レジスタ３５０は、選択された命令が、例えば、パイプライン２００の種々の段
間をフライト中である間に、チェックポイントにおいて得られたタイミング情報を記憶す
る。チェックポイントは、命令がストールされて、ある事象又はリソースを待機する場所
に基づいて、プロセッサごとに異なる。各待ち時間レジスタ３５０は、２つのチェックポ
イント間で命令が費やすサイクル数をカウントする。
【００４９】
選択された命令がチェックポイントを通過し、即ちパイプライン２００の次の段に入ると
きに、それに対応する待ち時間レジスタ３５０が最初にクリアされ、そして１サイクル当
たり１回増加され、やがて、命令が次のチェックポイントを通過し、次の待ち時間レジス
タが初期化されそしてカウントを開始する。待ち時間レジスタ３５０の数は、特定の実施
形態におけるパイプライン２００の段数に基づく。命令がアボート又はリタイアするとき
には、待ち時間レジスタ３５０に完全な待ち時間プロファイルが記憶される。
収集すべき潜在的に有用な待ち時間のリストは、フェッチ対マップ、マップ対データレデ
ィ、データレディ対実行、実行対リタイアレディ、リタイアレディ対リタイア遅延を含む
。メモリ命令（ロード及び記憶）の場合、待ち時間は、イッシュー対完了である。この最

(16) JP 4467094 B2 2010.5.26

10

20

30

40

50

後の待ち時間は、あるメモリオペレーションは、それらが作用するデータが実際にプロセ
ッサに送られる前にリタイアの準備ができるという点で、他の待ち時間とは異なる。これ
らの待ち時間は、レジスタ３５０で直接カウントすることもできるし、或いはレジスタが
生のサイクルカウントを収集することもでき、この場合に、プロファイリングソフトウェ
アは、次々の段に対する生のカウント間の差を計算して、実際の待ち時間を決定する。例
えば、パイプライン待ち時間クロックサイクルをカウントする回路は、図６を参照して以
下に詳細に説明する。
【００５０】
レジスタ３００における情報の更新は、遅延が受け入れられた直後に行う必要はない。必
要とされるのは、選択された命令が完了した（リタイア又はアボートした）ことを知らせ
る割り込みを、レジスタファイル３００の全ての情報が更新されるまで遅延するか、或い
は割り込みハンドラーを、プロファイルファイル３００が更新されるまでストールできる
ようにすることだけである。
プロファイルレジスタファイル３００を複写できることに注意されたい。プロファイルレ
ジスタファイルの多数のコピーがある場合には、シリアルに又は同時にプロファイリング
するために多数の命令を選択することができる。この場合には、各選択された命令が、以
下に述べるように、特定のレジスタファイルで明確に識別される。オーバーヘッドの量を
減少するために単一の割り込み信号に応答して多数のレジスタファイルをサンプリングす
ることができる。
【００５１】
増強命令
図４に示すように、各命令４００はサンプルフィールドを含む。例えば、このサンプルフ
ィールドは、「サンプル」ビット（Ｓ）４０１と称する１ビットタグである。サンプルビ
ット４０１がアサートされると、サンプリングのために命令が選択される。ビット４０１
をアサートすると、プロファイル情報を収集するサンプリングハードウェアが作動される
と共に、選択された命令が完了した（リタイア又はアボートされた）ときに割り込みを生
じさせる。或いは又、フェッチされた各「命令」を「ｉｎｕｍ」値で連続的に番号付けす
ることもできる。この場合には、特定のｉｎｕｍ値をもつ命令を選択することができる。
命令を選択するメカニズムについては、以下に述べる。
【００５２】
プロファイルレジスタファイル３００は、フィールドが更新されそして割り込み信号が発
生されたときに読み取ることができる。割り込み信号は、特権付きのプロファイリングソ
フトウェア（ＰＳＷ）がプロファイルレジスタ３００の内容を処理できるようにする。多
数のサンプルが記録される場合には、単一の割り込みで、多数の選択された命令に対して
性能データをサンプリングできることに注意されたい。
実施形態に基づき、増強命令４００は、次の付加的なフィールド、即ち３つまでの命令オ
ペランド（ｏｐ１、ｏｐ２及びｏｐ３）４１１－４１３と、プログラムカウンタ（ＰＣ）
４２０と、オペレータコード（ｏｐコード）４３０とを含むことができる。有効フィール
ド（Ｖ）４３１は、１ビットフィールドを真又は偽にセットすることにより、選択された
スロットにおける「命令」が有効であるかどうか指示することができる。フィールド４４
０及び４５０は、命令に関連したＩキャッシュ及びＴＬＢミスを各々指示するために指定
することができる。単一の命令が多数のオペランドを含み得るので、その命令に対して多
数のミスが考えられることに注意されたい。
【００５３】
プロファイルレジスタファイルＩＤ
若干複雑な設計では、多数の命令を同時にプロファイルすることができる。この実施形態
では、複数のレジスタファイル３００、或いはサブフィールドを伴う単一の大きなレジス
タがあり、ファイル３００の数は、同時にプロファイルすることのできるフライト中命令
の数に対応する。このケースを取り扱うために、命令４００は、サンプルレジスタファイ
ル識別子（ＩＤ）フィールド４０２も含むように増強される。これは、多数のレジスタフ

(17) JP 4467094 B2 2010.5.26

10

20

30

40

50

ァイル３００の１つにプロファイル情報を直接リンクできるようにする。上記したように
、ここでは、選択された命令とプロファイルレジスタとの間に直接的な関連がある。それ
故、レジスタに収集されるプロファイル情報は、特定の命令に直接起因し得る。
一度に１つのフライト中命令しかプロファイリングされないときでも、ファイル即ちレジ
スタ３００をＩＤフィールド４０２でインデックスして、プロファイリングソフトの割り
込みハンドラーのコストを多数の命令サンプルにわたり償還できるようにするのが有用で
ある。命令セット内の命令が選択された命令であるかどうかを決定することは、「ワイヤ
ドＯＲ」オペレーションを用いて行うことができる。
【００５４】
ランダムサンプリング
本発明のプロファイリングのオーバーヘッドは、同時にプロファイリングすることのでき
る命令の数を制限することにより減少され、例えば、ビット４０１がセットされる。プロ
グラム又はプログラムの一部分において各命令をプロファイリングするのではなく、ここ
では、プロファイリングされるべき命令が、プロセッサパイプライン２００の特定の段階
中に、例えば、フェッチの間に選択され、そしてその選択された命令がサンプルビット４
０１のアサートによりタグ付けされる。サンプルビット４０１がアサートされた場合には
、パイプライン２００の要素がプロファイル情報をプロファイルレジスタファイル３００
へ送る。
ここに記載する命令レベルプロファイリングをサポートする詳細について以下に述べる。
【００５５】
フライト中状態
第１に、プロセッサパイプライン２００を通過する各デコードされた命令状態は、上記の
ように、付加的な情報で増強される。命令は、それがフェッチされたときから、それがリ
タイア又はアボートするときまで、フライト中であるとみなされる。上述したように、命
令は、少なくとも１つのサンプルビット４０１で増強される。サンプルビット４０１は、
各フライト中命令及びキャッシュ／メモリ要求の状態の一部分である。ビット４０１がア
サートされると、このビットは、この命令に対してプロファイリング情報が記録されるこ
とを示し、さもなくば、記録されないことを示す。
簡単な設計においては、一度に１つのフライト中命令のみが、そのサンプルビット４０１
をアサートすることが許される。サンプルビット４０１は、選択された命令に対し、その
命令がリタイアするか又はアボートされるまで、アサートされたままとなる。多数のレジ
スタファイル３００をもつ更に複雑な設計では、多数のフライト中命令を個々にプロファ
イリングすることができ、そして付加的なビットをアサートすることができる。
【００５６】
プロファイルされた命令の選択及びサンプリング
フェッチ段の実施について図５に示したように、プロファイリングされるべき命令の選択
及びプロファイル情報のサンプリングは、次のように行われる。フェッチカウンタ５１０
は、例えば、特権付きプロファイリングソフトウェア（ＰＳＷ）５２０によりライン５１
１を経て初期化される。ＰＳＷ５２０は、所定サイズを有する値の間隔からランダムに選
択された値でカウンタ５１０を初期化することができる。従って、サンプリングされた命
令は、命令の実行における特定のパターンと相関しない。間隔のサイズは、サンプリング
の平均頻度を決定する。カウンタ５１０の値を初期化するための他のランダム化技術（ハ
ードウェアを含む）も使用できる。
【００５７】
例えば、公知技術の場合のように命令が固定頻度でサンプリングされるときのように、ラ
ンダムサンプリングが行われないと、例えば、システム１００の収集オペレーションのよ
うに、フェッチされた全ての命令の統計学的に正しいプロファイルを発生することができ
ない。これは、サンプリングレートに対して比較的重要でない多数の命令を含む実行ルー
プを有する実行スレッド、例えば、命令を有しそしてサンプリング間隔が６５５３６個の
命令であるループに対して、特に言えることである。他の通常のサンプリングも同じ問題

