Al

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 :

(11) International Publication Number:

WO 89/ 01653

(43) International Publication Date: 23 February 1989 (23.02.89)

GO05B:1/00, GOGF 7/02 Al
(21) International Application Number: ~ PCT/US88/01119
| (22) International Filing Date: 7 April 1988 (07.04.88)
(31) Priority: Application Number: 088,421
(32) Priority Date: 20 August 1987 (20.08.87)
(33) Priority. Country: us

(71) Applicant: DAVIN COMPUTER CORPORATION
[US'/)US]; 17922-F Sky Park Circle, Irvine, CA 92714

- (72) Inventors: METHVIN, David ; 800 S. 86th Street, Boul-

der; CO 80303 (US). MCLAGAN, Angus ; 1206 Pem-
broke: Jane, Newport Beach, CA 92660 (US). UN,
Chong, Sam ; 455 Westridge Circle, Anaheim, CA
92807 (US). PAO, Gei, Jon ; 8451 Larson Avenue, #5,
Garden Grove, CA 92644 (US).

(74) Agents: BEAR, James, B. et al.; Knobbe, Martens, Ol-
son & Bear, 620 Newport Center Drive, 16th Floor,
Newport Beach, CA 92660 (US).

(81) Designated S?ates: AT (European patent), AU, BE (Eu-
ropean patent), CH (European patent), DE (Euro-
pean patent), FR (European patent), GB (European
patent), IT (European patent), JP, KR, LU (European
patent), NL (European patent), NO, SE (European
patent).

Published
With international search report.

- terconnected shift registers (186]
and 188), which stores the string FUNCTION

(54) Title: PARALLEL STRING PROCESSOR AND METHOD FOR A MINICOMPUTER

keyword string and a pair of in-

" (57) Abstract ;
Ty 5 M-gus [182
A processor for use in a. REGISTER REGISTER 184
~ computer'system for comparing a FILE FLE 1432 *17&
number of bytes simultaneously 122 - J{ 817 _counT] o=
in-order to-locate a control char- 14| [AODRESS 1] MEMORY
acter in a string of data. The pro- 126-| L —EENCTL_]|) }—120
cessor: includes a register for ' 12| BT MASK]]
 holding the data bytes (REGB), 2 S v WA 1 3
register' for storing the control N A LOAD. 51,58
_ characters. (REGA), a comparis- I 136 LOAD. 51,58
on circuit (CMP) for simultane- LKEWORD 1 {105 190 186 (188
ously comparing the bytes of data ' LEND FLAG | | . [MASK K——'TJS“"’T JJm——{SHIFT K]
stored in"the two registers, and a ' JlBYTE CounT] 192
circuit for generating indicator . Y A-8US —168
bits whemra match has been found .] B-sus 172
- (100). In-another aspect, a paral- 2 ves < - — 1
lel string processor includes a 4 [3&——-' Lt °|——ﬁ—ﬁ l—ﬁ—ﬁ”s
first register (136) which stores a AL BT rB—UpEER BUFF:ER il

to be searched for the presence of

the keyword. An arithmetic logic
unit (140) compares the shift re-

~148 F-BUS

gisters to determine whether the keyword is present in the portion of the string being searched. After each comparison, the

- contents of the interconnected shift registers are shifted with respect to the keyword stored in the first register. When the

processor-is. searching for the presence of a keyword having a predetermined number of bytes, the contents of the shift re-
gister are shifted a byte at a time, and when the processor is searching for the presence of a keyword having a predeter-
mined number of bits the contents of the shift register are shifted one bit at a time.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used toidentify States party to the PCT onthe front pages of pamphlets publishing international appli-

cations under the PCT.

AT Austria

AU Australia

BB Barbados

BE Belgium

BG Bulgaria

BJ Benin

BR Brazil

CF Central African Republic
CG Congo

CH Switzerland
CM Cameroon
DE Germany, Federal Republic of
DK Denmark

FI Finland

ZSSEEE RRAES8eR

France

Gabon

United Kingdom
Hungary

Ttaly

Japan

Democratic People’s Republic
of Korea
Republic of Korea
Liechtenstein

Sri Lanka
Luxembourg
Monaco
Madagascar

ML Mali

MR Mauritania
MW Malawi

NL Netherlands
NO Norway

RO Romania

SD Sudan

SE Sweden

SN Senegal

SU Soviet Union
TD Chad

TG Togo

US United States of America

wis

WO 89/01653

10

15

20

25

30

35

PCT/US88/01119

-1-
PARALLEL STRING PROCESSOR AND METHOD EOR A MINICOMPUTER

This is a continuation-in-part of U.S. Serial No.
012,834, filed February 10, 1987.

A portion'of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Officé
patent file or records, but otherwise reserves all copyright
rights whatsoever. |

' Background of the Invention

The present invention relates generally to computer
systems for processing strings of data, and also to a
parallel string processor for a minicomputer and a method of
searching strings of bits and bytes for the presence of a
desired keyword.

Prior art computers and microprocessoré process data
strings one byte at a time. One of the most frequently

occurring processing'tasks is to attempt to locate one or

more control characters in a data string. Prior art systems

compare the data one byte at a time to the control or
reference characters which are loaded into a CPU (central
processing unit) register. After a byte is compared, the
data string is rotated one byte so that the next byte in the
data string is compared, continuing until all bytes are
compared. ,

The foregoing is a time-consuming procedure and
utilizes a substantial amount of computer time as numerous
repetitions of the comparison process are required to check
each byte sequentially in order to determine whether it
contains the reference character. For example, there may be
only one "carriage return" (CR) character found per 80-
character line, but all 80 characters must be compared one
at a time. If a data string has 512 bytes, and each byte is

separately cempared to the control character, the comparison

"must be executed 512 times. Thus, a need exists for

WO 89/01653 . . PCT/US88/01119

10

15

20

30

35

-2

Vreducing the amount of time required to compare strings of

data and find control characters embedded in the strings.

Eight'bytes of data are simultaneously compared. Thus,
the number of comparisons necessary is reduced by a factor
of 8 relative to a single byte comparison, resulting in a
substantial reduction of processing time. Since the
comparison procedure is commonly executed numerous times in
any given program, a significant savings in processing time
may be achieved by this simultaneous comparison of a number
of bytes.

'In other computer applications it is desirable to have

the capability to search 1long strings of bytes for the

presence of a selected pattern of bytes. One such
application that is relatively well known is used in the
word processing context. This application allows one to
search a portion of text for a particular word or phrase.
For example, one may want to find each occurrence of the
word "country" within a particular document so that the word
"county" can be substituted therefor. Alternatively, one
may want to find each occurrence of "couty" so that it can
be replaced with the proper spelling "county." These are
known as search and replace operations. Search and replace

~operations are also used in connection with automatic

spelling check programs that are offered by many
commercially available word processing programs.

In word processing programs and other programs in which
words and letters are used, each letter of the alphabet as
well as each symbol such as an asterisk or hyphen is
repfeéented as a unique string of eight 1 or © logic bits,
also known as a byte. In order to determine whether two
byte strings represent the same word, the corresponding bits
in each byte are compared to determine whether they are the
same. If all of the bits in the two byte strings are
identical, the two byte strings represent the same word.

A portion of text can be thought of and is represented
as a long, continuous string of bytes, one byte for each

L

WO 89/01653

1o

15

20

25

30

PCT/US88/01119

3=
letter appearing in the portion of text. To determine
whether a particular word, or '"keyword," appears in a .
portion of text, current string processors typically,
starting at the beginning of the byte string that represents
the portion of text, or the "character string," compare the
first byte of the keyword with the first byte of the
character string. If these two bytes match (the first
letter of the Xeyword matches the first letter in the
portion of text), then the processor compares the second
byte in the keyword to the second byte in the character
string. If these two bytes match, then the processor
compares the next pair of bytes in the two strings, and so -
on. If all of the respective bytes in the two strings
match, the processor has found an occurrence of the keyword
in the portion of text.

However, the keyword does not usually appear as the
first word in the portion of text being searched.
Consequently, one of the bytes of the keyword will not match
one of the bytes in the character string (the keyword is not
the first word in the portion of text). In this case, the
character string is shifted one byte relative to the keyword
so that the first byte of the keyword is compared to the
second byte of the character string. If these two bytes
maﬁch, then the second byte of the keyword is compared to
the third byte of the character string, and so on. If one
of the pairs of bytes do not match, then the character
string is again shifted one byte relative to the keyword so
that the first byte of the keyword is now compared to the
third byte of the character string. This general process
repeats, usually until all occurrences of the keyword in the
portion of text have been found.

As an example, let the keyword be the word "the" and
the character string be “that time 1s the essence."”

Initially, as desc:ibed above and set forth below, the byte

. representing the "t" in "the" will be compared to the byte

representing the "t" in "this":

WO 89/01653) PCT/US88/01119

hilla 3

15

20

25

4
Data String: that time is the essence
Keyword: the

This comparison will yield a match, and so the byte
representing the "h" in "the" will be compared with the byte
representing the "h" in "that." These bytes will also match,

~and so the byte representing' the "e" in "the" will be

compared to the byte representing the "a" in "that." These
bytes will not match, and so the character string will be
shifted one byte with respect to the keyword so that the
first byte of "the" will be compared with the second byte in
the character string. The relative position of the keyword
and the character string are set forth below, and the "3"
above the letter "t" in the word "that" is the number of

comparisons that were reguired to determine whether or not
there was a match.

Comparisons: 3
Data String: that time is the essence
Keyword: the

Only one comparison will be needed at this point to
determine that the keyword is not present at this portion of
the character string, and the character string will be
shifted again:

Comparisons: 31
Data String: that time is the essence
Reyword: the

‘This process will continue to repeat until the match is

found, at which point the character string will have been
shifted to the position set forth below:

WO-89/01653

10

15

20

25

30

PCT/US88/01119

5=
Comparisons: 31121211111114
Data String: that time is the essence
Keyword: the

Note that this particular example required 21 comparisons to
find the keyword "the" in the character string "that time is
the essence." In particular, four comparisons were required
even where the keyword matched the same word in the
character string (the blank space required one comparison).
In other computer applications it is desirable to test
bit patterns for the presence of a pafticular bit string.
Examples of such applications are encryption and decryption
algorithms used to scramble. and unscramble binary

"information to protect it from unauthorized reception. Such

algorithms are often used in the intelligence field to
protect highly classified information from being intercepted
and used by foreign countries having adverse interests.
These algorlthms are also used by corporations to safeguard
their valuable commercial information and trade secrets.

