发明名称
具有永磁调速离合器的传动系统

摘要
本发明公开了一种具有永磁调速离合器的传动系统，包括电机、离合器和负载设备，所述离合器的主动盘与电机输出轴相连接，离合器的从动盘与负载设备的输入轴相连接。所述主动盘的正面固定安装有导电盘，所述从动盘上固定安装有永磁体。永磁体的磁极位于从动盘的正面，所述主动盘的正面与从动盘的正面同轴相对但不接触，所述导电盘与永磁体的磁极之间设有气隙，所述电机或负载设备安装在可调节滑动底座上。本发明具有软启动、防堵转、减振、可调速、结构简单、易于安装等优点。
1. 一种具有永磁调速离合器的传动系统，包括电机、离合器和负载设备，所述离合器的主动盘与电机输出轴相连接，离合器的从动盘与负载设备的输入轴相连接，其特征是，所述主动盘的正面固定安装有导体盘，所述从动盘上固定安装有永磁体，永磁体的磁极位于从动盘的正面，所述主动盘的正面与从动盘的正面同轴相对但不接触，所述导体盘与永磁体的磁极之间设有气隙，所述电机或负载设备安装在可调节滑动底座上。

2. 根据权利要求1所述的传动系统，其特征是，所述主动盘的背面固定有散热片。

3. 根据权利要求1所述的传动系统，其特征是，所述从动盘的背面固定有压板，所述压板将永磁体压紧在从动盘上。

4. 根据权利要求1所述的传动系统，其特征是，所述导体盘为铜盘或铝盘。

5. 根据权利要求1所述的传动系统，其特征是，所述主动盘上固定有输入法兰，输入法兰通过胀套与电机输出轴联接。

6. 根据权利要求1所述的传动系统，其特征是，所述从动盘上固定有输出法兰，输出法兰通过胀套与负载设备的输入轴联接。
具有永磁调速离合器的传动系统

技术领域

本发明涉及一种传动系统，具体涉及一种具有永磁调速离合器的传动系统。

背景技术

在由负载设备和电机组成的传动系统中，负载设备与电机之间的联接最常见的是采用硬联接的方式，即电机轴通过联轴器与负载设备的输入轴相联接。其具有以下特点：1）高刚性、高转矩、低惯性；2）大扭矩承载，高扭矩刚性和卓越的灵敏度；3）零回转间隙，顺时针和逆时针回转特性相同；4）免维护、超强抗油和耐腐蚀性。

但是这种传动系统也存在着较多的技术问题。一、传统电机采用硬启动方式，启动时的大电流对电网冲击较大，影响电网供电质量，伤害电机绝缘，降低电机寿命；在电机定子线圈和转子鼠笼条上产生很大的冲击力，会造成电机紧死，线圈变形，鼠笼条断裂等故障。

二、无法实现过载保护，当电机的负载功率超过了其额定功率时，电机很有可能因为其内部电流过大而烧坏。

三、电机在硬启动时，对负载设备冲击较大，影响使用寿命。

四、由于电机与负载之间是硬联接，故负载的振动会被传递到电机上，影响电机使用寿命。

由上述可知，现有技术中的电机传动系统，由于其存在硬启动、无过载保护以及寿命短等问题，限制了其在要求较高场合的应用。

离合器也常见于传动系统中，离合器可分为电磁离合器、磁粉离合器、摩擦式离合器和液力离合器等，主要是指主动部分运转的情况下，使从动部分与主动部分结合或分离，但是现有技术中将离合与调速相结合的产品却甚少。

发明内容

本发明要解决的技术问题是提供一种具有永磁调速离合器的传动系统，可提供软启动特性并可实现负载转速的调节，以克服现有技术的上述不足。

为了解决上述技术问题，本发明采用如下技术方案：一种具有永磁调速离合器的传动系统，包括电机、离合器和负载设备，所述离合器的主动盘与电机输出轴相连接，离合器的从动盘与负载设备的输入轴相连接，所述主动盘的正面固定安装有导体盘，所述从动盘上固定安装有永磁体，永磁体的磁极位于从动盘的正面，所述主动盘的正面与从动盘的正面同轴相对但不接触，所述导体盘与永磁体的磁极之间设有气隙，所述电机或负载设备安装在可调节滑动底座上。

优选地，所述主动盘的背面固定有散热片。

优选地，所述从动盘的背面固定有压板，所述压板将永磁体压紧在从动盘上。

优选地，所述导体盘为铜盘或铝盘。

优选地，所述主动盘上固定有输入法兰，输入法兰通过胀套与电机输出轴联接。
优选地，所述从动盘上固定有输出法兰，输出法兰通过胀套与负载设备的输入轴联接。

与现有技术相比，本发明具有以下优点：

（1）具有软启动功能：电机启动时，离合器的主动盘和从动盘之间的距离较大，滑差为100%，使电机空载启动。电机启动完成后，再利用可调节滑动底座调节主动盘和从动盘之间的气隙，将负载转速调节到需要的转速，可有效减少动力传动系统的冲击、对外围设备起到保护作用。