(18) JP 4467094 B2 2010.5.26

10

20

30

40

50

を有する。そこで、２つの命令の一方のみからのサンプルが常に収集される。１つの効果
として、ランダムに選択された命令は、サンプリング間隔の長さとは独立した相関を発生
する。
各命令４００がフェッチされるたびに、カウンタ５１０がパイプライン２００のフェッチ
ユニット２１０によりその初期値から増加されるか、或いは別の実施形態では、減少され
る。カウンタ５１０が、その実施形態に基づいて、オーバーフローするか又はアンダーフ
ローしたときに、現在フェッチされた命令がそのサンプルビット４０１をアサートし、そ
してＩＤフィールド４０２は、多数の命令がサンプリングのために選択されたときにも初
期化することができる。
【００５８】
別の実施形態では、カウンタ５１０は、各命令がフェッチされるたびではなく各サイクル
ごとに増加され、例えば、カウンタ５１０は、フェッチの機会をカウントし、実際にフェ
ッチされる命令をカウントするのではない。例えば、フェッチユニット２１０が各クロッ
クサイクル中にＩキャッシュ１１２から４つの項目をフェッチできる場合には、４つのフ
ェッチ機会がある。Ｉキャッシュからの１つ以上のフェッチがミスとなるか又は「不良」
命令をフェッチすることがある。ミスの場合には、ミスした命令に対して使用できるスロ
ットが「廃物」を含み、命令を無効とマークすることが必要になる。不良命令は、不良の
実行経路に存在するものであるか、又はさもなくば、アボートされる。
フェッチされた命令ではなくサイクルをカウントする場合には、設計を効果的に簡単化す
る。フェッチされた有効な命令のみをカウントする場合には、かなり複雑なものとなる。
というのは、制御流が、フェッチされた命令のグループに向かって又はそこから分岐する
ことができ、従って、全ての命令をデコードしてどれが有効であるかを決定することが必
要となり、もはや、カウンタを４だけ増加するだけの簡単なことではなくなるからである
。
【００５９】
１つの効果として、サイクル中にＩキャッシュからフェッチされた全てのもの（良好な命
令、不良の命令、廃物命令）をサンプリングのために選択し、Ｉキャッシュ１１２及びパ
イプライン２００の真の性能を決定することができる。ここでは、バイアスはなく、従っ
て、システム性能の統計学的に正しい推定値が得られる。
これは、短い固定の時間周期中に又は離間された固定の間隔で各有効な命令のみを選択す
る既知の技術とは区別されるものである。何れの場合にも、オーバーヘッドを最小にする
ことが戦略である。システム全体の性能データを捕獲することのできる技術はない。
【００６０】
命令のフィルタ動作
選択されたものは、フィルタ５０５によりフィルタすることができる。フィルタ動作は、
命令ｏｐコード、オペランド、或いは例えば、ある時間周期内で第１形式の命令の後に別
の形式の命令が続くといったより複雑なフィルタ基準に基づいて行うことができる。パイ
プライン２００への入力においてフィルタ動作を行う場合には、カウンタ５１０をリセッ
トすることができる。これを行う方法は、多数ある。１つの方法では、カウンタ５１０の
現在初期値が初期値(init)レジスタ５１３に記憶される。命令がフィルタされるときには
、初期値レジスタ５１３に記憶された値がカウンタ５１０に再ロードされ、初期のランダ
ム化選択が想起される。
【００６１】
命令が増強された後に、パイプライン２００は、図２ｂのプロファイル情報２８１－２８
６をレジスタファイル３００（１つ又は複数）に供給する。リタイアユニット２５０は、
命令の完了又はアボートに応答して、プロファイル情報をファイリングを完了し、そして
ライン５４０に割り込み信号を発生して、ＰＳＷ５２０がプロファイル情報をサンプリン
グできるようにする。
或いは、ＰＳＷ５２０は、内部プロセッサレジスタ又はメモリ位置（５４１）を経てライ
ン５４０をポーリングすることもできる。本発明の技術の１つの特徴として、公知のある

(19) JP 4467094 B2 2010.5.26

10

20

30

40

50

プロファイリング技術とは対照的に、たとえ本発明の技術がプロセッサにわたる状態に関
する正確な情報を与えるものであっても、プロセッサのサイクルタイムに何ら影響を与え
ない。唯一の時間制約は、プロファイルレジスタ３００がサンプリングされる前に全ての
プロファイル情報を記録しなければならないことである。
【００６２】
待ち時間カウンタ
図６は、例示的な待ち時間、フェッチ対マップ（ＦＭ）、マップ対イッシュー（ＭＩ）、
イッシュー対リタイア（ＩＲ）、フェッチ対トラップ（ＦＴ）、及びイッシュー対ｌｄｓ
ｔ（ＩＬＳ）をカウントするための回路６００を示す。この回路６００は、ライン６１１
によりラッチ６２０に接続されたサイクルカウンタ６１０を備えている。
サイクルカウンタ６１０及びラッチ６２０は、ライン６０１上の信号Ｐｆｅｔｃｈにより
初期化される。この信号は、プロファイリングされるべき命令がフェッチされるときに発
生され、例えば、サンプルビット４０１から導出される信号である。カウンタ６１０は、
ライン６０９のクロック信号により増加される。各クロック信号は、１つのプロセッササ
イクルに対応する。
命令４００がパイプライン２００の段を経て進行するときに、パイプライン２００の段遷
移がライン６０２－６０６の信号、各々、Ｐｍａｐ、Ｐｉｓｓｕｅ、Ｐｒｅｔｉｒｅ、Ｐ
ｔｒａｐ及びＰＬＳｄｏｎｅをトリガーする。対応するラッチ６２０は、図３のプロファ
イル待ち時間レジスタ（又はフィールド）３５０に記憶するためにライン６１２－６１６
において読み取ることができる。
【００６３】
プロファイリングアプリケーション
上記のプロファイリングハードウェアは、種々の異なる方法で使用することができる。本
発明の技術は、個々の命令の実行に関する非常に詳細な情報を与えるので、１つのアプリ
ケーションで非常に多数の命令をプロファイリングすることができる。サンプル情報はメ
モリバッファに記憶され、プロファイリングツールにより後で処理されて、詳細な命令レ
ベル情報を形成することができる。
この情報は、例えば、各ロード命令に対するロード待ち時間のヒストグラム、命令実行時
間のヒストグラム、及びおそらくは各命令に対するパイプライン状態の適度に包括的な分
析を発生するのに使用できる。この解決策により与えられる情報の量は、おそらく、かな
り多くなるので、本発明の技術の全メモリオーバーヘッドも、相当の量のメモリトラフィ
ックが含まれるために、かなり大きなものとなる。例えば、１秒当たり１０億の命令がフ
ェッチされ、そして各１万のフェッチされる命令ごとにサンプリングが実行される場合に
は、プロファイル情報のデータレートが１秒当たり約２．４ＭＢとなる。
以下、プロファイル情報を収集することにより帯域巾を減少するためのソフトウェア実施
方法について説明する。
【００６４】
出力プロファイル情報をフィルタすることによるデータの減少
サンプリングされるデータの量は、プロファイル記録のあるフィールド、例えば、プロフ
ァイルレジスタ３００のデータを、それらが明確に要求されるときを除いて、無視するこ
とにより、減少することができる。システム１００のユーザは、異なるレベルのプロファ
イリングを望むことがある。最低のオーバーヘッドモードでは、プロファイリングアプリ
ケーションソフトウェアは、ＰＣ及びリタイア－遅延フィールドのみを用いてプログラム
の全部又は一部分に対してプロファイルレポートを発生することができる。実行されるべ
き最適化に基づき、平均化又は他の統計学的メトリック、例えば、最小、最大又は標準偏
差の計算により他のＰＣごとの(per-PC)値を要約することができる。データを処理するた
めの更なる時間が与えられると、プロファイリングアプリケーションは、種々の命令待ち
時間のヒストグラムを形成することができる。
【００６５】
有効なメモリアドレス、分岐ターゲットアドレス及び分岐経過サンプルは、おそらく、他