In general, these encryption and decryptlon algorithms
may perform similar search and replace operations as
described above in connection with word processing programs.
In addition, it would be desirable to be able to perform
operations on strings of binary information that are not an
integral number of bytes long, for example, a string of five
bits. Processors such as those described above in
connection with word processing programs do not even have
this capability since they shift strings of bits eight bits,
or one byte, at a time. ' Even if such processors had the
capability to shift strings of data one bit at a time, their
use as described above on strings of bits would be even
slower due to the large number of comparisons that would be
necessary. As an example, assume that the bit string
"11001110011011" is to be searched for the presence of the

keyword "1101." Initially, as described above, the first bit

WO 89/01653 PCT/US88/01119

10

15

20

25

30

-6-
of the keyword would be compared to the first bit in the bit
string as set forth below:

Bit String: . 11001110011011
Keyword: - 1101

The processor would need to make four comparisons before it
could determine that the four bits in the keyword do not
match the first four bits in the bit string. Again, as
described above, the processor would then, shift the bit
string relative to the keyword string as set forth below and
compare the respective bits again:

Comparisons: -4
Bit String: 11001110011011
Keyword: 1101

Again, the "4" above the first "1" in the bit string means
that four comparisons were required in order to determine
that the keyword did not match. After the keyword was
shifted as shown above, two comparisons would be required to

"test the next portion of the bit string. Aas shown below, 22

comparisons would be needed to find the portion of the bit
string that matched the keyword.

Comparisons: 4211242114

Bit String: 11001110011011

Key Word: 1101

A greater number of comparisons are required overall in
bit searching than are in byte or character searching since
it is more likely that a pair of bits each having one of two
possible values will match than a pair of letters each
having one of 26 possible values. Thus, a pfocessor
performing operations on bit strings in this manner would
have an unduly large. amount of computing overhead.

WO 89/01653

10

I5

pael

251

30

35

PCT/US88/01119

7=

summary of the Invention
The present invention comprises a ﬁortion of a computer
system for comparing a number of bytes simultaneously. The
parallel processor of the present invention includes a first
register for receiving bytes of data, a second register for
storing a number of copies of a byte representing a
selectable control or reference character and a comparison
circuit for simultaneously comparing the data .in the two
registers to determine whether any of the bytes in the first
register are egual to the bytes representing the control
character in the second register, and generating control
bits which are in a first state if the corresponding byte in
the first register is equal to the control character in the
second register, and in a second state when the
corresponding byte in the first register is not equal to the

control character in said second register.
The parallel byte processor has the ability to branch
to a predetermined memory location if any of the byte pairs
being simultaneously compared are equal. If any byte of

‘data in the first register is egual to the bytes comprising

the control characters in the second register, the microcode
instruction branches or proceeds to a predetermined memory
location." _

If no control character is located in the data in the
first register, the instruction branches or proceeds to a
second predetermined memory location. Thué, a number of
bytes may be moved and checked for control characters with a
single instruction, thereby substantially reducing the
processing time. In an exemplary embodiment of the present
invention, eight bytes of data are simultaneously compared.

Another aspect of the invention is directed towards a
novel parallel bit and byte string processor for a
minicomputer. In its byte mode, the processor stores a
portion of a string of bytes that is to be tested for the
presence of a desired keyword in a first register location
and stores the Xkeyword in a second register 1location.

WO 89/01653 | PCT/US88/01119

10

15

20

25

30

35

-8~ ,
Instead of testing the portion of the byte string one byte

at a time, the processor simultaneously tests each byte in
the kéyword with a respective byte in the byte string.
Thus, only a single comparison is required to determine
whether the keyword is present in any portion of the byte
string. If the keyword is not present in the portion of the
byte string tested, then the processor shifts the byte
string with respect to the keyword and then makes a single
comparison of the keyword with the new portion of the byte
string. This single-compare-and-test process continues
until either the keyword is found or the end of the byte
string is reached. As a result of simultaneously testing
each byte in the keyword with a respective byte in the byte
strlng; the processing time is kept to an absolute minimum.

In its bit mode of operation, the processor stores a
portion of a bit string that is to be tested for +the
presence of a desired string of bytes in a first reglster
location and the desired keyword in a second reglster
location. The processor simultaneously tests each bit in
the keyword with a respective bit in the bit string. As a
result of this simultaneous testing, only one comparison is
needed to determine whether the keyword is present in the
portion of the bit string being tested. If the keyword is
not present, .the bit string is shifted one bit relative to
the keyword and a single comparison of the keyword with the
new portion of the bit string is made. This process
continues until the keyword is found or until the end of the
bit string is reached. Because each bit in the.keyword is
simultaneously tested with a respective bit in the bit
string, only a sihgle comparison is required to determine
whether the keyword matches a portion of the bit string, and
as a result, processing time is minimized.

Another feature of the invention is the capability of
the processor to automatically function either as a parallel
bit processor or as a parallel byte processor. When the

processor is given a first control signal, the processor

W0:89/01653 PCT/US88/01119

Ia:

I5

20

3 0.;

Q=
functions as a parallel byte processor, and when the
processor is given a second control signal, the processor
functions as a parallel bit processor. As a result, two
separate processors are not required, thus resulting in cost
saving that a separate processor would otherwise entail.

These and other objects, features, and advantages of
this invention will be apparent in view of the following
detailed description of several preferred embodiments, which
are explained with reference to the figures, a brief

description of which is provided below.

Brief Description of the Drawings
Figs. 1 and 2 are block diagrams of two registers of

the parallel byte comparison processor;

Fig. 3 is a circuit diagram of the comparison circuit
of the parallel byte comparison processor;

Fig. 4 is a representative instruction sequence of the
parallel byte comparison processor;

Fig. 5 is a schematic circuit diagram of a parallel
string processor in accordance with the invention;

Fig. 6 is a detailed circuit diagram of a portion of
one embodiment of a shift register in accordance with the
invention; '

Fig. 7 is a detailed circuit diagram of a portion of
the parallel string processor of Fig. 5;

Fig. 8 is a detailed flowchart of the operation of the
parallel processor of Fig. 5 in its byte mode of operation;

and
Fig. 9 is a detailed flowchart of the operation of the

parallel processor of Fig. 5 in its bit mode of operation.

Detailed Description of Several Preferred Embodiments

Referring to Fig. 1, a selected control character, such
as "EOS" (end of sector), is loaded into a Register A.
Referring to Fig. 2, an 8-byte (64 bit) data string is
loaded into a Register B and compared to the "EOS" reference

WO 89/01653 PCT/US88/01119

10

15

20

25

30

35

-10-
characters in Register A in order to determine whether there
are any "EOS" characters in any byte of the data string in
the Register A. The results of the comparison, whether any
particular byte of Register A matches the corresponding byte
in Register B, is stored in a Processor Status Register 100
(also referred to as the "hit register").

It will be appreciated that with the present invention,
any number of bytes may be simultaneously compared, the
number depending on the particular computer system utilized.
In the preferred embodiment discussed herein, the computer
is a 64-bit machine; therefore, 8 bytes are simultaneously
compared to determine whether they contain a control
character.

Each bit in the data string in the Register B is
compared to the bits comprising the control characters in
Register A. This is shown in more detail in Fig. 3, wherein
each bit of each byte 0-7 in the Register B is compared with
the corresponding bit of each corfesponding control
character byte 0-7 in the Register a, utilizing "exclusive-
NOR" circuits 102-109, one ‘"exclusive-NOR" circuit
associated with each bit pair. It should be understocd,
however, that Fig. 3 ‘is a functional diagram to illustrate
the invention. In the actual embodiment, an arithmetic
logic unit (ALU) is utilized to perform the exclusive-OR
function as shown in Fig. 5 and discussed in further detail
hereinafter. In Fig. 3, only the exclusive-NOR circuits
102a and 102h corresponding to byte 0, bit 0 (the 1least
significant bit) and byte 0, bit 7 respectively, and 109a
and 109h corresponding to byte 7, bits 0 and 7, respectively
are shown. It should be understood, however, that there are
64 such exclusive-NOR circuits. In addition, only the
portions of Registers A and B containing bytes 0 and 7,
corresponding to the least significant bytes and most

significant bytes, respectively, are shown in Fig. 3. The

designations within Registers A and B denote the register,

W0:89/01653

Ia

I

20

25

3@

35

PCT/US88/01119

-11-
the byte number and the bit within the bytes. For example,

wA67" refers to bit 7 of byte 6 of the ﬁegister A.

The components of the exclusive-NOR circuit 109 are
also shown in Fig. 3 as comprising first and second AND
gates 110 and 111, first and second inverters 112 and 113,
and OR gate 114. The bit pairs, for example, A77 and B77,
are input to the AND gate 110. The bits A77 and B77 are
also inverted by inverters 112 and 113, respectively, and
are input into the second AND gate 111 of the exclusive-NOR
circuit. The output of the first AND gate 110 and the
output of the second AND gate 111 are input to the OR gate
114. The output of each OR gate is provided as an input to
one of eight 8-inpﬁt NAND gates 115-122 (the NAND gates 116~
121 are not shown). There is one 8-input NAND gate for each
byte being compared. The output of any of the 8-input NAND
gates 204-210 will be low or logical "0" only when all eight
bits being compared are equal and thus will indicate that
the particular byte pair is equal to each other (e.g., when
all the bits A00-207 of the Register A are equal to the
corresponding bits B00-B07 of the Register B, the output of -
the 8-input NAND gate 115 will be low).

