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( 57 ) ABSTRACT 
Ambulatory or in - hospital monitoring of patients is provided 
with early warning and prioritization , enabling proactive 
intervention and amelioration of both costs and risks of 
health care . Multivariate physiological parameters are esti 
mated by empirical model to remove normal variation . 
Residuals are tested using a multivariate probability density 
function to provide a multivariate health index for prioritiz 
ing medical effort . 
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MULTIVARIATE RESIDUAL - BASED 
HEALTH INDEX FOR HUMAN HEALTH 

MONITORING 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation of prior applica 
tion Ser . No . 14 / 074 , 586 , filed Nov . 7 , 2013 , which claims 
the benefit of priority under 35 U . S . C . § 119 ( e ) to U . S . 
patent application Ser . No . 12 / 984 , 400 filed Jan . 4 , 2011 , and 
U . S . Provisional Patent Application Ser . No . 61 / 295 , 072 
filed Jan . 14 , 2010 , which is fully incorporated herein for all 
purposes . 

etry from a wearable sensing device with multiple sensors 
could provide such data . However , existing devices are 
data - poor , in most instances univariate , and are primarily 
aimed at very narrow health related issue , e . g . glucose 
monitoring for diabetics , or blood pressure for hypertension . 
The devices are usually not meant for continuous monitor 
ing , and any analysis performed is done using gross popu 
lation statistics , i . e . not personalized to the individual . 
Further , current commercial telehealth devices are not easily 
wearable , and do not take advantage of the latest mobile 
technologies . 
[ 0007 ] There is a need to make multivariate continuous 
data available for analysis , whether from a wearable device 
on an out - patient basis or from bedside equipment in a 
hospital , so that machine learning technology like the afore 
mentioned SBM can be applied to automate early detection 
of incipient changes indicating the health of the patient is 
potentially subject to deterioration . Because medical staff is 
commonly overworked and short on time to spend deeply 
studying analytical results for each patient , especially where 
large populations of at - home patients may be involved , an 
important issue is how to summarize the results of such 
machine learning techniques in a simple metric for action 
ability . 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[ 0002 ] This invention was made with Government support 
under award number IIP - 0810751 awarded by the National 
Science Foundation . The Government has certain rights in 
this invention . 

BACKGROUND OF INVENTION 

Field of the Invention 
[ 0003 ] The present invention relates generally to the field 
of human health monitoring , and more particularly to the use 
of multivariate models for analysis of measurements of 
biological parameters to provide residual - based assessment 
of human health indicators . 

Brief Description of the Related Art 
[ 0004 ] Medicine has for centuries been practiced as a 
reactive , crisis - driven process . Unfortunately , it remains 
largely so to this day . Chronic diseases represent a dispro 
portionate share of the crushing economic cost of healthcare , 
much of which could be avoided by early warning of 
deterioration . Current healthcare practices are episodic and 
reactionary , with little visibility into patient health outside 
the controlled setting of the clinic or hospital . However the 
medical arts are only now beginning to explore out - patient 
telemetry from wearable devices , and there is virtually no 
answer to who is going to watch all this data , or how it will 
be analyzed to provide early warning with a low false alert 
rate . Moreover , out - patient telemetry poses considerable 
challenges due to ambulatory motion artifact and normal 
physiology variation in the course of daily activities not 
usually dealt with when a patient is sedated and supine in a 
hospital bed . 
[ 0005 ] Other industries ( nuclear , aviation , refining , com 
puter systems ) have in recent years adopted advanced intel 
ligent algorithms for condition monitoring , that accommo 
date normal variation and dynamics exhibited in the sensor 
data collected from a target system , and differentiate it from 
subtle early warning signs of deterioration . One kind of 
machine learning technique , Similarity - Based Modeling 
( “ SBM ” ) technology , has proven successful in many appli 
cations including those mentioned above . SBM is a non 
parametric data driven modeling technique which learns 
normal behavior from multivariate data from a complex 
system , and distinguishes it from the onset of adverse 
behavior in a monitored system . 
[ 0006 ) Visibility into health issues with SBM is contingent 
on the availability of multivariate data . Continuous telem 