(20) JP 4467094 B2 2010.5.26

10

20

30

40

50

のフィールドよりも経費のかかる処理を必要とする。これらのフィールドは、おそらく、
特定の最適化タスクを実行するためにデータを収集するとき以外は無視することができる
。命令と命令との間の命令間フェッチ距離がサイクルで与えられると、プロファイリング
アプリケーションは、同時性のレベルに関する情報も収集することができる。
又、プロファイリング情報のフィルタ動作は、例えば、マスクレジスタ又はプログラマブ
ルロジックのようなハードウェア手段により行うこともできる。例えば、キャッシュミス
があったとき又は命令がリタイアしたときにのみサンプルリングするか、或いはｏｐコー
ド、オペランド、アドレス、事象及び待ち時間の他のブール組合せのみをサンプリングす
る。
【００６６】
ハードウェアオペレーションの決定
本発明のプロファイリング技術は、Ａｌｐｈａ２１２６４プロセッサのようなアウトオブ
オーダーイッシュープロセッサの内部動作の正確な理解を得るために使用することができ
る。この形式のマシン編成に関して注目すべき第１の事柄の１つは、パイプライン２００
において命令がストールする場所が多数ありそしてストールする理由が非常に多数あるこ
とである。
例えば、ある命令は、イッシューユニット２３０においてストールすることがある。とい
うのは、そのオペランドの幾つかがデータレディでなく、選択された命令の実行に必要な
リソースの幾つかが使用できず、又はその命令に先立って他の命令が実行されるべく選択
されるからである。
【００６７】
ある命令は、仮想－物理的レジスタマッピングを行うマップ段においてストールすること
がある。というのは、マシンが物理的レジスタからのものであり、フライト中の命令が非
常に多数あり、或いはイッシューユニット２３０がいっぱいである（実行されようとして
いる命令を入れる場所がないことを意味する）ためである。或いは又、ある命令は、リタ
イアユニットにおいてストールすることがある。というのは、プログラム順に既にイッシ
ューされた命令がまだ完了していないからである。
命令がどこでストールされたか、なぜストールされたかそしてどれほどの時間ストールさ
れたかを正確に決定することは、主に、その命令が実行されるときのマシンの正確な状態
によって左右される。プロセッサがこのように動的であるために、ソフトウェア性能ツー
ルでこの状態を静的に決定することは困難である。
【００６８】
オペレーションの概要
図７ａに示すように、プロファイリング方法７００は、次のステップを含むことができる
。プロファイリング状態は、ステップ７１０において初期化される。ここで、レジスタが
クリアされ、そしてカウンタに初期値が指定される。ステップ７２０において、命令がフ
ェッチされそしてカウントされる。ステップ７３０において、初期化以来フェッチされた
命令の数が所定のランダム数に等しいときに命令が選択される。選択された命令は、その
選択を指示するよう増強される。選択された命令が実行パイプライン２００を経て進むと
きに、ステップ７４０においてプロファイル情報が収集される。完了（リタイア又はアボ
ート）時に、収集された情報がステップ７４０においてサンプリングされる。サンプリン
グされた情報は、その後の処理のためにバッファすることができる。又、特定のプロファ
イリング状態をサンプリングし、より詳細な情報を抽出することもできる。
【００６９】
処理された命令の特性の統計値の推定
図７ｂに示されたように、プロセス７９９は、パイプライン２００により処理される命令
の特性の統計値を推定する。プロセス７９９は、次のステップを含むことができる。ステ
ップ７５１は、ステップ７５０において上記したようにサンプリングされたプロファイル
記録３００を読み取る。記録は、選択された命令が完了したときに読み取られる。ステッ
プ７６０において、サンプルは、システムの状態情報を考慮するファンクション７５５に

(21) JP 4467094 B2 2010.5.26

10

20

30

40

50

基づいて選択又は破棄される。
例えば、ファンクション７５５は、選択された命令のアドレス、プロセス識別子、アドレ
ススペース番号、ハードウェアコンテクスト識別子、又はスレッド識別子のような状態情
報７５６を入力として得る。又、ファンクション７５５は、経路識別情報、ｏｐコード、
オペランド、待ち時間、又は選択された命令により経験する事象のような状態情報も使用
することができる。事象情報は、リタイア／アボート／無効状態、キャッシュヒット／ミ
ス、分岐予想ミス、トラップ状態ＴＬＢヒット／ミス、及びデータリソース依存性状態、
等々である。
【００７０】
ステップ７６０は、ファンクション７５５に基づいてサンプルのサブセットを発生する。
ステップ７８０において、統計値７９０が決定される。これら統計値は、サンプリングさ
れた命令の特性の平均値、標準偏差、ヒストグラム（分布）及びエラー限界を含むことが
できる。例えば、特定の事象が発生する平均レートや、命令実行の平均待ち時間や、メモ
リアクセスがある。又、プロセス、スレッド又はハードウェアコンテクストの実行レート
の平均値も決定できる。ヒストグラムは、命令実行、メモリアクセスレート又は待ち時間
のような分布を示すことができる。
エラーの限界は、サンプリングされている特定の特性に対してサンプルの数の平方根の逆
数で近似することができる。
【００７１】
Ｎ個ごとのサンプリング
ここに開示するプロファイリング技術は、Ｎ個ごとの(N-wise)サンプリングを実行するの
にも使用できる。ここで、多数の同時実行命令間の相互作用の動的な状態を捕獲すること
ができる。単一のフライト中命令をプロファイリングするのではなく、２つ以上の個別の
命令が同時にプロファイリングされる。選択された命令間の動的な「距離」は、フェッチ
された命令の数、又はフライト中の命令を「分離」するプロセッササイクルの数として測
定することができる。カウンタ５１０によりカウントされる事象のいずれかを用いて、選
択された命令間の距離、例えば、クロックサイクル、フェッチされた命令等を測定するこ
とができる。
Ｎ個ごとのサンプリングされた命令に対するプロファイル情報は、多数の考えられる用途
を有する。第１に、情報を分析して、有用な同時性レベルを測定することができる。これ
は、真のボトルネックを探索できるようにする。真のボトルネックは、長いストールが低
い同時性で結合されることを特徴とする。又、Ｎ個ごとのサンプルは、経路のプロファイ
リングを容易にすると共に、経路に沿った少なくとも２つのポイントを含むように経路を
制限することにより実行経路候補を明確化することができる。更に、Ｎ個ごとのサンプリ
ングから、詳細なプロセッサパイプライン状態を統計学的に再構成することもできる。こ
こで、命令のグループの選択は、命令間のある類似性の尺度、例えば、最近の分岐経過、
ストール、命令形式、又は他の最近の状態経過をベースとすることができる。
【００７２】
有効な同時性の測定
アウトオブオーダープロセッサにおいて性能のボトルネックを正確に位置決めするには、
ストール時間及び同時性レベルの両方に関する詳細な情報を必要とする。インオーダープ
ロセッサとは対照的に、長い待ち時間の命令がストールされる間にプロセッサを効率的に
利用するに充分な同時性があるときには、長い待ち時間の命令が問題とならない。
同時性情報を得るための１つの解決策は、全パイプライン状態のスナップショットを得る
ことである。これは、同時実行命令のセットが所与の時点でパイプラインの段のどこにあ
るかを直接的に露呈する。しかしながら、全パイプラインの状態をサンプリングレジスタ
及びバッファに「ダンプ」することは、時間及びスペースの両面で非常に経費がかかる。
更に、発生される多量のデータは、おそらく、サンプリングのコストを償還するように効
率的に収集することができない。更に悪いことに、この解決策は、リタイアする命令しか
「有効」としてカウントされず、そしてフェッチされた命令がアボートするところの情報