The output of NAND gates 115-122 are stored in the
Processor Status Register 100 or "hit" register (Fig. 2).
An instruction (BAH) causes the system to branch or proceed
to a predetermined memory location when any of the bits in
the Processor Status Register 100 indicate that any of the
eight bytes being compared are equal. Alternatively, if
there are no bits in the Processor Status Register 100,
indicating that no byte pairs match and no control character
was found, the system proceeds to execute the instruction
found in the next sequential memory location in the control
memory of the processor. If a hit occurs, the location of
the particular bytes which do match can be determined by
looking at which bits of the Processor Status Register 100

indicate a match.

WQ 89/01653 PCT/US88/01119

Ie

15

20

25

30

-12~
For'example, if byte 3 of the Register A is equal to
byte 3 of the Register B, bit 3 in the Processor Status
Register will be zero, indicating that the byte 3 pair
matches,
Fig. 4 shows a represéntative instruction éequehce.
The left column corresponds to the 1line number in the
control program of the processor. The instruction at line
80 causes the control character being compared to be loaded
into the Register A. The instruction at line 82 causes the
loading of Register B with the first eight bytes of data
(data word 1, indicated as "DATAl"™ in Fig. 4). The
instruction at line 84 performs the multibyte "exclusive-
NOR" operation of the present invention on the data in the
Register B and the Register A. The instruction at line 86
causes the system to branch to a memory location 400 if any
of the bits in the Processor Status Register 100 (Fig. 2)
are zero indicating that a match was found between the
Registers A and B. At memory 1location 400, which is
executed if a hit is found, is the beginning of a routine
which examines the bits of the Processor Status Register 100
to determine the location of the ‘characters within data word
1 which match the control character “EOS" for example.
' ‘Then at line 88, Register A is loaded with a second
control character and at line 90 the exclusive-NOR operation
is performed to determine whether the second control

- character is present in any of the eight bytes of data in

DATAL. If the second control character is found in DATAL,
then at line 92 the program branches to memory location 400.

When there are no control characters found in the data,
the instruction at 1line 94 is executed and the data in
Register B is stored in a buffer. Thereafter, the system
proceeds to execute the instruction at 1line 80 and the
process described above repeats. Thus, eight bytes are
checked for two different control characters with only two

WO:89/01653

20

25

30

35

PCT/US$8/01119

-13-
compare cycles in contrast to the 16 compare cycles required
in prior art machines. .

A "branch on no-hits" may be utilized as an alternative
to the "branch on any hit" instruction, which branches to a
memory location if none of the bytes in the data word
contain the control character.

When the data is checked for more than one set of
Characters, the Register A may be reloaded with the
characters for each compare sequence. However, to increase
the execution speed, relocading the register may be avoided
by various methods known to those skilled in the art. An n-
to-1 multiplexer may be substituted for the Register 3,
where n is the number of character sets to be searched for
in the data. For example, if the data is to be searched for
two sets of characters, "EOS" and "CR," a 2-to-1 multiplexer
may be utilized, with the registers: containing "EOS" and
"CR" serving as input to the multiplexer. '

In the preferred embodiment, the architecture of the
CPU permits the selection of the desired register for input
to the exclusive-NOR circuit. Instructions cause the CPU to
route the contents of the selected register to the
exclusive-NOR circuit. Alternatively, tri-state devices may
be utilized.

In the actual embodiment, an arithmetic logic unit
(ALU) is utilized to perform the exclusive-OR function.
Referring to Fig. 5, the End of Sector (EO0OS) or other
control characters are loaded into the A register file. The
data which is to be searched for the End of Sector flag is
loaded in register B via the B bus 172. The EOS flag is
input to the ALU through the A latch 142 and the data to be
compared to determine whether it contains "EOS" characters
is input to the ALU through B latch 144. The ALU compares
each bit of input from the A register to the corresponding
bit of input from the B register. For each matching bit
pair, the ALU will generate a zero on the respective output
line. The output of the ALU is input to the zero detect

WO 89/01653 ' PCT/US88/01119

1

20

25

30

35

b

circuit (which comprises 8-input NOR gates) via the F bus

148. The zero detect circuit determines whether all of the
bits within a byte are zero. 1If all of the bits within a
particular byte are zero, a one is generated by the zero
detect circuit indicating that a particular byte from the A
register matches the byte from the B register. The
foregoing embodiment utilizes inverse logic from the
illustrative circuit shown in Fig. 3. In the circuit shown
in Fig. 3, a zero is generated when the byte pairs match.

A parallel string processor in accordance with another
aspect of the invention is shown in Fig. 5. The processor

“includes a dQual register file 120 comprising an A register

file and a B register file. Although only nine registers
are shown in each register file, each register file includes
1024 registers, and may include more if desired. In this
embodiment, the processor of Fig. 5 is for a 64 bit
minicomputer, and so each of the registers in the A and B
register files is 64 bits, or eight bytes, wide. The A
registér file is shown to include an address register 122, a
length register 124, a bit mask register 126, a byte mask
register 128, and a test register 130. The address register
122 is used to store the address of a data string, either a
bit string or a character string, that is to be searched by
the processor for a particular keyword. The length register
124 is used to store the length of the portion of the data
string that remains to be tested. The bit mask register 126

~is used to store a desired pattern of bits that is used to

mask the keyword. For example, the bit mask register 126
might be wused to ignore capital letters so that the
processor would consider the letter "a" to be equivalent to
the 1letter "A." The byte mask register 128 contains a
desired pattern of bytes used to mask the keyword. For
example, the byte mask register 128 might be used to ignore
the second letter of a word so that the processor would
equate the word "string" with “spring." The test register

L]

WO 89/01653

Io

15

20

25

ko3

35

PCT/US88/01119

-15-
130 contains the desired keyword after it has been masked
with the desired byte mask.

The B register file contains a bit count register 132
and a byte count register 134 which, as is explained in more
detail hereinafter, determine when the next portion of the
data string being tested for the presence of the keyword
needs to be fetched from memory. A keyword register 136
contains the binary data string corresponding to the desired
keyword, and the end-of-string (END) flag register 138
contains a flag that indicates whether or not a data string
has been completely searched for the presence of a desired
keyword.

The A and B register files are ‘connected to an
arithmetic logic unit (ALU) 140 through an A latch 142 and a
B latch 144, respectively. The ALU 140 is a conventional
arithmetic logic unit, which in this embodiment may include
SN54LS381A ('381), SN54LS382 ('382), or similar integrated
circuit chips commercially available from Texas Instruments
of Dallas, Texas. The arithmetic logic unit 140 performs
various operations on the data supplied to its dual data
inputs, depending upon the combination of binary signals
supplied to its control inputs by an ALU function select
circuit 14s6. For example, when the ALU 140 receives a
particular combination of control inputs, the ALU 140 adds
its two data inputs. In response to a different combination
of its control inputs, the ALU 140 performs an exclusive-or
operation on its data inputs.

The A and B register files are designed so that at any
time, the binary information stored in each register is
equal to the binary information stored in its adjacent
register so that the A register file is a copy of the.B
register file, and vice-versa. This register organization
speeds up the operation of the processor. In order to
perform an operation on two operands, one operand must be
transmitted to the A latch 142 and the other to the B latch
144, If there were only an A register file, the processor

WO 89/01653 PCT/US88/01119

10

-15

20

25

30

-16-

~would require an extra cycle to perﬁorm any given ALU

operation.

The output of the ALU 140 is connected via an 64-bit-
wide F-bus 148 to a zero-detect circuit 150 which detects
when all the outputs of the ALU 140 are zero. The ALU 140,
ALU function select circuit 146, and zero detect circuit 150
are shown in detail in Fig. 7. The ALU function select
circuit 146 is shown functionally (in dotted 1lines) for
purposes of explaining the invention. In reality, the
function select circuit 146 is implemented with programmable

array logic integrated circuits commercially available from

Monolithic Memories, Inc. of Santa Clara, California, that
are programmed with many equations that do not facilitate
explanation.

The ALU comprises 16 separate, 4-bit 1381 integrated
circuit chips 152. For purposes of clarity, the data inputs
of the ALU chips 152 that are connected to the A and B
latches 142, 144 have been omitted from Fig. 7, and only the
outputs of the chips 152 are shown. Each pair of the chips
152 is connected to a respective multiplexer 154 which
supplies the control inputs for the chips 152. Each of the
multiplexers 154 either supplies a desired 3-bit FUNCTION

-signal or a 3-bit CLEAR signal to the control inputs of the

pair of chips 152 to which it is connected, depending upon
the value of its address signal sent from a register 156
which stores the 8 bits of the byte mask. As explained
above, the byte mask causes the processor to ignorg certain
bytes in the data string being searched so that, for
example, the processor would equate the keyword "string"
with the word "spring" in the data string, in which case the
second bit of the byte mask would be set to logic "1" so
that the "p" in "spring" is ignored. Similarly, if it were
desired that the fourth letter of a word were to be ignored,

M

WO-89/01653

10

20

25

30

35

PCT/US88/01119

-17-
the fourth bit of the byte mask would be set to logic "1."

The multiplexers 154 either supply a specified FUNCTION
signal or a CLEAR signal to the chips 152, depending upon
whether the value of the particular bit of the byte mask in
the register 156 is logic "1" or "0." If the bit in the byte
mask is logic "0," the desired 3-bit FUNCTION signal is
transmitted, and if the bit in the byte mask is logic "1,"
the 3-bit CLEAR signal is sent, which causes the outputs of
the ALU chips 152 to which it is connected to be forced to
logic "0." ,

The zero detect circuit 150 comprises 16 NOR gates 158
connected to receive the outputs of the ALU chips 152.- —The
outputs of the NOR gates 158 are connected to eight AND
gates 160, which in turn are connected to a pair of NAND
gates 162 which are connected to a NOR gate i64. If all
outputs of the ALU chips 152 are logic "0," then it can be
seen that the outputs of the NOR gates 158 will be forced to
logic "1," which forces the outputs of the AND gates 160 to
logic "1," the NAND gates 162 to logic "0," and the NOR gate
164 to logic "1." Thus, the output of the NOR gate 164 will
be logic "1" only when all the outputs of the ALU chips 152
are logic "0." As set forth below, when the keyword matches
a portion of the data string to which it is being compared
using the exclusive-or function, all the ALU chip outputs
will be logic "0," so that in essence a logic "1" output of
the NOR gate signals a match. This logic "1" output is
supplied to a flip-flop 166 which can then be checked to
determine that there was a match.

