(54) 实用新型名称

一种无人机模拟驾驶显示装置

(57) 摘要

本实用新型提供了一种无人机模拟驾驶显示装置，其技术要点在于：包括无人机、遥控器及手机，所述无人机上设有主控板和与其相连的锂电池，主控板上设有 ARM 芯片和与其相连的 wifi 模块，所述无人机上设有摄像头，摄像头与 ARM 芯片相连，所述遥控器通过无线收发模块与 ARM 芯片连接通信，ARM 芯片通过 wifi 信号与手机连接通信，所述手机安放在虚拟现实头戴眼镜内。本实用新型可将无人机的航拍画面实时传送到手机上，再通过虚拟现实头戴眼镜来观看手机屏幕上的图像，从而实现穿戴无人机飞行 3D 画面的目的，使操控者有身临其境之感，提高了无人机模拟的真实性，提升了操控者的飞行体验。
1. 一种无人机模拟驾驶显示装置，其特征在于：包括无人机 (1)、遥控器 (2) 及手机 (3)，所述无人机 (1) 上设有主控板 (6) 和与其相连的锂电池 (13)，主控板 (6) 上设有 ARM 芯片 (7) 和与其相连的 wifi 模块 II (8)，所述无人机 (1) 上设有摄像头 (4)，摄像头 (4) 与 ARM 芯片 (7) 相连；所述遥控器 (2) 通过无线收发模块与 ARM 芯片 (7) 连接通信，ARM 芯片 (7) 通过 wifi 信号与手机 (3) 连接通信，所述手机 (3) 安放在虚拟现实头戴眼镜 (5) 内。

2. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述无线收发模块为设在遥控器 (2) 上的 wifi 模块 II (9)。

3. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述摄像头 (4) 通过图像传感器 (11) 与 ARM 芯片 (7) 相连。

4. 如权利要求 3 所述的一种无人机模拟驾驶显示装置，其特征在于：所述摄像头 (4) 通过 A/D 转换器 (12) 连接 ARM 芯片 (7)。

5. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述无人机 (1) 为四轴无人机，其具有四只旋翼 (15)，每只旋翼 (15) 分别连接一个电动机 (14)，电动机 (14) 分别连接 ARM 芯片 (7) 和锂电池 (13)。

6. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述摄像头 (4) 的数量为两个，两个摄像头 (4) 左右对称设于无人机 (1) 机身的前方。

7. 如权利要求 6 所述的一种无人机模拟驾驶显示装置，其特征在于：两个摄像头 (4) 之间的距离为 7cm。

8. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述虚拟现实头戴眼镜 (5) 的焦距为 5cm。

9. 如权利要求 1 所述的一种无人机模拟驾驶显示装置，其特征在于：所述主控板 (6) 上设有与 ARM 芯片 (7) 相连的 GPS 定位模块 (10)，ARM 芯片 (7) 通过 GPS 网络与手机 (3) 相连。

10. 如权利要求 9 所述的一种无人机模拟驾驶显示装置，其特征在于：所述无人机 (1) 上设有三轴陀螺仪 (15) 和气压计 (16)，两者分别与 ARM 芯片 (7) 相连。
一种无人机模拟驾驶显示装置

技术领域：
[0001] 本实用新型属于无人机航行模拟设备，具体涉及一种无人机模拟驾驶显示装置。

背景技术：
[0002] 随着科技的发展，无人机无论在军事领域还是在民用领域都获得了越来越广泛的应用。而且无人机也向着越来越小型化和智能化的方向发展。现有的无人机虽然具有航拍功能，并可进行航拍画面的传送，但其所传送的画面需要应用电脑显示器等较大型的设备进行观看，其观看的位置固定，无法随意移动，观看场地具有局限性，且通过电脑显示器等较大型设备观看的图像为 2D 平面图像，其画面的真实感较差，无法使操控者身临其境地感知无人机航行的状况，不便于操控者全心投入其中，无法满足人们对无人机航行模拟的真实性的需求，比如对于飞行员来说，现有具备航拍功能的无人机就无法使飞行员进行飞行模拟训练。