(22) JP 4467094 B2 2010.5.26

10

20

30

40

50

がまだ分からないので、実際上不充分である。
【００７３】
ネスト状の対ごとのサンプリング
Ｎ個ごとのサンプリングの１つの形式は、単一命令プロファイリングと全パイプラインス
ナップショットとの間の妥協を最小にする。ここで、統計学的な対ごとの(pair-wise) サ
ンプリングがネスト状に行われ、所与の選択された命令に対して、同時に実行し得る別の
命令が直接サンプリングされる。
ネスト状のＮ個ごとのサンプリングに対するハードウェアサポート
Ｎ個ごとのサンプリングは、次のハードウェア特徴を含む。第１に、ハードウェアは、少
なくとも２つの同時フライト中命令に対しプロファイル情報を捕獲できねばならない。プ
ロファイルレジスタのセットは、プロファイル記録の多数の個別のセットをサポートする
ために複写されねばならず、そして単一サンプルビット４０１は、より一般的なＩＤフィ
ールド４０２へと増強されねばならない。第２に、ハードウェアは、サンプリングレート
の変更により、選択された命令間の距離を動的に変更できねばならない。これは、ハード
ウェア又はソフトウェアによって行うことができる。同時サンプリング命令（Ｎ個ごと、
但しＮ＞１）のセットのサイズは、カウンタ及びレジスタの付加的な複写でより大きくす
ることができる。
【００７４】
例えば、特権付きプロファイリングソフトウェア５２０は、対ごとのケースでは２つのフ
ェッチカウンタ５１０の初期値がランダムに選択されるところの間隔のサイズを動的に変
更することができる。これは、一対の命令に対するサンプル間フェッチ距離を同時に特定
できるようにする。ハードウェアは、ソフトウェアレベルでの最大の融通性を得るために
比較的大きなサンプル間フェッチ距離をサポートすることができる。
第２のフェッチカウンタがコアフェッチ命令カウンタ５１０と同じサイズであって、充分
な距離に離れた２つの独立した命令を選択できるのが理想的である。Ａｌｐｈａ２１２６
４プロセッサの場合には１０ビットカウンタで充分である。フェッチ命令をカウントする
ときに同時性を測定するには、それより小さなカウンタで充分であり、サイクルがカウン
トされる場合には、それより大きなカウンタが必要とされる。ネスト状のＮ個ごとのサン
プリングについては、ハードウェアは、サンプル間フェッチ・対・フェッチ待ち時間もサ
イクルで測定して、多数の待ち時間レジスタ３５０を時間的に相関させることができねば
ならない。
【００７５】
ネスト状のＮ個ごとのサンプリングアプリケーション
高レベルアプリケーションソフトウェアは、ネスト状のＮ個ごとのサンプリングを用いて
、有効な同時性を測定することができる。ここでの重要な考え方は、潜在的に同時に実行
し得る命令セットのサンプリングを許すことである。ネスト状のサンプリングは、通常の
サンプリングを正当化する同じ統計学的引数に基づくもので、即ちサンプリングが繰り返
し適用される。Ｎ個ごとのサンプリングは２つのサンプリングレベルを含むので、著しく
実行されるコードについては最も効果的である。明らかに、これは、最も重要なところで
もある。
【００７６】
定義された同時性
図８に示すように、４巾のパイプラインにおける所与の選択された命令Ｉ（８１０）に対
し、潜在的に同時の命令とは、ある動的な実行中に命令Ｉと共にプロセッサパイプライン
２００に共存する命令である。これは、命令Ｉがフェッチされる前に種々の実行段に存在
する命令と、命令Ｉがリタイア又はアボートされる前にフェッチされる命令とを含む。
例えば、Ａｌｐｈａ２１２６４プロセッサは、８０個のフライト中命令を許すものである
。しかしながら、実際には、同時即ちフライト中命令の実数は、おそらく、ハードウェア
でサポートされるピーク値より相当に小さい。他方、予想ミス又は不良経路に沿った推測
的実行は、潜在的同時性のウインドウを増加することができる。

(23) JP 4467094 B2 2010.5.26

10

20

30

40

50

Ａｌｐｈａ２１２６４プロセッサにおいて同時性を検討するために、命令Ｉ（８１０）の
周りのウインドウＷ８２０の適度なサイズが約１００個の命令を含まねばならないことが
提案された。他の実施形態については、ウインドウの適当なサイズを実験で決定すること
ができる。
例えば、約１００個の潜在的な同時命令であるサイズＷのウインドウが与えられると、選
択される命令間のフェッチ距離をランダム化することにより非バイアスのサンプリングを
行うことができる。例えば、対ごとの各サンプル＜Ｉ１、Ｉ２＞（８３１及び８３２）に
対し、サンプル間フェッチ距離は、１とＷとの間に均一に分布した擬似ランダム数にセッ
トされる。このように、第１の選択された命令Ｉ１と第２の選択された命令Ｉ２との間で
サンプル間距離をランダムに変更すると、命令が実際に時間的に重畳するところの多量の
統計学的情報が捕獲される。
【００７７】
同時重畳の分析
種々のサンプル間フェッチ距離をもつ同時選択される命令のセットに対するプロファイル
情報は、有効な同時性統計値を直接的に表す。対応するサンプル情報の各セットを使用し
、第１命令Ｉ１から時間的に前方にそして第２命令Ｉ２から時間的に後方に見ることによ
り同時性情報を決定することができる。
各Ｎ個ごとの選択された命令に対して記録されるプロファイル情報は、両命令＜Ｉ１、Ｉ
２＞が所与の時間にプロセッサパイプライン２００に存在するようなインスタンスを正確
に考慮する待ち時間を含まねばならない。更に、待ち時間レジスタのセットを相関させる
ためには、サンプル間フェッチ待ち行列が記録されねばならない。又、ネスト状のプロフ
ァイリングは、放棄した実行経路において命令＜Ｉ１、Ｉ２＞が完了したときを指示する
こともできる。この詳細な情報を統計学的に収集して、有効な同時性レベルを反映する種
々のメトリックを形成することができる。
【００７８】
浪費イッシュースロットの測定
種々のサンプル間フェッチ距離をもつ対ごとの命令サンプル＜Ｉ１、Ｉ２＞の収集は、有
効な同時性統計値を直接的に表す。対ごとの各サンプルを使用して、第１命令から時間的
に前方にそして第２命令から時間的に後方に見ることにより同時性情報を計算する。命令
Ｉの後にフェッチされた命令に対する性能情報を測定するために、＜Ｉ、Ｉ２＞の形態の
対を考える。命令Ｉの前にフェッチされた命令に対する性能を測定するために、＜Ｉ１、
Ｉ＞の形態のサンプルされた対を考える。
対ごとの各サンプル＜Ｉ１、Ｉ２＞に対して記録されるプロファイルデータは、待ち時間
レジスタ３５０に記憶される値であって、各時点にプロセッサパイプライン２００のどこ
にＩ１及びＩ２があるかを指示する値と、２セットの待ち時間レジスタ３５０を相関させ
ることのできるサンプル間フェッチ待ち時間とを含む。又、プロファイル記録は、対＜Ｉ
１、Ｉ２＞がリタイアするかどうかも指示する。
【００７９】
この詳細な情報を統計学的に収集して、有効な同時性レベルを反映する種々のメトリック
を形成することができる。例えば、命令Ｉに対する１つの関心のある同時性の尺度は、Ｉ
がフライト中である間に浪費したイッシュースロットの平均数である。
浪費したイッシュースロットの数は、図９に示すように決定できる。Ｉ及びＩ２がリタイ
アするような形式＜Ｉ、Ｉ２＞のサンプルの数をＦ１とし、サンプルと共に記録される待
ち時間は、Ｉ及びＩ２の実行が重畳することを指示する（ステップ９１０）。それ故、有
効な順方向重畳を伴うサンプル対の全数をカウントし、これはＦ１で表される。同様に、
ステップ９２０において、Ｉ及びＩ２の両方がリタイアしそしてそれらの実行が重畳する
ような形式＜Ｉ１、Ｉ＞のサンプルの数をＢ１とする。即ち、第２の命令が第１の命令に
対してサンプリングされる場合には順方向に、そして第１の命令が第２の命令に対してサ
ンプリングされる場合には逆方向に、各対が２回考慮される。
【００８０】