The particular logic gates used in the zero detect
circuit 150 are not important to the invention since other
circuits could be easily designed to detect that all outputs
of the ALU chips were logic "0," such as, for example, a
single 64-bit NOR gate.

Referring now to Fig. 5, the F-bus 148 is connected to
an A-bus 168 via a buffer 170 and a B-bus 172 via another
buffer 174. The zero-detect circuit 150 is coupled to the

WO 89/01653 PCT/US88/01119

1o

15

20

25

30

35

-18~

B-bus 172 through a buffer 176. A memory 178 is connected
to the bus 180 that connects the output of the A latch 142
to the ALU 140 through a buffer 182 connected to an M-bus
184. Because this embodiment is for a 64 bit minicomputer,
the A—bus 168, the B-bus 172, and the M-bus 184 are also 64
bits wide. A pair of serially connected 64-bit shift
registers comprising a J shift register 186 and a K shift
register 188 are connected to the B-bus 172. A mask
register 190 is connected to the J shift register 186 via a
ﬁask bus 192. As is explained in more detailrpg}ow, these
shift registers are used to store portions of the data
string to be tested for the presence of a desired keyword.

A trio of control signals is supplied to each of the
two shift registers 186, 188. A ILOAD signal causes the
register to which it is attached to be parallel-loaded with
a portion of a data string. The data is loaded into the
registers 186, 188 from the memory 178 through a data route
consisting of the ALU 140, the F-bus 148, the buffer 174,
and the B-bus 172. A second signal S1 causes its
respective shift register to be shifted left one bit, and a
third signal S8 causes its respective shift register to be
shifted left eight bits, or one byte.

Fig. 6 is a portion of a substantially functional
equivalent of the J shift register 186 used for purposes of
explaining the invention. The actual embodiment of the J
and KX shift registers 186, 188 comprises specially
programmed conventional programmable array logic integrated
circuits commercially available from Monolithic Memories,
Inc. of Santa Clara, California.

Referring now to Fig. 6, a portion of the J shift
register 186 consisting of logic gates and flip-flops 196
is shown. Although only six flip-flops 196 are shown, the
J shift register 186 is 64 bits wide and thus includes 64

SUSSTITUTE curew

W89/01653 ,)

I5

20

30

35

PCT/US88/01119

-19-
serially connected flip-flops 196. In Fig. 6 the flip-flops
I96 are numerically ordered, with the rightmost flip-flop
being the Nth flip-flop, the flip-flop to the left of the
Nth flip-flop being the (N+1l)st flip-flop, etc. Each of the
flip-flops 196 has a data input D connected to the output of
a logic circuit 198 and a clock input C connected to receive
a CLOCK signal that controls the speed of operation of the
shift registers 186, 188.

The logic circuits 198 control the loading and shifting
operations of the flip-flops 196. Each of the logic
circuits 198 comprises a three-input OR gate 200 and three
twec-input AND gates 202. One of the AND gates 202a has a
first input connected to one of the 64 lines of the B-bus
172 and its second input connected to the LOAD signal. This
AND gate 202a in each of the logic circuits 198 causes the
flip-flop to which it is connected to be loaded with the
binary value of the B-bus 172 when the LOAD signal is
activated, which occurs when the LOAD signal is logic "1."
In this state, the output of the AND gate 202a, which equals
the binary value of the B-bus input, is supplied to its
respective flip-flop 196 through its OR gate 200. The
outputs of the other two AND gates 202b, 202c do not
interfere with this 1loading process since the S1 and S8
signals are forced to logic "0" when the LOAD signal is
activated. o

After a portion of a data string is loaded into the
flip-flops 196 of the shift registers 186, 188, the portion
is periodically shifted either one bit or eight bits at a
time, depending on whether the processor is performing a
bit-by-bit comparison or a byte-by-byte comparison. If bit
comparisons are being performed, the Sl signal is activated
to logic "1" while the LOAD and S8 signals remain at logic
"0." Each AND gate 202c to which the S1 signal is supplied
has its other input connected to the output of the first
upstream flip-flop, "upstream" meaning the direction from
which data is being shifted. In F{g. 6, data is being

WO 89/01653 | PCT/USS8/01119

10

15

20

30

35

=20-
shifted from right to left, and thus with respect to any

particular flip-flop or other circuit element, the first
“upstream"-flip-flop is the first flip-flop to the right of
the circuit element and the first "downstream" flip-flop is
the first flip-flop to the left of the circuit element.

'Thus, when the S1 signal is activated, the output of the AND

gate 202c to which it is connected is equal to the input of
the upstream flip-flop. Since the output of the AND gate
202c is passed through its respective OR gate 200 to the
input of the downstream flip-flop, the activation of the S1
signal causes the shift registers 186, 188 to perform a one-
bit logical left shift on the portion of the data string
stored therein. ' '

The activation of the S8 signal causes an eight-bit, or
one-byte, logical left shift to be performed by the shift
registers 186, 188. Each AND gate 202b to which the S8
signal is connected has its other input connected to the
cutput of the eighth upstream flip-flop so that when the S8
signal is logic "1," the output of each of the flip-flops
196 is passed to the eighth respective downstream flip-flop ‘
so that the portion of the data string is shifted eight bits

to the left.

Another portion of the J shift register 186 performs a
bit mask operation so that any desired bits of the string
being searched may be ignored. For example, as described
above, it might be desirable to ignore capital letters so
that the processor would consider the letter "a'" to be
equivalent to the letter "A." To this end, the output of
each of the flip-flops 196 is supplied to one input of a
two-input AND gate 204 having its other input connected to

‘receive the output of a NAND gate 206. One input of the

NAND gate 206 is connected to receive a respective bit of
the bit mask from the mask register 190 connected to the J
shift register via the mask bus 192. The NAND gate 206 is
also connected to receive a BIT MASK ENABLE signal that
selectively activates or deactivates the bit mask operation.

WO 89/01653

10

15

20

30

35

PCT/US88/01119

. 2]
In particular, when the BIT MASK ENABLE signal is logic "o,"
the outputs of all of the NAND gates 206 are forced to logic
"1" =o that the outputs of the AND gates 204 equal the
output of the flip-flops to which they are connected and are
not affected by the outputs of the NAND gates 206. However,
when: the BIT MASK ENABLE signal is logic . "1" and the
corresponding mask input bit is also logic "1," the output
of the NAND gate 106 is forced to logic "0," and as a
result, the output of the AND gate 204 is also forced to

logic "0." This operation thus causes logic "0"s to be
placed in each bit of the data string which is to be ignored
by the processor. As 1is described in more detail below,

eaclt of these logic "O"s causes a forced match when the
masked portion of the data string is compared to the keyword
string by the processor. Finally, the output of each of
the AND gates 204 is connected to the B-bus 172 so that the
masked or unmasked portion of the data string stored in the
shift registers may be supplied to the ALU 140 for
comparison to the keyword string.

The particular logic used for the masking functions is
not important, and alternative logic could be used. For
example, selected bits in a bit string could be masked off
if the corresponding bits in the bit mask were logic "o"
instead of logic "1" if the NAND gates 206 were replaced
with OR gates, in which case the bit mask enable signal
would be activated when logic "0" instead of logic "1."

The functional circuit diagram of the K shift register
188 is substantially identical to the diagram of the J shift
register shown in Fig. 6, except that the AND gates 204 and
the NAND gates 206 used in connection with the bit mask and
the BIT MASK ENABLE signal are not required since only the
output of the J shift 186 register is sent to the ALU 140
for comparison to the keyword, as is explained in more
detail below.

In its byte rode of operation, the processor compares a

selected string of bytes to determine the presence of a

WO 89/01653 PCT/US88/01119

1o

15

20

25

30

20~ .
selected keyword. Both the byte string and the keyword are

selectable by the user of the processor. The basic process
by which the processor tests for the Presence of a selected
keyword string within a selected data string includes
initialiy loading the J and K shift registers 186, 188 with
the first portion of the data string to be tested. Then,
the entire contents of the J shift register 186 are
simultaneously compared with the keyword stored in the test
register 130. If there is a match, the presence of a match
is indicated by the processor. Then, the contents of the J
and K registers 186, 188 are shifted left one byte and the
contents of the J register 186 are again compared with the
contents of the test register 130. Any match is indicated,
and the process is repeated. Periodically, the K register
188 will become empty since its contents are gradually
shifted into the J register 186, and so the X register will
be periodically reloaded with the next portion of the data
string to be tested. In this manner, the entire keyword is
simultaneously compared with a corresponding portion of the
data string. This process reduces the number of comparisons
required as shown by the example shown below, in which the

 keyword is "the," the data string is “that time is the

essence," and each number above the data string represents
the number of comparisons that were required to determine
whether or not the keyword matched that particular portion
of the data string:

Comparisons: 111111111311111
Data String: that time is the essence
Keyword: the

Note that thls particular example required 14 comparisons to
find the keyword "the" in the character string "that time is
the essence" in contrast to the’ 21 comparisons that were
required by a cecnventional data string processor as shown
above. This reduction results from ~the entire keyword

WO 89/01653

I0

15

20

25

kiog

35

&0

PCT/US88/01119

-23-
simultaneously being compared with a portion of the data

string, instead of being compared one byte at a time.