SUMMARY OF THE INVENTION 
[ 0008 ] An end - to - end human health monitoring solution is 
disclosed , comprised of a wearable wireless sensing device 
that continuously collects vital signs sensor data and trans 
mits it ( in real - time or in periodic bursts ) to a base - station 
computer ( or cell - phone / PDA ) for preprocessing . The pre 
processed data is then sent to a server over the web for 
analysis using a kernel - based machine learning analytical 
method tailored for human monitoring , such as SBM . The 
SBM technology is trained to be specific to each individual ' s 
normal vital signs characteristics . Due to the variation in 
vital signs data from human to human , this capability is 
crucial for any human monitoring system to be effective . 
[ 0009 ] . The server can be remotely located from the 
patient . The analysis performed at the server with SBM or 
other related kernel - based method works by generating 
estimates of the vital signs ( i . e . , physiological data ) that have 
been determined from the sensor data . These estimates 
represent what a trained SBM model can determine as the 
closest allowable normal physiological data that corre 
sponds to the monitored data . The estimates made of the 
physiological data are differenced with the actual , monitored 
physiological data to generate residuals , representing the 
differences between the expected values according to the 
trained model , and what has been measured by the wearable 
sensing device . These residuals form the basis for further 
analysis that provides early detection of subtle warning of 
health problems , which would likely be missed using con 
ventional medical methods of comparing vital signs to 
demographically acceptable ranges ( e . g . , population - based 
standards for blood pressure ) . 
[ 0010 ] Residuals for normal physiology ( physiology as 
previously modeled ) are different from residuals for physi 
ology that is beginning to deviate from normal , and can be 
statistically distinguished . The further computerized analy 
sis of the residuals comprises one or more of the steps of : 
determining a likelihood that the residuals derived for any 
given multivariate input observation of monitored data are 
representative of a pattern of residuals characteristic of 
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[ 0016 ] FIG . 3 shows an example chart of raw physiologi 
cal waveforms or signals ; 
[ 0017 ] FIG . 4 shows a signal amplitude chart of photop 
lethysmography components used to determine a feature 
related to SpO2 ( blood oxygen saturation ) , which may be 
understood to represent the light components picked up by 
a photosensor stacked additively ; 
[ 0018 ] FIG . 5 is a multi - chart example plot showing in the 
top four plots raw physiologically - related signals , and in the 
bottom five plots the related feature data derived there from ; 
0019 ) FIG . 6 is a plot of an exemplary physiological 

feature time series showing perturbations of that time series 
used in accuracy and robustness calculations ; 
[ 0020 ] FIG . 7A is one of a pair of related plots of a 
multivariate health index and has been derived merely for 
raw feature data showing an index for unperturbed data and 
for perturbed data ; 
0021 ] FIG . 7B is a multivariate health index plot derived 
for residual data generated from kernel - based models of 
feature data showing and index for unperturbed data and for 
perturbed data , and 
[ 0022 ] FIG . 8 is a block diagram showing an alternative 
embodiment . 

