wo 20147210366 A1 |11 0F 0000 0N 0 O

(43) International Publication Date
31 December 2014 (31.12.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/210366 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 9/06 (2006.01) GO6F 9/30 (2006.01)

International Application Number:
PCT/US2014/044419

International Filing Date:
26 June 2014 (26.06.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/931,727 28 June 2013 (28.06.2013) US

Applicant: INTEL. CORPORATION [US/US], 2200
Mission College Boulevard, Santa Clara, California 95054
(US).

Inventor: KUO, Shihjong; 3798 NW First Court, Hills-
boto, Oregon 97124 (US).

Agent: VECCHIA, Brent, E.; Vecchia Patent Agent LLC,
c/o CPA Global, P.O. Box 52050, Minneapolis, MN 55402

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: PROCESSORS, METHODS, SYSTEMS, AND INSTRUCTIONS TO TRANSCODE VARIABLE LENGTH CODE
POINTS OF UNICODE CHARACTERS

(57) Abstract: A processor includes a plurality of

PROCESSOR 10

INSTRUCTION SET 102

INSTRUCTION(S) TO

packed data registers. The processor also includes
a decode unit to decode a packed variable length
code point length determination instruction. The
instruction is to indicate a first source packed data
that is to have a plurality of packed variable length
code points that are each to represent a character.

TRANSCODE VARIABLE LENGTH
CODE POINTS OF UNICODE
CHARACTERS 103

108

|
PACKED VARIABLE LENGTH |
CODE POINT LENGTH |

PACKED DATA REGISTERS

The instruction is also to indicate a destination
storage location. The processor also has an execu-
tion unit coupled with the decode unit and the
packed data registers. The execution unit, in re-
sponse to the instruction, is to store a result

packed data in the indicated destination storage

|
|
| DETERMINATION I
| INSTRUCTIONS(S) |
| 104 (OPTIONAL) |

PACKED VARIABLE LENGTH | 110

CODE POINT UNICODE BITS |

EXECUTION UNIT(S)

location. The result packed data is to have a length
for each of the plurality of the packed variable
length code points. Other processors, methods,
systems, and instructions are also disclosed.

INSTRUCTION(S)

|

|

: EXTRACTION |
|

| 106 (OPTIONAL) |

FIG1

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
PROCESSORS, METHODS, SYSTEMS, AND INSTRUCTIONS TO TRANSCODE

VARIABLE LENGTH CODE POINTS OF UNICODE CHARACTERS
BACKGROUND
Technical Field

[0001] Embodiments described herein generally relate to processors. In particular, embodiments
described herein generally relate to processors having instructions that are useful for transcoding
variable length code points of Unicode characters.

Backeround Information

[0002] Computers fundamentally process binary numbers. They generally do not process the
various different types of letters, decimal numbers, symbols, or other characters used in the
various different languages and traditions. Rather, these different letters, decimal numbers,
symbols, and other characters are assigned and represented by binary numbers.

[0003] The Universal Character Set (UCS) is a standardized set of characters upon which several
character encodings are based. UCS is defined by the International Standard ISO/IEC 10646,
Information technology - Universal multiple-octet coded character set (UCS), along with
amendments to this standard. The UCS includes a large number of different characters including
the letters, numbers, symbols, ideograms, logograms, and other characters from the most
prevalent languages, scripts, and traditions of the world. Each of these characters is identified by
an integer number that is referred to as that characters code point.

[0004] The Unicode Standard (Unicode) has been developed in tandem with USC. Unicode
represents a computing industry standard for the consistent digital encoding, representation, and
handling of the characters of the UCS. Unicode reportedly provides a unique number for every
character, no matter what the platform, no matter what the program, no matter what the
language. Unicode is currently used by almost all modern computers and serves as a foundation
for processing text on the Internet.

[0005] Unicode may be implemented through various different character encodings. One
commonly used encoding is UTF-8 (UCS Transformation Format-8-bit). UTF-8 is a variable-
length (e.g. variable number of bytes) encoding that can represent every character in Unicode.
Each Unicode character is represented with between one and four bytes. The bytes are also
referred to as octets in the Unicode standard. UTF-8 uses one byte to represent any of the ASCII
characters. UTF-8 is backward-compatible with ASCII and the characters have the same
encoding in both ASCII and UTF-8. Other non-ASCII characters are represented by two, three,
or four bytes. It is estimated that UTF-8 is the predominant encoding of Unicode in web pages
on the world-wide web with more than half of all web pages estimated to be encoded using UTF-

8. UTF-8 is also widely used by e-mail programs to display and create mail. Increasingly, UTF-

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

8 is also being used to encode Unicode characters in certain programming languages, operating
systems, application programming interfaces (APIs), and software applications.
[0006] Another commonly used encoding is UTF-16 (UCS Transformation Format-16-bit).
UTF-16 is a variable-length (e.g. variable number of bytes) encoding that can represent every
character in Unicode. Each Unicode character is represented with either two or four bytes.
UTF-16 is not backward-compatible with ASCII. UTF-16 is commonly used as the internal
form of Unicode in certain programming languages, such as, for example, Java, C#, and
JavaScript, and in certain operating systems. Various other known encodings are also used (e.g.,
UTF-2, UTF-32, UTF-1, etc.).
[0007] Commonly, in order to facilitate processing within computer systems, UTF-8, UTF-16, or
other encoded data, may be transcoded into another format, such as, for example, Unicode.
Transcoding represents the direct digital-to-digital data conversion of one encoding to another.
Such transcoding may be done for various reasons, such as, for example, to help improve the
efficiency or speed of processing the data, to convert the encoded data to a format used by
software or a more widely recognized format, etc. Often a large amount of processing is needed
to transcode the content of web pages, documents formatted in mark-up languages, XML
documents, and the like, from one encoding (e.g., UTF-8) into standard Unicode characters or
other formats. Due to the prevalence of such transcoding and/or its potential impact on
performance, new and useful approaches for transcoding would offer advantages.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The invention may best be understood by referring to the following description and
accompanying drawings that are used to illustrate embodiments. In the drawings:
[0009] Figure 1 is a block diagram of an embodiment of a processor.
[0010] Figure 2 is a table of characteristics of variable length UTF-8 code points.
[0011] Figure 3 is a block diagram of an embodiment of a processor that is operable to process
an embodiment of a packed variable length code point length determination instruction.
[0012] Figure 4 is a block diagram of an example embodiment of a suitable packed variable
length code point length determination operation for variable length UTF-8 code points.
[0013] Figure S is a block flow diagram of an embodiment of a method performed by and/or
within a processor when processing an embodiment of a packed variable length code point
length determination instruction.
[0014] Figure 6 is a block diagram of an embodiment of a processor that is operable to execute
or process an embodiment of a packed variable length code point character bits (e.g., Unicode
bits) extraction instruction.

[0015] Figure 7 is a block diagram of an example embodiment of a suitable packed UTF-8 code

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

point character bits (e.g., Unicode bits) extraction operation for UTF-8 code points.

[0016] Figure 8 is a block diagram illustrating suitable ways to arrange or order sets of extracted
Unicode bits in a packed data element.

[0017] Figure 9 is a block flow diagram of an embodiment of a method performed by and/or
within a processor when processing an embodiment of a packed variable length code point
character bits (e.g., Unicode bits) extraction instruction.

[0018] Figure 10A is a block diagram illustrating a generic vector friendly instruction format
and class A instruction templates thereof according to embodiments of the invention.

[0019] Figure 10B is a block diagram illustrating the generic vector friendly instruction format
and class B instruction templates thereof according to embodiments of the invention.

[0020] Figure 11A is a block diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention.

[0021] Figure 11B shows a specific vector friendly instruction format that is specific in the
sense that it specifies the location, size, interpretation, and order of the fields, as well as values
for some of those fields.

[0022] Figure 11C is a block diagram illustrating the fields of the specific vector friendly
instruction format that make up the register index field according to one embodiment of the
invention.

[0023] Figure 11D is a block diagram illustrating the fields of the specific vector friendly
instruction format that make up the augmentation operation field according to one embodiment
of the invention.

[0024] Figure 12 is a block diagram of a register architecture according to one embodiment of
the invention.

[0025] Figure 13A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention.

[0026] Figure 13B is a block diagram illustrating both an exemplary embodiment of an in-order
architecture core and an exemplary register renaming, out-of-order issue/execution architecture
core to be included in a processor according to embodiments of the invention.

[0027] Figure 14A is a block diagram of a single processor core, along with its connection to the
on-die interconnect network and with its local subset of the Level 2 (L2) cache, according to
embodiments of the invention.

[0028] Figure 14B is an expanded view of part of the processor core in Figure 14A according to
embodiments of the invention.

[0029] Figure 15 is a block diagram of a processor that may have more than one core, may have

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

an integrated memory controller, and may have integrated graphics according to embodiments of
the invention.

[0030] Figure 16 shown is a block diagram of a system in accordance with one embodiment of
the present invention.

[0031] Figure 17 shown is a block diagram of a first more specific exemplary system in
accordance with an embodiment of the present invention.

[0032] Figure 18 shown is a block diagram of a second more specific exemplary system in
accordance with an embodiment of the present invention.

[0033] Figure 19 shown is a block diagram of a SoC in accordance with an embodiment of the
present invention.

[0034] Figure 20 is a block diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction
set according to embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

[0035] Disclosed herein are instructions useful to transcode variable length code points of
Unicode data, processors to execute or perform the instructions, methods performed by the
processors when executing or performing the instructions, and systems incorporating one or
more processors to execute or perform the instructions. In the following description, numerous
specific details are set forth (e.g., specific instruction operations/functionalities, combinations of
instructions, encoding formats, processor configurations, sequences of operations, and the like).
However, embodiments may be practiced without these specific details. In other instances, well-
known circuits, structures and techniques have not been shown in detail to avoid obscuring the
understanding of the description.

[0036] Figure 1 is a block diagram of an embodiment of a processor 100. The processor
represents an embodiment of an instruction processing apparatus. In some embodiments, the
processor may be a general-purpose processor (e.g., a general-purpose microprocessor of the
type often used as a central processing unit (CPU) in desktop, laptop, and like computers).
Alternatively, the processor may be a special-purpose processor. Examples of suitable special-
purpose processors include, but are not limited to, network processors, communications
processors, cryptographic processors, graphics processors, co-processors, embedded processors,
digital signal processors (DSPs), and controllers (e.g., microcontrollers), to name just a few
examples. Such special-purpose processors are also sometimes referred to as hardware
accelerators, special-purpose accelerators, or the like. The processor may be any of various
complex instruction set computing (CISC) processors, various reduced instruction set computing

(RISC) processors, various very long instruction word (VLIW) processors, various hybrids

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

thereof, or other types of processors entirely.

[0037] The processor has an instruction set 102. The instructions of the instruction set represent
macroinstructions, assembly language instructions, machine-level instructions, or other relatively
higher level instructions or control signals, as opposed to microinstructions, micro-ops, or other
relatively lower level instructions or control signals which result from decoding the higher-level
instructions or control signals.

[0038] In some embodiments, the instruction set may include one or more instructions 103 that
are useful to transcode variable length encodings or code points of Unicode data. In some
embodiments, the instructions 103 may optionally include one or more packed variable length
code point length determination instructions 104. The packed variable length code point length
determination instructions 104 may have any of the characteristics, attributes, or features shown
and described further below in Figures 3-5. In some embodiments, the instructions 103 may
optionally include one or more packed variable length code point character bits (e.g., Unicode
bits) extraction instructions 106. The packed variable length code point character bits (e.g.,
Unicode bits) extraction instructions 106 may have any of the characteristics, attributes, or
features shown and described further below in Figures 2 and 6-9. In some embodiments, the
instructions 103 may optionally include both one or more packed variable length code point
length determination instructions 104 and one or more packed variable length code point
character bits (e.g., Unicode bits) extraction instructions 106, although this is not required.
[0039] The processor also includes a set of packed data registers 108. The packed data registers
generally represent on-die or on-processor storage locations. The packed data registers are
operable to store packed data, vector data, or SIMD data. Instructions of the instruction set (e.g.,
the packed variable length code point length determination instructions 104 and/or the packed
variable length code point Unicode bits extraction instructions 106), may specify packed data
registers of the set 108 to identify operands (e.g., source operands, destination operands, etc.).
That is, the packed data registers may be visible to software and/or a programmer (possibly
implemented with register renaming). Such registers are sometimes referred to as
architecturally-visible registers or architectural registers.

[0040] The processor also includes one or more execution units 110. The execution unit(s) are
operable to execute or process the optional packed variable length code point length
determination instructions 104 and/or the optional packed variable length code point Unicode
bits extraction instructions 106. In some embodiments, the execution unit(s) may include
particular logic (e.g., particular circuitry or other hardware potentially combined with one or
more of firmware and software) to execute the instructions 104, 106.

[0041] Figure 2 is a table of characteristics 224 of variable length UTF-8 code points. A first

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

leftmost column lists the number of bytes in the variable length UTF-8 code points. A first row
corresponds to one byte UTF-8 code points, a second row corresponds to two byte UTF-8 code
points, a third row corresponds to three byte UTF-8 code points, and a fourth row corresponds to
four byte UTF-8 code points. In the future it is possible that five or even six byte UTF-8 code
points may become more prevalent in UTF-8.

[0042] The second through fourth columns list the format of the bytes of the variable length
UTF-8 code points. The format within each byte is shown from least significant bit position on
the right to most significant bit position on the left. For example, the format of byte 1 of the one
byte UTF-8 code point is Oxxxxxxx. The byte 2 follows byte 1 (i.e., byte 2 is more significant),
the byte 3 follows the byte 2, and the byte 4 follows byte 3. For the two byte UTF-8 code point,
the format of byte 1 is 110xxxxx and the format of byte 2 is 10xxxxxx. The formats of the three
and four byte UTF-8 code points are as shown in the illustration. In these formats, the bits that
are binary ones (i.e., 1) and zeroes (i.e., 0) represent signature bits 226, whereas the symbol “x”
is used in those bits that represent Unicode code point bits 228. For example, for the two byte
UTF-8 format, the leftmost three most significant bits of byte 1 and the leftmost two most
significant bits of byte 2 are signature bits, whereas all other bits represented with an “x” are
Unicode code point bits.

[0043] The signature bits 226 are used to determine the length of the UTF-8 code point (e.g.,
whether it is a one byte, two byte, three byte, or four byte UTF-8 code point). For example, the
signature bits may be used to determine positional context of a code point in an input byte stream
may be used to determine the identities of component bytes of a multi-byte UTF-8 code point.
The Unicode code point bits 228 may be used to determine, through transcoding, the
corresponding Unicode character or value that is encoded or represented by the UTF-8 code
point. That is, the Unicode code point bits will vary from one Unicode character to another.
[0044] The one byte UTF-8 code point has one signature bit in bit-7 and seven Unicode code
point bits in bits [6:0]. The two byte UTF-8 code point has five signature bits in bits [7:5] and
[15:14], and eleven Unicode code point bits in bits [4:0] and [13:8]. The three byte UTF-8 code
point has eight signature bits in bits [7:4], [15:14], and [23:22], and sixteen Unicode code point
bits in bits [3:0], [13:8], and [21:16]. The four byte UTF-8 code point has eleven signature bits
in bits [7:3], [15:14], [23:22], and [31:30]. The four byte UTF-8 code point has twenty one
Unicode code point bits in bits [2:0], [13:8], [21:16], and [29:24].

[0045] Accordingly, UTF-8 as well as other standards used to encode Unicode characters use
variable length encodings or code points (e.g., variable numbers of bytes to represent the
different Unicode characters). These variable length encodings or code points generally mean

that processors need to transcode or otherwise process these code points or streams of bytes with

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

positional context derived from one or more previous byte(s). This feature often makes it
difficult to perform this transcoding utilizing packed, vector, or SIMD operations. For one thing,
the computational operations or manipulations needed to transcode a UTF-8 code point, for
example, into a 32-bit Unicode value, typically varies with the length of the UTF-8 code point.
As a result, the demarkation boundaries between the variable length code points (e.g., the one,
two, three, and four byte UTF-8 code points) generally need to be determined and respected
during the SIMD processing. Existing SIMD instruction sets are generally inefficient at
validating or determining the variable lengths of code points in UTF-8 and other variable length
encodings. Improved ways of determining the lengths of the different code points, for example
through single instructions specially designed for this purpose, may offer advantages.
Additionally, the inter-byte and intra-byte bit granular processing with non-stationary patterns
from one byte to the next involved in the transcoding of the UTF-8 or other variable length code
points into other formats generally tend to be difficult to implement in packed, vector, or SIMD
operations. Improved ways of performing such heterogeneous inter-byte and intra-byte
processing involved during transcoding, for example through single instructions specially
designed for this purpose, may offer advantages.

[0046] Figure 3 is a block diagram of an embodiment of a processor 300 that is operable to
execute or process an embodiment of a packed variable length code point length determination
instruction 304. The processor 300 may optionally have any of the characteristics or attributes of
the processor of Figure 1. For example, the processor 300 may be a general-purpose processor,
a special-purpose processor, may have a CISC, RISC, VLIW or other architecture, etc. To avoid
obscuring the description, these features which may be the same or similar will not be repeated,
but rather the discussion will tend to emphasize the different or additional features of the
processor of Figure 3.

[0047] The processor 300 may receive the packed variable length code point length
determination instruction 304. For example, the instruction may be received from an instruction
fetch unit, an instruction queue, or the like. The instruction may represent a macroinstruction,
machine code instruction, assembly language instruction, or other instruction or control signal of
an instruction set of the processor. The instruction may have an operation code or opcode. The
opcode may represent a plurality of bits or one or more fields that are operable to identify the
instruction and/or the operation to be performed (e.g., a packed variable length code point length
determination operation). The instruction may also have bits or one or more fields to specify one
or more source and/or destination operands, as will be explained further below.

[0048] The illustrated processor includes an instruction decode unit 312. The instruction decode

unit may also be referred to as a decode unit or a decoder. The decode unit may receive and

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

decode relatively higher-level instructions or control signals (e.g., macroinstructions, machine
code instructions, assembly language instructions, etc.) and output one or more
microinstructions, micro-operations, micro-code entry points, or other relatively lower-level
instructions or control signals that reflect, represent, and/or are derived from the higher-level
instructions or control signals. The one or more lower-level instructions or control signals may
implement the higher-level instruction or control signal through one or more lower-level (e.g.,
circuit-level or hardware-level) operations. The decode unit may be implemented using various
different mechanisms, logic, or integrated circuitry including, but not limited to, microcode read
only memories (ROMs), look-up tables, hardware implementations, programmable logic arrays
(PLAs), and other mechanisms, logic, or integrated circuitry used to implement decode units
known in the art.

[0049] In other embodiments, an instruction emulator, translator, morpher, interpreter, or other
instruction conversion logic may be used. Various different types of instruction conversion logic
are known in the arts and may be implemented in software, hardware, firmware, or a
combination thereof. The instruction conversion logic may receive the instruction and emulate,
translate, morph, interpret, or otherwise convert the instruction into one or more corresponding
derived instructions or control signals. In other embodiments, both instruction conversion logic
and a decode unit may be used. For example, the processor may have instruction conversion
logic to convert a received machine code instruction into one or more intermediate instructions,
and a decode unit to decode the one or more intermediate instructions into one or more lower-
level instructions or control signals executable by native hardware of the processor (e.g., an
execution unit). Some or all of the instruction conversion logic may be located outside the
processor, such as, for example, on a separate die and/or in a memory.

[0050] The processor 300 also includes a set of packed data registers 308. Each of the packed
data registers may represent an on-die storage location that is operable to store packed data,
vector data, or SIMD data. The packed data registers may be implemented in different ways in
different microarchitectures using well-known techniques and are not limited to any particular
type of circuit. Various different types of registers are suitable. Examples of suitable types of
registers include, but are not limited to, dedicated physical registers, dynamically allocated
physical registers using register renaming, and combinations thereof.