The detailed operation of the byte mode of the
processor is explained with reference Fig. 8 and Table 1.
Fig. 8 is a flowchart of the microcode that controls the
operation of the processor shown in Fig. 5, and Table 1
incIudes a software program that 1is substantially
functionally equivalent to the microcode actually used. The
operation is explained with reference to Table 1 and not the
actual microcode used because the actual microcode would be
incomprehensible since it is merely a collection of "1"s and

" o!’?s .
TABLE 1

1 MOV #0, ENDFLAG ;reset end-of-string
flag to 0

2 MOV BITMASK, A rmask keyword with bit
mask

3 MOV KEYWORD, B

4 AND 2, B

5 MOV ALU, TEST ;put masked keyword in
test register

6 MOV @ ADDRESS, J 1load J with first 8
bytes of data string

7 LOADK: MOV ADDRESS, A ,

8 MOV #8, B ;increment address by
to get next 8 bytes

9 ADD A,B of data string and
then load in K

10 MOV ALU, ADDRESS

11 MOV @ ADDRESS, K

12 MOV #8, BYTECOUNT ;X now contains 8
bytes

13 COMPARE: MOV TEST, A ;jcompare masked
keyword with J

14 MOV J,B

15 XOR A,B

16 MOV ALU,ZD ;zero output?

17 ENZ NOMATCH

18 MATCH: JMP USERPROGRAM

WO 89/01653 PCT/US88/01119

I0

I5

20

- 25

30

35

£Q

Dlm
19 RET
20 NOMATCH: MOV #1, B ;decrement length of
data string tested
21 MOV LENGTH, A by 1 byte
22 SUB A, B
23 MOV ALU, LENGTH
24 MOV ALU, ZD
25 - BNZ NEXT ;data string
completely tested?
26 EOS: MOV #1, ENDFLAG iset end-of-data-
, string flag to 1
27 END
28 NEXT: LLS BYTE ;left-shift J, K by 1
byte
29 MOV £1, B idecrement # of bytes
in Kby 1
30 . MOV BYTECOUNT, A
31 SUB &, B
32 MOV ALU, 2D 7if no bytes 1left in
: ' K, get next 8 bytes
- 33 : BZ LOADK of data string to
. load in K
34 MOV ALU, BYTECOUNT
35 BR COMPARE itest for match again

© DAVIN COMPUTER CORP. 1987

At the start of the byte operation of the processor
indicated by the start step 210 of Fig. 8, the binary
representation of the keyword is stored in the keyword
register 136 in the B register file and the binary
representation of the data string is stored in the memory
178. Also, the desired bit mask is stored in the bit mask
register 126 and in the mask register 190, the desired byte
mask is stored in the byte mask register 128 and in the
register 156, the address of the byte string in memory 178
to be searched is stored in the address register 122, and
the length in bytes of the byte string being searched is
stored in the length register 124.

The value of the end-of-string (END) flag indicates
whether or not the data string has been completely searched

W0 89/01653 PCT/US88/01119

I0

15

20

25

3Q

35

-25-

for the presence of the keyword. At step 212 of Fig. 8, the

value of the END flag is reset to indicate that the end of

the string has not yet been reached. Then, at step 214, the
keyword is masked with the bit mask to ensure that the
processor ignores any bits in any desired byte as selected
by the user. This step is carried out by instructions 2-5
of Table 1. Instructions 2 and 3 supply the bit mask to one
data input of the ALU 140 and the keyword to the other data
input. Instruction 4 causes the appropriate control signal
to be supplied to the ALU so that its two data inputs are
logically "anded" together, and the ALU output, which is the
value of the masked keyword, is stored in the test register
130 in the A register file via a data path:.cbnsisting of the
F-bus 148, the F-A bus buffer 170, and the A-bus 168. Thus,
any bits of the keyword which are to be ignored by the
processor are masked to logic "0," and these masked zero
bits will force a match with the corresponding bit position
in the data string during subsequent comparisons as is
explained in more detail below.

Next, at step 216, the J shift register 186 is loaded

_ with the first word of the data string to be tested, "word"

meaning a block of binary data eight bytes 1long to
correspond to the eight byte width of the J shift register
186. The step 216 is accomplished by instruction 6 in Table
1 which moves the contents of the memory at the address
where the data string'is stored to the J shift register 186
through a path including the memory buffer 182, the M-bus
184, the ALU 140, the F-bus 148, the F-to-B buffer 174, and
the B-bus 172. Next, at step 218, the next word, or eight
bytes, of the data string are loaded into the K shift
register 188 from the memory 178 in a similar manner by
instructions 7-11l. Specifically, instructions 7-10 cause
the address to be incremented by eight so that the
incremented address will point to the next eight bytes of
the data string in memory 178. Then instruction 11 causes
the next eight bytes to be fetched from memory 178 and put

SUBSTITUTE SHEEY

WO 89/01653 PCT/US88/01119

10

15

20

25

3T

35

-26-

into the K shift register 188 via the same data path as
described in connection with the loading of the J shift
register 186.

When the K shift register 188 has just been loaded, at
step 220 and by instruction 12, the numeric value eight is
stored in the byte count register 134 since there are now
eight bYtes of string data in the K register 188. Because
the contents of the K register 188 are periodically shifted
left into the J shift register 186, it is important to know
how many bytes of the data string are left in the K register
188 so that the processor will known when to reload the K
register with the next portion of the data string.

Next, at step 222, the masked keyword stored in the
test register 130 is compared to the portion of the data
string stored in the J register 186. This step is
implemented by the instructions 13-16 of Table 1.
Specifically, instruction 13 causes the masked keyword
stored in the test register 130 to be sent to the A latch
142. Then, instruction 14 causes the contents of the J
shift register 186 to be moved to the B latch 144 via the B-
bus 172. If the BIT MASK ENABLE signal is logic "1," then
the.contents of the J register 186 are logically "anded"
with the bit mask by the AND gates 204 prior to being sent
to the B latch 144. At instruction 15 of the binary value
of the masked keyﬁord is compared to the binary value of the
masked portion of the data string by providing the ALU
FUNCTION signal with the binary values that cause the ALU
140 to perform a bit-by-bit logical "Yexclusive-or" of its
two data inputs. The logical exclusive-or operation, which
is conventional and well known, is a sum modulo 2 operation.
Thus, a bit-by-bit logical exclusive-or provides a logic "o"
output if its two bit inputs are both logic "1" or logic
"0," and hence match, and a logic "1" output if its two bit
inputs are different. As a result, for each byte of the
data string that matches the corresponding byté in the

SUBSTITUTE sssres

W@ 89/01653. : PCT/US88/01119

1o

20

30

35

-27 =

keyword, a logic "0" will be produced in the corresponding
byte position.

After the keyword is compared with the portion of the
data word in the J register 186, upon a match at step 224

" the processor proceeds to the user’s program so that the

user program may perform its programmed function, for
example, replace the keyword that was located with a
different word, whereupon the user program returns control

_to the processor so that any other occurrences of the

keyword can be found. The existence of a match is
determined by the zero detect circuit at instruction 16.
Instruction 16 causes the contents of the ALU 140 to be sent
to the zero detect circuit 150. As mentioned above, for
each byte position of the ALU 140 in which there was a
match, the ALU output will be zero. Consequently, at
instruction 17, the zero detect circuit 150 tests each byte
of the ALU to determine whether all byteé are zero, in which
case all unmasked bytes of the keyword match all unmasked
bytes of the data string portion. When the masked bytes are
compared by the ALU 140 during its exclusive-or operation,
the ALU output corresponding to each masked byte is forced
to logic "0," which is the same logical output that the ALU
provides in case of a match. Thus, each logic "1" bit in
the byte mask forces a match in its corresponding byte
position in the keyword. Upon a match, instruction 18 will
cause a return to the user’s program, and the user program
will return control to the processor at instruction 19. If
there is no match, instruction 17 will cause instructions 18
and 19 to be skipped.

At step 226, the length of the data string will be
decremented by one byte since one byte has just been tested
and thus there is one less byte in the data string that
needs to be tested. This step is implemented by
instructions 20-23. Instruction 20 causes the number one to
be moved to the B latch 144, and instruction 21 causes the
current data string length to be sent to the A latch 142.

SUBSTITUTE SHEET

. WO 89/01653 ' ' PCT/US88/01119

20

30

35

-28~

Instruction 22 causes the ALU 140 to subtract one from the
current length, and the new length is stored in the length
register 124 by instruction 23.

Next, at step 228, the new data string length stored in
the length register 124 is tested to determine whether all
of the bytes in the data string have already been compared
to the keyword, which will be the case if the numeric value
of the length is zero. This is accomplished at instruction
24 which sends the output of the ALU 140 to the zero detect
circuit 150. If the value of length is zero, then step 230
is executed, causing the END flag to be set to logic "1" to
indicate that the end of the string has been reached, and
control 1is returned to the user’s program. This is
accomplished by instructions 26 and 27.

If the value of length is nonzero and the data string
has not been completely tested, the program branches to step
232 at which the contents of the J and K registers 186, 188
are shifted left by one byte. This is accomplished by
instruction 28, which causes a logic "1" S8 signal to be
sent to the shift registers 186, 188 so that their contents
are shifted left one byte as explained above. The contents
of the byte count register 134 are then decremented by one
at step 234 to indicate that there is one less byte in the K
shift register 188 since it has just shifted one of its
bytes into the J shift register. This step is accomplished
by instructions 29-31.

Next, at step 236, the numeric value of byte count is
tested to determine if it is zero, in which case the next
eight bytes of the data string need to be moved from the

- memory 178 into the K shift register 188, and so the program

branches back to step 218 so that the K shift register 188
is reloaded. If the byte count is nonzero, the shift
register 188 does not need to be reloaded, and the program
register 188 does not need to be reloaded, and the program
branches to step 222 so that the current portion of the data
string in the J register 186 may be compared to the masked
keyword. Step 236 is executed by instructions 32-35.

SUBSTITUTE Siees

»

W(:89/01653 PCT/US88/01119

20

3@

35

=20

Instruction 32 causes the contents of the ALU 140 to be sent
to the zero detect circuit 150. If the zero detect circuit
150 detects a zero, instruction 33 causes a branch to
instruction 7. 1Instruction 34 saves the decremented value
of the byte count if it is nonzero, and instruction 35
causes a branch back to instruction 13.