normal physiology , based on a “ mixture of Gaussians ” 
density estimation ; generating a multivariate health index 
based on that likelihood as a logarithm of the inverse of the 
likelihood ; applying a threshold to the index thus generated 
to render a decision whether the inputted vital signs are 
characteristic of normal physiological behavior ; and com - 
bining a series of such decisions to provide an early indi 
cation of deviation from normal of the physiological health 
of a patient . The multivariate health index advantageously 
summarizes the residual analysis from multiple variables 
into a single index for the management of prioritized lists of 
patients . 
[ 0011 ] The health monitoring solution can also be applied 
to multivariate physiological parameters obtained in a hos 
pital from bedside monitors . An SBM model of typical 
human physiology can be used to make estimates and 
residuals for patients in the hospital , particularly those at risk 
for developing complications such as sepsis or pneumonia , 
and particularly patients who are sedated and / or ventilated 
and not able to express discomfort or feelings of incipient 
illness . Bedside data feeds amenable to the health monitor 
ing solution include electrocardiographs , pulse oximeters , 
ventilator data , arterial and venous pressures measured by 
noninvasive means or by catheters , and the like . Such data 
can be streamed to a server for the hospital ward , or to 
off - site servers for monitoring multiple hospital facilities , 
and decision support can be rendered by application of SBM 
to these data streams and displayed to healthcare workers for 
prioritizing patient treatment . 
[ 0012 ] The analytics of the present invention can be 
performed on generic computing platforms specially con 
figured by software . Data collected from sensors on the 
patient can be wirelessly transmitted to an ambulatory or 
portable device , e . g . , via Bluetooth or other extremely local 
radio protocol . The portable device can be a cell phone 
carried by the patient , a “ personal digital assistant " , PDA , or 
the like , or a portable computing device moved with a 
patient in the hospital bed . This device may receive raw 
sensor signals and perform the aforementioned preprocess 
ing to extract vital sign “ features ” ( physiological data ) from 
the sensor signals , for example a heart rate from an EKG / 
ECG signal ; or may receive already - preprocessed features 
extracted by sensor microprocessing facilities from raw 
sensor signals . The resulting physiological " feature " data 
can be analyzed with SBM either on the device ( the cell 
phone or PDA ) or on a computer / server to which such 
physiological data is transferred . The computer can be a 
home computer collocated with the patient , or can be a 
remote server at an analytics data center . The transfer of data 
from the device can be by means of cabled offload or by 
wireless retransmission . 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[ 0023 ] There are a plethora of chronic ailments and ill 
nesses of which a patient may suffer , but for which the 
patient cannot be kept indefinitely in a hospital . A patient 
may have heart failure , chronic obstructive pulmonary dis 
ease , renal failure , diabetes , early stage dementia and other 
conditions , which can devolve from a stable , managed state 
into an emergency health risk with little apparent warning . 
It is desirable to detect such devolution early because 
medical intervention at the early stage can prevent the 
emergency , avoid costs , prevent disease progression , and 
improve outcomes . 
[ 0024 ] Even patients in the hospital under care of medical 
staff can develop complications that are best detected early . 
Patients on ventilators suffer a high rate of developing 
pneumonia . Infection and sepsis can occur due to hospital 
acquired cross - contaminant infections or from post - surgical 
complications . Conventional bedside monitoring typically 
employs thresholds on vital signs to alert staff of patient 
deterioration , but these conventional alerting methods are 
coarse , either suffering a high false alert issue and rapidly 
disappearing into the ignored background noise , or catching 
the deterioration later than is desired . 
[ 0025 ] Unlike the majority of monitoring approaches used 
in the healthcare industry today , SBM is a multivariate 
approach that takes advantage of the interrelationships 
between vital signs signals ( e . g . , heart rate ( HR ) , blood 
oxygen saturation ( SpO2 ) , Respiration Rate , Blood Pres 
sure ) . Such an approach is critical for the analysis of 
physiology in the presence of normal variation , that is , 
variation of physiological data due to normal changes in 
physiology responsive to metabolic needs , activity , environ 
ment , diurnal cycles and the like . Over the course of a day , 
a typical human exhibits a wide range of heart rates , 
respiration rates , blood pressures , blood oxygen levels and 
so on . In contrast to a sedated patient in a hospital setting , 
ambulatory conditions are exceptionally plagued by such 
variation , and as a result there has been little traditional 
medical monitoring of humans in their normal lives at home 