[0051] Referring again to Figure 3, the execution unit 310 is coupled with the decode unit 312
and with the packed data registers 308. By way of example, the execution unit may include a
functional unit, a logic unit, an arithmetic logic unit, a digital circuit to perform logical and/or
arithmetic and logical operations, or the like. The execution unit may receive one or more

decoded or otherwise converted instructions or control signals that represent and/or are derived

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

from the packed variable length code point length determination instruction 304. The execution
unit and/or the processor may include specific or particular logic (e.g., circuitry or other
hardware potentially combined with firmware and/or software) that is operable to perform a
packed variable length code point length determination operation in response to and/or as a result
of the packed variable length code point length determination instruction (e.g., in response to one
or more instructions or control signals decoded or otherwise derived therefrom).

[0052] In some embodiments, the packed variable length code point length determination
instruction 304 may explicitly specify (e.g., through one or more fields or a set of bits), or
otherwise indicate (e.g., implicitly indicate), a first source packed data 314. The first source
packed data may have at least two packed variable length code points of Unicode characters 315.
In one particular embodiment, the first source packed data may have a portion of a stream of
contiguous variable UTF-8 codes points or encodings for Unicode characters including one byte,
two byte, optionally three byte, and optionally four byte code points, although the scope of the
invention is not so limited.

[0053] In some embodiments, the packed variable length code point length determination
instruction may optionally explicitly specify or otherwise indicate a second source packed data
316, although this is not required. The second source packed data may have at least two packed
signature patterns for different variable length code points. Alternatively, instead of the
instruction needing to indicate the second source packed data having the two or more packed
signature patterns, the two or more signature patterns may optionally be stored in an on-die non-
volatile memory, such as, for example, an on-die read only memory (ROM). In some
embodiments, there may be a different signature pattern for each different possible length code
point in the first source packed data 314. In some embodiments, there may be at least two,
optionally three, or optionally four or more different signature patterns, depending upon the
particular encoding approach, and each corresponding to a different variable length code point
possible in the first source packed data 314. These signature patterns may be substantially
predetermined or fixed values.

[0054] In one particular example embodiment utilizing UTF-8, there may be a one byte UTF-8
signature pattern for a one byte UTF-8 code point, a two byte UTF-8 signature pattern for a two
byte UTF-8 code point, optionally a three byte UTF-8 signature pattern for a three byte UTF-8
code point, and optionally a four byte UTF-8 signature pattern for a four byte UTF-8 code point,
although the scope of the invention is not so limited. The patterns of the signature bits may
optionally be similar to those shown and described above for Figure 2. For example, a signature
pattern for a one byte UTF-8 code point may have one signature bit in bit-7, a signature pattern

for a two byte UTF-8 code point may have five signature bits in bits [7:5] and [15:14], a

10

15

20

25

WO 2014/210366 PCT/US2014/044419
signature pattern for a three byte UTF-8 code point may have eight signature bits in bits [7:4],

[15:14], and [23:22], and a signature pattern for a four byte UTF-8 code point may have eleven
signature bits in bits [7:3], [15:14], [23:22], and [31:30].

[0055] Table 1 below lists examples of suitable signature patterns represented in binary and
hexadecimal notations for one to four byte UTF-8 code points.

Table 1. Signature patterns for UTF-8 Code Points

Bytes of UTF-8 Signature Pattern in Binary Signature Pattern in
Code Point (in byte order i.e. byte 1, byte 2, byte 3, Hexadecimal
byte 4)
1 00000000 0x00
2 11000000 10000000 0x80C0
3 11100000 10000000 10000000 0x8080EOQ
4 11110000 10000000 10000000 10000000 | 0x808080F0

[0056] In some embodiments, the packed variable length code point length determination
instruction 304 may optionally have an immediate 318, although this is not required. The
immediate may have lengths of the signature patterns for the different variable length code
points (e.g., that are in the second source packed data 316). Each of the lengths may correspond
to a different one of the signature patterns. For example, the lengths may include or indicate a
one byte length corresponding to a one byte signature pattern, a two byte length corresponding to
a two byte signature pattern, optionally a three byte length corresponding to a three byte
signature pattern, and optionally a four byte length corresponding to a four byte signature
pattern. In other embodiments, only two, or only three different lengths may be needed for the
particular implementation. Alternatively, in other embodiments, instead of the instruction
needing to have the immediate, the lengths of the signature patterns may optionally be provided
otherwise, such as, for example, being stored in an on-die ROM or other on-die non-volatile
memory. As another option, the lengths may optionally be provided by another explicitly
specified or implicitly indicated source operand (e.g., provided through an implicit register).
[0057] In some embodiments, the packed variable length code point length determination
instruction may optionally explicitly specify or otherwise indicate a destination 320 (e.g., a
destination storage location) where a result packed data is to be stored in response to the
instruction 304. In some embodiments, the result packed data may include packed lengths of
validated variable length code points or encodings of Unicode characters 321.

[0058] In some embodiments, the execution unit may determine whether a piece of data from the
packed variable length code points of the Unicode characters 315 matches any of the different

signature patterns for the different length code points 317. For example, the execution unit may

10

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
compare the first byte from the packed variable length UTF-8 code points of the Unicode

characters 315 with a one byte UTF-8 signature pattern 317, may compare the first two bytes
from the packed variable length UTF-8 code points of the Unicode characters 315 with a two
byte UTF-8 signature pattern 317. In some embodiments, the execution unit may also optionally
compare the first three bytes from the packed variable length UTF-8 code points of the Unicode
characters 315 with a three byte UTF-8 signature pattern 317, and may further optionally
compare the first four bytes from the packed variable length UTF-8 code points of the Unicode
characters 315 with a four byte UTF-8 signature pattern 317.

[0059] If at some point there is a match, then it may be inferred that the length of the variable
length UTF-8 or other variable length code point from the first source data 314 has been properly
determined. This is sometimes referred to in the arts as validating a code point. In some
embodiments, the execution unit may then store the validated or otherwise determined length for
that variable length UTF-8 or other code point in a corresponding position in the destination 320.
For example, the first contiguous three byte segment from the first source 314 matches a three
byte signature pattern from the second source 316, then a value of three may be stored or
otherwise indicated in a corresponding position in the destination to indicate that the
corresponding code point is a three byte code point. This process may be repeated to generate a
result that includes packed lengths of all validated variable length code points of Unicode
characters 321 that are able to be validated or otherwise determined in the first source 314.
[0060] As shown, in some embodiments, each of the first source packed data 314, the second
source packed data 316, and the destination 320 may represent a different packed data register.
Alternatively, memory locations, or other storage locations, may be used for one or more of
these operands. For example, the packed variable length code points of Unicode characters 315
may instead be stored in a memory location. Moreover, one or more of the sources and/or
destination operands may be implicit to the instruction instead of being explicitly specified. As
another option, one of the source operands may optionally be reused as the destination operand
and the result packed data may be written over the source packed data. Although in some cases
it may be desirable to preserve the source packed data.

[0061] To avoid obscuring the description, a relatively simple processor 300 has been shown and
described. In other embodiments, the processor may optionally include other well-known
components found in processors. Examples of such components include, but are not limited to, a
branch prediction unit, an instruction fetch unit, instruction and data caches, instruction and data
translation lookaside buffers, prefetch buffers, microinstruction queues, microinstruction
sequencers, a register renaming unit, an instruction scheduling unit, bus interface units, second or

higher level caches, a retirement unit, other components included in processors, and various

11

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

combinations thereof. There are literally numerous different combinations and configurations of
components in processors, and embodiments are not limited to any particular combination or
configuration. Embodiments may be included in processors have multiple cores, logical
processors, or execution engines at least one of which has execution logic operable to execute an
embodiment of an instruction disclosed herein.

[0062] Figure 4 is a block diagram of an example embodiment of a suitable packed variable
length code point length determination operation 430 for variable length UTF-8 code points.
The operation may be performed by a processor or other instruction processing apparatus in
response to and/or as a result of an embodiment of a packed variable length code point length
determination instruction.

[0063] The instruction may specify or otherwise indicate packed UTF-8 code points 415. For
example, the packed UTF-8 code points may be in a packed data register or memory location
specified or otherwise indicated by the instruction. In the illustrated embodiment, the packed
UTEF-8 code points is 128-bits wide. In other embodiments, other widths may optionally be
used, such as, for example, 64-bits, 256-bits, 1024-bits, or some other width. The 128-bits is
wide enough to accommodate sixteen bytes. The sixteen bytes are able to store a variable
number of variable length UTF-8 code points, for example, each having from one to four bytes.
In the illustrated example, the lowest order three bytes in bits [23:0] store a 3-byte UTF-8 code
point 431 for the Euro currency symbol (€). The fourth byte in bits [31:24] stores a 1-byte UTF-
8 code point 432 for the dollar sign ($). The fifth and sixth bytes in bits [47:32] store a 2-byte
UTEF-8 code point 433 for the cent sign (¢). The seventh to ninth bytes in bits [71:48] also store
a 3-byte UTF-8 code point 434 for the Euro currency symbol. The fifteen and sixteenth bytes in
bits [127:112] store an incomplete two of the three bytes of the 3-byte UTF-8 code point 435 for
the Euro currency symbol. The remaining third byte is not able to fit within the width limits of
the 128-bit packed data operand and so only an incomplete portion of the symbol is present (e.g.
in the 128-bit register).

[0064] The instruction may specify or otherwise indicate packed signature patterns for different
length UTF-8 code points 417. In some embodiments, the instruction may specify a register or
other storage location having the packed signature patterns. In other embodiments, the packed
signature patterns may be stored in a ROM or other on-die non-volatile memory. In the
illustrated embodiment, four different signature patterns are shown. In particular, a first
signature pattern 436 for a one byte UTF-8 code point is stored in a lowest order 32-bit
doubleword in bits [31:0], a second signature pattern 437 for a two byte UTF-8 code point is
stored in a next to lowest order 32-bit doubleword in bits [63:32], a third signature pattern 438
for a three byte UTF-8 code point is stored in a next to highest order 32-bit doubleword in bits

12

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
[95:64], a fourth signature pattern 439 for a four byte UTF-8 code point is stored in a highest

order 32-bit doubleword in bits [127:96]. The first signature pattern may be zero extended and
may have in its lowest order byte the values “00000000”. The second signature pattern may be
zero extended and may have in its lowest order two bytes the values “10000000 11000000”. The
third signature pattern may be zero extended and may have in its lowest order three bytes the
values “10000000 10000000 11100000”. The fourth signature pattern may be zero extended and
may have in its lowest order four bytes the values “10000000 10000000 10000000 11110000”.
These signature patterns may also optionally be arranged in any other order within the operands.
Also in other embodiments as few as two different signature patterns may be used (e.g., if only
one and two byte UTF-8 code points are going to be used but not three or four byte UTF-8 code
points). Notice that the set bits (i.e., binary ones) in the signature patterns 417 are also found in
the same relative bit positions of the UTF-8 code points 415 for the same byte length. For
example, the signature pattern for the two byte UTF-8 code point 437 has set bits in only bits
[15:14] and [7], and the two byte UTF-8 code point for the cent sign 433 also has set bits in bits
[15:14] and [7].

[0065] In some embodiments, the instruction may specify or otherwise indicate lengths of the
signature patterns 419. In this embodiment, the lengths of the signature patterns are one, two,
three, and four bytes. In some embodiments, the instruction may have an immediate to provide
these lengths. For example, in one embodiment, the immediate may be an 8-bit immediate
having four 2-bit fields to each indicate one of the lengths. In some embodiments, a so-called
“plus one” convention may be used in which a value of zero in the immediate may be used to
indicate 1-byte, a value of one may be used to indicate 2-bytes, a value of two may be used to
indicate 3-bytes, and a value of three may be used to indicate 4-bytes, although this is not
required. These values may also optionally be arranged in any other orders within the immediate
as long as each logically corresponds to the respective signature pattern. In another embodiment,
two different lengths may be indicated by two 2-bit fields of a 4-bit immediate. In other
embodiments, the lengths may optionally be stored in a ROM or other on-die non-volatile
memory instead of being provided by the immediate.

[0066] In response to and/or as a result of the instruction, the processor may compare bytes from
the packed UTF-8 code points 415 with the different packed signature patterns for the different
length UTF-8 code points 417. For example, the first byte in bits [7:0] of the packed UTF-§
code points 415 may be compared with the signature pattern 436 for the 1-byte UTF-8 code
point and it may be determined that they do not match. Then, the first 2-bytes in bits [15:0] of
the packed UTF-8 code points 415 may be compared with the signature pattern 437 for the 2-
byte UTF-8 code point and it may be determined that they do not match. Then, the first 3-bytes

13

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
in bits [23:0] of the packed UTF-8 code points 415 may be compared with the signature pattern

438 for the 3-byte UTF-8 code point and it may be determined that they do not match. In other
words, it may be determined that all set bits (i.e., binary one) in the signature pattern 438 are also
set bits (i.e., binary one) in the 3-byte UTF-8 code point 431. It may also be determined that bits
[31:24] of the packed UTF-8 code points 415 representing a 1-byte UTF-8 code point for the
dollar sign 432 match the signature pattern 436 for 1-byte UTF-8 code point. It may also be
determined that bits [47-32] of the packed UTF-8 code points 415 representing a 2-byte UTF-8
code point for the cent sign 433 match the signature pattern 437 for 2-byte UTF-8 code point. It
may also be determined that bits [71:48] of the packed UTF-8 code points 415 representing a 3-
byte UTF-8 code point for the Euro currency sign 434 match the signature pattern 438 for 3-byte
UTF-8 code point. The description above describes a particular order for performing these
comparisons, although it is to be appreciated that the comparisons may optionally be performed
in any other desired order and that the comparisons may be performed serially, in parallel, or
partly serially and partly parallel.

[0067] Such determinations that the UTF-8 code points match the signature patterns represent an
embodiment of determining the lengths of the UTF-8 code points. Values representing the
lengths of the UTF-8 code points may be stored in packed lengths of validated UTF-8 code
points 421. For example, as shown, this may include storing a value indicating a length of 3-
bytes 440 corresponding to the 3-byte UTF-8 code point 431 for the first occurrence of the Euro
symbol, a value indicating a length of 1-byte 441 corresponding to the 1-byte UTF-8 code point
432 for the dollar sign, a value indicating a length of 2-bytes 442 corresponding to the 2-byte
UTF-8 code point 433 for the cent symbol, and a value indicating a length of 3-bytes 443
corresponding to the 3-byte UTF-8 code point 434 for the second occurrence of the Euro
currency symbol. As shown, in some embodiments, the values representing the lengths may
optionally be stored in the same relative byte positions of the lowest order bytes of the
corresponding UTF-8 code points, and all zeros may optionally be stored in the same relative
byte positions of any more significant bytes of the corresponding UTF-8 code points, although
this is not required. In other embodiments, other conventions may optionally be used.
Advantageously, this format tends to be well suited for variable length encodings. If relatively
more smaller code points (e.g., 1-byte code points) are included in the input stream (i.e., the first
source) then more lengths may be stored in the destination. For example, up to sixteen lengths of
sixteen corresponding 1-byte characters (e.g., UTF-8 code points for ASCII characters) may be
stored in the destination.

[0068] In Figure 4 a particular order of the arrangement of the bytes of the UTF-8 code points

has been shown and described. However, other ways of organizing or arranging the bytes in the

14

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

operands or registers are also possible. Any known conventional ways of arranging the bytes of
UTEF-8 code points are suitable.

[0069] Figure 5 is a block flow diagram of an embodiment of a method 550 performed by and/or
within a processor when processing an embodiment of a packed variable length code point
length determination instruction. In some embodiments, the operations and/or method of Figure
5 may be performed by and/or within the processors of Figure 1 and/or Figure 3. The
components, features, and specific optional details described herein for the processors of Figure
1 and/or Figure 3 also optionally apply to the operations and/or method of Figure 5, which in
embodiments may be performed by and/or within such processors. Alternatively, the operations
and/or method of Figure 5 may be performed by and/or within similar or different processors or
other apparatus. Moreover, the processors of Figure 1 and/or Figure 3 may perform operations
and/or methods that are the same as, similar to, or different than those of Figure 5.

[0070] The method includes receiving a packed variable length code point length determination
instruction, at block 551. In various aspects, the instruction may be received at a processor or a
portion thereof (e.g., an instruction fetch unit, a decode unit, etc.). In various aspects, the
instruction may be received from an off-die source (e.g., from a main memory, a disc, or
interconnect), or from an on-die source (e.g., from an instruction cache). In some embodiments,
the packed variable length code point length determination instruction may explicitly specify or
otherwise indicate a first source packed data having a plurality of packed variable length code
points each representing a character, and may explicitly specify or otherwise indicate a
destination storage location.

[0071] A result packed data may be stored in the indicated destination storage location in
response to and/or as a result of the packed variable length code point length determination
instruction, at block 552. In some embodiments, the result packed data may include a length for
each of the plurality of packed variable length code points. In some embodiments, the result
packed data may have any of the previously described characteristics of the packed lengths 321
of Figure 3 and/or the packed lengths 421 of Figure 4.

[0072] To further illustrate certain concepts, consider a detailed example embodiment of a
packed variable length code point length determination instruction with the pneumonic
VPVLNCPCLSFL. The format of the instruction may be VPVLNCPCLSFL DEST, SRCI,
SRC2, IMMS. DEST may represent a 128-bit wide destination packed data register. SRC1 may
represent a first source 128-bit wide packed data register or memory location. SRC2 may
represent a second source 128-bit wide packed data register. IMMS8 may represent an 8-bit
immediate.

[0073] SRC1 may store a chunk of a UTF-8 stream representing a UTF-8 encoded byte

15

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

sequence. SRC2 may store up to four different signature patterns corresponding to the UTF-8
encoding format for each of up to four different lengths of UTF-8 code points (e.g., one, two,
three, and four bytes). For example, each of these four different signature patterns may be stored
in a different 32-bit doubleword data elements. IMMS may include four 2-bit fields. Each 2-bit
field may represent the length encoding of a corresponding signature pattern, for example, in a
“one plus” convention in which one is added to the length encoded to determine the actual byte
length. Another embodiment of the above described instruction may omit the second source
operand SRC?2 and the immediate IMMS, and instead provide the signature patterns, and their
corresponding lengths, through a ROM or other on-die non-volatile memory.

[0074] The instruction may be used to validate and determine the byte length of each validated
UTEF-8 code point from SRC1 and also identify the offset of the first incomplete UTF-8 code
point in SRC1. This offset may be useful to determine the beginning of the next UTF-8§ chunk to
process (e.g., with a subsequent instruction). Each code point from SRCI1 may be compared
against at least two and up to four different signature patterns corresponding to different lengths
from SRC2. If a code point from SRC1 matches a signature pattern from SRC2 then the leading
byte position of DEST may store the determined length of the code point, which is equal to the
signature pattern length and known from IMMS (e.g., one, two, three, or four). If the determined
length of the code point is greater than one, all zeros (e.g., 00000000) may be filled in each of
the following remaining bytes of the code point in DEST.

[0075] In some embodiments, if none of the four signature patterns in SRC2 match a code point
in SRCI, then the corresponding leading byte of the code point in DEST may optionally be
written with all ones (e.g., 11111111). This is optional but may help to mark or indicate invalid
or un-validated code points. This may also help to identify the offset of the first incomplete
and/or invalid UTF-8 code point in SRC1 (e.g., to be processed by a subsequent instruction).
For example, in Intel Architecture (IA) processors, such identification may be accomplished with
the use of a PMOVMSKB instruction. For example, the result of PMOVMSKB may be
examined and the least significant set bit of the result of PMOVMSKB may indicate the offset of
the first incomplete and/or invalid UTF-8 code point in SRC1. If the result of PMOVMSKB
performed on DEST is zero, then all 16 bytes of the input UTF-8 stream may be regarded as
valid code points. Alternatively, some other suitable recognized value besides all ones (e.g.,
11111111) may optionally be stored in DEST under such situations. In other embodiments,
either wider or narrower registers may optionally be used. For example, in various
embodiments, 64-bit, 256-bit, 512-bit, or 1024-bit registers may be used for SRC1 and/or SRC2
and/or DEST.