(24) JP 4467094 B2 2010.5.26

10

20

30

40

50

次いで、ステップ９３０において、一致するサンプルの数Ｆ１＋Ｂ１に潜在的な同時性の
サンプルウインドウのサイズＷを乗算することにより、命令Ｉがフライト中である間にイ
ッシューされる有効命令の数を統計学的に推定し、即ち形成されるイッシュースロットの
数は、Ｗｘ（Ｆ１＋Ｂ１）となる。
イッシュースロットで測定される命令Ｉの累積的待ち時間Ｌ１、例えば、Ａｌｐｈａ２１
２６４プロセッサで持続できる４／サイクルを付加的に決定することにより、ステップ９
４０において、命令Ｉの実行中に浪費したイッシュースロット（ＷＩＳ）の全数を次のよ
うに要約することができる。
ＷＩＳ＝Ｌ１－（Ｗｘ（Ｆ１＋Ｂ１））
値ＷＩＳは、命令Ｉの実行当たりの浪費イッシュースロットの割合又は平均数を表すよう
に容易に拡張することができる。好都合にも、この平均に寄与する値を増分的に収集し、
データ収集中にコンパクトな記憶を行うことができる。又、これは、１９９７年３月３日
に出願されたウエイル氏等の「プロセッサ性能カウンタの高頻度サンプリング(High Freq
uency Sampling of Processor Performance Counters) 」と題する米国特許出願第０８／
８１２，８９９号に開示されたような効率的なデータ減少技術を可能にする。
【００８１】
命令Ｉがフライト中である間にリタイアした命令の数、又は命令Ｉの周りでイッシューさ
れた命令の数のような他の同時性メトリックも同様に決定することができる。
最終的に、命令Ｉが特定のパイプライン段にある間の特定の実行ユニット２４０の平均的
な利用のような更に詳細な情報も抽出又は収集することができる。
【００８２】
単一プロセッササイクル中にパイプライン段により処理される
命令の瞬時平均数の決定
図１０に示すように、異なる形式の多路サンプリングを使用して、固定サイズのプロセッ
ササイクル数にわたりパイプラインにより処理される命令の平均数を決定することができ
る。図１０は、例えば、リタイアされる命令の瞬時平均数を決定するための回路を示す。
プロセッササイクル中に、パイプライン２２０のいずれの段１００１についても、同様の
回路を使用して、フェッチ、マップ、イッシュー又は実行される命令の平均数を決定する
ことができる。
装置１０００において、先入れ先出し（ＦＩＦＯ）待ち行列１０１０及びＮ容量の加算器
１０２０の各々は、単一のプロセッササイクル中にパイプラインの特定の段１００１によ
り処理される命令の数（カウント１００２）を受け取り、例えば、フェッチ、マップ、イ
ッシュー又は実行される命令の数を受け取る。ＦＩＦＯ待ち行列１０１０におけるエント
リの数（Ｐ）１０２２は、平均値が決定されるところのサイクルの数を決定する。Ｐは、
ハードウェアで設定されてもよいし、ソフトウェアで設定されてもよい。値Ｐは、平均値
が決定されるところのサイクルのウインドウを制御する。
加算器１０１０はスケール型カウントレジスタ１０４０に接続され、従って、このレジス
タ１０４０は、Ｎ個のサイクル中にリタイアした命令の全数を累積することができる。Ｆ
ＩＦＯ待ち行列１０２０及びレジスタ１０４０は、ライン１０２１及び１０４１を経て初
期化することができる。減算器１０３０は、それまでのＮ－１サイクルにリタイアした命
令の数をレジスタ１０４０から減算し、例えば、ＦＩＦＯ待ち行列１０１０のヘッドエン
トリに記憶されたカウントを減算する。レジスタ１０４０の出力は追跡されたサイクルの
数（Ｐ）で除算され（１０５０）、段１００１で処理された実際の命令の動特性即ち瞬時
平均数１０６０を形成する。瞬時平均値は、プロファイルレジスタ３００に捕獲されるか
、或いはソフトウェアで読み取り可能なプロセッサレジスタ又はメモリ位置に記憶される
。
【００８３】
サンプルされた命令がリタイアした命令であるときには、コンピュータにより行われた実
際の「真」の有効作業を計算することができる。これは、相対的なプロセッサ性能を指示
するためにしばしば引用される「生」の命令フェッチレートよりも良好な指示である。例

(25) JP 4467094 B2 2010.5.26

10

20

30

40

50

えば、特定のアーキテクチャーは、大きなフェッチレートをもつことができるが、パイプ
ラインにおけるストールが性能を低下することがある。
【００８４】
命令のクラスター化
又、サンプルされた状態情報を使用し、同時性情報を収集しながら当該ケースを識別する
こともできる。例えば、命令Ｉがキャッシュの１つにおいて「ヒット」するときに平均同
時性レベルを計算し、次いで、平均同時性レベルを、命令Ｉがキャッシュミスを招く場合
と比較することが有用である。変化する同時性レベルと相関するために検討すべき他の当
該特徴は、レジスタ依存性ストール、キャッシュミスストール、分岐予想ミスストール、
及び最近の分岐経過を含む。
一般に、Ｎ個ごとのサンプリングは、Ｗ個の命令のウインドウにわたりＦ（Ｉ１、Ｉ２）
と表すことのできるファンクションの値をサンプリングすることにより種々の異なるメト
リックを統計学的に計算できるようにする著しい融通性を与える。対応する公知のハード
ウェアメカニズムとは対照的に、ここに与えられる融通性は、Ｎ個ごとのサンプリングを
、複雑なプロセッサに関する同時性情報を捕獲するための非常に優れた選択肢にする。こ
れは、新規なメトリック及び分析技術の設計を可能にするためである。
標準的なＳＰＥＣベンチマークソフトウェアを実行するプロセッサでの実験では、統計学
的に収集されたサンプルをベースとするメトリックは、低いオーバーヘッドの完全な情報
で得られた値に収斂することが示されている。
【００８５】
経路プロファイル
命令のクラスターをプロファイリングする付加的な効果は、経路プロファイルが得られる
ことである。経路プロファイルは、多数のコンパイラー最適化及びトレーススケジューリ
ングに有用である。
更に、最近の分岐実行経過と共にプログラムの実行経路に沿った多数のポイントを制限す
ることにより、経路プロファイルが明確化される。この明確化は、Ｎ個ごとのサンプリン
グとで改善され、即ちＮが増加するにつれて、明確化が改善される。著しく実行されるコ
ードの場合には、同時プログラムが、全ての実行命令に対しパイプライン２００の各段に
おいて命令の相対的な実行順序を示すことができる。従って、ここでは、オペレーティン
グシステムにおける実行パイプライン２００の実際のオペレーションを統計学的に再構成
することができる。
【００８６】
ランダムにサンプルされるプロファイル情報の他のアプリケーション
マイクロプロセッサの最新の世代は、考えられる最高の性能を与えるためにコンピュータ
アーキテクチャーが許す全ての策略を利用する。これらのマイクロプロセッサは、サイク
ル当たり多数の命令をフェッチし、イッシューしそしてコミットする。更に、これらのプ
ロセッサは、命令を順序ずれして実行する。それらのあるものは、メモリオペレーション
も順序ずれして実行する。
不都合なことに、プロセッサにより使用される多数の発見的メカニズムが命令及びメモリ
オペレーションを順序ずれしてイッシューするので、性能特性がかなり変化し得る。１つ
の効果として、ここに述べるプロファイリング技術は、システム１００の性能を自動的に
改善できるように、システムがプログラムの性能を充分詳細に測定できるようにすること
である。
【００８７】
最適化
又、本発明のプロファイリング技術は、システム１００の最適化を実行するのにも使用で
きる。以下の説明は、プログラマー及びコンパイラーで指令されるソフトウェアプログラ
ムの最適化を手引きするよう意図されたものである。
【００８８】
ハードウェアの最適化