（2）可驱动较高的启动惯量或扭矩：传统传动系统启动电机时，其启动惯量须超过额定的十几倍，采用本发明方案在选择电机时可有效地减少电机转动惯量。

（3）减振：本发明中离合器的主动盘和从动盘间的转速差通过磁轴联接，是一种软联接方式，可以使负载端的振动得到有效隔离，延长电机寿命。

（4）能承受周期性负载转矩（滑差）：当负载设备卡死或者堵转时，负载端不转或者减速慢转，而电机可按原有的转速继续旋转，从而可有效地避免电机因内部电流过大而烧坏。

（5）可调速控制负载转矩：通过可调节滑动底座移动电机或负载设备，以控制导体盘与磁极之间的气隙大小，控制负载传动转矩的大小，达到节能效果。

（6）可实现电机与负载设备的脱离：当主动盘与从动盘之间的气隙足够大时，可使负载完全脱离，适用于多机联合驱动、电机频繁启动的应用场合，或满足负载频繁间断工作的工况。

附图说明

图1是本发明具有永磁调速离合器的传动系统的联接关系示意图。

图2是本发明中一种永磁调速离合器的结构分解示意图。

图3是本发明中另一种永磁调速离合器的示意图。

具体实施方式

下面结合附图和具体实施方式对本发明作进一步详细说明，本领域技术人员可以更清楚地了解本发明的其他优点及功效。

需要说明的是，说明书附图所示意的结构、比例、大小等，仅用于配合具体实施方式，供本领域技术人员更清楚地了解本发明的构思，并非用以限制本发明的保护范围。任何结构的修饰、比例关系的改变或大小的调整，在不影响本发明的功效及目的达成的情况下，均应落在本发明的保护范围之内。为了便于描述，各部件的相对位置关系是根据说明书附图的布图方式来进行描述的。

如图1所示，本发明的传动系统包括电机1、离合器2和负载设备3，其中离合器2为永磁调速离合器，它包括一个主动盘21和一个从动盘22，主动盘21与电机1输出轴相连接，从动盘22与负载设备3的输入轴相连接。

如图2所示，在主动盘21的正面通过沉头螺钉28固定安装有导体盘23，主动盘21的背面通过内六角圆柱头螺钉27固定有散热片26。在从动盘22上镶嵌有永磁体24，永磁体24的磁极位于从动盘22的正面，从动盘22的背面设有压板25，压板25由螺钉29固
定在从动盘 22 上，将永磁体 24 吸附并固定在从动盘 22 上。

【0031】 结合图1，图2，主动盘21的正面与从动盘22的正面同轴相对但并不接触，固定在主动盘21正面的导体盘23可以由铜或铝等导体材料制成，导体盘23与永磁体24的磁极之间设有气隙20，只有当主动盘21和从动盘22之间发生相对转动时，它们之间通过磁场相互作用，除此之外，并没有其它的机械连接。电机1安装在一个可调节滑动底座4上，而负载设备3固定安装，改变电机1在可调节滑动底座4上位置，就可以调节主动盘21和从动盘22之间距离，从而改变气隙20的大小，来调节负载设备的响应转速。显然，也可以将电机1固定安装，而将负载设备3安装在一个可调节滑动底座上，来实现对气隙20的调节。

【0032】如图3所示，为了实现离合器与电机、负载设备的方便连接，可以在主动盘21的背面固定一个输入法兰5，输入法兰5由螺钉6固定在主动盘21上，并通过胀套7与电机输出轴联接。在从动盘22上固定有输出法兰8，输出法兰8由螺钉9固定在从动盘22上，并通过胀套10与负载设备的输入轴联接。

【0033】当电机转动时，带动主动盘、导体盘和散热片一起旋转，随着永磁体产生的磁场在旋转的导体盘中产生涡流，在磁场作用下从动盘也开始旋转，从而响应了电机的旋转，带动了负载设备转动；散热片直接暴露在空气中，在转动过程中，可以通过空冷方式散热导体盘中因涡流产生的热量，主动盘和从动盘的外面也不设壳体，具有很好的散热效果。同时，还可以通过可调节滑动底座来控制导体盘与永磁体之间的气隙大小，来影响负载设备的转速。本发明具有软启动、防堵转、减振、可调速、结构简单、易于安装等优点，可广泛运用于工业领域。

【0034】当然，以上仅是本发明的具体应用范例，对本发明的保护范围不构成任何限制。除上述实施例外，本发明还可以有其它实施方式。凡采用等同替换或等效变换形成的技术方案，均落在本发明所要求保护的范围之内。
图1
图 2
图 3