The bit mode of operation of the processor is generally
similar to its byte mode of operation. 1In its bit mode of
operation, the processor compares a selected string of bits
to determine the presence of a selected Keyword. Both the
bit string and the keyword are selectable by the user of the
processor. The basic process by which the processor tests
for the presence of a selected keyword within a selected bit
string includes initially loading the J and K shift
registers 186, 188 with the first portion of the bit string
to be tested. Then, the entire contents of the J shift
register 186 are simultaneously compared with the keyword
stored in the test register 130. If there is a match, the
presence of a match is indicated by the processor. Then,
the contents of the J and K registers 186, 188 are shifted
left one bit and the contents of the J register 186 are
again compared with the contents of the test register. Any
match is indicated, and the process 1is repeated.
Periodically, the K register 188 will become empty since its
contents are gradually shifted into the J register 186, and
so the K register 188 will be periodically reloaded with the
next portion of the bit string to be tested. In this
manner, the entire keyword is simultaneously compared with a
corresponding portion of the bit string. This process
reduces the number of comparisons required as shown by the
example shown below, in which the keyword is "1101," the bit
string is "11001110011011," and each number above the bit
string represents the number of comparisons that were
required to determine whether or not the keyword matched
that partiéular portion of the bit string:

SUBSTITUTE SHEEYT

W6 89/01653 PCT/US88/01119

1c

15

20

25

36

35

-30-
Comparisons: 1111111111
Bit String: 11001110011011
Keyword: . - 1101

Note that this particular example required only 10
comparisons to find the keyword "1101" in the bit string
"11001110011011" in contrast to the 22 comparisons that
were required by a conventional bit string processor as
shown above. This reduction results from the entire keyword
simultaneously being compared with a portion of the bit
string, instead of being compared one bit at a time.

The detailed operation of the bit mode of the processor
is very similar to the byte mode, and can be understood with
reference to Fig. 9 and Table 2 set forth below. Fig. 9,
which is a flowchart of the microcode that controls the
operation of the processor, is very similar to the flowchart
of Fig. 8, except that in a number of instances different
operations are executed since the processor is in its bit
mode of operation and not its byte mode. Likewise, the -
software implementation set forth in Table 2 is very similar
to that of Table 1, so that only the differences need be
explained to provide a clear understanding of the detailed
operation of the bit mode of operation.

TABLE 2

1 MOV #0, ENDFLAG ireset end-of-string
flag to 0

2 MOV BITMASK, A imask keyword with bit
mask

3 MOV KEYWORD, B

4 AND 2, B

5 MOV ALU, TEST ;put masked keyword
in test register

6 MOV @ ADDRESS, J slcad J with first 64

bits of data string

WOI89/01653

5

w

30

IS

20

45

g

10
Il
12
13

14
15
16

17
18
19
20
21
22
23

24
25

26
27
28
29

30

31

32

33

34
35

Mov
MoV

LOADK:

ADD

MOV
MOV
MoV
COMPARE: MOV

MOV
XOR
MOV

BNZ
JMP
RET

MATCH:

NOMATCH: MOV

MoV
SUB
Mov
MOV
BNZ

MOV
END

EOS:

NEXT: LLS
MOV
MoV

SUB
MoV

B2

MoV
BR

=3 1-

ADDRESS, A
#8, B

A,B

ALU, ADDRESS

@ ADDRESS, K

464, BITCOUNT
TEST, A

J,B
A,B

ALU, ZD
NOMATCH
USERPROGRAM
41, B

LENGTH, A
A, B

ALU, LENGTH
ALU, 2D
NEXT

#1, ENDFLAG

BIT
#1, B
BITCOUNT, A

ALU, 2ZD

LOADK

ALU, BITCOUNT
COMPARE

PCT/US88/01119

;increment address by 8
to get next 64 bits
of data

string and then load
in K

;K now contains 64 bits
;icompare masked keyword
with J

izero output?

;decrement length of
data string tested
by 1 bit

;data string completely
tested?

;set end-of-data-string
flag to 1

;left-shift J, Kby 1
bit
;decrement #
in Kby 1

of bits

:1if no bits left in K,
get next 64 bits of
data string to load
in K

itest for match again

© DAVIN COMPUTER CORP.

1987

In particular, at step 240 in Fig. 9 and instruction 12
in Table 2, the contents of the bit count register 132 are

| WO 89/01653 ' - PCT/US88/01119

ig

15

20

25

3@

=32~

- set to 64 since the K shift register 188 will be shifted one

bit at a time and 64 bits are initially loaded into the X
register 188. At step 242 and instruction 28, the contents
of the J and K shift registers 186, 188 are shifted left one
bit instead of byte. At step 244 and instructions 29-31,
the contents of the bit count register 132 instead of the
byte count register 34 are decremented by one. Finally, at
step 246 and instructions 32-35, the conditional branch
occurs when the value of the bit count register 132 has
reached zero, and not the byte count register 134.

The two modes of operation just described are invoked
by a user by including appropriate software instructions in
the user's program. Specifically, the byte mode of
operation is invoked by the instruction "SCANS" and the bit
mode of operation is invoked by the instruction "BITSCAN."

Two further embodiments of the invention are identical
to the embodiment just described, except that they are

~directed towards 16 and 32 bit parallel processors,

respectively. The differences between these embodiments
include the data width of the buses, buffers, ALU, A and B
latches, and registers. Otherwise, the operation of these
additional embodiments is the same.

Modifications and alternative embodiments of the
invention will be apparent to those skilled in the art in
view of the foregoing description. Accordingly, this
description is to be construed as illustrative only, and is
for the purposes of teaching those skilled in the art the
best mode of carrying out the invention. The details of the
structure may be varied substantially without departing from
the spirit of the invention, and the exclusive use of all
modifications which come within the scope of the appended
claims is reserved.

WO 89/01653

PCT/US88/01119

-33-

WHAT IS CIATMED IS:

1. A parallel byte processing system for locating a

control character in a data word comprising a plurality of

bytes, said system comprising:

10

15

20

25

30

35

a first register to receive said bytes of data;

a second register to store a selectable control
character;

means for loading said data in said first register
and loading said control character in said second
register; and)

comparison means which simultaneously compares the
bytes in said first register with said control
character in said second register and generates control
bits which are in a first state if the corresponding
byte in the first register is equal to the control
character in the second register, and in a second state
when the corresponding byte in the first register is
not equal to the control character in said second
register.
2. The system of Claim 1, further comprising:

means to receive said control bits and generate
indicator bits which are in a first state if all of
said control bits are in said first state and in a
second state if any of said control bits are in said
second state.
3. The system of Claim 2, further including:

a processor status register to store said
indicator bits.
4. The system of Claim 3, further including:

first instruction means to branch to a first
memory location if said processor status register is in
said first state.
5. The system of Claim 4, further including:

second instruction means to branch to a second
memory location if all of the bits in said processor
status register are in said second state.

SUBSTITUTE SHEET

| W 89/01653

g data

PCT/US88/01119

-34~

6. The system of Claim 4, further including:
programming means for determining the location of

said control character within said data word.

7. A method for locating a control character in a

word comprising a plurality of bytes, said method

comprising the steps of:

10

inputting bytes of data into a comparison means;

inputting selectable control character bytes into
said comparison means;

simultaneously comparing said bytes of data with
said control character bytes; and)

generating indicator bits which are in first state
if said data byte is equal to said control character
byte and in a second state if said data byte is not

“equal to said control character byte.

8. - The method of Claim 7, further including:

20

- storing said control bits in a processor status
register.

9. The method of Claim 8, further including:
branching to a first memory 1location if said

~indicator bit register is in said first state.

10. The method of Claim 9, further including:

branching to a second memory location if all of
said indicator bits in said processor status register
are in said second state.

11. 2 character string processor that locates an

occurrence of a keyword string within a character string,
comprising:

30

35

a first register that stores a keyword string
having a plurality of bytes; .

a second register that stores a portion of a
character string that is to be searched for the
presence of said keyword string, said second register
shifting said portion of said character string with
respect to said keyword string one byte at a time; and

SUBSTITUTE SHEET

- WO 89/01653 PCT/US88/01119

Io .

15

20"

25

30

=

a circuit that simultaneously compares said
keyword string with said character string to determine
the occurrence of said keyword string in said character
string.

12. A character string processor as defined in Claim 6
wherein the storage capacity of said first and said second
registers is 8 bytes.

13. A character string processor as defined in Claim
11 additionally comprising a third register coupled to said

second register, said third register storing a portion of

said character string, the contents of said third register
being periodically shifted into said second register one
byte at a time. ”

14. A character string processor as defined in Claim
13 wherein said circuit is an arithmetic logic unit.

15. A character string processor as defined in Claim
14 additionally comprising a zero detect circuit coupled to
the output of said arithmetic logic unit.

16. A character string processor as defined in Claim
15 wherein said zero detect circuit comprises an OR gate.

17. A character string processor as defined in Claim
16 wherein said second register and said third register are
implemented with programmable array logic.

18. A character string processor that locates an
occurrence of a keyword string within a character string,
comprising:

a first register that stores a keyword string
having a plurality of bytes;

a first shift register that stores a first portion
of a character string that is to be searched for the
presence of said keyword string, said first shift
register shifting said first portion of said character
string with respect to said keyword string one byte at
a time;

, a second shift register coupled to said first
shift register that stores a second position of said

SUBSTITUTE SHEET

WO 89/01653

PCT/US88/01119

=-36-

character string, said second shift register shifting

said second portion into said first shift register one
byte at a time, said second shift register being loaded
with an additional portion of said character string
when said second portion is completely shifted into
said first shift register; and

an arithmetic 1logic wunit that simultaneocusly
compares the contents of said first register with the
contents of said first shift register to determine when

the contents of said first register are equal- to the

contents of said first shift register.
19. A character string processor that locates an

occurrence of a keyword string within a character string,
comprising:

15

26

a first eight-byte-wide register that stores a
keyword string having a plurality of bytes;

a first eight-byte-wide shift register that stores
a first portion of a character string that is to be
searched for the presence of said keyword string, said
first shift register shifting said first portion of
said character string with respect to said keyword
string one byte at a time;

a second eight-byte-wide shift register coupled to
said first shift register that stores a second portion
of said character string, said second shift register
shifting said second portion into said first shift
register one byte at a time, said second shift register
being loaded with an additional portion of said

- character string when said second portion is completely

K63

35

shifted into said first shift register; and

an arithmetic 1logic wunit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine when
the contents of said first register are equal to the
contents of said first shift register.