(26) JP 4467094 B2 2010.5.26

10

20

30

40

50

アウトオブオーダーのスーパースカラーマイクロプロセッサは、データ及びリソースの利
用状態に基づいて命令をスケジューリングし直すので、コンパイル－時間命令スケジュー
リングは、構造的に簡単なプロセッサの場合よりも重要性がかなり低い。ここでは、主な
ボトルネックは、命令フェッチ及びメモリオペレーションによるものである。
より詳細には、分岐又はジャンプ予想ミス、オンチップキャッシュミス、及びＴＬＢ欠陥
によりプロセッサパイプライン２００においてサイクルが失われる。これらは、静的に推
測することが不可能でないまでも困難な状態である。又、高レベルオフチップオペレーシ
ョンにおける遅延に対しても、キャッシュミス、リソーストラップ及び順序づけトラップ
のために、サイクルが失われる。失われたサイクルは、時間を浪費する。
従来の事象カウンタでは、これらの性能低下事象の合計数を測定することはできるが、失
われたサイクルをプログラムの特定の命令に起因させることは不可能ではないまでも非常
に困難である。ここに述べるプロファイリング技術は、ユーザが主な性能問題を測定して
、それら問題を特定の命令に相関させることができるようにする。
【００８９】
フロントエンド最適化
性能の助けとなる１つのフロントエンド最適化は、基本的ブロックにおいて命令をそして
手順において基本的ブロックを順序付けし直すことである。基本的ブロックとは、１つの
単位として直線的に実行されるか又は全く実行されない命令のセットとして定義される。
手順とは、一般に、コール命令を経て到達する基本的ブロックの凝集セットである。手順
は、多数の基本的ブロックを含むことができる。基本的ブロックにおいて命令をそして手
順において基本的ブロックを順序付けし直すことは、ページ及びキャッシュの一時的な位
置を最適化すると共に、分岐の数を減少するように実行流及びデータアクセスを変更でき
るようにする。分岐は、実行流しか再指令せずそしてデータにおいて有効に作用しないの
で、サイクルを浪費する。この最適化は、入力として、制御流グラフエッジ周波数を知る
必要がある。
【００９０】
トレースの形成
同様に、命令のスケジューリングを追跡するために、コンパイラーは、制御流グラフのエ
ッジ又は経路周波数を必要とする。トレーススケジューラは、各基本的ブロック又はより
大きな実行経路を実行するのにどれほどの時間を要するかの推定値を有するときは非常の
良好なジョブを行うことができる。アルタ・ビスタサーチエンジンのような大規模な動作
システムの場合には、これを従来のツールでリアルタイムに測定することが困難である。
【００９１】
ホット／コールド最適化及び経路情報
トレーススケジューリング及びホット／コールド最適化のような多数のコンパイラー最適
化は、プログラムによりどの実行経路が頻繁にとられるかを知ることに依存している。こ
れらは「ホット」経路と称する。最近まで、計装又は模擬のいずれかによりプログラムを
プロファイリングすることにより、頻繁に実行される経路が推測されて、基本的なブロッ
ク又はエッジカウントが収集され、そしてこれらのカウントを用いて、ホット及びコール
ド経路が間接的に推測される。
最近、経路情報を直接収集するための技術が使用されている。これらの技術は正確な経路
情報を与えるが、非常に高いオーバーヘッドをもつ傾向があり、アクティブな大規模コン
ピュータシステムを測定するには不適当である。本発明のプロファイリングでは、経路情
報を最小のオーバーヘッドでランダムに捕獲することができ、そして実際の実行流の統計
学的に正しい概観を依然として表すことができる。
【００９２】
分岐経過レジスタ
ほとんどの近代的なマイクロプロセッサは、グローバルな分岐経過レジスタにおいて最後
のＮ個の分岐の方向を追跡する。分岐経過レジスタは、移動ウインドウとして、最近の分
岐予想を観察し、そしてそれに応じて将来の命令フェッチに作用を及ぼすことができる。

(27) JP 4467094 B2 2010.5.26

10

20

30

40

50

命令のＰＣがサンプリングされると共に、このレジスタの内容を命令フェッチ時間に捕獲
することにより、時には、制御流グラフの静的な分析を使用して、プロセッサがとらねば
ならない最後のＮ個の分岐により厳密な経路を仮定することができる。
しかしながら、従来の経過レジスタは、通常、分岐の方向しか含まず、実際のターゲット
行先を含まないので、情報が不正確なものとなる。特に、制御流の合流は、実際にとられ
た経路を識別する上であいまいさを招く。
又、分岐コードの実行を生じさせる非同期事象、例えば、割り込み又はコンテクストスイ
ッチは、分岐経過ビットを汚染することがある。しかしながら、これらの事象は、比較的
稀であり、そしてオペレーティングシステムにおけるそれらの発生は、コードにわたって
ランダムに分布されねばならない。頻度の高い経路を識別するのが目的であるから、予想
不能な非同期事象により発生される「ノイズ性」の分岐経過ビットにより生じるものを含
む頻度の低い経路を無視することができる。
図１１に示す命令シーケンスについて考える。ＰＣアドレスＡ－Ｅ（１１０１－１１０５
）に命令がある。アドレスＡ及びＣにおける命令１１０１及び１１０３は、分岐型の命令
である。ＥのＰＣをもつ命令１１０５があって、グローバルな分岐経過における最後のビ
ットが１である場合には、ＣＤＥで終わるいかなる経路も除外することができる。という
のは、このような経路の最後の分岐が失敗に終わり、それ故、グローバルな分岐経過に対
応しないからである。しかしながら、ポイントＥにおける異なる制御経路の合体により、
実行された真の経路がＡＥ（１１１０）又はＡＢＣＥ（１１１１）であったときを決定す
ることができない。
【００９３】
制御流グラフの合流によるあいまいさ
図１２は、サンプリングされたＰＣ値を入力として使用して、プログラム流の静的な分析
を実行することのできるプロセス１２００を示す。選択された命令の経路サンプルがステ
ップ１２１０において上記のように捕獲される。マシンへの影響を最小にするために、サ
ンプリングされた命令はランダムに選択されるのが好ましい。各「経路」サンプル１２２
０は、サンプリングされた第１命令Ｉ１のＰＣ１と、命令Ｉ１までの最後のＮ個の条件付
き分岐によりとられる方向（ＢＲＡＮＣＨ　ＨＩＳＴ）とを含む。
【００９４】
任意であるが、サンプリングされた情報は、第１命令の直前に実行される第２命令（Ｉ２
）のＰＣ２で増強することもできるし、或いは最後のＭ個の分岐のＰＣ値に適用されるあ
るファンクション、例えば、ある数の下位ビット又はハッシュ関数を用いて決定されたビ
ットを選択するファンクションに基づいて選択された情報で増強することもできる。
ステップ１２４０において、経路サンプルを使用して、プログラムの制御流グラフの逆方
向分析を実行する。この分析は、サンプリングされたデータに一致する実行経路を識別す
ることができ（１２５０）、そしてこの情報を収集して、最適化から更に効果が得られる
頻繁に実行される経路を識別することができる（１２６０）。
【００９５】
例えば、図１１を参照すれば、命令Ｅにおいて、１の分岐経過長さが与えられると、経過
ビット「１」により、ソフトウェアツールは、経路セグメントＡＥ１１１０及びＡＢＣＥ
（１１０１－１１０５）を考えられる経路として識別することができる。分岐経過ビット
の値が与えられたときに、静的な分析が、可能性として、単一経路セグメントしか識別で
きないときに、考えられる最良の成果が得られる。
又、プロセスの最近の実行経過に関する他の情報も、特定の命令に到達するためにとられ
た実行経路を識別する上で助けとなる。有効な情報の１つの断片は、最近実行された命令
の第２のＰＣ値の知識である。おそらくＮ個ごとのサンプリングと共に多数のＰＣ値を使
用することにより、１つのＰＣしか含まない経路を除外することができる。
【００９６】
所与のクラスの最後のＭ個の命令のサンプリング
図１３に示す別の技術においては、ハードウェアは、パイプラインの任意の選択された段