[0076] The following pseudocode represents another example embodiment of a suitable packed

16

10

15

20

25

30

WO 2014/210366 PCT/US2014/044419

variable length code point length determination instruction. In this pseudocode, Srcl represents
a first source having a chunk or sequence of UTF-8 code points, Src2 represents a second source
operand having four signatures for one to four byte UTF-8 code points, Imm represents an 8-bit
immediate, and Dest represents a destination. ZeroExt32 represents a zero extend to 32-bits
function.
For1=0,3
KLen_i < Imm[1+2*1:2*i] +1; // 1+plus length encoding of 1’th mask element
dwMask[i] < ZeroExt32(Src2[32*i + Klen_i*8 : 32%*i]);
EndFor
m = 0; // start from the first byte of 1** source, UTF-8 chunk
tmpFound < False;
While (tmpFound == False and m < 16)
1«0
// test current code point matches with a UTF-8 mask signature pattern
while (KLen_i > 0 and i <= 3)
tmpFound < UTF§_validate_op(dwMask[i], KLen_i,
ZeroExt32(Src1_bytes[m +Klen_i -1: m]));
if tmpFound == TRUE then Goto NextCodePoint
1<i+1;
Wend
Dest[m*8+7 : m*8] « Oxff;
Goto Finish
NextCodePoint:
Dest[m*8+7 : m*8] « KLen_i;
Forn=1to KLen_i-1
Dest[(m+n)*8+7 : (m+n)*8] « O;
EndFor
m < m +KLen_i; // point to next UTF-8 code point to perform UTF_validate_op
Wend
Finish:

// ' The following table describes the details of the signature UTF_validate_op and

/I signature masks to identify UTF-8 code points:

17

10

15

20

25

WO 2014/210366

PCT/US2014/044419

UTEF-8 Signature Signature UTF8_validate Op
Length Length Pattern

Encoding (dwMask)
I-byte 0 0x00 ' ((dwMask XOR Srcl) AND 0x80)
2-byte 1 0x80C0 !' ((dwMask XOR Srcl) AND 0xCOEO)
3-byte 2 0x8080EOQ I((dwMask XOR Srcl) AND 0xCOCOFO0)
4--byte 3 0x808080F0 (dwMask XOR Srcl) AND 0xCOCOCOF8)

[0077] Figure 6 is a block diagram of an embodiment of a processor 600 that is operable to
execute or process an embodiment of a packed variable length code point character bits (e.g.,
Unicode bits) extraction instruction 606. The processor 600 may optionally have any of the
characteristics or attributes of the processor 100 of Figure 1 and/or the processor 300 of Figure
3. For example, the processor 600 may be a general-purpose processor, a special-purpose
processor, may have a CISC, RISC, VLIW or other architecture, the decode unit may the same
or similar, etc. To avoid obscuring the description, these features which may be the same or
similar will not be repeated, but rather the discussion will tend to emphasize the different or
additional features of the processor 600 of Figure 6.

[0078] The processor 600 may receive the packed variable length code point character bits (e.g.,
Unicode bits) extraction instruction 606. The Unicode bits to be extracted represent those bits of
the variable length encoding that contribute to the Unicode character or value (e.g., the Unicode
character may be determined based only on the complete set of Unicode bits to be extracted).
The Unicode bits represent an embodiment of character or data bits to be extracted, and other
embodiments are not limited to Unicode bits. The instruction may have an operation code or
opcode that is operable to identify the instruction and/or the operation to be performed (e.g., a
packed variable length code point Unicode bits extraction operation). The illustrated processor
includes an instruction decode unit 612 that may be similar to or the same as the decode unit 312.
As described previously, instruction conversion logic may also optionally be used. The
processor 600 also includes a set of packed data registers 608, which may be similar to or the
same as the packed data registers 308. An execution unit 610 is coupled with the decode unit
312 and with the packed data registers 308. The execution unit 610 may be similar to or the
same as the execution unit 310. The execution unit and/or the processor may include specific or
particular logic (e.g., circuitry or other hardware potentially combined with firmware and/or
software) that is operable to perform a packed variable length code point Unicode bits extraction
operation in response to and/or as a result of the instruction 606 (e.g., in response to one or more

instructions or control signals decoded or otherwise derived from the instruction 606).

18

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

[0079] In some embodiments, the packed variable length code point character bits (e.g., Unicode
bits) extraction instruction 304 may explicitly specify (e.g., through one or more fields or a set of
bits), or otherwise indicate (e.g., implicitly indicate), a first source packed data 614. The first
source packed data may have at least two packed variable length code points of Unicode
characters 615. In one particular embodiment, the first source packed data may have a portion of
a stream of contiguous variable UTF-8 codes points or encodings for Unicode characters
including one byte, two byte, optionally three byte, and optionally four byte code points,
although the scope of the invention is not so limited. In some embodiments, the packed variable
length code points 615 may be similar to or the same as the packed variable length code points
315 used by the packed variable length code point length determination instruction 304 of
Figure 3. For example, the same sequence of code points may first be processed by the
instruction 304 of Figure 3, and then may be processed by the instruction 606 of Figure 6.
[0080] In some embodiments, the packed variable length code point character bits (e.g., Unicode
bits) extraction instruction may explicitly specify or otherwise indicate a second source packed
data 616. In some embodiments, the second source packed data may have two or more packed
lengths of validated variable length code points of Unicode characters 621. For example, in
some embodiments, the packed lengths of the validated variable length code points of Unicode
characters 621 may store two or more values indicating the lengths of two or more corresponding
UTF-8 code points as either 1-byte, 2-bytes, or optionally 3-bytes or 4-bytes (e.g., in
embodiments that use 3-byte or 4-byte UTF-8 code points). For example, in an embodiment
using UTF-8, the packed lengths of the validated variable length code points of Unicode
characters 621 may store a value (e.g., of three) to indicate a length of 3-bytes for a
corresponding UTF-8 code point representing the Euro symbol, a value (e.g., of one) to indicate
a length of 1-byte for a corresponding UTF-8 code point representing the dollar sign, and so on.
[0081] In some embodiments, the packed lengths 621 may represent a result stored in response
to an embodiment of a packed variable length code point character bits (e.g., Unicode bits)
extraction instruction 104. That is, in some embodiments, the result of the instruction 104 may
be used as a source operand by the instruction 606. For example, in some embodiments, the
packed lengths 621 may be similar to or the same as the packed lengths 321 of Figure 3 and/or
the packed lengths 421 of Figure 4. Any of the features and characteristics described for the
packed lengths 321 and/or the packed lengths 421 also optionally apply to the packed lengths
621. Alternatively, other types of packed lengths of validated variable length code points of
characters 621 may optionally be used instead and are not limited to being generated by the
packed variable length code point length determination instruction 104. Some embodiments are

not limited to Unicode characters, but rather may use other characters or standards. Some

19

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

embodiments are not limited to UTF-8, but rather may use other variable length encodings
besides UTF-8.

[0082] In some embodiments, the packed variable length code point Unicode bits extraction
instruction 606 may optionally explicitly specify or otherwise indicate a destination 620 (e.g., a
destination storage location) where a result packed data is to be stored in response to the
instruction 606. As another option, one of the sources may be reused as the destination and the
source data may be overwritten by the result. In some embodiments, packed sets of extracted
Unicode bits 660 may be stored in the destination. Each set of the packed extracted Unicode bits
may correspond to a different corresponding variable length code point from the first source 614.
Each set of the extracted Unicode bits may include or represent those bits from the
corresponding variable length code point that contribute to the Unicode value or other
character/symbol value. A set of extracted Unicode bits may be sufficient alone to determine or
transcode the Unicode value. In some embodiments, the Unicode bits may be extracted by
logically subtracting, or otherwise removing, the signature bits from the corresponding variable
length code points, although the scope of the invention is not so limited. For example, the one or
more logical operations may be used to remove a signature pattern from the corresponding
variable length code points. In some embodiments, any of the previously described signature
patterns may be used for this purpose. In other embodiments, bit level bit extraction operations
may be performed without such logical operations, for example, by multiplexers, etc. It is to be
appreciated that the extraction process may move, rearrange, regroup, concatenate, or otherwise
manipulate the extracted Unicode bits in various different ways, as long as the instructions
and/or sets of instructions used to process the extracted Unicode bits are abe to understand and
utilize such manipulations. Without limitation, these packed sets of extracted Unicode bits may
be subsequently processed by one or more other instructions to convert them into Unicode values
or other character formats.

[0083] As shown, in some embodiments, each of the first source packed data 614, the second
source packed data 616, and the destination 620 may represent a different packed data register.
Alternatively, memory locations, or other storage locations, may be used for one or more of
these operands. For example, the packed variable length code points of Unicode characters 615
may optionally instead be stored in a memory location in a memory. Moreover, one or more of
the sources and/or destination operands may optionally be implicit to the instruction instead of
being explicitly specified. As another option, one of the first and second source operands may
optionally be reused as the destination operand and the result packed data may be written over
the source packed data.

[0084] In some embodiments, a number of code points extracted 664 may also optionally be

20

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

stored in response to and/or as a result of the packed variable length code point Unicode bits
extraction instruction 606, although this is not required. The number of code points extracted
may represent the total number of validated code points in the first source operand 614 for which
Unicode bits were extracted. For example, if the first source operand had sixteen validated 1-
byte code points, then the number of code points extracted may also be sixteen. In some
embodiments, the instruction may explicitly specify or implicitly indicate a second destination
662 where the number of extracted code points 664 is to be stored. For example, in one
embodiment, the instruction may implicitly indicate a general-purpose register, although the
scope of the invention is not so limited.

[0085] Figure 7 is a block diagram of an example embodiment of a suitable packed UTF-8 code
point Unicode bits extraction operation 766 for UTF-8 code points. The operation may be
performed by a processor or other instruction processing apparatus in response to and/or as a
result of an example embodiment of a packed UTF-8 code point Unicode bits extraction
instruction.

[0086] The instruction may specify or otherwise indicate packed UTF-8 code points 715. For
example, the packed UTF-8 code points may be in a packed data register or memory location
specified or otherwise indicated by the instruction. In the illustrated embodiment, the packed
UTF-8 code points operand is 128-bits wide. In other embodiments, other widths may optionally
be used, such as, for example, 64-bits, 256-bits, 1024-bits, or some other width. The 128-bits
width has sixteen bytes. The sixteen bytes are able to store a variable number of variable length
UTF-8 code points, for example, each having from one to two bytes, one to three bytes, or one to
four bytes, depending on the implementation. In the illustrated example, the lowest order three
bytes in bits [23:0] store a 3-byte UTF-8 code point 731 for the Euro currency symbol (€). The
fourth byte in bits [31:24] stores a 1-byte UTF-8 code point 732 for the dollar sign ($). The fifth
and sixth bytes in bits [47:32] store a 2-byte UTF-8 code point 733 for the cent sign (¢). The
seventh to ninth bytes in bits [71:48] also store a 3-byte UTF-8 code point 734 for the Euro
currency symbol. The fifteen and sixteenth bytes in bits [127:112] store an incomplete two of
the three bytes of the 3-byte UTF-8 code point 735 for the Euro currency symbol. The
remaining third byte is not able to fit within the 128-bit width limits of the operand, and so only
an incomplete portion of the symbol is present (e.g. in the 128-bit register). Of course, these are
purely exemplary types of code points.

[0087] The instruction may also specify or otherwise indicate packed lengths of validated UTF-8
code points 721. In the illustrated embodiment, the packed UTF-8 code points operand is also
128-bits wide. In other embodiments, other widths may optionally be used, such as, for

example, 64-bits, 256-bits, 1024-bits, or some other width. The illustrated packed lengths 721

21

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
has a value indicating a length of 3-bytes 740 corresponding to the 3-byte UTF-8 code point 731

for the first occurrence of the Euro symbol, a value indicating a length of 1-byte 741
corresponding to the 1-byte UTF-8 code point 732 for the dollar sign, a value indicating a length
of 2-bytes 742 corresponding to the 2-byte UTF-8 code point 733 for the cent symbol, and a
value indicating a length of 3-bytes 743 corresponding to the 3-byte UTF-8 code point 734 for
the second occurrence of the Euro currency symbol. As shown, in some embodiments, the
values representing the lengths may optionally be stored in the same relative byte positions of the
lowest order bytes of the corresponding UTF-8 code points, and all zeros may optionally be
stored in the same relative byte positions of any more significant bytes of the corresponding
UTEF-8 code points, although this is not required. In other embodiments, other conventions may
optionally be used (e.g., zeros may be stored in the least significant byte(s) and lengths in the
most significant byte, etc.). Notice that in some embodiments the same number of bytes are used
in the packed lengths 721 as are used for the corresponding code points in the packed UTF-8
code points 715 (e.g., three bytes in each, two bytes in each, etc.).

[0088] In response to and/or as a result of the packed UTF-8 code point Unicode bits extraction
instruction, packed sets of extracted Unicode bits 760 may be stored in a specified or otherwise
indicated destination. As shown, in some embodiments, the destination operand may be a 512-
bit wide operand (e.g. a 512-bit wide register, two 256-bit registers, four 128-bit registers, etc.).
In other embodiments, other widths may optionally be used. Each set of the packed extracted
Unicode bits may correspond to a different corresponding variable length code point from the
packed UTF-8 code points 715. Each set of the extracted Unicode bits may include or represent
those bits from the corresponding variable length code point that contribute to the Unicode value
or other character/symbol value. A set of extracted Unicode bits may be sufficient alone to
determine or transcode the Unicode value. In some embodiments, the Unicode bits may be
extracted by logically subtracting, or otherwise removing, the signature bits and/or patterns from
the corresponding variable length code points, although the scope of the invention is not so
limited. For example, in some embodiments, the instruction may indicate two or more signature
patterns, an appropriate signature pattern may be selected based on the corresponding length
information from the packed lengths 721, and one or more logical operations may be used to
remove the selected signature pattern from the corresponding variable length code point. The
previously described signature patterns are suitable. In some embodiments, the plurality of
signature patterns may be stored in a ROM or other non-volatile on-die memory. Alternatively,
the instruction may specify or indicate an operand having the plurality of signature patterns. In
other embodiments, instead of using such signature patterns, bit level bit extractions may be

hardwired, for example, through lines, multiplexers, etc.

22

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
[0089] Referring again to Figure 7, the packed sets of extracted Unicode bits 760 include a first

set of extracted Unicode bits 767 in bits [31:0] that correspond to the 3-byte UTF-8 code point
for the first instance of the Euro symbol 731, and a second set of extracted Unicode bits 768 in
bits [63:32] that correspond to the 1-byte UTF-8 code point for the dollar sign 732. The sets of
extracted Unicode bits also include a third set of extracted Unicode bits 769 in bits [95:64] that
correspond to the 2-byte UTF-8 code point for the cent sign 733, and a fourth set of extracted
Unicode bits 770 in bits [127:96] that correspond to the 3-byte UTF-8 code point for the second
instance of the Euro sign 734. In the illustration, underlining is used to show that the signature
bits or signature patterns as they appear in the packed UTF-8 code points 715 have been
removed from the packed sets of extracted Unicode bits 731. That is, the underlined set bits (i.e.,
binary one) have been converted to the underlined cleared bits (i.e., binary zero). Other sets of
extracted Unicode bits may also be included if there are other valid UTF-8 code points in the
packed UTF-8 code points 715. For example, up to sixteen sets of extracted Unicode bits, each
stored in a 32-bit dword element of the 512-bit destination operand, may be stored in the event
that the packed UTF-8 code points 715 includes sixteen 1-byte UTF code points. As shown, in
some embodiments, a remainder width of the destination operand may store invalid values which
may be any predetermined value recognized by the relevant standards as holding an invalid value
or invalid data (e.g., not a recognized Unicode character value).

[0090] Figure 8 is a block diagram illustrating suitable ways to arrange or order sets of extracted
Unicode bits in a packed data element that may be used by embodiments of packed variable
length code point Unicode bits extraction instructions/operations. A 3-byte UTF-8 code point
for the Euro symbol 831 is shown. In some embodiments, a corresponding set of extracted
Unicode bits may be arranged or ordered in little endian order 872 in a data element of a packed
result and/or destination operand. This is similar to the approach shown and described above for
Figure 7. Alternatively, in some embodiments, a corresponding set of extracted Unicode bits
may be arranged or ordered in big endian order 8§74 in a data element of a packed result and/or
destination operand. In some embodiments, such an approach may help to facilitate subsequent
processing by being arranged in a format that is well suited for certain instructions. However,
this approach is not required.

[0091] Figure 9 is a block flow diagram of an embodiment of a method 978 performed by and/or
within a processor when processing an embodiment of a packed variable length code point
Unicode bits extraction instruction. In some embodiments, the operations and/or method of
Figure 9 may be performed by and/or within the processors of Figure 1 and/or Figure 6. The
components, features, and specific optional details described herein for the processors of Figure

1 and/or Figure 6 also optionally apply to the operations and/or method of Figure 9, which in

23

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

embodiments may be performed by and/or within such processors. Alternatively, the operations
and/or method of Figure 9 may be performed by and/or within similar or different processors or
other apparatus. Moreover, the processors of Figure 1 and/or Figure 6 may perform operations
and/or methods that are the same as, similar to, or different than those of Figure 9.

[0092] The method includes receiving a packed variable length code point character bits
extraction instruction, at block 979. In various aspects, the instruction may be received at a
processor or a portion thereof (e.g., an instruction fetch unit, a decode unit, etc.). In various
aspects, the instruction may be received from an off-die source (e.g., from a main memory, a
disc, or interconnect), or from an on-die source (e.g., from an instruction cache). In some
embodiments, the packed variable length code point character bits extraction instruction may
explicitly specify or otherwise indicate a first source packed data having a plurality of packed
variable length code points each representing a character. The instruction may also explicitly
specify or otherwise indicate a second source packed data having packed lengths of validated
variable length code points from the first source packed data. The instruction may also explicitly
specify or otherwise indicate a destination storage location. This includes, in some cases,
reusing one of the sources as the destination.

[0093] A result packed data may be stored in the indicated destination storage location in
response to and/or as a result of the packed variable length code point character bits extraction
instruction, at block 980. In some embodiments, the result packed data may have packed sets of
extracted character bits. Each set of extracted character bits may correspond to a different one of
the validated variable length code points from the first source packed data. In some
embodiments each set of extracted character bits may be sufficient to determine the character
represented by the variable length code points. In some embodiments, the result packed data
may be similar to, or the same as, and may optionally have any of the characteristics or features
of, the packed sets of extracted bits 660 of Figure 6 and/or the packed Unicode extracted bits
760 of Figure 7.

[0094] To further illustrate certain concepts, consider a detailed example embodiment of a
packed UTF-8 code point Unicode bits extraction instruction with the pneumonic
VPVLNEXTRD. The format of the instruction may be VPVLNEXTRD DEST, SRC1, SRC2.
DEST may represent a 512-bit wide destination packed data register. SRC1 may represent a first
128-bit wide source packed data register or memory location. SRC2 may represent a second
128-bit wide source packed data register. That is, in some embodiments, DEST may be at least
four times as wide as each of SRC1 and SRC2. SRCI may store a chunk of a UTF-8 stream
representing a UTF-8 encoded byte sequence. SRC2 may store packed lengths corresponding to
validated UTF-8 code points from SRCI.

24

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
[0095] The instruction may be used to extract Unicode bit fields (i.e., those bits of the UTF-8

encoding that contribute to the Unicode value) from each validated variable length UTF-8 code
point in SRCI1. The extracted Unicode bit fields from each validated UTF-8 code point in SRC1
may be stored in a different corresponding data element in DEST (e.g., in a corresponding
packed 32-bit dword data element in DEST). If the length value indicated by SRC2 (e.g., by a
byte in SRC2) is between 1-byte and 4-bytes inclusive, then in some embodiments a
corresponding UTF-8 encoding signature pattern for the same byte length may be retrieved, for
example, from MSROM or anther on-die non-volatile memory. Alternatively, the instruction
may explicitly specify or implicitly indicate another source operand to provide the UTF-§
encoding signature pattern. The UTF-8 encoding signature pattern may be used to remove the
signature bits (e.g., bits other than the Unicode bits to be extracted) from the corresponding
UTF-8 code point. The remaining Unicode bits represent the Unicode bits to be extracted and
are sufficient to determine the Unicode value. These remaining Unicode bits may be stored in a
corresponding data element in DEST. For example, in some embodiments, these remaining
Unicode bits may be stored in ascending, byte-granular order within a corresponding 32-bit
dword data element, although the scope of the invention is not so limited.