BRIEF DESCRIPTION OF THE DRAWINGS 
10013 ] The novel features believed characteristic of the 
invention are set forth in the appended claims . The invention 
itself , however , as well as the preferred mode of use , further 
objectives and advantages thereof , is best understood by 
reference to the following detailed description of the 
embodiments in conjunction with the accompanying draw 
ings , wherein : 
[ 0014 ] FIG . 1 is a block diagram showing a general 
arrangement according to one embodiment ; 
[ 0015 ] FIG . 2 shows an example of sensor placement on 
a human ; 
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except in extremely controlled circumstances . Even in a 
sedated condition in the hospital , normal patient physiology 
still exhibits substantial variation . Such variation hides early 
changes in physiological parameters that evidence incipient 
deterioration of health . Conventional alerts placed on single 
parameters cannot see such changes against the background 
of normal variation until such changes become extreme . For 
example , a threshold placed on heart rate cannot be set to 
trigger an alert merely because the heart rate rises by 10 
beats per minute , because this may readily occur in normal 
physiology . But if the threshold is set to 160 bpm , a patient ' s 
condition may already have deteriorated substantially by the 
time the threshold is exceeded . 
[ 0026 ] In addition , much of the sensing technology being 
developed today is burdened by the necessity to provide an 
exactly calibrated reading of the vital sign of interest . In 
contrast , SBM requires only relative proxies of the vital sign 
of interest , thereby avoiding the problem of attaining abso - 
lute calibration of a physiological parameter in order to 
measure health . This is because the detection of incipient 
health problems is based on relative changes between all 
biosignals in aggregate , not on exceedances from popula 
tion - based vital sign ranges . 
[ 00271 SBM achieves these advantages by embodying 
normal variation in a model ( “ learning ” ) . This model is then 
used to generate multivariate estimates of the learned physi 
ological parameters when presented with a multivariate 
measurement of those parameters . These estimates represent 
the closest possible set of values for normally varying 
physiology , to the presented ( measured ) values . The esti 
mates are differenced with the presented values to yield 
residuals . Analysis is advantageously shifted from testing 
raw physiological values which are plagued by normal 
variation , to testing residuals which represent differences 
beyond merely normal variation . In effect , SBM removes 
normal variation by subtracting the estimated behavior from 
the measured behavior , leaving just deviations . 
[ 0028 ] As described herein , the residuals are analyzed 
using a multivariate density estimation technique . According 
to this novel approach , the multidimensional distribution of 
residual vectors ( vectors of dimension n where n is the 
number of physiological parameters for which estimates 
were differenced with actual measured values ) for data 
representative of the patient ' s normal physiology is used to 
form a multivariate density estimator . The density estimator 
is a Gaussian mixture model , and is used to determine the 
likelihood that any new input residual vector ( i . e . , from 
newly monitored data ) is part of the same distribution . This 
likelihood obtained from the multidimensional density esti 
mator effectively consolidates the behaviors of the indi 
vidual residuals for each of the physiological parameters , 
into one overall index that can be used to summarize patient 
priority . This likelihood can be used as a multivariate health 
index ( MHI ) , and can be subsequently tested with a number 
of persistence rules to assess patient priority over a time 
series of observations of the multiple physiological param 
eters being monitored . 
[ 0029 ] Advantageously , this MHI analysis of model - gen 
erated residuals provides earlier warning of incipient health 
issues when compared to conventional medical univariate 
thresholds on raw physiological data , and when compared to 
multivariate density estimates of raw physiological data . 
( 0030 ) Turning to FIG . 1 , the overall approach can be 
appreciated . In step 105 , multiple biosignals are acquired 