SUBSTITUTE SHEET

- WEI89/01653

PCT/US88/01119

=37~

20. A character string processor that locates an

occurrence of a keywofd string within a character string,

comprising:

0]

25

a first four-byte-wide register that stores a
kerord string having a plurality of bytes;

a first four-byte-wide shift register that stores
a first portion of a character string that is to be
searched for the presence of said keyword string, said
first shift register shifting said first portion of
said character string with respect to said keyword
string one byte at a time;

a second four-byte-wide shift register coupled to
said first shift register that stores a second portion
of said character string, said second shift register
shifting said second portion into said first shift
register one byte at a time, said second shift register
being 1loaded with an additional portion of said
character string when said second portion is completely
shifted into said first shift register; and '

an arithmetic logic unit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine when
the contents of said first register are equal to the
contents of said first shift register.

21. A character string processor that locates an

occurrence of a keyword string within a character string

comprising:

30

35

a first register that stores a keyword string;

a second register that stores a portion of a
character string that is to be searched for the
presence of said keyword string;

a first circuit connected to said second register
that shifts the contents of said second register with
respect to the contents of said first register an
integral number of bytes at a time; and

SUBSTITUTE SHEET

W 89/01653

PCT/US88/01119

-38=

a second circuit that simultaneously compares the
contents of said first and second registers to
determine the occurrence of said keyword string in said
character string.

22. A character string processor as defined in Claim

21 additionally comprising a third register connected to

said second register, said third register storing a portion

of said character.

23. A method of identifying an occurrence of a

I particular word or combination of characters within a

portion of text comprising the steps of:

20

(a) loading a keyword string into a first
register location;

(b) loading a first portion of a character string
into a second register location:

'(c) after said 1loading steps, simultaneously
comparing—the contents of said first register location
with the contents of said second register location to
determine whether said keyword string is present in
said first portion of said character string;

(d) shifting the contents of said second register
location with respect to the contents of said first
register location by a single byte; and

(e) repeating said steps (¢) and (d) at least
once.

24. A method as defined in Claim 23 additionally

comprising the steps of:

30

(f) 1loading a second portion of said character
string into a third register 1location prior to said
step (¢); and

(g) simultaneously with said step (d), shifting
the contents of said third register location into said
second register location by a single byte.

25. A method as defined in Claim 24 additionally

35 comprising the step of:

SUBSTITUTE SHEET

L3

- Wi 89/01653 _ PCT/US88/01119

Io

20

30

35

-39-

(h) reloading said third register location when
the contents of said third register location have been
completely shifted into said second register location.
26. A method as defined in Claim 25 wherein said

repeating step is performed until said keyword string is

found to be present in said character string.
27. A method as defined in Claim 26 wherein said step

(e) is performed until said character string has been
completely compared with said keyword string.

28. A bit string processor that locates an occurrence
of a keyword string within a bit string, comprising:

a first register that stores a keyword string
having a plurality of bits;

a first shift register that stores a portion of a
bit string which is to be searched for the presence of
said keyword string, said first shift register shifting
said portion of said bit string with respect to said
keyword string one bit at a time; and

a second circuit that simultaneously compares said
keyword string with bit string to determine when said
keyword string matches said bit string.

29. .A bit string processor as defined in Claim 28
wherein said second circuit comprises an arithmetic logic
unit.

30. A bit string processor as defined in Claim 29
wherein said second circuit additionally comprises a zero

' detect circuit coupled to said arithmetic logic unit.

31. A bit string processor as defined in Claim 29
additionally comprising a second shift register coupled to
said first shift register, said second shift register
storing an additional portion of said bit string and
shifting said additional portion into said first shift
register, said second shift register being reloaded when
said additional portion of said bit string is completely
cshifted into said first shift register.

SUBSTITUTE SHEET

| WO:89/01653

20

25

PCT/US88/01119

-40-

32. A bit string processor comprising:

a first register that stores a keyword string
having a plurality of bits; _

a first shift register that stores a first portion
of a bit string that is to be searched for the presence
of said keyword string, said first shift register
shifting said first portion of said bit string with
respect to said keyword string one bit at a time;

a second shift register connected to said first
shift register that stores a second portion of said bit.
string, said second shift register shifting said second
portion into said first shift register one bit at a
time, said second shift register being loaded with an
additional portion of said character string when said
second portion is completely shifted into said first
shift register; and

an arithmetic 1logic unit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine when
the contents of said first register are equal to the
contents of said first shift register.

33. A bit string processor comprising:

a first eight-byte-wide register that stores a
keyword string having a plurality of bits;

a first eight-byte-wide shift registef that stores
a first portion of a bit string that is to be searched
for the presence of said keyword string, said first
shift register shifting said first portion of said bit

- string with respect to said keyword string one bit at a

30

35

time;

a second eight-byte-wide shift register connected
to said first shift register that stores a second
portion of said bit string, said second shift register
shifting said second portion into said first shift
register one bit at a time, said second shift register
being 1loaded with an additional portion of said

SUBSTITUTE SHEET

- W89/61653

I0.

15

20

25

30

35

PCT/US88/01119

-4]l-

character string when said second portion is completely
shifted into said first shift register; and

an arithmetic logic unit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine when
the contents of said first register are equal to the
contents of said first shift register.

34. A bit string processor comprising:

a first four-byte-wide register that stores a
keyword string having a plurality of bits;

a first four-byte-wide shift register that stores
a first portion of a bit string that is to be searched
for the presence of said keyword string, said first
shift register shifting said first portion of said bit
string with respect to said keyword string one bit at a
time;

a second four-byte-wide shift register connected
to said first shift register that stores a second
portion of said bit string, said second shift register
shifting said second portion into said first shift
register one bit at a time, said second shift register
being 1loaded with an additional portion of said
character string when said second portion is completely
shifted into said first shift register; and

an arithmetic logic unit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine when
the contents of said first register are equal to the
contents of said first shift register.

35. A bit string processor comprising:

a first two-byte-wide register that stores a
keyword string having a plurality of bits;

a first two-byte-wide shift register that stores a
first portion of a bit string that is to be searched
for the presence of said keyword string, said first
shift register shifting said first portion of said bit

SUBSTITUTE SHEET

W 89/01653

PCT/US88/01119

=4 2=

string with respect to said keyword string one bit at a
time; .

a second two-byte-wide shift register connected to
said first shift register that stores a second portion
of said bit string, said second shift register shifting
said second portion into said- first shift register one
bit at a time, said second shift register being loaded
with an additional portion of said character string
when said second portion is completely shifted into
said first shift register; and '

an arithmetic 1logic unit that simultaneously
compares the contents of said first register with the
contents of said first shift register to determine
when the contents of said first shift register are
equal to the contents of said first shift register.

36. A method of identifying an occurrence of a

predetermined bit pattern within a bit string comprising the
steps of:

20

30

(a) loading a keyword string into a first

register location:;
~ (b) 1loading a first portion of a bit string into
a second register location;

(c) after said 1loading steps, simultaneously
comparing the contents of said first register location
with the contents of said second register location to
determine whether said keyword string is present in
said first portion of said bit string:

(d) shifting the contents of said second register
location with respect to the contents of said first
register location by a single bit; and

(e) repeating said steps (c) and (d) at 1least
once.

37. A method as defined in Claim 36 additionally

comprising the steps of:

SUBSTITUTE SHEET

Y

o

WO89/01653 ' PCT/US88/01119

I

35

-43=

(f) loading a second portion of said bit string
jnto a third register location prior to said step (c):
and

(g) simultaneously with said step (d), shifting
the contents of said third register location into said
second register location by a single bit.

28. A method as defined in Claim 37 additionally
comprising the step of:

(h) reloading said third register location when
the contents of said third register location have been

' completely shifted into said second register location.

39. A method as defined in Claim 38 wherein said step
(e) is performed until said bit string has been completely
éompared with said keyword string.

40. A parallel bit/byte string processor that locates
an occurrence of a keyword string within a string of binary
information, comprising:

a first register that stores a keyword string of
binary information;

a first shift register that stores a portion of a
second string of binary information that is to be
searched for the presencé of said keyword string, said
first shift register shifting said portion of said
second string with respect to said keyword string one
bit at a time on a first condition and one byte at a
time on a second condition; and

a second circuit that simultaneously compares said
keyword string with said second string to -determine
when said keyword string matches said second string.
41. A parallel bit/byte string processor as defined in

Cclaim 40 wherein said first condition is the receipt of a
first control signal and said second condition is the
receipt of a second control signal.

42. A parallel bit/byte string processor as defined in
Claim 41 additionally comprising a second shift register
coupled to said first shift register, said second shift

SUBSTITUTE SHEET

WO 89/01653 PCT/US88/01119

10

15

20

25

30

35

40

45

-l -

register storing an additional portion of said second string

of binary information, the contents of ,s_aid second shift
register being shifted into said first shift register one
bit at a time on said first condition and one byte at a time
upon said second condition.