[0096] In some embodiments, if the byte length indicated by a byte element in SRC2 is greater
than 4-bytes (assuming the implementation doesn’t support 5-byte or 6-byte UTF-8 code points),
then the corresponding 32-bit dword data element in DEST may store a predetermined Unicode
value representing invalid input data. In some embodiments, the instruction may also optionally
explicitly specify or implicitly indicate a further destination operand where a total number of
UTF-8 code points extracted may be stored in response to instruction, although this is not
required. As one specific example, the instruction may implicitly indicate a general-purpose
register to provide this total number of UTF-8 code points extracted, although the scope of the
invention is not so limited. In other embodiments, either wider or narrower registers may
optionally be used. For example, in various embodiments, 64-bit, 256-bit, or 512-bit registers
may be used for SRC1 and/or SRC2, and registers four times as wide (or combinations of
registers) may be used as DEST.

[0097] The following pseudocode represents another example embodiment of a suitable packed
UTEF-8 code point Unicode bits extraction instruction. In this pseudocode, Srcl represents a first
128-bit source packed data having a chunk or sequence of UTF-8 code points. Src2 represents a
second 128-bit source packed data having lengths of validated UTF-8 code points. Dest
represents a destination. In this pseudocode, the operation Switch(K_m) selects one of the four
cases based on the length value of K_m. The symbol << 8 represents a right shift by 8-bits, etc.

ZeroExt32 represents a 32-bit most significant bit zero extend operation.

25

10

15

20

25

30

WO 2014/210366 PCT/US2014/044419

m < 0; // start from the beginning of Src1 having UTF-8 chunk. m counts bytes

K_m < Src2[7+8*m:8*m]; // validated length of a UTF-8 code point

Dest[511:0] « Broadcast_dw(Unicode(INVALID_INPUT));

n « 0; // start from first dword element of Dest. n counts dword elements in Dest.

Cnt < 0; // keep track of how many Unicode point extracted
While (m < 16) // 128-bit source has 16-bytes
If K m>0and K_m <=4 Then

Else

Fi;
Wend
Finish:

Switch(K_m) {

Case 1: dwMask = ZeroExt32(0x80);

Case 2: dwMask = ZeroExt32(0x80C0);

Case 3: dwMask = ZeroExt32(0x8080EQ);

Case 4: dwMask = 0x808080F0;

}

Dest[n*32 + 31: n*32] « ExtractD(K_m, ZeroExt32(Src1_bytes[m
+K_m -1: m])) ;

n«<n+1;

m < m + K_m; // advance to lead byte of next code point

K_m < Src2[7+8*m:8*m]; // validated length of a UTF-8 code point

Dest[n*32 + 31: n*32] < Unicode(INVALID_INPUT));
Goto Finish

ECX < n; // return number of code points extracted. ECX is implicit register

// In pseudo code the ExtractD(len, dwSrc) is:
ExtractD(len, dwSrc) {

<< 8);

Switch(len) {
Case 1: result[31:0] « dwSrc[31:0];
Case 2: result[31:0] « ZeroExt32(dwSrc[13:8]) OR (ZeroExt32(dwSrc[4:0])

Case 3: result[31:0] « ZeroExt32(dwSrc[21:16]) OR (ZeroExt32(dwSrc[13:8])

<< 8) OR (ZeroExt32(dwSrc[3:0]) << 16);

26

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
Case 4: result[31:0] « ZeroExt32(dwSrc[29:24]) OR (ZeroExt32(dwSrc[21:16]

) << 8) OR (ZeroExt32(dwSrc[13:8]) << 16) OR (ZeroExt32(dwSrc[2:0]) << 24);

}
Return result[31:0];

}

[0098] In the description above, UTF-8 formats have been emphasized because of their
prevalence. However, other variable length encoding formats besides UTF-8 may be used
instead. For example, extensions of UTF-8, derivatives of UTF-8, equivalents of UTF-8,
substitutes for UTF-8, or other variable length encoding formats entirely may be used.
Furthermore, in the description above, one to four byte code points have been described because
of their prevalence and coverage of most characters and languages of importance. However,
other embodiments may extend the approaches above to five or six byte code points, if desired.
[0099] An instruction set includes one or more instruction formats. A given instruction format
defines various fields (number of bits, location of bits) to specify, among other things, the
operation to be performed (opcode) and the operand(s) on which that operation is to be
performed. Some instruction formats are further broken down though the definition of
instruction templates (or subformats). For example, the instruction templates of a given
instruction format may be defined to have different subsets of the instruction format’s fields (the
included fields are typically in the same order, but at least some have different bit positions
because there are less fields included) and/or defined to have a given field interpreted differently.
Thus, each instruction of an ISA is expressed using a given instruction format (and, if defined, in
a given one of the instruction templates of that instruction format) and includes fields for
specifying the operation and the operands. For example, an exemplary ADD instruction has a
specific opcode and an instruction format that includes an opcode field to specify that opcode
and operand fields to select operands (sourcel/destination and source2); and an occurrence of
this ADD instruction in an instruction stream will have specific contents in the operand fields
that select specific operands. A set of SIMD extensions referred to the Advanced Vector
Extensions (AVX) (AVXI and AVX2) and using the Vector Extensions (VEX) coding scheme,
has been , has been released and/or published (e.g., see Intel® 64 and IA-32 Architectures
Software Developers Manual, October 2011; and see Intel® Advanced Vector Extensions
Programming Reference, June 2011).

Exemplary Instruction Formats

[00100] Embodiments of the instruction(s) described herein may be embodied in different
formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.

Embodiments of the instruction(s) may be executed on such systems, architectures, and

27

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

pipelines, but are not limited to those detailed.

Generic Vector Friendly Instruction Format

[00101] A vector friendly instruction format is an instruction format that is suited for vector
instructions (e.g., there are certain fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are supported through the vector friendly
instruction format, alternative embodiments use only vector operations the vector friendly
instruction format.

[00102] Figures 10A-10B are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments of the invention. Figure
10A is a block diagram illustrating a generic vector friendly instruction format and class A
instruction templates thereof according to embodiments of the invention; while Figure 10B is a
block diagram illustrating the generic vector friendly instruction format and class B instruction
templates thereof according to embodiments of the invention. Specifically, a generic vector
friendly instruction format 1000 for which are defined class A and class B instruction templates,
both of which include no memory access 1005 instruction templates and memory access 1020
instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.

[00103] While embodiments of the invention will be described in which the vector friendly
instruction format supports the following: a 64 byte vector operand length (or size) with 32 bit (4
byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of
either 16 doubleword-size elements or alternatively, 8§ quadword-size elements); a 64 byte vector
operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32
byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit
(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (I byte) data element widths (or sizes);
alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256
byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).

[00104] The class A instruction templates in Figure 10A include: 1) within the no memory
access 1005 instruction templates there is shown a no memory access, full round control type
operation 1010 instruction template and a no memory access, data transform type operation 1015
instruction template; and 2) within the memory access 1020 instruction templates there is shown
a memory access, temporal 1025 instruction template and a memory access, non-temporal 1030
instruction template. The class B instruction templates in Figure 10B include: 1) within the no

memory access 1005 instruction templates there is shown a no memory access, write mask

28

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

control, partial round control type operation 1012 instruction template and a no memory access,
write mask control, vsize type operation 1017 instruction template; and 2) within the memory
access 1020 instruction templates there is shown a memory access, write mask control 1027
instruction template.

[00105] The generic vector friendly instruction format 1000 includes the following fields listed
below in the order illustrated in Figures 10A-10B.

[00106] Format field 1040 — a specific value (an instruction format identifier value) in this field
uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in
the vector friendly instruction format in instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only the generic vector friendly
instruction format.

[00107] Base operation field 1042 — its content distinguishes different base operations.

[00108] Register index field 1044 — its content, directly or through address generation, specifies
the locations of the source and destination operands, be they in registers or in memory. These
include a sufficient number of bits to select N registers from a PxQ (e.g. 32x512, 16x128,
32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may support more or less sources and
destination registers (e.g., may support up to two sources where one of these sources also acts as
the destination, may support up to three sources where one of these sources also acts as the
destination, may support up to two sources and one destination).

[00109] Modifier field 1046 — its content distinguishes occurrences of instructions in the generic
vector instruction format that specify memory access from those that do not; that is, between no
memory access 1005 instruction templates and memory access 1020 instruction templates.
Memory access operations read and/or write to the memory hierarchy (in some cases specifying
the source and/or destination addresses using values in registers), while non-memory access
operations do not (e.g., the source and destinations are registers). While in one embodiment this
field also selects between three different ways to perform memory address calculations,
alternative embodiments may support more, less, or different ways to perform memory address
calculations.

[00110] Augmentation operation field 1050 — its content distinguishes which one of a variety of
different operations to be performed in addition to the base operation. This field is context
specific. In one embodiment of the invention, this field is divided into a class field 1068, an
alpha field 1052, and a beta field 1054. The augmentation operation field 1050 allows common
groups of operations to be performed in a single instruction rather than 2, 3, or 4 instructions.

[00111] Scale field 1060 — its content allows for the scaling of the index field’s content for

29

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

memory address generation (e.g., for address generation that uses 2°** * index + base).

[00112] Displacement Field 1062A— its content is used as part of memory address generation
(e.g., for address generation that uses 2°* * index + base + displacement).

[00113] Displacement Factor Field 1062B (note that the juxtaposition of displacement field
1062A directly over displacement factor field 1062B indicates one or the other is used) — its
content is used as part of address generation; it specifies a displacement factor that is to be scaled
by the size of a memory access (N) — where N is the number of bytes in the memory access (e.g.,
for address generation that uses 2°“* * index + base + scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor field’s content is multiplied by the
memory operands total size (N) in order to generate the final displacement to be used in
calculating an effective address. The value of N is determined by the processor hardware at
runtime based on the full opcode field 1074 (described later herein) and the data manipulation
field 1054C. The displacement field 1062A and the displacement factor field 1062B are optional
in the sense that they are not used for the no memory access 1005 instruction templates and/or
different embodiments may implement only one or none of the two.

[00114] Data element width field 1064 — its content distinguishes which one of a number of data
element widths is to be used (in some embodiments for all instructions; in other embodiments for
only some of the instructions). This field is optional in the sense that it is not needed if only one
data element width is supported and/or data element widths are supported using some aspect of
the opcodes.

[00115] Write mask field 1070 — its content controls, on a per data element position basis,
whether that data element position in the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction templates support merging-
writemasking, while class B instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of elements in the destination to be
protected from updates during the execution of any operation (specified by the base operation
and the augmentation operation); in other one embodiment, preserving the old value of each
element of the destination where the corresponding mask bit has a 0. In contrast, when zeroing
vector masks allow any set of elements in the destination to be zeroed during the execution of
any operation (specified by the base operation and the augmentation operation); in one
embodiment, an element of the destination is set to 0 when the corresponding mask bit has a 0
value. A subset of this functionality is the ability to control the vector length of the operation
being performed (that is, the span of elements being modified, from the first to the last one);
however, it is not necessary that the elements that are modified be consecutive. Thus, the write

mask field 1070 allows for partial vector operations, including loads, stores, arithmetic, logical,

30

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

etc. While embodiments of the invention are described in which the write mask field’s 1070
content selects one of a number of write mask registers that contains the write mask to be used
(and thus the write mask field’s 1070 content indirectly identifies that masking to be performed),
alternative embodiments instead or additional allow the mask write field’s 1070 content to
directly specify the masking to be performed.

[00116] Immediate field 1072 — its content allows for the specification of an immediate. This
field is optional in the sense that is it not present in an implementation of the generic vector
friendly format that does not support immediate and it is not present in instructions that do not
use an immediate.

[00117] Class field 1068 — its content distinguishes between different classes of instructions.
With reference to Figures 10A-B, the contents of this field select between class A and class B
instructions. In Figures 10A-B, rounded corner squares are used to indicate a specific value is
present in a field (e.g., class A 1068A and class B 1068B for the class field 1068 respectively in
Figures 10A-B).

Instruction Templates of Class A

[00118] In the case of the non-memory access 1005 instruction templates of class A, the alpha
field 1052 is interpreted as an RS field 1052A, whose content distinguishes which one of the
different augmentation operation types are to be performed (e.g., round 1052A.1 and data
transform 1052A.2 are respectively specified for the no memory access, round type operation
1010 and the no memory access, data transform type operation 1015 instruction templates),
while the beta field 1054 distinguishes which of the operations of the specified type is to be
performed. In the no memory access 1005 instruction templates, the scale field 1060, the
displacement field 1062A, and the displacement scale filed 1062B are not present.

[00119] No-Memory Access Instruction Templates — Full Round Control Type Operation
[00120] In the no memory access full round control type operation 1010 instruction template, the
beta field 1054 is interpreted as a round control field 1054A, whose content(s) provide static
rounding. While in the described embodiments of the invention the round control field 1054A
includes a suppress all floating point exceptions (SAE) field 1056 and a round operation control
field 1058, alternative embodiments may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields (e.g., may have only the round
operation control field 1058).

[00121] SAE field 1056 — its content distinguishes whether or not to disable the exception event
reporting; when the SAE field’s 1056 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point exception flag and does not raise any

floating point exception handler.

31

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
[00122] Round operation control field 1058 — its content distinguishes which one of a group of

rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 1058 allows for the changing of the rounding
mode on a per instruction basis. In one embodiment of the invention where a processor includes
a control register for specifying rounding modes, the round operation control field’s 1050
content overrides that register value.

[00123] No Memory Access Instruction Templates — Data Transform Type Operation

[00124] In the no memory access data transform type operation 1015 instruction template, the
beta field 1054 is interpreted as a data transform field 1054B, whose content distinguishes which
one of a number of data transforms is to be performed (e.g., no data transform, swizzle,
broadcast).

[00125] In the case of a memory access 1020 instruction template of class A, the alpha field
1052 is interpreted as an eviction hint field 1052B, whose content distinguishes which one of the
eviction hints is to be used (in Figure 10A, temporal 1052B.1 and non-temporal 1052B.2 are
respectively specified for the memory access, temporal 1025 instruction template and the
memory access, non-temporal 1030 instruction template), while the beta field 1054 is interpreted
as a data manipulation field 1054C, whose content distinguishes which one of a number of data
manipulation operations (also known as primitives) is to be performed (e.g., no manipulation;
broadcast; up conversion of a source; and down conversion of a destination). The memory
access 1020 instruction templates include the scale field 1060, and optionally the displacement
field 1062A or the displacement scale field 1062B.

[00126] Vector memory instructions perform vector loads from and vector stores to memory,
with conversion support. As with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fashion, with the elements that are actually
transferred is dictated by the contents of the vector mask that is selected as the write mask.
[00127] Memory Access Instruction Templates — Temporal

[00128] Temporal data is data likely to be reused soon enough to benefit from caching. This is,
however, a hint, and different processors may implement it in different ways, including ignoring
the hint entirely.

[00129] Memory Access Instruction Templates — Non-Temporal

[00130] Non-temporal data is data unlikely to be reused soon enough to benefit from caching in
the 1st-level cache and should be given priority for eviction. This is, however, a hint, and
different processors may implement it in different ways, including ignoring the hint entirely.
Instruction Templates of Class B

[00131] In the case of the instruction templates of class B, the alpha field 1052 is interpreted as a

32

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

write mask control (Z) field 1052C, whose content distinguishes whether the write masking
controlled by the write mask field 1070 should be a merging or a zeroing.

[00132] In the case of the non-memory access 1005 instruction templates of class B, part of the
beta field 1054 is interpreted as an RL field 1057A, whose content distinguishes which one of
the different augmentation operation types are to be performed (e.g., round 1057A.1 and vector
length (VSIZE) 1057A.2 are respectively specified for the no memory access, write mask
control, partial round control type operation 1012 instruction template and the no memory
access, write mask control, VSIZE type operation 1017 instruction template), while the rest of
the beta field 1054 distinguishes which of the operations of the specified type is to be performed.
In the no memory access 1005 instruction templates, the scale field 1060, the displacement field
1062A, and the displacement scale filed 1062B are not present.

[00133] In the no memory access, write mask control, partial round control type operation 1010
instruction template, the rest of the beta field 1054 is interpreted as a round operation field
1059A and exception event reporting is disabled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating point exception handler).

[00134] Round operation control field 1059A — just as round operation control field 1058, its
content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 1059A allows for the changing of the rounding mode on a per instruction basis. In one
embodiment of the invention where a processor includes a control register for specifying
rounding modes, the round operation control field’s 1050 content overrides that register value.
[00135] In the no memory access, write mask control, VSIZE type operation 1017 instruction
template, the rest of the beta field 1054 is interpreted as a vector length field 1059B, whose
content distinguishes which one of a number of data vector lengths is to be performed on (e.g.,
128, 256, or 512 byte).

[00136] In the case of a memory access 1020 instruction template of class B, part of the beta
field 1054 is interpreted as a broadcast field 1057B, whose content distinguishes whether or not
the broadcast type data manipulation operation is to be performed, while the rest of the beta field
1054 is interpreted the vector length field 1059B. The memory access 1020 instruction
templates include the scale field 1060, and optionally the displacement field 1062A or the
displacement scale field 1062B.

[00137] With regard to the generic vector friendly instruction format 1000, a full opcode field
1074 is shown including the format field 1040, the base operation field 1042, and the data
element width field 1064. While one embodiment is shown where the full opcode field 1074
includes all of these fields, the full opcode field 1074 includes less than all of these fields in

33

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
embodiments that do not support all of them. The full opcode field 1074 provides the operation

code (opcode).

[00138] The augmentation operation field 1050, the data element width field 1064, and the write
mask field 1070 allow these features to be specified on a per instruction basis in the generic
vector friendly instruction format.

[00139] The combination of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on different data element widths.
[00140] The various instruction templates found within class A and class B are beneficial in
different situations. In some embodiments of the invention, different processors or different
cores within a processor may support only class A, only class B, or both classes. For instance, a
high performance general purpose out-of-order core intended for general-purpose computing
may support only class B, a core intended primarily for graphics and/or scientific (throughput)
computing may support only class A, and a core intended for both may support both (of course, a
core that has some mix of templates and instructions from both classes but not all templates and
instructions from both classes is within the purview of the invention). Also, a single processor
may include multiple cores, all of which support the same class or in which different cores
support different class. For instance, in a processor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may
support only class A, while one or more of the general purpose cores may be high performance
general purpose cores with out of order execution and register renaming intended for general-
purpose computing that support only class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-order or out-of-order cores that support
both class A and class B. Of course, features from one class may also be implement in the other
class in different embodiments of the invention. Programs written in a high level language
would be put (e.g., just in time compiled or statically compiled) into an variety of different
executable forms, including: 1) a form having only instructions of the class(es) supported by the
target processor for execution; or 2) a form having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the
routines to execute based on the instructions supported by the processor which is currently
executing the code.

Exemplary Specific Vector Friendly Instruction Format

[00141] Figure 11A is a block diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention. Figure 11B shows a specific
vector friendly instruction format 1100 that is specific in the sense that it specifies the location,

size, interpretation, and order of the fields, as well as values for some of those fields. The

34

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

specific vector friendly instruction format 1100 may be used to extend the x86 instruction set,
and thus some of the fields are similar or the same as those used in the existing x86 instruction
set and extension thereof (e.g., AVX). This format remains consistent with the prefix encoding
field, real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields
of the existing x86 instruction set with extensions. The fields from Figure 10 into which the
fields from Figure 11A map are illustrated.

[00142] It should be understood that, although embodiments of the invention are described with
reference to the specific vector friendly instruction format 1100 in the context of the generic
vector friendly instruction format 1000 for illustrative purposes, the invention is not limited to
the specific vector friendly instruction format 1100 except where claimed. For example, the
generic vector friendly instruction format 1000 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction format 1100 is shown as having
fields of specific sizes. By way of specific example, while the data element width field 1064 is
illustrated as a one bit field in the specific vector friendly instruction format 1100, the invention
is not so limited (that is, the generic vector friendly instruction format 1000 contemplates other
sizes of the data element width field 1064).