(28) JP 4467094 B2 2010.5.26

10

20

30

40

50

、例えばリタイアユニットで処理された最後のＭ個の命令の各々から少数のビット（Ｂ）
を捕獲することができる。Ｂビット１３０３は、ＰＣの下位のＢビットでもよいし、或い
はＢビットは、ＰＣ１３０４に適用されるハードウェア実施ファンクションＦ１３１０を
使用して選択することもでき、即ちＢ←Ｆ（ＰＣ）である。ファンクション１３１０がハ
ッシュ関数である場合には、分岐アドレスの非均一な分布が回避される。
命令のクラスは、例えば、条件分岐、コール、リターン、アクセス（ロード又は記憶）命
令、間接的分岐、及び間接的コール１３２１－１３２６として識別することができる。ク
ラスは、比較器又はマルチプレクサのような選択メカニズム１３２０によりライン１３２
１を経て選択することができる。又、クラスは、パイプラインの段、例えば、フェッチ、
マップ又はリタイア等により識別することもできる。クラスＩＤ１３１９は、ソフトウェ
アにより制御される。
【００９７】
選択されたビットは、ＭｘＢビット巾のシフトレジスタ１３００に記憶することができる
。このレジスタは、ソフトウェアの内部レジスタとして或いはメモリ位置として図５のＰ
ＳＷ５２０へアクセスすることができる。識別されたクラスの命令１３２１－３１２４が
処理されるときには、シフトレジスタ１３００は、その上位のＢビット１３０２を破棄す
るようにシフトされる。命令のＰＣ１３０４の選択されたＢビット１３０３は、空きビッ
ト１３０５へとシフトされる。従って、レジスタ１３００は、これら形式の命令に対し指
紋即ち「経路符号」として働く。レジスタ１３００は、例えば、実行された最新のＭ個の
分岐を制限する助けをする。というのは、現在経路符号に一致しない経路は、考慮対象か
ら排除できるからである。分岐命令１３２１に対し、図２の分岐実行指示２８７を使用し
て、サンプリングをトリガーすることができる。
【００９８】
経路符号により得られる精度の改善は、相当のものとなり、例えば、Ｂ＝４、Ｍ＝６のよ
うに、最後の６個の分岐から４つのビットを節約するだけでも、標準的なＳｐｅｃＩｎｔ
９５ベンチマークプログラムに対する実行経路を決定する精度が２倍になる。
経路符号及びグローバルな分岐経過を使用すると、トレースを次のように分析することが
できる。
トレースにおいて実行される各命令に対し、次のいずれかに達するまで経路セグメントを
決定するように逆方向に進行する。
ａ）グローバルな分岐経過ビットが尽きる、又は
ｂ）命令を含むルーチンの開始点に到達する。
【００９９】
制御流グラフの逆方向進行中に手順のコール命令に遭遇したときには、コールされた手順
を通して逆方向に進行し、そして最終的に、そのコールされた全ルーチンを通して逆方向
に作用するに充分な分岐経過があるときに、コール側手順に復帰する。従って、実行流の
より正確な概観が与えられる。
【０１００】
キャッシュ及びＴＬＢヒットレートの増強
キャッシュ又は変換ルックアサイドバッファ（ＴＬＢ）における高いミスレートは、シス
テムの性能を著しく低下する。公知の解決策は、一般に、キャッシュミスアドレスを収集
する特殊なハードウェア又は特殊なソフトウェア機構、例えば、ＴＬＢを周期的にフラッ
シュするものに依存している。観察されたミスパターンは、頻繁にアクセスされるページ
即ち「ホット」ページのおおよその理解を与え、これは、仮想／物理ページマッピングポ
リシーに影響するように使用することができる。しかしながら、完全な分析を行うのに必
要なアドレス情報は、事象が検出されるときまでに得られない。
図１４は、より正確な仮想／物理ページマッピングを実行するのに使用できるプロセス１
４００を示す。ステップ１４１０では、マッピングされるべきコードがシステムにおいて
実行される。ステップ１４２０では、メモリをアクセスするオペレーション（ロード及び
記憶）がサンプリングのために選択される。オーバーヘッドを最小にするためにサンプリ

(29) JP 4467094 B2 2010.5.26

10

20

30

40

50

ングはランダムであるのが好ましい。
命令が実行される間に、有効な仮想メモリアドレスが、ステップ１４３０において、キャ
ッシュ及びＴＬＢミスと共に識別され、従って、１つの効果として、事象及びアドレスを
特定の命令に直接的に起因させることができる。同様に、ステップ１４４０において、高
いアクセスレートで隣接ページを識別することができる。ステップ１４５０では、キャッ
シュ及びＴＬＢにおけるアクセス競合を減少するために、仮想／物理ページマッピングを
調整することができる。ステップ１４６０では、隣接ページを大きな「スーパーページ」
へと合成し、ページングオーバーヘッドを減少することができる。
【０１０１】
キャッシュ又はＴＬＢにおいて捕獲され損なったメモリ参照の仮想アドレスは特定の命令
に直接的に起因させて、ページマッピングポリシーを誘導するに必要な情報の形式を厳密
に与えることができる。アプリケーションのメモリ参照流に関する情報を使用して、オペ
レーティングシステムの仮想／物理マッピングポリシーを動的に制御すると、大きな直接
マップ式キャッシュにおける競合ミスを首尾良く回避し、スーパーページの形成によるＴ
ＬＢミスレートを低減し、そしてページの複写及び移動による非均一メモリアクセス時間
（ＮＵＭＡ）マルチプロセッサにおける遠隔メモリ参照の数を減少することができる。
【０１０２】
改良された命令スケジューリング
コード最適化の間に行われる１つの重要なタスクは、理想的な命令スケジューリングであ
る。理想的な命令スケジューリングは、メモリ待ち時間による遅延を最小にするようにコ
ードを順序付けし直す。基本的なブロックにおける隣接命令の静的な順序付けは、前世代
のインオーダー型ＲＩＳＣプロセッサの場合よりも重要性が低いが、巨視的な命令スケジ
ューリングは、アウトオブオーダー型プロセッサにおいて非常に重要である。
命令スケジューリングについての１つの非常に困難なものは、ロード及び記憶のスケジュ
ーリングである。これは、静的なスケジューラが、メモリアクセス命令を最適にスケジュ
ールできるようにする厳密な依存性情報を常に有していないからである。加えて、メモリ
アクセス命令の待ち時間を厳密に予想することが困難である。命令スケジューラは、通常
、メモリアクセスに関する正確な情報が不充分であるから、一般に、Ｄキャッシュヒット
を仮定してロード及び記憶をスケジュールする。或いは又、バランス型スケジューリング
は、ロード当たり等しい量の待ち時間を含むスケジュールを発生するよう試みる。これは
、ロード／記憶オペレーションがキャッシュにおいて常にヒットすると常時仮定すること
に勝る改良である。
【０１０３】
マルチスレッド型プロセッサにおけるスレッドのスケジューリング
マルチスレッド型プロセッサにおいては、上記プロファイリング方法を用いて得たスレッ
ドのリソース利用に関する情報を使用して、全体的なリソース利用度及びスループットを
最大にするようにスレッドをスケジューリングすることができる。
２つのスレッドがリソースの相補的な使い方を有し、例えば、一方のスレッドが主として
整数演算ユニットを使用するが、他方のユニットは主として浮動小数点演算ユニットを使
用する場合には、２つのスレッドが異なる機能的実行ユニットを使用するので、２つのス
レッドを同時に動作するようにスケジューリングすることができる。同様に、２つのスレ
ッドが競合するリソース使用を有し、例えば、両スレッドが浮動小数点演算ユニットを頻
繁に使用する場合には、それらを異なる時間に動作するようにスケジューリングすること
ができる。
【０１０４】
図１４ｂは、プロセッサの利用度によりスレッドをスケジューリングするためのプロセス
を示す。オペレーティングシステムにおいて実行されるスレッドのリソース利用度がステ
ップ１４７０において測定される。ステップ１４７５では、リソースの利用度が収集され
、そしてそのリソース利用度に基づいてスレッドがセットへと分類される。本発明のサン
プリングでは、各スレッドが、プロセッサにおける各クラスのリソース、例えば、整数演

(30) JP 4467094 B2 2010.5.26

10

20

30

40

50

算ユニット、浮動小数点演算ユニット、メモリユニット、分岐ユニット、イッシューユニ
ット等々をいかに使用するかを決定することができる。
ステップ１４８０では、スレッドのリソース利用度を比較して、非競合実行スケジュール
を決定する。所与のクラスのリソースに対する１組のスレッドの合成利用度により、その
クラスのリソースが完全利用状態より著しく多く利用されている場合には、その組のスレ
ッドを一緒にスケジューリングしてはならず（ステップ１４９０）、逆に、合成利用度に
より、そのクラスのリソースが完全利用状態以下で利用されるか或いは完全利用状態より
若干多めに利用される場合には、それらを一緒にスケジューリングするのが有益である（
ステップ１４８５）。
【０１０５】
図１５は、命令のスケジューリングを実行するのに使用できるプロセス１５００を示す。
マシンコード１５１０は、図１のシステム１００で実行される。コードが実行される間に
、メモリオペレーション命令の待ち時間がステップ１５２０において上記のように測定さ
れる。多数の命令、例えば、命令対に対する測定値をステップ１５３０においてサンプリ
ングすることができる。サンプリングは、オーバーヘッドを減少するためにランダムに行
うことができる。同じＰＣをもつ命令に対してサンプリングされたデータは、ステップ１
５４０において収集されて、例えば、待ち時間のヒストグラム（ＨＩＳＴ）１５４１が形
成される。ステップ１５６０では、マシンコードが順序付けし直される。この再順序付け
は、収集されたヒストグラム情報１５４１に基づく。例えば、長い待ち時間をもつメモリ
オペレーションは、それらに依存するオペレーションからできるだけ離れるように進めら
れる。ステップ１５６０は、リストスケジューリング或いはトレーススケジューリングの
ようなスケジューリングアルゴリズムを使用することができる。
ランダムサンプリングによりロード及び記憶待ち時間を収集する場合には、各命令を待ち
時間のヒストグラムに基づいてスケジューリングすることができる。本発明の技術は、全
キャッシュシュミレーションの経費を被ることなく待ち時間情報を収集することにより最
適化を導出するように使用できる。
【０１０６】
プリフェッチ命令の挿入
図１６は、測定された待ち時間に基づいてプリフェッチ命令を挿入するためのプロセスを
示す。プリフェッチ命令の挿入は、メモリから返送されるべきデータを待機することによ
り生じるプロセッサストールを隠す上で助けとなる技術である。データが実際に必要とさ
れる充分前にメモリシステムに要求を発生し、そして時々はデータが必要になると決定さ
れる直前にデータを要求することにより、コンパイラー及びオプチマイザーは、メモリか
らデータをフェッチするための待ち時間のほとんど又は全部をしばしば隠すことができる
。
しかしながら、性能を実際に改善するためには、著しい待ち時間を実際に経験するメモリ
オペレーションに対してのみプリフェッチ命令を挿入することが望ましく、即ち長い待ち
時間を実際に被らないメモリオペレーションにプリフェッチ命令を挿入すると、付加的な
プリフェッチ命令を実行しなければならないためにプログラムが実際上低速化されてしま
う。メモリオペレーション、特に、プリフェッチから利益を得るロードオペレーションを
識別するために、プログラム内の種々のメモリオペレーションにより経験する平均待ち時
間に関する統計学的データを収集することが所望される。
その一般的な構成が図１６に示されている。ステップ１６１０では、プログラム内のメモ
リオペレーションに対するメモリオペレーション待ち時間が測定される。ステップ１６２
０では、同じプログラムカウンタ（ＰＣ）値をもつ命令に対しサンプリングされたメモリ
オペレーション情報が収集される。ステップ１６３０では、プリフェッチを挿入すべき大
きなメモリ待ち時間をもつメモリオペレーションのサブセットが識別される。
【０１０７】
ステップ１６４０では、実行頻度情報及び測定された待ち時間情報に基づき、これらのメ
モリオペレーションに対してプリフェッチ命令を挿入するのに有益な位置が識別される。