实用新型内容：
[0003] 本实用新型为克服现有技术的不足，提供了一种无人机模拟驾驶显示装置，其可将无人机的航拍画面实时传送到手机上，再通过虚拟现实头戴眼镜来观看手机屏幕上的图像，从而实现观看无人机航行 3D 画面的目的，使操控者有身临其境之感，提高了无人机航行模拟的真实性，可使飞行员进行实训训练，提高飞行员的训练速度，提升飞行员的飞行体验。
[0004] 本实用新型的无人机模拟驾驶显示装置，为实现上述目标所采用的技术方案在于：包括无人机、遥控器及手机，所述无人机上设有主控板和与其相连的锂电池，主控板上设有 ARM 芯片和与其相连的 wifi 模块 I，所述无人机上设有摄像头，摄像头与 ARM 芯片相连，所述遥控器通过无线收发模块与 ARM 芯片连接通信，ARM 芯片通过 wifi 信号与手机连接通信，所述手机安放在虚拟现实头戴眼镜内。
[0005] 作为本实用新型的进一步改进，所述无线收发模块为设在遥控器上的 wifi 模块 II，使遥控器与无人机上的 ARM 芯片通过 wifi 信号进行连接通信，同时使无人机和手机之间可通过遥控器上的 wifi 模块 II 进行连接通信，从而降低无人机的电量消耗，延长无人机的航行时间。
[0006] 作为本实用新型的进一步改进，所述摄像头通过图像传感器与 ARM 芯片相连。图像传感器将摄像头所拍摄的图像转换成 ARM 芯片可识别的数字信号传送给 ARM 芯片。
[0007] 作为本实用新型的进一步改进，图像传感器通过 A/D 转换器连接 ARM 芯片。图像传感器将摄像头所拍摄的图像转换成电荷，再由 A/D 转换器将电荷转换成数字信号传送给 ARM 芯片。
[0008] 作为本实用新型的进一步改进，所述无人机为四轴无人机，其具有四只旋翼，每只旋翼分别连接一个电动机，电动机分别连接 ARM 芯片和锂电池。四轴无人机的控制灵活，调控方便，每只旋翼各由一个电动机单独驱动，可使各旋翼充分捕捉空气以形成强大的升力。
和推力。
[0009] 作为本实用新型的进一步改进，所述摄像头的数量为两个，两个摄像头左右对称
设于无人机机身的前方。通过两个摄像头来分别拍摄无人机左右两侧的航行画面，进而组成
整个无人机的航行画面。
[0010] 作为本实用新型的进一步改进，两个摄像头之间的距离为 7cm，此距离可保证两个
摄像头对整个无人机进行无死角拍摄，同时又避免两个摄像头所拍摄的画面重叠。
[0011] 作为本实用新型的进一步改进，所述摄像头的像素为 500 万，可保证拍摄画面的
清晰度。
[0012] 作为本实用新型的进一步改进，所述虚拟现实头戴眼镜的焦距为 5cm，可增大广
角。
[0013] 作为本实用新型的进一步改进，所述主控板上设有与 ARM 芯片相连的 GPS 定位模
块，ARM 芯片通过 GPS 网络与手机相连，通过 GPS 定位模块可在手机上观看出无人机所处
的位置，以便全面掌握无人机的航行状态。
[0014] 作为本实用新型的进一步改进，所述无人机上设有三轴陀螺仪和气压计，两者分
别与 ARM 芯片相连。通过三轴陀螺仪与 GPS 定位模块相互配合，可测算出无人机的加速度
与位移，从而精准推算航行速度；通过气压计来测量无人机的飞行高度，使操控者能够更加
贴近飞行员的操作体验。
[0015] 本实用新型的有益效果是：本实用新型通过摄像头实时拍摄无人机的航行画面，
并将画面传送给 ARM 芯片，经 ARM 芯片处理后通过 wifi 信号将图像数据传送到操控者的手
机上，由于手机是放置在虚拟现实头戴眼镜内的，操控者将虚拟现实头戴眼镜佩戴在头部
上即可观看手机画面，从而将手机上的 2D 画面转变成 3D 画面，实现观看无人机航行 3D 画
面的目的，显著地增强了视觉转化所带来的真实感受，再通过遥控器来操控无人机的航行
方向或航行速度等，使操控者不是仅仅能站在地面仰望无人机飞行，而是有如坐在无人机
的驾驶舱内进行现场操纵，从而可模拟驾驶舱环境。本实用新型可应用于飞行员的实景训练
和日常娱乐，让飞行员和操作者有身临其境之感，从而提高飞行员的训练速度，提升操作者
的飞行体验。