[00143] The generic vector friendly instruction format 1000 includes the following fields listed
below in the order illustrated in Figure 11A.

[00144] EVEX Prefix (Bytes 0-3) 1102 - is encoded in a four-byte form.

[00145] Format Field 1040 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the
format field 1040 and it contains 0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the invention).

[00146] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing
specific capability.

[00147] REX field 1105 (EVEX Byte 1, bits [7-5]) — consists of a EVEX.R bit field (EVEX Byte
I, bit [7] — R), EVEX.X bit field (EVEX byte 1, bit [6] — X), and 1057BEX byte 1, bit[5] — B).
The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality as the
corresponding VEX bit fields, and are encoded using 1s complement form, i.e. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other fields of the instructions encode the
lower three bits of the register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr,
Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.

[00148] REX’ field 1010 — this is the first part of the REX’ field 1010 and is the EVEX.R’ bit
field (EVEX Byte 1, bit [4] - R’) that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention, this bit, along with others as

indicated below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit

35

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the

MOD R/M field (described below) the value of 11 in the MOD field; alternative embodiments of
the invention do not store this and the other indicated bits below in the inverted format. A value
of 1 is used to encode the lower 16 registers. In other words, R’Rrrr is formed by combining
EVEX.R’, EVEX R, and the other RRR from other fields.

[00149] Opcode map field 1115 (EVEX byte 1, bits [3:0] — mmmm) — its content encodes an
implied leading opcode byte (OF, OF 38, or OF 3).

[00150] Data element width field 1064 (EVEX byte 2, bit [7] — W) - is represented by the
notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype (either 32-
bit data elements or 64-bit data elements).

[00151] EVEX.vvvv 1120 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include
the following: 1) EVEX.vvvv encodes the first source register operand, specified in inverted (1s
complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvvy
encodes the destination register operand, specified in 1s complement form for certain vector
shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.vvvv field 1120 encodes the 4 low-order bits of the first source register
specifier stored in inverted (Is complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size to 32 registers.

[00152] EVEX.U 1068 Class field (EVEX byte 2, bit [2]-U) — If EVEX.U = 0, it indicates class
A or EVEX.UO; if EVEX.U =1, it indicates class B or EVEX.UI.

[00153] Prefix encoding field 1125 (EVEX byte 2, bits [1:0]-pp) — provides additional bits for
the base operation field. In addition to providing support for the legacy SSE instructions in the
EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than
requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into
the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior
to being provided to the decoder’s PLA (so the PLA can execute both the legacy and EVEX
format of these legacy instructions without modification). Although newer instructions could
use the EVEX prefix encoding field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to
support the 2 bit SIMD prefix encodings, and thus not require the expansion.

[00154] Alpha field 1052 (EVEX byte 3, bit [7] — EH; also known as EVEX.EH, EVEXrs,
EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with o) — as previously

36

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

described, this field is context specific.

[00155] Beta field 1054 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.sy 9, EVEX 120,
EVEX.rl, EVEX.LLO, EVEX.LLB; also illustrated with BBP) — as previously described, this
field is context specific.

[00156] REX’ field 1010 — this is the remainder of the REX’ field and is the EVEX.V’ bit field
(EVEX Byte 3, bit [3] - V’) that may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted format. A value of 1 is used to encode
the lower 16 registers. In other words, V’'VVVV is formed by combining EVEX.V’,
EVEX.vvvv.

[00157] Write mask field 1070 (EVEX byte 3, bits [2:0]-kkk) — its content specifies the index of
a register in the write mask registers as previously described. In one embodiment of the
invention, the specific value EVEX.kkk=000 has a special behavior implying no write mask is
used for the particular instruction (this may be implemented in a variety of ways including the
use of a write mask hardwired to all ones or hardware that bypasses the masking hardware).
[00158] Real Opcode Field 1130 (Byte 4) is also known as the opcode byte. Part of the opcode
is specified in this field.

[00159] MOD R/M Field 1140 (Byte 5) includes MOD field 1142, Reg field 1144, and R/M
field 1146. As previously described, the MOD field’s 1142 content distinguishes between
memory access and non-memory access operations. The role of Reg field 1144 can be
summarized to two situations: encoding either the destination register operand or a source
register operand, or be treated as an opcode extension and not used to encode any instruction
operand. The role of R/M field 1146 may include the following: encoding the instruction
operand that references a memory address, or encoding either the destination register operand or
a source register operand.

[00160] Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field’s 1050
content is used for memory address generation. SIB.xxx 1154 and SIB.bbb 1156 — the contents
of these fields have been previously referred to with regard to the register indexes Xxxx and
Bbbb.

[00161] Displacement field 1062A (Bytes 7-10) — when MOD field 1142 contains 10, bytes 7-10
are the displacement field 1062A, and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

[00162] Displacement factor field 1062B (Byte 7) — when MOD field 1142 contains 01, byte 7 is
the displacement factor field 1062B. The location of this field is that same as that of the legacy
x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is

sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache

37

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since
a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to
disp8 and disp32, the displacement factor field 1062B is a reinterpretation of disp8; when using
displacement factor field 1062B, the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the memory operand access (N). This type of
displacement is referred to as disp8*N. This reduces the average instruction length (a single byte
of used for the displacement but with a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is multiple of the granularity of the
memory access, and hence, the redundant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 1062B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement factor field 1062B is encoded the
same way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB
encoding rules) with the only exception that disp8 is overloaded to disp8*N. In other words,
there are no changes in the encoding rules or encoding lengths but only in the interpretation of
the displacement value by hardware (which needs to scale the displacement by the size of the
memory operand to obtain a byte-wise address offset).

[00163] Immediate field 1072 operates as previously described.

Full Opcode Field

[00164] Figure 11B is a block diagram illustrating the fields of the specific vector friendly
instruction format 1100 that make up the full opcode field 1074 according to one embodiment of
the invention. Specifically, the full opcode field 1074 includes the format field 1040, the base
operation field 1042, and the data element width (W) field 1064. The base operation field 1042
includes the prefix encoding field 1125, the opcode map field 1115, and the real opcode field
1130.

Register Index Field

[00165] Figure 11C is a block diagram illustrating the fields of the specific vector friendly
instruction format 1100 that make up the register index field 1044 according to one embodiment
of the invention. Specifically, the register index field 1044 includes the REX field 1105, the
REX’ field 1110, the MODR/M.reg field 1144, the MODR/M.r/m field 1146, the VVVYV field
1120, xxx field 1154, and the bbb field 1156.

Augmentation Operation Field

[00166] Figure 11D is a block diagram illustrating the fields of the specific vector friendly
instruction format 1100 that make up the augmentation operation field 1050 according to one
embodiment of the invention. When the class (U) field 1068 contains 0, it signifies EVEX.UO
(class A 1068A); when it contains 1, it signifies EVEX.U1 (class B 1068B). When U=0 and the

38

10

15

20

25

WO 2014/210366 PCT/US2014/044419

MOD field 1142 contains 11 (signifying a no memory access operation), the alpha field 1052
(EVEX byte 3, bit [7] — EH) is interpreted as the rs field 1052A. When the rs field 1052A
contains a 1 (round 1052A.1), the beta field 1054 (EVEX byte 3, bits [6:4]- SSS) is interpreted
as the round control field 1054A. The round control field 1054A includes a one bit SAE field
1056 and a two bit round operation field 1058. When the rs field 1052A contains a 0 (data
transform 1052A.2), the beta field 1054 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three
bit data transform field 1054B. When U=0 and the MOD field 1142 contains 00, 01, or 10
(signifying a memory access operation), the alpha field 1052 (EVEX byte 3, bit [7] — EH) is
interpreted as the eviction hint (EH) field 1052B and the beta field 1054 (EVEX byte 3, bits
[6:4]- SSS) is interpreted as a three bit data manipulation field 1054C.

[00167] When U=1, the alpha field 1052 (EVEX byte 3, bit [7] — EH) is interpreted as the write
mask control (Z) field 1052C. When U=1 and the MOD field 1142 contains 11 (signifying a no
memory access operation), part of the beta field 1054 (EVEX byte 3, bit [4]- Sp) is interpreted as
the RL field 1057A; when it contains a 1 (round 1057A.1) the rest of the beta field 1054 (EVEX
byte 3, bit [6-5]- S,.1) is interpreted as the round operation field 1059A, while when the RL field
1057A contains a 0 (VSIZE 1057.A2) the rest of the beta field 1054 (EVEX byte 3, bit [6-5]- S,
1) is interpreted as the vector length field 1059B (EVEX byte 3, bit [6-5]- L;¢). When U=1 and
the MOD field 1142 contains 00, 01, or 10 (signifying a memory access operation), the beta field
1054 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the vector length field 1059B (EVEX byte
3, bit [6-5]- L) and the broadcast field 1057B (EVEX byte 3, bit [4]- B).

Exemplary Register Architecture

[00168] Figure 12 is a block diagram of a register architecture 1200 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1210
that are 512 bits wide; these registers are referenced as zmm0 through zmm31. The lower order
256 bits of the lower 16 zmm registers are overlaid on registers ymm0O-16. The lower order 128
bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on
registers xmmO-15. The specific vector friendly instruction format 1100 operates on these

overlaid register file as illustrated in the below tables.

Adjustable Vector Length | Class Operations Registers

Instruction Templates A (Figure | 1010, 1015, zmm registers (the vector length is 64

that do not include the 10A; U=0) | 1025, 1030 byte)

vector length field 1059B | B (Figure | 1012 zmm registers (the vector length is 64
10B; U=1) byte)

Instruction templates that | B (Figure | 1017, 1027 zmm, ymm, or xmm registers (the

do include the vector 10B; U=1) vector length is 64 byte, 32 byte, or 16

39

10

15

20

25

30

WO 2014/210366 PCT/US2014/044419

length field 1059B byte) depending on the vector length
field 1059B

[00169] In other words, the vector length field 1059B selects between a maximum length and
one or more other shorter lengths, where each such shorter length is half the length of the
preceding length; and instructions templates without the vector length field 1059B operate on the
maximum vector length. Further, in one embodiment, the class B instruction templates of the
specific vector friendly instruction format 1100 operate on packed or scalar single/double-
precision floating point data and packed or scalar integer data. Scalar operations are operations
performed on the lowest order data element position in an zmm/ymm/xmm register; the higher
order data element positions are either left the same as they were prior to the instruction or
zeroed depending on the embodiment.

[00170] Write mask registers 1215 - in the embodiment illustrated, there are 8 write mask
registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1215 are 16 bits in size. As previously described, in one embodiment of the invention,
the vector mask register kO cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a hardwired write mask of OxFFFF,
effectively disabling write masking for that instruction.

[00171] General-purpose registers 1225 - in the embodiment illustrated, there are sixteen 64-bit
general-purpose registers that are used along with the existing x86 addressing modes to address
memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,
RSI, RDI, RSP, and RS through R15.

[00172] Scalar floating point stack register file (x87 stack) 1245, on which is aliased the MMX
packed integer flat register file 1250 - in the embodiment illustrated, the x87 stack is an eight-
element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX registers are used to perform operations
on 64-bit packed integer data, as well as to hold operands for some operations performed
between the MMX and XMM registers.

[00173] Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or different register
files and registers.

Exemplary Core Architectures, Processors, and Computer Architectures

[00174] Processor cores may be implemented in different ways, for different purposes, and in
different processors. For instance, implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose computing; 2) a high performance general

purpose out-of-order core intended for general-purpose computing; 3) a special purpose core

40

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

intended primarily for graphics and/or scientific (throughput) computing. Implementations of
different processors may include: 1) a CPU including one or more general purpose in-order cores
intended for general-purpose computing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coprocessor including one or more special
purpose cores intended primarily for graphics and/or scientific (throughput). Such different
processors lead to different computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same
package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a
coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or
scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that may
include on the same die the described CPU (sometimes referred to as the application core(s) or
application processor(s)), the above described coprocessor, and additional functionality.
Exemplary core architectures are described next, followed by descriptions of exemplary
processors and computer architectures.

Exemplary Core Architectures

In-order and out-of-order core block diagram

[00175] Figure 13A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention. Figure 13B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to embodiments of the invention. The
solid lined boxes in Figures 13A-B illustrate the in-order pipeline and in-order core, while the
optional addition of the dashed lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[00176] In Figure 13A, a processor pipeline 1300 includes a fetch stage 1302, a length decode
stage 1304, a decode stage 1306, an allocation stage 1308, a renaming stage 1310, a scheduling
(also known as a dispatch or issue) stage 1312, a register read/memory read stage 1314, an
execute stage 1316, a write back/memory write stage 1318, an exception handling stage 1322,
and a commit stage 1324.

[00177] Figure 13B shows processor core 1390 including a front end unit 1330 coupled to an
execution engine unit 1350, and both are coupled to a memory unit 1370. The core 1390 may be
a reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet

another option, the core 1390 may be a special-purpose core, such as, for example, a network or

41

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

communication core, compression engine, coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

[00178] The front end unit 1330 includes a branch prediction unit 1332 coupled to an instruction
cache unit 1334, which is coupled to an instruction translation lookaside buffer (TLB) 1336,
which is coupled to an instruction fetch unit 1338, which is coupled to a decode unit 1340. The
decode unit 1340 (or decoder) may decode instructions, and generate as an output one or more
micro-operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original
instructions. The decode unit 1340 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),
etc. In one embodiment, the core 1390 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 1340 or otherwise within the front
end unit 1330). The decode unit 1340 is coupled to a rename/allocator unit 1352 in the
execution engine unit 1350.

[00179] The execution engine unit 1350 includes the rename/allocator unit 1352 coupled to a
retirement unit 1354 and a set of one or more scheduler unit(s) 1356. The scheduler unit(s) 1356
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 1356 is coupled to the physical register file(s) unit(s) 1358.
Each of the physical register file(s) units 1358 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 1358 comprises a vector registers unit, a write
mask registers unit, and a scalar registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose registers. The physical register
file(s) unit(s) 1358 is overlapped by the retirement unit 1354 to illustrate various ways in which
register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s)
and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement
register file(s); using a register maps and a pool of registers; etc.). The retirement unit 1354 and
the physical register file(s) unit(s) 1358 are coupled to the execution cluster(s) 1360. The
execution cluster(s) 1360 includes a set of one or more execution units 1362 and a set of one or
more memory access units 1364. The execution units 1362 may perform various operations
(e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar

floating point, packed integer, packed floating point, vector integer, vector floating point).

42

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

While some embodiments may include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may include only one execution unit or
multiple execution units that all perform all functions. The scheduler unit(s) 1356, physical
register file(s) unit(s) 1358, and execution cluster(s) 1360 are shown as being possibly plural
because certain embodiments create separate pipelines for certain types of data/operations (e.g., a
scalar integer pipeline, a scalar floating point/packed integer/packed floating point/vector
integer/vector floating point pipeline, and/or a memory access pipeline that each have their own
scheduler unit, physical register file(s) unit, and/or execution cluster — and in the case of a
separate memory access pipeline, certain embodiments are implemented in which only the
execution cluster of this pipeline has the memory access unit(s) 1364). It should also be
understood that where separate pipelines are used, one or more of these pipelines may be out-of-
order issue/execution and the rest in-order.

[00180] The set of memory access units 1364 is coupled to the memory unit 1370, which
includes a data TLB unit 1372 coupled to a data cache unit 1374 coupled to a level 2 (L.2) cache
unit 1376. In one exemplary embodiment, the memory access units 1364 may include a load
unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit
1372 in the memory unit 1370. The instruction cache unit 1334 is further coupled to a level 2
(L2) cache unit 1376 in the memory unit 1370. The L2 cache unit 1376 is coupled to one or
more other levels of cache and eventually to a main memory.

[00181] By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 1300 as follows: 1) the instruction fetch 1338 performs
the fetch and length decoding stages 1302 and 1304; 2) the decode unit 1340 performs the
decode stage 1306; 3) the rename/allocator unit 1352 performs the allocation stage 1308 and
renaming stage 1310; 4) the scheduler unit(s) 1356 performs the schedule stage 1312; 5) the
physical register file(s) unit(s) 1358 and the memory unit 1370 perform the register read/memory
read stage 1314; the execution cluster 1360 perform the execute stage 1316; 6) the memory unit
1370 and the physical register file(s) unit(s) 1358 perform the write back/memory write stage
1318; 7) various units may be involved in the exception handling stage 1322; and 8) the
retirement unit 1354 and the physical register file(s) unit(s) 1358 perform the commit stage 1324.
[00182] The core 1390 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 1390 includes logic to support a packed data

instruction set extension (e.g., AVX1, AVX2), thereby allowing the operations used by many

43

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

multimedia applications to be performed using packed data.

[00183] It should be understood that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a single physical core provides a
logical core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such as in the Intel® Hyperthreading technology).

[00184] While register renaming is described in the context of out-of-order execution, it should
be understood that register renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes separate instruction and data cache units
1334/1374 and a shared L2 cache unit 1376, alternative embodiments may have a single internal
cache for both instructions and data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the system may include a combination
of an internal cache and an external cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[00185] Figures 14A-B illustrate a block diagram of a more specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., a ring network) with some fixed function logic, memory 1/O
interfaces, and other necessary 1/0 logic, depending on the application.

[00186] Figure 14A is a block diagram of a single processor core, along with its connection to
the on-die interconnect network 1402 and with its local subset of the Level 2 (L2) cache 1404,
according to embodiments of the invention. In one embodiment, an instruction decoder 1400
supports the x86 instruction set with a packed data instruction set extension. An L1 cache 1406
allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1408 and a vector unit 1410 use separate
register sets (respectively, scalar registers 1412 and vector registers 1414) and data transferred
between them is written to memory and then read back in from a level 1 (L1) cache 1406,
alternative embodiments of the invention may use a different approach (e.g., use a single register
set or include a communication path that allow data to be transferred between the two register
files without being written and read back).

[00187] The local subset of the L2 cache 1404 is part of a global L2 cache that is divided into
separate local subsets, one per processor core. Each processor core has a direct access path to its

own local subset of the L2 cache 1404. Data read by a processor core is stored in its L2 cache

44

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

subset 1404 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache
subset 1404 and is flushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network is bi-directional to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-
path is 1012-bits wide per direction.

[00188] Figure 14B is an expanded view of part of the processor core in Figure 14A according
to embodiments of the invention. Figure 14B includes an L1 data cache 1406A part of the L1
cache 1404, as well as more detail regarding the vector unit 1410 and the vector registers 1414.
Specifically, the vector unit 1410 is a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 1428), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 1420,
numeric conversion with numeric convert units 1422A-B, and replication with replication unit
1424 on the memory input. Write mask registers 1426 allow predicating resulting vector writes.
Processor with integrated memory controller and graphics

[00189] Figure 15 is a block diagram of a processor 1500 that may have more than one core,
may have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 15 illustrate a processor 1500
with a single core 1502A, a system agent 1510, a set of one or more bus controller units 1516,
while the optional addition of the dashed lined boxes illustrates an alternative processor 1500
with multiple cores 1502A-N, a set of one or more integrated memory controller unit(s) 1514 in
the system agent unit 1510, and special purpose logic 1508.

[00190] Thus, different implementations of the processor 1500 may include: 1) a CPU with the
special purpose logic 1508 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 1502A-N being one or more general purpose
cores (e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of
the two); 2) a coprocessor with the cores 1502A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 1502A-N being a large number of general purpose in-order cores. Thus, the processor 1500
may be a general-purpose processor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 1500 may be a part of and/or may be

implemented on one or more substrates using any of a number of process technologies, such as,

45

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
for example, BICMOS, CMOS, or NMOS.

[00191] The memory hierarchy includes one or more levels of cache within the cores, a set or
one or more shared cache units 1506, and external memory (not shown) coupled to the set of
integrated memory controller units 1514. The set of shared cache units 1506 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 1512 interconnects the integrated graphics logic 1508, the set of shared cache
units 1506, and the system agent unit 1510/integrated memory controller unit(s) 1514, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 1506 and cores
1502-A-N.