43. A parallel bit/byte string processor as defined in
Claim 42 wherein said second circuit is an arithmetic logic
unit.

SUBSTITUTE SHEET

E.3

W:89/01653 PCT/US88/01119
1/7
cR|cR|CR|CR|CR |CR |CR | CR RESG C
£ 7
EOS|E0S |E0S |EOS |EOS [EOS [E0S | EOS REG A
CONTROL
CHARACTER gos |eos|eos|eos |E0S |E0S [E0S |EOS | A£G A
- OATA Piolei |2y |2t (el |2y |2y |21 | 68
L] / 9 9 19 1 |)
COMPARE CMP |CMP [CMP | CMP |CMP | CMP | CMP | CMP
1 1] 1
PROCESSOR STATUS [| ‘ | ' °) |
REGISTER /00O
BIT7 BITG BITS 8IT4 BIT3 BIT2 BITI BITO
i 2
80 1D RA CHAR1 {*LOAD REGISTER A WITH FIRST CHARACTER®)
82 LD RB DATAl {*LOAD REGISTER B WITH INPUT STRING DATA*)
84 EXNORRE RA (*COMPARE INPUT STRING TO FIRST CHARACTER*)
86 BAH 400 {*BRANCH IF ANY BYTES ARE EQUAL TO FIRST
CHARACTER*)
88 LD RA CHAR2 (*LOAD REGISTER A WITH SECOND CHARACTER*)
90 EXNORRE RA {*COMPARE INFUT STRING TO SECOND CHARACTER*)
92 BAH 400 («BRANCH IF ANY BYTES ARE EQUAL TO SECOND
CHARACTER®) '
94 ST RB BUF1 (*STORE INPUT STRING IN BUFFER*)
96 JMP 80 {*LOOP TO GET NEXT INPUT STRING AND
COMPARE*)
I 4

SUBSTITUTE SHEET

WO 89/01653

PREGISTER A

REG/STER 8

I,]

2/7

PCT/US88/01119

/70

==t || 2

h
-
-

1
|

>
~
(]

|

AT5 |-

>
~ o~
(TR N
il
LI

LT

A2 1~
ATl

A 70

b 2
®
-

AGG I~
AGS I~
AG4

:A‘u:—
A0

A0

AOCG I~

A0S |-
AD3 -
A02 -

Aot

|

1

1

. ® o L] L d

ACO

BYTE 7

877

876

B1S_
874 |
B 73 |

B72
-

UL
® & o ¢ & & ¢

870
p—
=X

—
807

BY7TE O
A

810

B0G |
Bos |

U
I

803
“Boz_|
| Bol_|

1

Boo

[

SUBSTITUTE SHEET

7024

17/

/
i3 //

E t—arrf 7

V14

Vel

§—5Y7£0

e

/0P

PCT/US88/01119

WO 89/01653

G Ol

3/7

8S'lS ‘avol
gs‘lts ‘avon

sng—4 8¥l~,
| I .
IRELES
ovl = NOLLONNA
103130 nv
- 0¥3Z 4 4 ©¢—\
ostL— _. ogi—}
M \/ /\ﬁ e
y344n8 43448 ¥344n8 HOLY € HOLY1 ¥
oLt~ C ver 11 oL A ppL 4P evl
NN.—\ sng—4d . L V
89 _
sna-v J 1}
cel vol 1NN0D_3LAd]f |
M LAIHS| r L4IHS svie || [avadana []
w, —~ 8cl-+
mmpw » 981 061 [CamomE [Il
, acl-
c | _r 1S3l |
v 0%l
e [| ESTIERN]
~1lgz1
| [| IESLEEN
| | GTERERE
AHONIN] el
[— [ss3uaav_|
zzl
i INNOO Lig]
S || o |
34 T4
wut:m_ ¥81 NETRSRE Y HALSIO3Y
za1—" 11) sna-n = v

SUBSTITUTE SHEET

PCT/US88/01119

WO 89/01653

9 ‘9Ol4

31avN3
SSYWN LiF Z61— coe
sna MSVA ee *ee
902 ¥0¢ 90¢ $0¢
ZLI~ oo sng-9g
NO010 cee coe
N L+N Z+N 8+N 6+N Ol+N
i O] O 1 O a1 D o) ﬁ' o)
4/4 /4 4/4 e oo 4/4 4/4 4/4
—ai —a1 (] L—@ -] (] —b ~a={ L—g a = = k4
961—" 961—" cose
e e o r see
-
>
YAV
- ' . o“..o. lllllllll QNION.."
. [} |
R - 1> o |
P .
| V1l f—=J_ 00z |
Wm!i o0 O NON [N]
wm [X X J [N X]
O<O|,_ LA o0 e
sna-g —< L . TLIiN Z J ces

SUBSTITUTE SHEET

PCT/US88/01119
o
1]

5/7

WO 89/01653

rA]! . . Z9l-

B

—
-— o c=s w— an o=

SUBSTITUTE SHEET

091
I
“
"r)Tmm— 851
[nv [nv o o o nv [3<
m _ mump_ N-zGl -zs1 | Ay _ mmm__ LNQ_
""""""" — — a— v— — m-.l- T B . G T ——— N W —— - T T S S W " . d——— S S S W S S S —— — — —————— s thnrn o — ——
= Y4710 ﬁ N e\ Z 1 ﬁ ae-yy3T0 £ _,H e
kwx:_z e ., XAW| € XNW| % xan| € 9P
arl £-NOILONNA S-NOLLONNA S~NOLLONNA £
51— * 1"k ET\» (41 d NOLLONNA
. ® [] [] . .I
7
ruhsutwﬂ:ﬁﬁr.lrnvwnurlﬂnuhuﬁ,.nn.l.ﬂrulﬁrllu.ll.l.lmm._‘ V-W(illul._..l*lm ilnwuhnrJ,éthlhwlhrlhvn.hﬂulncllhhnlw!kul’loll|I..I!ll.nl

WO:89/01653

1

- 210 ~(START o/

212

SET END FLAG TO O

\

214

MASK KEYWORD
WITH BIT MASK

|

216

LOAD J WITH FIRST
DATA STRING WORD

\

218

LOAD K WITH NEXT
DATA STRING WORD

_-220

BYTE C

OUNT=8

|

222

COMPARE KEYWORD
WITH DATA WORD IN J

—224
| USER'’S
NO YES PROGRAM
| i
\ -

226

DEC. DATA
STRING LENGTH

PCT/US88/01119

FIG. 8

230

USER'S

END FLAG=1 " PROGRAM

\

232

LEFT SHIFT 1 BYTE

!

/-234

DEC. BYTE COUNT

SUBSTITUTE SHEET

. &

WO 89/01653

START
|

SET END FLAG TO O

Y

MASK KEYWORD
WITH BIT MASK

|

LOAD J WITH FIRST
DATA STRING WORD

Y

LOAD K WITH NEXT

DATA STRING WORD

BIT COUNT=64

|

COMPARE KEYWORD

WITH DATA WORD IN J

NO YES

/7

240

USER'S
PROGRAM

_

!

DEC. DATA

STRING LENGTH

NO
YES

END FLAG=1

| S

! ya

USER'S
PROGRAM

242

LEFT SHIFT 1 BIT

| Z

244

DEC. BIT COUNT

YES

SUBSTITUTE SHEET

PCT/US88/01119

FIG. S

pr

INTERNATIONAL SEARCH REPORT
international Application No. PCT /US88/01119

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) €
. According-to International Patent Classification (IPC) or to both National Classification and IPC
IPC(4): GO5B 1/00 GO6F 7/02

Us. CI. 340/146.2

_il. FIELDS SEARCHED

Minimum Documentation Searched 7

:?Classiﬁcation System Classification Symbols

:

- Us 340/146.25 364/715,736,748

f

i Documentation Searched other than Minimum Documentation

to the Extent that such Documents are Included in the Fields Searched 8

i

i

Il). DOCUMENTS CONSIDERED TO BE RELEVANT 9
Citation of Document, 11 with indication, where appropriate, of the relevant passages 12

Category:* Relevant to Claim No. 13
& |uUs, &, 3,690,703 (PEACOCK) 28 SEPT. 1971 1-10
1 (28.9.71) (See the entire document.)

. ¥ |Us, A, 4,032,885 (ROTH)28 JUNE 1977 (28.6.77) R1,22,32-35
! (See Fig. 1)

A |US, A, 4,053,871 (VIDALIN et alJ) 11 OCT. 1977 [i-6, 7-10
(11.10.77) (See the entire document.)

- A Uus, A, 4,097,844 (MOYER)27 JUNE 1973 21,22,32-25
(27.6.78) (See the entire document.) :

- A Us, A, 4,101,903(SLAY) I8 JULY 1978 (18.7.78) P21,22,32-35
' (See the entire document.)

Y Us, A, 4,119,946(TAYLOR)]0 OCT. 78 1-5,7-20
] (10.10.78) See Figs. I, 3, and 5, and col. 5 |22~31,36-
: line 23-col. 6 line 37. 43
" & |US, A, 4,334,284 (WONG)8 JUNE 1982 (6.6.82) 15 and 16

(See the entire document.)

.

Y UsS, A, 4,383,304 (HIRASHIMA) 10 MAY 1983 17
(10.5.83) (See Figure 2.)

* Special categories of cited documents: 10 “T" later document published after the iqtemational filing date
o . which i + or priority date and not in conflict with the application but
A" document defining the general state of the art which is no cited to understand the principle or theory underlying the
considered to be of particular relevance) invention

“E" earlier document but published on or after the international X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

. “L” document which may throw doubts on priority claim(s) or involve an inventive step
; w.hlc.h is cited to establish the publication date of another “y" document of particular relevance; the claimed invention
- citation or other special reason (as specified) cannot be considered to involve an inventive step when the

document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

document member of the same patent family

»Q" document referring to an oral disclosure, use, exhibition or
other means i

“P document published prior to the international filing date but \
later than the priority date claimed e

IV. CERTIFICATION
. Date of the Actual Completion of the International Search I

Date of Mailing of this Internationai Search Report

20 July 1988

International Searching Authority

—

ISA/US

Form PCTASA/210 {sacond sheet) (Rev,11-87)

=

International Application No.

PCT/US88/01119

{1i. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

C'alegory.'[Citation of Document, with indication, where appropriate, of the relevant passages

I Relevant to Claim No

A |[US, A, 4,443,860 (VIDALIN) 17 APRIL 1985
(17.4.85) (See the entire document.)

A& US, A, 4,524,345(SYBEL et al) 18 JUNE 1985
(18.6.85) (See the entire document.)

X |[Us, A, 4,550,436 (FREEMAN et al.) (29 OCT. 1985)
(29.10.85) (See Figure 3.)

A |IBM TECHNICAL DISCLOSURE BULLETIN, Vol. 23,
No. 1, June 1980, (J. E. Gersbach), "Algerbra-
ic/Logical Shift Matrix", pages 12--122

¥ [©S, A, 4,560,974 (COLEMAN et al. 24 DEC. 1985
(24.12.85) (See the Figure.)

& S, A, 4,631,696 (SAKAMOTO)26 DEC 1986
(26.12.85) (See the entire document)

A [US, A, 4,639,886 (HASHIMOTO et al.)
27 JAN. 1987 (27.1.87) (See the
entire document)

Y [US, -A, 4,467,444(HARMON, JR.) 21 AUG. 1984
(21.8.84) (See Figure 3.)

1-5, 7-10
1-5,7-10
1 and 7

17

-5 and 7-10
15-17

15-17

15-17

Form PCT/ISA/210 (extra sheet) {Rev.11-87)

«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