附图说明：
[0016] 附图 1 为本实用新型的结构示意图；
[0017] 附图 2 为本实用新型的控制原理图。

具体实施方式：
[0018] 参照图 1 和图 2，该无人机模拟驾驶显示装置，包括无人机 1、遥控器 2 及手机 3，
所述无人机 1 为四轴无人机，其具有四只旋翼，每只旋翼分别连接一个电动机 14，所述无人
机 1 上设有主控板 6 和与主控板 6 相连的锂电池 7，主控板 6 上设有 ARM 芯片 7 和与 ARM 芯
片 7 相连的 wifi 模块 8，电动机 14 分别连接 ARM 芯片 7 和锂电池 13，主控板 6 上还可设置
GPS 定位模块 10，所述无人机 1 机身的前方左右对称地设有两个 500 万像素的摄像头 4，
两个摄像头 4 之间的距离为 7cm，两个摄像头 4 均分别通过图像传感器 11 连接 A/D 转换器
12，A/D 转换器 12 连接 ARM 芯片 7，所述遥控器 2 上设有 wifi 模块 4，遥控器 2 与 ARM 芯片
7 通过 wifi 信号进行连接通信，ARM 芯片 7 与手机 3 之间通过遥控器 2 上的 wifi 模块 II 进行连接通信，所述手机 3 安放在虚拟现实头戴眼镜 5 内。所述主控板 6 上设有与 ARM 芯片 7 相连的 GPS 定位模块 10，ARM 芯片 7 通过 GPS 网络与手机 3 相连。无人机 1 上设有三轴陀螺仪 15 和气压计 16，两者分别与 ARM 芯片 7 相连。

【0019】 ARM 芯片 7 的控制系统为 Linux 系统，在此系统下安装视频播放器以显示摄像头 4 实时拍摄的影像。ARM 芯片 7 所用服务器的应用程序为 vncserver，进行实时视频传输，在操控者的手机 3 上下载客户端的应用程序 vncviewer，在手机 3 上调整出两个左右排列的视频窗口来将整个手机屏幕均分并占满，通过两个视频窗口分别一左一右地显示出整个无人机的航行画面。所述虚拟现实头戴眼镜 5 的焦距为 5cm，再通过软件程序来消虚现实头戴眼镜 5 所观看的扭曲画面的程度，具体是与虚拟现实头戴眼镜 5 上的凸透镜放大效果相反的将图像中心保持原样，四周适当的压缩，使得经凸透镜成像之后为未扭曲的画面，进而提高视觉效果。

【0020】 使用时，通过两个摄像头 4 来实时拍摄无人机 1 航行的画面，两个摄像头 4 所拍摄的画面分别通过图像处理器 11 转变成电荷信号，再由 A/D 转换器 12 转变成数字信号传送给 ARM 芯片 7，ARM 芯片 7 通过 wifi 信号将数据传送给手机 3，由手机 3 内部的控制芯片转变成图像后即可通过手机 3 实时观看无人机 1 的航行图像，操控者再通过遥控器 2 来控制无人机 1 的航行方向或速度。其中手机 3 放置在虚拟现实头戴眼镜 5 内，操控者通过佩戴虚拟现实头戴眼镜 5 来观看手机 3 屏幕上的图像，可将手机 3 屏幕上的 2D 图像转变成 3D 图像，增加立体真实感，使观看者有身临其境之感，从而提升飞行体验。通过三轴陀螺仪 15 与 GPS 定位模块 10 相互配合，可测得无人机 1 的加速度与位移，从而精确推算出无人机 1 的航行速度，通过气压计 16 来测量无人机 1 的飞行高度，使操控者能够更加贴近飞行员的操作体验。

【0021】 由于目前的手机 3 均为智能手机，其本身都具有 wifi 模块，所以 ARM 芯片 7 与手机 3 之间可通过 wifi 信号直接进行连接通信，但发明人考虑到实施时如果手机 3 直接与无人机 1 上的 ARM 芯片 7 进行连接通信的话，无人机 1 本身会消耗大量的电量，为了减少无人机 1 的耗电量，延长无人机 1 的航行时间，发明人在遥控器 2 上设置了 wifi 模块 II 9，在上述过程中让无人机 1 上的 ARM 芯片 7 与手机 3 之间通过遥控器 2 上的 wifi 模块 II 9 进行连接通信，从而使无人机 1 与手机 3 之间连接通信所消耗的电量由遥控器 2 来承担，由于遥控器 2 是处于地面上的，对遥控器 2 进行充电或更换锂电池的操作显然要比对无人机 1 的电量补充要方便得多。
图 1
图 2