[00192] In some embodiments, one or more of the cores 1502A-N are capable of multi-
threading. The system agent 1510 includes those components coordinating and operating cores
1502A-N. The system agent unit 1510 may include for example a power control unit (PCU) and
a display unit. The PCU may be or include logic and components needed for regulating the
power state of the cores 1502A-N and the integrated graphics logic 1508. The display unit is for
driving one or more externally connected displays.

[00193] The cores 1502A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 1502A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Exemplary Computer Architectures

[00194] Figures 16-19 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

[00195] Referring now to Figure 16, shown is a block diagram of a system 1600 in accordance
with one embodiment of the present invention. The system 1600 may include one or more
processors 1610, 1615, which are coupled to a controller hub 1620. In one embodiment the
controller hub 1620 includes a graphics memory controller hub (GMCH) 1690 and an
Input/Output Hub (IOH) 1650 (which may be on separate chips); the GMCH 1690 includes

46

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

memory and graphics controllers to which are coupled memory 1640 and a coprocessor 1645;
the IOH 1650 is couples input/output (I/O) devices 1660 to the GMCH 1690. Alternatively, one
or both of the memory and graphics controllers are integrated within the processor (as described
herein), the memory 1640 and the coprocessor 1645 are coupled directly to the processor 1610,
and the controller hub 1620 in a single chip with the IOH 1650.

[00196] The optional nature of additional processors 1615 is denoted in Figure 16 with broken
lines. Each processor 1610, 1615 may include one or more of the processing cores described
herein and may be some version of the processor 1500.

[00197] The memory 1640 may be, for example, dynamic random access memory (DRAM),
phase change memory (PCM), or a combination of the two. For at least one embodiment, the
controller hub 1620 communicates with the processor(s) 1610, 1615 via a multi-drop bus, such
as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or
similar connection 1695.

[00198] In one embodiment, the coprocessor 1645 is a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 1620 may include an integrated graphics accelerator.

[00199] There can be a variety of differences between the physical resources 1610, 1615 in
terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

[00200] In one embodiment, the processor 1610 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be coprocessor
instructions. The processor 1610 recognizes these coprocessor instructions as being of a type
that should be executed by the attached coprocessor 1645. Accordingly, the processor 1610
issues these coprocessor instructions (or control signals representing coprocessor instructions) on
a coprocessor bus or other interconnect, to coprocessor 1645. Coprocessor(s) 1645 accept and
execute the received coprocessor instructions.

[00201] Referring now to Figure 17, shown is a block diagram of a first more specific
exemplary system 1700 in accordance with an embodiment of the present invention. As shown
in Figure 17, multiprocessor system 1700 is a point-to-point interconnect system, and includes a
first processor 1770 and a second processor 1780 coupled via a point-to-point interconnect 1750.
Each of processors 1770 and 1780 may be some version of the processor 1500. In one
embodiment of the invention, processors 1770 and 1780 are respectively processors 1610 and
1615, while coprocessor 1738 is coprocessor 1645. In another embodiment, processors 1770 and

1780 are respectively processor 1610 coprocessor 1645.

47

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
[00202] Processors 1770 and 1780 are shown including integrated memory controller (IMC)

units 1772 and 1782, respectively. Processor 1770 also includes as part of its bus controller
units point-to-point (P-P) interfaces 1776 and 1778; similarly, second processor 1780 includes P-
P interfaces 1786 and 1788. Processors 1770, 1780 may exchange information via a point-to-
point (P-P) interface 1750 using P-P interface circuits 1778, 1788. As shown in Figure 17,
IMCs 1772 and 1782 couple the processors to respective memories, namely a memory 1732 and
a memory 1734, which may be portions of main memory locally attached to the respective
processors.

[00203] Processors 1770, 1780 may each exchange information with a chipset 1790 via
individual P-P interfaces 1752, 1754 using point to point interface circuits 1776, 1794, 1786,
1798. Chipset 1790 may optionally exchange information with the coprocessor 1738 via a high-
performance interface 1739. In one embodiment, the coprocessor 1738 is a special-purpose
processor, such as, for example, a high-throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.
[00204] A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed
into a low power mode.

[00205] Chipset 1790 may be coupled to a first bus 1716 via an interface 1796. In one
embodiment, first bus 1716 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of
the present invention is not so limited.

[00206] As shown in Figure 17, various I/O devices 1714 may be coupled to first bus 1716,
along with a bus bridge 1718 which couples first bus 1716 to a second bus 1720. In one
embodiment, one or more additional processor(s) 1715, such as coprocessors, high-throughput
MIC processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1716. In one embodiment, second bus 1720 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 1720 including, for example, a keyboard and/or
mouse 1722, communication devices 1727 and a storage unit 1728 such as a disk drive or other
mass storage device which may include instructions/code and data 1730, in one embodiment.
Further, an audio I/O 1724 may be coupled to the second bus 1720. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 17, a system may
implement a multi-drop bus or other such architecture.

[00207] Referring now to Figure 18, shown is a block diagram of a second more specific

48

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

exemplary system 1800 in accordance with an embodiment of the present invention. Like
elements in Figures 17 and 18 bear like reference numerals, and certain aspects of Figure 17
have been omitted from Figure 18 in order to avoid obscuring other aspects of Figure 18.
[00208] Figure 18 illustrates that the processors 1770, 1780 may include integrated memory and
I/O control logic (“CL”) 1772 and 1782, respectively. Thus, the CL 1772, 1782 include
integrated memory controller units and include I/O control logic. Figure 18 illustrates that not
only are the memories 1732, 1734 coupled to the CL 1772, 1782, but also that I/O devices 1814
are also coupled to the control logic 1772, 1782. Legacy I/O devices 1815 are coupled to the
chipset 1790.

[00209] Referring now to Figure 19, shown is a block diagram of a SoC 1900 in accordance
with an embodiment of the present invention. Similar elements in Figure 15 bear like reference
numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 19,
an interconnect unit(s) 1902 is coupled to: an application processor 1910 which includes a set of
one or more cores 202A-N and shared cache unit(s) 1506; a system agent unit 1510; a bus
controller unit(s) 1516; an integrated memory controller unit(s) 1514; a set or one or more
coprocessors 1920 which may include integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access memory (SRAM) unit 1930; a direct
memory access (DMA) unit 1932; and a display unit 1940 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1920 include a special-purpose processor, such
as, for example, a network or communication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

[00210] Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one
output device.

[00211] Program code, such as code 1730 illustrated in Figure 17, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, for example; a digital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[00212] The program code may be implemented in a high level procedural or object oriented

programming language to communicate with a processing system. The program code may also

49

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

[00213] One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as “IP cores” may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

[00214] Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

[00215] Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also be referred to as program
products.

Emulation (including binary translation, code morphing, etc.)

[00216] In some cases, an instruction converter may be used to convert an instruction from a
source instruction set to a target instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or a combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

[00217] Figure 20 is a block diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction

set according to embodiments of the invention. In the illustrated embodiment, the instruction

50

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 20
shows a program in a high level language 2002 may be compiled using an x86 compiler 2004 to
generate x86 binary code 2006 that may be natively executed by a processor with at least one
x86 instruction set core 2016. The processor with at least one x86 instruction set core 2016
represents any processor that can perform substantially the same functions as an Intel processor
with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on an Intel processor with at least one
x86 instruction set core, in order to achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler 2004 represents a compiler that is
operable to generate x86 binary code 2006 (e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at least one x86 instruction set core 2016.
Similarly, Figure 20 shows the program in the high level language 2002 may be compiled using
an alternative instruction set compiler 2008 to generate alternative instruction set binary code
2010 that may be natively executed by a processor without at least one x86 instruction set core
2014 (e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies
of Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 2012 is used to convert the x86 binary code 2006 into code that
may be natively executed by the processor without an x86 instruction set core 2014. This
converted code is not likely to be the same as the alternative instruction set binary code 2010
because an instruction converter capable of this is difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 2012 represents software, firmware, hardware, or
a combination thereof that, through emulation, simulation or any other process, allows a
processor or other electronic device that does not have an x86 instruction set processor or core to
execute the x86 binary code 2006.

[00218] Components, features, and details described for any of Figures 2 or 4 may also
optionally be used in any of Figures 1, 3, and 5. Components, features, and details described
for any of Figures 2, 7, or 9 may also optionally be used in any of Figures 6 or 9. Moreover,
components, features, and details described herein for any of the apparatus may also optionally
be used in any of the methods described herein, which in embodiments may be performed by
and/or with such the apparatus.

[00219] In the description and claims, the terms “coupled” and/or “‘connected,” along with their

derivatives, have be used. It should be understood that these terms are not intended as synonyms

51

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

for each other. Rather, in particular embodiments, “connected” may be used to indicate that two
or more elements are in direct physical or electrical contact with each other. “Coupled” may
mean that two or more elements are in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not in direct contact with each other, but yet still
co-operate or interact with each other. For example, an execution unit may be coupled with a
register or a decode unit through one or more intervening components. In the figures, arrows are
used to show connections and couplings.

[00220] In the description and claims, the term “logic” may have been used. As used herein,
logic may include hardware, firmware, software, or various combinations thereof. Examples of
logic include integrated circuitry, application specific integrated circuits, analog circuits, digital
circuits, programmed logic devices, memory devices including instructions, etc. In some
embodiments, hardware logic may include transistors and/or gates potentially along with other
circuitry components. In some embodiments, the logic may be embodied as a component, unit,
or other module.

[00221] In the description above, specific details have been set forth in order to provide a
thorough understanding of the embodiments. However, other embodiments may be practiced
without some of these specific details. The scope of the invention is not to be determined by the
specific examples provided above but only by the claims below. In other instances, well-known
circuits, structures, devices, and operations have been shown in block diagram form or without
detail in order to avoid obscuring the understanding of the description.

[00222] Various operations and methods have been described. Some of the methods have been
described in a relatively basic form in the flow diagrams, but operations may optionally be added
to and/or removed from the methods. For example, additional microarchitectural details may be
added to the described methods of processing instructions. In addition, while operations have
been described in a certain order according to example embodiments, that particular order is
exemplary. Alternate embodiments may optionally perform the operations in different order,
combine certain operations, overlap certain operations, etc.

[00223] Certain operations may be performed by hardware components, or may be embodied in
machine-executable or circuit-executable instructions, that may be used to cause and/or result in
a machine, circuit, or hardware component (e.g., a processor, potion of a processor, circuit, etc.)
programmed with the instructions performing the operations. The operations may also
optionally be performed by a combination of hardware and software. A processor, machine,
circuit, or hardware may include specific or particular circuitry or other logic (e.g., hardware
potentially combined with firmware and/or software) is operable to execute and/or process the

instruction and store a result in response to the instruction.

52

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

[00224] Some embodiments include an article of manufacture (e.g., a computer program
product) that includes a machine-readable medium. The medium may include a mechanism that
provides, for example stores, information in a form that is readable by the machine. The
machine-readable medium may provide, or have stored thereon, an instruction or sequence of
instructions, that if and/or when executed by a machine are operable to cause the machine to
perform and/or result in the machine performing one or operations, methods, or techniques
disclosed herein. The machine-readable medium may provide, for example store, one or more of
the embodiments of the instructions disclosed herein.

[00225] In some embodiments, the machine-readable medium may include a tangible and/or
non-transitory machine-readable storage medium. For example, the tangible and/or non-
transitory machine-readable storage medium may include a floppy diskette, an optical storage
medium, an optical disk, an optical data storage device, a CD-ROM, a magnetic disk, a magneto-
optical disk, a read only memory (ROM), a programmable ROM (PROM), an erasable-and-
programmable ROM (EPROM), an electrically-erasable-and-programmable ROM (EEPROM), a
random access memory (RAM), a static-RAM (SRAM), a dynamic-RAM (DRAM), a Flash
memory, a phase-change memory, a phase-change data storage material, a non-volatile memory,
a non-volatile data storage device, a non-transitory memory, a non-transitory data storage device,
or the like. The non-transitory machine-readable storage medium does not consist of a transitory
propagated signal.

[00226] Examples of suitable machines include, but are not limited to, general-purpose
processors, special-purpose processors, instruction processing apparatus, digital logic circuits,
integrated circuits, and the like. Still other examples of suitable machines include computing
devices and other electronic devices that incorporate such processors, instruction processing
apparatus, digital logic circuits, or integrated circuits. Examples of such computing devices and
electronic devices include, but are not limited to, desktop computers, laptop computers, notebook
computers, tablet computers, netbooks, smartphones, cellular phones, servers, network devices
(e.g., routers and switches.), Mobile Internet devices (MIDs), media players, smart televisions,

nettops, set-top boxes, and video game controllers.

" on 1" <<

[00227] Reference throughout this specification to "one embodiment,” "an embodiment," “one or

29 <<

more embodiments,” “some embodiments,” for example, indicates that a particular feature may
be included in the practice of the invention but is not necessarily required to be. Similarly, in the
description various features are sometimes grouped together in a single embodiment, Figure, or
description thereof for the purpose of streamlining the disclosure and aiding in the understanding
of various inventive aspects. This method of disclosure, however, is not to be interpreted as

reflecting an intention that the invention requires more features than are expressly recited in each

53

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a
single disclosed embodiment. Thus, the claims following the Detailed Description are hereby
expressly incorporated into this Detailed Description, with each claim standing on its own as a
separate embodiment of the invention.

EXAMPLE EMBODIMENTS

[00228] The following examples pertain to further embodiments. Specifics in the examples may
be used anywhere in one or more embodiments.

[00229] Example 1 is a processor including a plurality of packed data registers, and a decode
unit to decode a packed variable length code point length determination instruction. The packed
variable length code point length determination instruction is to indicate a first source packed
data that is to have a plurality of packed variable length code points that are each to represent a
character. The packed variable length code point length determination instruction is also to
indicate a destination storage location. The processor also includes an execution unit coupled
with the decode unit and the packed data registers. The execution unit, in response to the packed
variable length code point length determination instruction, is to store a result packed data in the
indicated destination storage location, the result packed data to have a length for each of the
plurality of the packed variable length code points.

[00230] Example 2 includes the processor of Example 1, optionally in which the instruction is to
indicate the first source packed data having the plurality of packed UTF-8 code points.

[00231] Example 3 includes the processor of Example 1, optionally in which the instruction is to
indicate a plurality of signature patterns that are each to correspond to one of the different
lengths of the variable length code points.

[00232] Example 4 includes the processor of Example 3, in which the execution unit, in response
to the instruction, is to determine that a given variable length code point matches a given
signature pattern by comparing the given variable length code point with each of the plurality of
signature patterns, and in which the execution unit, in response to the instruction, is to store a
length corresponding to the given signature pattern for the given variable length code point in the
destination storage location.

[00233] Example 5 includes the processor of Example 3, in which the instruction is to indicate a
second source packed data that is to have the plurality of signature patterns, and in which the
instruction is to have an immediate to indicate a plurality of lengths that are each to correspond
to one of the plurality of the signature patterns.

[00234] Example 6 includes the processor of Example 5, in which the plurality of the signature
patterns are to include four different signature patterns, and in which the immediate is to have

four fields that are each to indicate a corresponding length of a different one of the four signature

54

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

patterns.

[00235] Example 7 includes the processor of Example 3, in which the signature patterns are to be
stored in a non-volatile memory of the processor that is not an architectural register.

[00236] Example 8 includes the processor of any preceding Example, optionally in which the
execution unit, in response to the instruction, is to store each length in a byte that is to be in a
same relative bit position in the destination storage location as a least significant byte of the
corresponding variable length code point in the first source packed data.

[00237] Example 9 includes the processor of Example 8, in which the execution unit, in response
to the instruction, is to store a length indicative of three bytes in a given byte that is to be in a
same relative bit position in the destination storage location as a least significant byte of a
corresponding three byte code point in the first source packed data, and is to store all zeros in a
two more significant consecutive bytes that are to be more significant than the given byte in the
destination storage location.

[00238] Example 10 includes the processor of any preceding Example, optionally in which the
execution unit, in response to the instruction, is to store all binary ones in bytes in same relative
bit positions in the destination storage location as bytes of incomplete or invalid variable length
code points of the first source packed data.

[00239] Example 11 is a method performed by a processor. The method includes receiving a
packed variable length code point length determination instruction. The packed variable length
code point length determination instruction indicates a first source packed data having a plurality
of packed variable length code points each representing a character, and indicates a destination
storage location. The method includes storing a result packed data in the indicated destination
storage location in response to the packed variable length code point length determination
instruction. The result packed data has a length for each of the plurality of packed variable
length code points.

[00240] Example 12 includes the method of Example 11, optionally in which receiving includes
receiving the instruction indicating the first source packed data having the plurality of packed
UTF-8 code points.

[00241] Example 13 includes the method of Example 11, optionally in which receiving includes
receiving the instruction indicating a plurality of signature patterns each corresponding to one of
the different lengths of the variable length code points.

[00242] Example 14 includes the method of Example 13, further optionally including
determining that a given variable length code point matches a given signature pattern by
comparing the given variable length code point with each of the plurality of signature patterns.

The method may also optionally include storing a length corresponding to the given signature

55

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

pattern for the given variable length code point in the destination storage location.

[00243] Example 15 includes the method of Example 13, in which receiving includes receiving
the instruction indicating a second source packed data having the plurality of signature patterns.
The instruction may optionally have an immediate indicating a plurality of lengths each
corresponding to one of the plurality of signature patterns.

[00244] Example 16 includes the method of Example 15, in which the plurality of signature
patterns include four different signature patterns. Optionally, each of the four different signature
patterns may be stored in a different 32-bit data element of the second source packed data which
is at least 128-bits wide. Optionally, the immediate may have four fields each corresponding to a
different one of the four signature patterns to indicate a corresponding length.

[00245] Example 17 includes the method of Example 13, in which receiving includes receiving
the instruction indicating the signature patterns which are stored in an on-die non-volatile
memory of the processor.

[00246] Example 18 includes the method of any preceding Example, optionally in which storing
includes storing each length in a byte that is in a same relative bit position in the destination
storage location as a least significant byte of the corresponding variable length code point in the
first source packed data.

[00247] Example 19 includes the method of Example 18, in which storing includes storing a
length indicative of two bytes in a given byte that is in a same relative bit position in the
destination storage location as a least significant byte of a corresponding two byte code point in
the first source packed data. Optionally, all zeros may be stored in a more significant
consecutive byte that is more significant than the given byte in the destination storage location.
[00248] Example 20 includes the method of any preceding Example, optionally in which storing
includes storing all ones in bytes in same relative bit positions in the destination storage location
as bytes of incomplete or invalid variable length code points of the first source packed data.
[00249] Example 21 includes the method of Example 20, further optionally including executing
one or more other instructions to determine a position of a most significant byte storing all ones
and indicative of an incomplete variable length code point. The determined position of the most
significant byte may optionally be used to load another contiguous portion of variable length
code points.

[00250] Example 22 is a system to process instructions including an interconnect, a processor
coupled with the interconnect, and a dynamic random access memory (DRAM) coupled with the
interconnect. The DRAM is to store a transcoding algorithm having a packed variable length
code point length determination instruction. The packed variable length code point length

determination instruction is to indicate a first source packed data that is to have a plurality of

56

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

packed variable length code points that are each to represent a character. The packed variable
length code point length determination instruction is to indicate a destination storage location.
The packed variable length code point length determination instruction, if executed by the
processor, is operable to cause the processor to perform operations including storing a result
packed data in the indicated destination storage location, the result packed data to have a length
for each of the plurality of the packed variable length code points.

[00251] Example 23 includes the system of Example 22, in which the instruction is to indicate
the first source packed data having the plurality of packed UTF-8 code points. Optionally, the
instruction may indicate a plurality of signature patterns that are each to correspond to one of the
different lengths of the UTF-8 code points.

[00252] Example 24 is an article of manufacture including a non-transitory machine-readable
storage medium. The machine-readable storage medium storing a packed variable length code
point length determination instruction. The packed variable length code point length
determination instruction may indicate a first source packed data that is to have a plurality of
packed variable length code points that are each to represent a character. The packed variable
length code point length determination instruction may indicate a destination storage location.
The packed variable length code point length determination instruction if executed by a machine
is to cause the machine to perform operations including storing a result packed data in the
indicated destination storage location, the result packed data to have a length for each of the
plurality of the packed variable length code points.