(31) JP 4467094 B2 2010.5.26

10

20

30

40

50

ステップ１６５０では、その適当な位置にプリフェッチ命令が挿入される。
待ち時間は、上記のように測定することができる。１つの方法は、サンプリングハードウ
ェアでメモリオペレーションの待ち時間を直接測定することである。別の方法は、ロード
命令が対の第１サンプルでありそしてロードからのデータの使用が対の第２サンプルであ
るである場合に、対構成でサンプリングを行いそして対を探索することによるものである
。２つのサンプルにおいて待ち時間情報を探し、そして特に２つのサンプルのイッシュー
時間の差を探すことにより、ロードオペレーションに対するメモリシステム待ち時間を推
定することができる。
【０１０８】
以上、特定の実施形態について詳細に説明した。当業者であれば、上記実施形態を変更し
ても、幾つかの又は全ての効果が達成されることが明らかであろう。それ故、本発明の精
神及び範囲内に包含されるこのような修正や変更は全て請求の範囲内に含まれるものとす
る。
【図面の簡単な説明】
【図１】命令駆動状態サンプリングを伴うコンピュータシステムのブロック図である。
【図２ａ】サンプリングされた命令を処理するためのマイクロプロセッサ実行パイプライ
ンのブロック図である。
【図２ｂ】サンプリングすることのできる状態情報を示すパイプラインのブロック図であ
る。
【図３】プロファイル情報を記憶するためのレジスタファイルのブロック図である。
【図４】増強された命令のブロック図である。
【図５】選択された命令をプロファイリングするための流れ線図である。
【図６】パイプライン待ち時間を測定するための回路を示す回路図である。
【図７】プロセスの流れ線図である。
【図７ａ】命令をサンプリングするプロセスの流れ線図である。
【図７ｂ】プロセッサパイプラインにより処理される命令の特性の統計値を推定するため
のプロセスを示す流れ線図である。
【図８ａ】命令の同時実行を示す図である。
【図８ｂ】命令の同時実行を示す図である。
【図８ｃ】命令の同時実行を示す図である。
【図９】費やされる発生スロットを決定するプロセスを示す流れ線図である。
【図１０】プロセッササイクル中に処理される命令の平均数を決定するための装置のブロ
ック図である。
【図１１】命令シーケンスの制御の流れを示すグラフである。
【図１２】制御流を識別するプロセスのデータの流れを示す図である。
【図１３】分岐経過を収集する装置のブロック図である。
【図１４ａ】ページマッピングプロセスの流れ線図である。
【図１４ｂ】スレッドスケジューリングプロセスの流れ線図である。
【図１５】メモリ待ち時間の影響を受ける命令スケジューラの流れ線図である。
【図１６】プリフェッチ命令を挿入するためのプロセッサ１６００の流れ線図である。
【符号の説明】
１００　コンピュータシステム
１１０　プロセッサ
１１１　パイプライン
１１２　データキャッシュ（Ｄキャッシュ）
１１３　命令キャッシュ（Ｉキャッシュ）
１１９　プロセッサ状態をサンプリングするハードウェア
１２０　オフチップメモリ
１２１　汎用キャッシュ
１２２　揮発性メモリ

(32) JP 4467094 B2 2010.5.26

10

１２３　永続的メモリ
１３０　入力／出力インターフェイス（Ｉ／Ｏ）
１４０　バスライン
２００　実行パイプライン
２０５　変換ルックアサイドバッファ（ＴＬＢ）
２１０　フェッチユニット
２２０　マップユニット
２３０　イッシューユニット
２４０　実行ユニット
２５０　リタイアユニット

【図１】 【図２ａ】

(33) JP 4467094 B2 2010.5.26

【図２ｂ】 【図３】

【図４】 【図５】

(34) JP 4467094 B2 2010.5.26

【図６】 【図７】

【図７ａ】 【図７ｂ】

(35) JP 4467094 B2 2010.5.26

【図８ａ】 【図８ｂ】

【図８ｃ】

【図９】 【図１０】

(36) JP 4467094 B2 2010.5.26

【図１１】 【図１２】

【図１３】 【図１４ａ】

(37) JP 4467094 B2 2010.5.26

【図１４ｂ】 【図１５】

【図１６】

(38) JP 4467094 B2 2010.5.26

10

20

30

40

フロントページの続き

(72)発明者 ジョージ　ゼット　クリソス
 アメリカ合衆国　マサチューセッツ州　０１７５２　マールボロ　ブライアーウッド　レーン　５
 １
(72)発明者 ジェフリー　エイ　ディーン
 アメリカ合衆国　カリフォルニア州　９４０２５　メンロ　パーク　フィフティーンス　アベニュ
 ー　８８４
(72)発明者 ジェームズ　イー　ヒックス
 アメリカ合衆国　マサチューセッツ州　０２１５９　ニュートン　ボウ　ロード　６３
(72)発明者 ダニエル　エル　ライブホールズ
 アメリカ合衆国　マサチューセッツ州　０２１３８　ケンブリッジ　リーザーヴォア　ストリート
 　７４
(72)発明者 エドワード　ジェイ　マックレーラン
 アメリカ合衆国　マサチューセッツ州　０１７４６　ホーリストン　ワシントン　パース　５
(72)発明者 カール　エイ　ウォールドスパージャー
 アメリカ合衆国　カリフォルニア州　９４０２７　アサートン　パーク　ドライヴ　２７
(72)発明者 ウィリアム　イー　ウィール
 アメリカ合衆国　カリフォルニア州　９４１１４　サン　フランシスコ　クリッパー　ストリート
 　２８０

 審査官 坂庭　剛史

(56)参考文献 特開昭６３－０４６５５２（ＪＰ，Ａ）
 特開平０３－２６３１３６（ＪＰ，Ａ）
 特開平０８－０３０４９４（ＪＰ，Ａ）
 特開平０８－１７１５０５（ＪＰ，Ａ）
 特開平０７－０６４７９９（ＪＰ，Ａ）
 特開平０３－１７５５３３（ＪＰ，Ａ）
 特開平０３－０９９３４２（ＪＰ，Ａ）
 特開平０２－１５８８４７（ＪＰ，Ａ）
 特開平０２－０８３７５１（ＪＰ，Ａ）
 特開平０１－２２００４２（ＪＰ，Ａ）
 特開昭６３－０２５７４２（ＪＰ，Ａ）
 特開昭６２－２４３０３５（ＪＰ，Ａ）
 特開昭６２－２１４４５０（ＪＰ，Ａ）
 特開昭５９－０６９８５３（ＪＰ，Ａ）

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 11/34
 G06F 11/28
 G06F 9/38

	biblio-graphic-data
	claims
	description
	drawings
	overflow