[00253] Example 25 includes the article of manufacture of Example 24, in which the instruction
is to indicate the first source packed data that is to include UTF-8 code points. Optionally, the
instruction may indicate a plurality of signature patterns that are each to correspond to one of the
different lengths of the UTF-8 code points.

[00254] Example 26 is a method performed by a processor. The method includes receiving a
packed variable length code point character bits extraction instruction. The packed variable
length code point character bits extraction instruction is to indicate a first source packed data
having a plurality of packed variable length code points each representing a character. The
instruction is also to indicate a second source packed data having packed lengths of validated
variable length code points from the first source packed data, and indicating a destination storage
location. The method includes storing a result packed data in the indicated destination storage
location in response to the packed variable length code point character bits extraction instruction.
The result packed data has packed sets of extracted character bits. Each set of extracted
character bits corresponding to a different one of the validated variable length code points from

the first source packed data. Each set of extracted character bits may be sufficient to determine

57

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419

the character represented by the variable length code points.

[00255] Example 27 includes the method of Example 26, in which receiving includes receiving
the instruction indicating the first source packed data having the plurality of packed UTF-8 code
points.

[00256] Example 28 includes the method of Example 26, in which receiving includes receiving
the instruction indicating a plurality of signature patterns each corresponding to one of the
different lengths of the variable length code points.

[00257] Example 29 includes the method of Example 28, further optionally including selecting a
signature pattern for a given variable length code point from the first source packed data by
using a length corresponding to the given variable length code point from the second source
packed data. The method may also optionally include removing signature bits from the given
variable length code point by performing a logical operation on the given variable length code
point and the selected signature pattern.

[00258] Example 30 includes the method of Example 28, in which receiving includes receiving
the instruction indicating the signature patterns which are stored in a non-volatile memory of the
processor.

[00259] Example 31 includes the method of any preceding Example, in which receiving includes
receiving the instruction indicating the destination storage location which is four times as wide in
bits as the first source packed data. Optionally, each of the sets of extracted character bits may
be stored in 32-bits of the destination storage location.

[00260] Example 32 includes the method of any preceding Example, optionally in which the first
source packed data is at least 128-bits and the destination storage location is at least 512-bits.
[00261] Example 33 includes the method of any preceding Example, in which receiving includes
receiving the instruction indicating a second destination storage location, and further including
storing a number of validated variable length code points extracted in the second destination
storage location.

[00262] Example 34 is a machine-readable storage medium storing instructions that if executed
by a machine are to cause the machine to perform the method of any of claims 13-21.

[00263] Example 35 is an apparatus to perform the method of any of claims 13-21.

[00264] Example 36 is an apparatus including means for performing the method of any of claims
13-21.

[00265] Example 37 is a machine-readable storage medium storing instructions that if executed
by a machine are to cause the machine to perform the method of any of claims 26-33.

[00266] Example 38 is an apparatus to perform the method of any of claims 26-33.

[00267] Example 39 is an apparatus including means for performing the method of any of claims

58

WO 2014/210366
26-33.

PCT/US2014/044419

[00268] Example 40 is an apparatus to execute an instruction substantially as described herein.

[00269] Example 41 is an apparatus including means for performing an instruction substantially

as described herein.

59

10

15

20

25

30

35

WO 2014/210366 PCT/US2014/044419
CLAIMS

What is claimed is:

1. A processor comprising:

a plurality of packed data registers;

a decode unit to decode a packed variable length code point length determination instruction, the
packed variable length code point length determination instruction to indicate a first source
packed data that is to have a plurality of packed variable length code points that are each to
represent a character, and the packed variable length code point length determination instruction
to indicate a destination storage location; and

an execution unit coupled with the decode unit and the packed data registers, the execution unit,
in response to the packed variable length code point length determination instruction, to store a
result packed data in the indicated destination storage location, the result packed data to have a
length for each of the plurality of the packed variable length code points.

2. The processor of claim 1, wherein the instruction is to indicate the first source packed
data having the plurality of packed UTF-8 code points.

3. The processor of claim 1, wherein the instruction is to indicate a plurality of signature
patterns that are each to correspond to one of the different lengths of the variable length code
points.

4, The processor of claim 3, wherein the execution unit, in response to the instruction, is to
determine that a given variable length code point matches a given signature pattern by
comparing the given variable length code point with each of the plurality of signature patterns,
and wherein the execution unit, in response to the instruction, is to store a length corresponding
to the given signature pattern for the given variable length code point in the destination storage
location.

5. The processor of claim 3, wherein the instruction is to indicate a second source packed
data that is to have the plurality of signature patterns, and wherein the instruction is to have an
immediate to indicate a plurality of lengths that are each to correspond to one of the plurality of
the signature patterns.

6. The processor of claim 5, wherein the plurality of the signature patterns are to include
four different signature patterns, and wherein the immediate is to have four fields that are each to
indicate a corresponding length of a different one of the four signature patterns.

7. The processor of claim 3, wherein the signature patterns are to be stored in a non-volatile
memory of the processor that is not an architectural register.

8. The processor of any one of claims 1-7, wherein the execution unit, in response to the

instruction, is to store each length in a byte that is to be in a same relative bit position in the

60

10

15

20

25

30

WO 2014/210366 PCT/US2014/044419

destination storage location as a least significant byte of the corresponding variable length code
point in the first source packed data.

0. The processor of any one of claims 8, wherein the execution unit, in response to the
instruction, is to store a length indicative of three bytes in a given byte that is to be in a same
relative bit position in the destination storage location as a least significant byte of a
corresponding three byte code point in the first source packed data, and is to store all zeros in a
two more significant consecutive bytes that are to be more significant than the given byte in the
destination storage location.

10. The processor of any one of claims 1-7, wherein the execution unit, in response to the
instruction, is to store all binary ones in bytes in same relative bit positions in the destination
storage location as bytes of incomplete or invalid variable length code points of the first source
packed data.

11. A method performed by a processor comprising:

receiving a packed variable length code point length determination instruction, the packed
variable length code point length determination instruction indicating a first source packed data
having a plurality of packed variable length code points each representing a character, and
indicating a destination storage location,; and

storing a result packed data in the indicated destination storage location in response to the packed
variable length code point length determination instruction, the result packed data having a
length for each of the plurality of packed variable length code points.

12. The method of claim 11, wherein receiving comprises receiving the instruction indicating
the first source packed data having the plurality of packed UTF-8 code points.

13. The method of claim 11, wherein receiving comprises receiving the instruction indicating
a plurality of signature patterns each corresponding to one of the different lengths of the variable
length code points.

14. The method of claim 13, further comprising:

determining that a given variable length code point matches a given signature pattern by
comparing the given variable length code point with each of the plurality of signature patterns;
and

storing a length corresponding to the given signature pattern for the given variable length code
point in the destination storage location.

15. The method of claim 13, wherein receiving comprises receiving the instruction indicating
a second source packed data having the plurality of signature patterns, and having an immediate

indicating a plurality of lengths each corresponding to one of the plurality of signature patterns.

61

10

15

20

25

30

WO 2014/210366 PCT/US2014/044419

16. The method of claim 15, wherein the plurality of signature patterns include four
different signature patterns, wherein each of the four different signature patterns is stored in a
different 32-bit data element of the second source packed data which is at least 128-bits wide,
and wherein the immediate has four fields each corresponding to a different one of the four
signature patterns to indicate a corresponding length.
17. The method of claim 13, wherein receiving comprises receiving the instruction indicating
the signature patterns which are stored in an on-die non-volatile memory of the processor.
18. The method of claim 11, wherein storing comprises storing each length in a byte that is in
a same relative bit position in the destination storage location as a least significant byte of the
corresponding variable length code point in the first source packed data.
19. The method of claim 18, wherein storing comprises storing a length indicative of two
bytes in a given byte that is in a same relative bit position in the destination storage location as a
least significant byte of a corresponding two byte code point in the first source packed data, and
storing all zeros in a more significant consecutive byte that is more significant than the given
byte in the destination storage location.
20. The method of claim 11, wherein storing comprises storing all ones in bytes in same
relative bit positions in the destination storage location as bytes of incomplete or invalid variable
length code points of the first source packed data.
21. The method of claim 20, further comprising:
executing one or more other instructions to determine a position of a most significant byte
storing all ones and indicative of an incomplete variable length code point; and
using the determined position of the most significant byte to load another contiguous portion of
variable length code points.
22. A system to process instructions comprising:

an interconnect;

a processor coupled with the interconnect; and

a dynamic random access memory (DRAM) coupled with the interconnect, the DRAM
storing a transcoding algorithm having a packed variable length code point length determination
instruction, the packed variable length code point length determination instruction to indicate a
first source packed data that is to have a plurality of packed variable length code points that are
each to represent a character, and the packed variable length code point length determination
instruction to indicate a destination storage location, the packed variable length code point length
determination instruction, if executed by the processor, operable to cause the processor to

perform operations comprising:

62

10

WO 2014/210366 PCT/US2014/044419

storing a result packed data in the indicated destination storage location, the result packed
data to have a length for each of the plurality of the packed variable length code points.
23. The system of claim 22, wherein the instruction is to indicate the first source packed data
having the plurality of packed UTF-8 code points, and wherein the instruction is to indicate a
plurality of signature patterns that are each to correspond to one of the different lengths of the
UTEF-8 code points.
24. An apparatus comprising means for performing the method of any one of claims 11-21.
25. A machine-readable storage medium storing instructions that if executed by a machine

are to cause the machine to perform the method of any one of claims 11-21.

63

WO 2014/210366

1/22

PCT/US2014/044419

PROCESSOR 10

INSTRUCTION SET 102

INSTRUCTION(S) TO

TRANSCODE VARIABLE LENGTH

CODE POINTS OF UNICODE
CHARACTERS 103

PACKED VARIABLE LENGTH |
CODE POINT LENGTH |
DETERMINATION
INSTRUCTIONS(S)

104 (OPTIONAL) |

PACKED VARIABLE LENGTH |
CODE POINT UNICODE BITS |

EXTRACTION |
INSTRUCTION(S) |
106 (OPTIONAL) |

PACKED DATA REGISTERS
108

EXECUTION UNIT(S)
110

FIG 1

PCT/US2014/044419

WO 2014/210366

2/22

Slig

INIOd 3009
3000INN
822
)
A _ [1 R
1z Ll XXXXXXQ | XXXXXX0 | XXXXXX() | XXXOL L1 L i
T i) T T
\9zz 5119 JUNLYNOIS
9 g V/N XXXXXX() | XXXXXX() | XXXXQ L L | ¢
L G V/N VY/N XXXXXXQ | XXXXXQL) ¢
L L V/N VN V/N XXXXXXX(Q) L
s11d INIOd siig “ ” _ : INIOd 3009
3002 J00JINN JUNLYNDIS i€l sy loveel siq l8:1] suq l0:21 suq HLONTT T19VINVA
40 ¥IGNNN 40 ¥IFNNN y3LAd €3lAd ¢3lAd b3lAd NI S3LAE
Nz
SINIOd 3009 8-41N
HLONTT F18VIMVA
z 'Ol 40 SOILSIILOVNVHO

PCT/US2014/044419

WO 2014/210366

3/22

| T2 SYILOVHVHO IAODINN 40 |
| SINIOd 300D H1IONIT I1aVINVA |
| GALVAITYA 40 SHLONT T a3xovd N

| 7T€ SLNIOd |
| 3000 HLONT INJ¥I3IQ HOS 1
| SNY3LLVd FANLYNDIS AINOVd

iiiiii S————==

91€ 304N0OS ANOO3S

STE SYILOVHVHD
3JAUODINN 40 SINIOd 3a00]
HLONT1 I19VINVA Q3IMOVd

p)
¥1€ 304N0OS LSHId

80€ SYILSIDIY V1va aaMovd

le

1INN
NOILNO3X3

_ - L
61€ SINIOd |

| 3009 HIONIT INTY344Ia _
_ ¥O4 SN¥Y3ILLVYd |
| IYNLYNDIS 40 SHIONT1

_.l||l.|||||||d ’’’’

8L€ JLVIA3INNI

€ Old

¢l

1INN
34023d

4
N

=

v0¢€

R

00¢
d0SS300dd

NOILONYLSNI
NOILYNING313d
H19ON31
1NIOd 3d02
HLONIT 31avIidvA
d=xdvd

PCT/US2014/044419

WO 2014/210366

4/22

el

Oy TOIWAS Zhy £ty TOGINAS byy HILOVHVHO
0¥N3 HO4 NOIS LNID 404 0MN3 ¥O4 AIMYANIALITINODNI
¢ 40 HLONI1 Z 40 HLONT1 € 40 HLONTT 31VOIaNI O1 SANO TV

A — — soo—7 h :

¢ |00000000[00000000 ! z |oooooooo| € |00000000| 00000000 AR EAAARAn)

0 i Gl £z Ie 6¢ It S5 €9 VAR 6Ll
—
by SINIOd 3d0D Ly NOIS ¥MVT1104
8-41N d3LvalivA 40 HO4 L 40 HLIONTT
SHIONIT aaxovd -
ot IS 8ey St

LNIOd 3A00 8-41N ALAG-L
HO4 NY3LLYd FHNLYNDIS

LNIOd 3003 8-41N JLAG-C
d04 NY3LLVYd SHYNLYNDIS

1NIOd 303 8-41N JLAG-€
HO4 NY3LLVd JHNLYNDIS

INIOd 3d03 8-41N FLAG-¥
HO4d NY3LIVd FHUNLYNDIS

4 M Al A TS A
00000007 0000001 T 00000TTT 0000L1LL1)
00000000 00000000 00000000 | 00000001 00000000 00000000 | 0000000T 0000000T 00000000 | 0000000T 0000000T 0000000T
0 ILp 1€ €9 G6 yxX4"
SLINIOd 3d02 8-41n
HLION3T IN3FH3441d
d04 SNY31L1lvd
FUNLYNDIS AaMOVd o TOIINAS
€EY NOIS 0dN3 ¥O4 LNIOd
LE¥ TOGINAS OYN3 HOA LN3D ¥04 INIOd PEY TOAINAS OdN3 HOA4 4d0D 8-41N 31A4
INIOd 3A0D m-n_._.D J1A8-€ 3d0d w-n_.g_r.D 3LA8C INIOd 300D m-n_._b JLA8-€ -€ 40 wmw_.>m OML
4 A} [Y A1 {)
[BN BN]
0L000TTT]0L00000T{00L1L0LOT | 001L00L00]0 1000017 {0L000LOT [0L000TTT]01L00000T | 00L1L0LOT 0L000T 17| 01000007
0 / Sl £z Le 6¢ L S5 €9 VAR 6LL /2)
—
S1¥ SINIOd 30D ¢EY NOIS ¥V110d
8-4.1N aaMovd d04 INIOd 3a090
8-41N 3LAG-L
6l SNY311lvd
8Ly ILVIQIANI ~—~ O L z € <4\ 34NLYNOIS
.v .w_m o1 7 ¢ p— 5 40 SHLON3T

0€F NOILYH3dO NOILYNINYIL3A
HLONIT LNIOd 3A0D 8-41N a3XOvd

WO 2014/210366 PCT/US2014/044419
5/22

METHOD OF PERFORMING PACKED
VARIABLE LENGTH CODE POINT
LENGTH DETERMINATION
INSTRUCTION 550

2

()
RECEIVE PACKED VARIABLE LENGTH CODE POINT LENGTH
DETERMINATION INSTRUCTION INDICATING FIRST SOURCE
PACKED DATA HAVING PLURALITY OF PACKED VARIABLE }—~— 551
LENGTH CODE POINTS EACH REPRESENTING CHARACTER,
AND INDICATING DESTINATION STORAGE LOCATION

_ J

l

4 R

STORE RESULT PACKED DATA IN INDICATED DESTINATION
STORAGE LOCATION IN RESPONSE TO PACKED VARIABLE
LENGTH CODE POINT LENGTH DETERMINATION
INSTRUCTION, RESULT PACKED DATA HAVING LENGTH FOR
EACH OF PLURALITY OF PACKED VARIABLE LENGTH CODE
POINTS

—— 552

FIG. 5

PCT/US2014/044419

WO 2014/210366

6/22

_ 099 S.INIOd 30D

| HLON3T 319VIdVA A3INOvd Ol
| ONIANOJSIHHOD S1i19 FJA0DINN
| Q3LOVYLX3 40 S13S a3aNoVd

T T T == 7 __

| 729 S¥3LOVHVYHO 3A0JINN 40
| SLNIOd 3A0D HLONIT I19VIdVA
| A31LVArTvA 40 SHLON3T d3IxMovd

IIIIII q—————=

919 30YNOS ANQCOIS

_
_
a

| 19
T —

| 1INN

NOILND3IX3

G19 SHILOVHVHO
3d0OJINN 40 S1NIOd 3d0D
HLON3T 319VINVA AaMOvd

— — — — — —_—— o —

3
¥19 30dN0S 1Sdid

809 SYILSIO3Y VLVA AaMOvd

¥99 _
Q3LOVHLIX3I SINIOd |

: 30090 40 ¥39NNN _
llllllllll Jd

0

€99 NOILVNILS3A ANOD3S

9 "'Old

¢l

1INN
340203A

4
Al

==

909

(H3LSI193Y 3S0d¥Nd TVHINTD “9'3)

R

009
d0SS300dd

NOILONHLSNI
NOILOVYHLXH
S118 3d0JINN
1NIOd 30D
HLONIT IT18VI4dVA
aamovd

PCT/US2014/044419

WO 2014/210366

7/22

INTVA AITVANI 3INTVA AITYANI 3INTVA AITVYANI 3INTYA AITYANI
vge %7 Tvv 517 TS
oo 3INTVA AITVYANI 3INTVA QIFYANI INTVA dIVANI
957 792 BlT 3 £ae
9z1 65T 161 77 56z
01000000 00100100 ~ 01000000 ~ 01000000
01000000 00110400 00000000 | 00000000 00000000 00000000 | 01000103 00000000 00000000 | 0L00000T 001 1040T 00000000
0. i €9 56 e
LS/ NOYA 29/ S1id ZeL NOYA 89/ slig £/ INOY 69/ SLIg ¥£. INOYH 02/ SLId
3Q0DINN A3LOVHLX3 .\ 3Q0DINN 3LOVHELXT 3QODINN AALOVYEIXT 3Q0DINN ALV LXT
09/ S118 A3LOVHLXT
3Q0DINN A3NOVd
02 TOGWAS 2 9] ¢/ TOSINAS b/ HILOVHYHO
0¥N3 Y¥o4 NSIS INID HOA o¥N3 H¥o4 AIMYANIALITdINODNI
€ 40 HLONT1 Z 40 HLONI1 € 40 HLONI1 31VDIANI OL SANO TV
A St A IY's A 3
¢ |00000000|00000000 ! z |oooocooo| ¢ [00000000| 00000000 ARRAAARY FAARNAN]
0 / Sl €z Le 6S I 5G €9 WA 6Ll JE4)
1Z2 SINIOd 300D "
L¥. NDIS ¥v110d
8-41N AALVAIVA 40 MOd | 40 HLONTT
SHLIONIT AINOVd
£/ NOIS e/ TOGNAS O¥N3

LEL TOGINAS OdN3 HOd
1NIOd 3d0D 841N 3LAS€C

1N3IO HO4 INIOd

vl TOEINAS O¥N3 HOod

3000 m-n_u_r.D 3LA8-C INIOd 3002 m-...:.: JLAgG-€

r A (\

v

N

01000111} 0L00000T|00LLOLOT[00L00L00 [0L000OTT [0L000LOT | 0LO0OTTT|0LO000OT|00LLOLOT
0 L Sl £z Ig 6¢ Ly S5 €9 L.
€L NOIS ¥v110a
1. SINIOd 3000
11N IOV ¥04 INIOd 3000
841N ALAg-) L "Ol4

H04 8-41N JLAd
-€ 40 .wm_m_.>m_ oMl

4 R

0L000T11|0L00000T

L 6Ll L2}

99/ NOILYH3dO NOILOVYH1X3
S.11g 3AOJINN LNIOd 3a02 8-41n daxMovd

WO 2014/210366 PCT/US2014/044419
8/22

SET OF EXTRACTED UNICODE BITS IN
LITTLE ENDI%}{\I ORDER 872

(R
31 23 15 7 0

00000000 | 00101100 | 00000010 | 00

(]

00010

23 15 7 0

3-BYTE UTF-8 CODE POINT
FOR EURO SYMBOL 831 ——| 10101100 | 10000010 | 11100010

31 23 15 7 0

00000000 | 00000010 | 00000010 | 00101100

L J

~
SETS OF EXTRACTED UNICODE BITS
N BIG ENDIAN ORDER 874

FIG. 8

WO 2014/210366 PCT/US2014/044419

9/22

METHOD OF PERFORMING PACKED
VARIABLE LENGTH CODE POINT
UNICODE BITS EXTRACTION
INSTRUCTION 978

\

RECEIVE PACKED VARIABLE LENGTH CODE POINT
CHARACTER BITS EXTRACTION INSTRUCTION INDICATING
FIRST SOURCE PACKED DATA HAVING PLURALITY OF
PACKED VARIABLE LENGTH CODE POINTS EACH
REPRESENTING CHARACTER, INDICATING SECOND
SOURCE PACKED DATA HAVING PACKED LENGTHS OF
VALIDATED VARIABLE LENGTH CODE POINTS FROM FIRST
SOURCE PACKED DATA, AND INDICATING DESTINATION
STORAGE LOCATION

')

—_.979

4)
STORE RESULT PACKED DATA IN INDICATED DESTINATION
STORAGE LOCATION IN RESPONSE TO PACKED VARIABLE
LENGTH CODE POINT CHARACTER BITS EXTRACTION
INSTRUCTION, RESULT PACKED DATA HAVING PACKED
SETS OF EXTRACTED CHARACTER BITS, EACH SET OF
EXTRACTED CHARACTER BITS CORRESPONDING TO
DIFFERENT ONE OF VALIDATED VARIABLE LENGTH CODE
POINTS FROM FIRST SOURCE PACKED DATA, AND EACH
SET OF EXTRACTED CHARACTER BITS SUFFICIENT TO
DETERMINE CHARACTER REPRESENTED BY VARIABLE
LENGTH CODE POINTS

+—_.980

FIG. 9

PCT/US2014/044419
10/22

WO 2014/210366

[——— —— —_ —

901 4)
0201 87904 . oL | 2ol
2200 @134\ a131| q |2 3 asial Q90 | Qvs0L A | zaeso) M%S%mﬁs e | gqaEe | o |
I

J13I14] NOILYININYIN [TVHOdWAL SS300V a4
SSY10 >xo2m_>_y X3ANI zo_._.<mmao_.<§mon_

I31VIGINNI MSYIN INERERE] 907 -
_ suem“viva | S%8i FO VMO | -NON SEIEY MEST
_ ome

T _
| “ “ | . T¥4OdWILNON
_ SS3D0V AHOWAN

[(——— _— —

$901 4)
0201 87904 oL | zvol
2200 13| a3 | (5 {373 asig| S04 Y80k OIS epcny bugoy v] 390K 1 g3 | gl | OO |

I3LVIGINAIYSYA | Fna 2007 1y NOLYINAINVIA - 1qvi00na | ssvio | 53099 I vaanr noiLveddol 91312
TR R Fvoy T viva 5 =L WA= e A U GE
[_ T
! g e | 5201 THOdWAL 0201
|) NOILOIAZ | | | ALONIN
(===] 3
_ o) | 0, \N.ﬁmeﬂx oL | 0L | zrol
G0 GG g ot aveo ara | ST tasor] ssa0oy | gnaa | aa | o)
FLVICINNI| IS | NG NHOSNYYL VLva | “OFFT™ 1 8sv10 | Aonan| X3aNI Nollveado], G J
| ___BLiuM viva L A _ ON J¥318193d] 3Svd
| —
_ _ | ! | 5100 NOILY¥3dO
——— — J3¢AL 10"SS300Y ASONSN ON.
_ 004 | gl SO (| (veroL | oL | Z0k | oo |
G20 Al gy (o “ORREEC | SR8 vvesor lveoor vl ssaoov | gra | qmig | 20
ALVIGINWHASYIN 1 NTwTT3 wpeoL a1l | INNOY | SSY10 JAMONIN| X3ANI INOILYS3dO|; viaii 4
I = T 109INOD GNNOY |_ P ON ju3lsiomy| 3dsvg [0 |
_ | wesop | | “98 ‘40 AAL THLND ONNOY 5001
0001 LYWHO4 NOLLOMALSNI _ | Q13145 | ! TIN4 "$S300Y AOWIW ON_ SS300V
ATON31dH JOLOIA OIINTD ! _ _ ! “ MO
S } } } \
I v90T o 1T .]
0401 890}
2100 gy | | G4 |15 o0 | vsor amvizs (SR TEM qa | won | o | SRy | oo |
I3 IVIGIANI SV |INGHTTS Fzaor 1 g SSvID T3l x3aN Inoiiveadol, §i3 i
|_ _ _ _[BLEMW viva | “d47dsia "~ 050} 471314 NOILYYIHO NOILYINGWNONY d31S193] 3Sve voL'Old

4 y.0L 4 7 Y.
@1314 30240 11N4

PCT/US2014/044419

WO 2014/210366

11/22

= 0L | gzl 1.)
001 gz901 | /501 7701 vl
g 041 G5 | S e oo et 300 b o, f sy | 2 | 2% | o |
(PLVIGSNAIASTING NN vZ901 TATvOS] HOLOAA fasoaprsvi3umm SSYIO | Sioamf, XON INOLLYAIHO) v 4
AUumFRIH el Vudlsioy| 3sve
- - I _ l..
| L L Lo 0201
_ _ _ | COWMDOYWAM $S300Y
_ _ RIONIW
_ I I _ _ _
_ | | _ _
_ I _ | _
_ _ _ _ _ _
I I [I I I
_ I _ _ _
_ _ _ | _ I
—_— — ' —
. 7307) _ ~)
020} voroL | wpoL | zvol
a3
Pttt o W— Y () EREE SO (0 pETR R P
_ AmmViva) ON_ Ju3isiozy| 3sva [0
_ | _ ! | _ 2101 'd0 3dAL
_ L _ _ | JZISA WM 00V WaW ON
=== 7901 N e 2
001 | 38, voroL | w0l | el
2000 Q13 0| gy | IYES0L IR L ozl dt3idlaeay, of sS300 | amais | (Tl %__\mw.,_
LVICINAI SV | LSS QNNOY | QN Jiswin BLkin] SS¥10 |AHONTN| X3ANI INOILd3d0], G
I [Blem " viva (N N ON”_Ju3iSio3y| 3sva [-VHO:
_ _ _ | 2b0) 'dO IdAL THIND ONY
V2501 _ 18Yd WM 00V Gool
000} LYW NOLLONYLSNI _ KOEED _ ! | 1elvd OWM 00V W3 ON g3y
ATON3 144 YOLIIA OMINTD ! R | | _ el
‘ __ — — — 1 n i =~
I 7907 . |
0201 gz901 8901 0
201 aa|aad| Sl |37 asia] 99 | vor aaiavize |S0LTEEN a | e | FOLL G| ovo |
I3LVIGENNISYIN \NSNETa | VZ90T |5 s9vio} S8 | xaani Inorlweado| 33 1 0,1
I [Alum vivd | ddsia [T 0sor quai Nowweeo NouviNaeny i NEIGTEN ISR R
7100 /) .

@7314 300040 11N

PCT/US2014/044419

WO 2014/210366

12/22

0t @144 340240 VI AN eREE]

¢v0l E|
d7314 NOILYH3d0 3Sve wva__m__%%n_*/_

[ATATATALATATATA]) [W]w]ww] [Fzoxg |

T &
oGl belL QHEEMM oplL ol _
&g 9 &g & $90} QT3l4 HLAIM
L asa | 0 | [ala[a]a] [wa T o9] [a] [ulalx]y INENERERANTe 0v0L T3l
TIEEEENEENSRER VNG
S5 G1il d¥IN 300040
720} 01314 3009d0 TIN4 gLl 9l
004} 1¥/\¥O04 NOLLONYLSNI ATANIRI ¥OLOIA O14|D3dS
‘ N AQ Q311dILTNA ST HOIHM ARGEE A
HOLOV ININZOV 14810 3L ATNG Sa10k 0401 ONIAOONT
108 N.84510 Sy OL 0343932 (10=00M N3 e Ve
N.8dSIQ) 8290} 1314 ¥OLOV4 INIWIDYIdSIa VSVIN LM 2501 o 0v0l @73l
240} . 0gh) d1314vHdTY . dwn sl . LvWdoS
8: 3: _Smm 30090 Tv3¥ 02bE QUMM | 300040 X3 | %
~ 3 N__.|._|._|_ =2)]
st ylalalalal as __C/ESS_ __>Z>_>_>_>_>_>T_x_x I EAEH D O O R e

(0} =COW NIHM Z£4S1Q)

{
V2901 41314 Hzms_moi%a
}

91 | ¥51L [CS)
ggd | XXX | SS
3 s9 /
31A4d 9IS

-

| o o

a1314 .38 0bL) X3
ovbL | vl |zeib| OV X3Y wom%w__u_ $901 Q1314 HLAIM
W | 9 |dowj INIWF13 v1va .
ce s9 L 0L XI43¥d X33
31A W AOW Vil ‘ol

WO 2014/210366

PCT/US2014/044419

13/22

FIG. 11D

CLASSFIELD ALPHAFIELD
1068 ~_

1052 | BETA FIELD 1054

AUGMENTATION OPERATION FIELD 1050

- ~UTG[E[F[E

FIELD 1052 u|B]R]8]
ROUND 105241 1 1 1T
:

111

—

1llo

SAE FIELD!
1056

ROUND OPERATION FIELD 1058
ROUND CONTROL FIELD 1054A

(i

U=0

MOD FIELD 1142

ns LalB[e]e]
| FELD 1052 ! | 17
0
' DATA/l

I TRANSFORM
| 1052A2

SzIS1|So

__V_J
DATA TRANSFORM
FIELD 1054B

=

Es [o]] 58
[

EVICTION
HINT FIELD
10528

i

DATAM

I
OD FIEL

00 [OR[01|OR|10]

-

1150
ANIPULATION FIELD 1054C

1142

]
g

1062B

WRITE
MASK
CONTROL
FIELD
1052C

I 1
r1|ro

—
ROUND

OPERATION
FIELD 1059A

1

U=1

GLTh,

-

MOD FIELD 1142
1057A |

ROUND |
1057A.1 I

RL

LIEILL %X
1057A
S

VSIZE
1057A.2
VECTOR LENGTH FIELD
10598

MERGING\['?]
ZEROING

VECTOR LENGTH BROADCAST FIELD 1057B

FIELD 10598

PCT/US2014/044419

WO 2014/210366

14/22

[ARDIE]

&y

Oy

S1id ¥9
GLZ| siesiboy NSe epp

0S¢l 34 4318193y
1V1d4 INI @3Movd XN

Siid v9
A

i

aasvinv

Fwwz
S11g 962

ﬁw._._m 8¢l

Shuwwix SlwwA

Owiwix owwA ‘wwz
L J

Y
sLigZig

oLclL w._muw_mwm JOJOON

\<
Slig 08

(d4.8%)
Syel

14 43181934 MOVLS d4 "VIvOS

SLg 9 X 9l

Gzz | siosibay asodingd |eleusn

0021 FYNLOTLIHOWY ¥31SID3Y

PCT/US2014/044419

WO 2014/210366

15/22

—— —

_
| ¥ZEl

| LIAnoo

9/El viEl
LINN

3HOVO ¢LEl

0Z€} LINN
AHOWIN

LINA FHOVO Yiv(d

Al LNN F]1 V1vd
T

y 09l (S)M3LSN1D NOILND3X3

#9gL
(S)LINN coEl
5370V (S)LINN
NOILNO3AX3

AHOWIN
'y 1

- "

8G¢L (S)LINN ST ¥ALSIDFY IWIISAH

b e i e’ o e (e AL IS e

LINN INSNFHILTY

A___ T~ | 2 22T
N T s -
2GeL LINN _I'L
_ HOLYOOTIV / INYNIY 0Sel LINN

vselL

I
_
_
“ gst 'old

ANIONS NOILNDIXT

0¥el 1INN 300030

Y
[seel HOI34 w_o_SzEmz_ |

ocel
LINN AN3 INOYS

/ 06€1 34090

9¢€l LINN G711 NOILONYLSNI
PL_YEEL LINN IHOVD NOILONYLSNI

¢

¢eel LINN
NOILOId3dd HONYYE

azel
ONINANYH
NOILd3DX3

8lEl viel
LM 9lEl AV AHOWIN
AHONIW | FOVLS 3LNd3X3 1av3d

MOVE FLR-IM 4318193y

ziel olel | gogl | oog | PO

I ONId023d
3INA3IHOS @z:>_<zmm_ 2071V {300204d HLONT

coel
HO144

Vel 'old

T 00el ANMEAd —

PCT/US2014/044419

WO 2014/210366

16/22

VoorlL
AHOVO V1ivad L1

aeey) \ 44445
LHIANOD 1¥3IANOD
OIINAN OI4INNN
A
vivi
S¥3LSIOIY
dO103A
A
[¥ 4
acrl eyl
3ATZZIMS JLvOoIidad
i V. ¥ /
8¢yl

N1V JOLO3A 3aim-gi

A

9cvl
SHALSIOTH ASVIN T LIHM

avl "old

AHOMLIN ONIY

0¥l

A
{

¢13H1 40

17948

dHOVO

1384NS 1vo0T
A

\ 4

i) 4%

JHOVD LT

A
Y

vivl
SH3LSIDIY
HOLO3N

145 4"
SY31sio3d
HVYIvY3OS

1

oLyl
1INN
HOLO3A

A

20 T I S

J

80¥L
1INN
AVIVOS

A
A

0ovl

3A023a NOILONYLSNI

vyl 'old

PCT/US2014/044419

WO 2014/210366

17/22

R e Sl
| mm\ﬁww‘w_,__\,_oo | o6l (SUNNSHOVO ATV |
aigL(Slnn |1 T PS5
¥3ITIONINGD || 2 IF2E W Nvosl T vi0g)
sng LN T | cma| |(SILINN
0LSL LINN | 3Hovo 1 3HOVO
INJOV WALSAS | NZ0sl 340D | V2051 300

I
I
I
I

_ Sl 'Ol
805t 21007 |
3soddnd |
Wio3ds |
N |

/8& ¥0SS3I00Nd

WO 2014/210366 PCT/US2014/044419
18/22

1615
1600 - — — 77
— 1610

| m ==
|
- b— — PROCESSOR [— — 7
| — /1695|
N Wl —— | _— 1640
' [CONTROLLER
co !—— i MEMORY
| PROCESSOR | [e e I
L I
|
1660 —_ L=
0 . 1oH 1650 |
o

FIG. 16

PCT/US2014/044419

WO 2014/210366

19/22

vLva L 9ld
8¢Ll —— 08/
dNY 3d09 | s3omaa | 3snow
JOVHOLS VIVa Lell WINOD cell JQEYOSAIN
0ZL)
§LLL y2Ll an 8Ll
¥0SSIO0ONd o/ olany S30IA3a O/l I9alg sng
o1,/ ﬁ — — — _
96LL — M| 26y —1 N | el
1
86, — dd 06} 135dIHO JEX L ges _mo.mmwoo%_oo_
6LT — _——
$G/1 28/l
—
08/1 d-d dd d-d dd 0.1
9821 — gy} — \ \ Loy
8L
05/l
2811 wl =7
NI ONI
veLl A}
AMOWIN
¥0SSIO0N¥d0D AHONIN
/40SSI00Nd ¥0SSIO0Nd

/ 001

PCT/US2014/044419

WO 2014/210366

20/22

vELL
AHOWIN

el
AJOWIN

8l "ol
5181
O/l AOY9T1
061 96/ —1 4/l
13SdIHD
86} —1 dd 6L, — dd
gtl\» e Nmtn\» «
-
0gy [dd| |dd dd dd| o
98, — 98/| A\ V ,/r... L 9ll)
8LL)
05.1
— 8/l 4
— 1 10
¥0SSID0Ud H0SSI00Nd
—_——
18l _

_ s30IA3aon

/ 0081

PCT/US2014/044419

WO 2014/210366

21/22

¥1SL (S)LINN
V6l 0861 ¥ITIONINOD
LINA AYTdsia | [CEBF LINAVAGHE A s AHONIN
EIN S REI
9151 (S)LINN
HITIOHLINOD
|
g 706} (SIIINA H_om_zzoomm:z_ _
" _
_ 905} (S)LINN IHOVD AIMVHS !
_ r—--- | _ T
|y Nvosk | V051
| JOLND | | ame | |(S)LNN
051 LIND L2070) | 3HOVO
INIOVY WILSAS _rzsﬂ 400 ._ vZ0G) 3409
0161 YOSSIDOMd NOILYOITddY

0261 (S)H0SSIV0HL0D

/ 0061

diHO V NO W3LSAS

6} 'Old

PCT/US2014/044419

WO 2014/210366

22/22

02 'Ol

700Z Y3 TIdNOD 98X

9002 300D AYYNIEG 98X

Y

9102
3400 13S NOILONYLSNI
98X ANO 1Sva1
1V H1IM 40SS3004d

€002 IOVNONYT 13AITHOIH

J4VM 1408
JIYMAYYH

¢10C 43ALEIANQD
NOILONYLSNI

800¢ ¥11dWOD
138 NOILONYLSNI
JAILYNEILTY

010Z 3000 AYVYNId
13S NOILONYLSNI
JAILYNY3LTY

¥10Z 3400 L3S NOILONYLSNI
98X NV LNOHLIM H0SS3004d

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/044419

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 9/06(2006.01)i, GOGF 9/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/06; HO3M 5/00; HO3M 7/34; HO3M 7/38;, HO3M 7/40; GO6F 9/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: unicode, UTF-8, transcoding, converting, code, point.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2008-0165038 A1 (INOUE HIROSHI et al.) 10 July 2008 1-25
See abstract, paragraphs [0030]-[0041], claims 4-6 and figures 3-7.

A US 2010-0302076 A1 (ROBERT D. CAMERON) 02 December 2010 1-25
See abstract, paragraphs [0172]1-[0221], claims 1,2 and figures 8-11.

A US 2011-0128167 A1 (SCHNEIDER JAMES PAUL) 02 June 2011 1-25
See abstract, paragraphs [0008]-[0100], claims 1,15 and figure 1.

A US 2011-0037625 A1 (JOYCE STEPHEN ALLYN) 17 February 2011 1-25
See abstract, paragraphs [0033]-[0078], claim 1 and figure 1.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" ecatlicr application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity ¢claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination

means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

30 September 2014 (30.09.2014) 30 September 2014 (30.09.2014)

Name and mailing address of the [ISA/KR Authorized officer

International Application Division
« Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea

Fécéirhile No. +82-42-472-7140 Telephone No. +82-42-481-5696
Form PCT/ISA/210 (second sheet) (July 2009)

Park Sungcheol

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/044419
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008-0165038 Al 10/07/2008 US 2008-0238734 Al 02/10/2008
US 2008-0238735 Al 02/10/2008
US 7394411 B1 01/07/2008
US 7864081 B2 04/01/2011
US 2010-0302076 Al 02/12/2010 CN 101243441 A 13/08/2008
CN 101243441 B 18/07/2012
CN 101243441 CO 13/08/2008
EP 1899858 Al 19/03/2008
US 2006-0284745 Al 21/12/2006
US 2008-0272939 Al 06/11/2008
US 7400271 B2 15/07/2008
US 7728738 B2 01/06/2010
US 7898441 B2 01/03/2011
WO 2006-136015 Al 28/12/2006
US 2011-0128167 Al 02/06/2011 US 8159374 B2 17/04/2012
US 2011-0037625 Al 17/02/2011 US 7982637 B2 19/07/2011
WO 2011-020072 Al 17/02/2011

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report