from sensors on or in the patient . Examples of appropriate 
biosignals include electrocardiographs ( ECG ) , thoracic 
bioimpedance ( bio - Z ) , photoplethysmographs ( PPG ) , tem 
perature differentials , systolic or diastolic blood pressures , 
accelerometer - measured motion , piezoelectric signals of 
respiratory activity , and instant airflow measurements from 
respiration , to name a few . In step 110 , these biosignals are 
used to derive physiological feature data . A variety of 
physiological features can be derived from such biosignals , 
with a commonly understood example being heart rate 
determined from landmarks of the ECG signal . Similarly , 
thoracic bioimpedance can yield respiratory rate and depth ; 
PPG can yield pulse transit time ( when cross referenced to 
the ECG ) and the blood oxygen saturation , and so on . A 
variety of physiological features are known in the art , and 
the application of SBM in subsequent steps readily contem 
plates the use of new features as well , because the method 
is agnostic to the signals used ( as long as the model is trained 
on the same kind of data ) so long as they interrelate through 
the feedback loops and control mechanisms of human physi 
ology . In optional step 115 , the derived features can be 
supplemented with other physiologically - relevant data , that 
is , data that impacts the physiological behavior or response 
of the monitored human . An example is FiO2 , the fraction of 
oxygen in inspired air , which can be increased over room air 
with the use of supplementing oxygen . In step 120 , a 
kernel - based model such as SBM that has been trained on 
normal variation of these same physiological features gen 
erates estimates of an input observation of the features . 
Typically , an estimate is made for all elements in an input 
vector comprised of the collection of physiological param 
eters sampled contemporaneously . In step 125 , the residuals 
are generated between those features measured and corre 
sponding estimates of those features , in the instant moni 
tored observation . Optionally , threshold tests can be applied 
in a univariate manner or in a multivariate pattern - matching 
manner to the residuals in step 130 . In parallel with that 
option , the residuals are processed in step 135 by a mixture 
model developed from “ normal ” residuals , and a multivari 
ate health index is determined for the input observation in 
step 140 . This MHI is an index of the likelihood that the 
residuals from the input observation belong to the multi 
variate distribution of the mixture model . The MHI can also 
be tested with a threshold to determine if the likelihood is 
insufficient such that the input observation evidences devia 
tions not characteristic of normal physiology . In step 145 , 
persistence rules can be applied to a time series of MHI 
determinations to further test observation - over - observation 
in time the persistence of threshold exceedances , providing 
greater confidence that a deviation is occurring in the 
patient ' s health , and is not merely a transient phenomenon 
in the data . In a step 150 , the alerts from the MHI and its test , 
along with any previous tests on individual residuals or 
residual patterns , is managed for prioritization of patient 
care via a user interface . Alert management can facilitate 
user - initiated annotations into a medical record system relat 
ing to the alerts of “ dismissal ” , “ elevation ” or “ monitor ” and 
other actions . 
[ 0031 ] The biosignals of step 105 can be acquired from 
typical hospital vital signs equipment such as bedside moni 
tors and ventilators , from mobile vital signs monitors , 
implanted devices such as implantable cardioverter defibril 
lators and pacemakers with instrumentation , and from wear 
able ambulatory monitors . Whatever data source device is 
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used , it must collect biosignals capable of providing mul - 
tiple related physiological variables or features contempo 
raneously and at least periodically , if not continuously . In 
one form , a patient uses a non - invasive ambulatory sensing 
device or has an implantable device to acquire biosignals on 
at least a semi - continuously basis throughout the patient ' s 
normal daily activities . Data acquired by a sensing device 
can be offloaded from device memory on a periodic basis 
and thereafter processed on a computer ; or can be continu 
ously transmitted by cellular network or WiFi , to be pro 
cessed either continuously or in batch - mode by a receiving 
computer or server . The physiological features can even be 
analyzed using the residual - based method on a smartphone 
or PDA , carried by the patient , since the computing require 
ments of the analytical process are well within the capabili 
ties of modern mobile devices . Then , resulting alerts or 
health status conditions can be reported locally on the 
mobile device , and can also be uploaded to a central server 
to be shared with medical practitioners . 
[ 0032 ] One non - invasive wearable sensing device that can 
be used with the present invention is designed to acquire 
data from 4 types of signals : ECG , red and infrared ( IR ) 
photoplethysmograph ( PPG ) , bioimpedance , and a 3 - axis 
accelerometer . These sensors provide a rich waveform set 
from which physiologic features can be extracted . The 
extracted features ( as opposed to the raw waveform data ) are 
what ultimately drive the SBM - based human health moni 
toring approach . The device can be designed to record 
relevant biosignals for local storage , e . g . , on an onboard 
microSD card ; or for transmission via a built - in Bluetooth 
radio to a cell phone or PDA carried by the patient . The 
device can be designed to have a USB Mini - B connector that 
can be used to supply power to the device when recharging 
its battery , and that provides a mechanism for high - speed 
communication with a PC for periodically off - loading data , 
if raw real - time sensor data are stored on a micro - SD card 
of the device . The device may use a microprocessor selected 
from the well known Texas Instruments MSP430 line , ideal 
given its low power consumption characteristics , built - in 
ADC , DAC , timers , and multiple serial peripheral interfaces 
( SPI / UART / I2C ) . The Bluetooth interface can be provided 
via a BlueCore 3 Plug - n - Go IC , a 96 - pin BGA module from 
CSR , Inc . , with minimal external component requirements , 
and a 2 . 4 GHz chip antenna . 
[ 0033 ] A number of sensing interfaces can be used to 
provide data for the present invention . The electrocardio 
gram ( ECG ) can be implemented by using a two - stage 
analog high pass filter ( HPF ) , followed by a radio - frequency 
interference ( RFI ) filter and a micro - power instrumentation 
amp . It is crucial in an ambulatory mode to employ an RFI 
filter in front of this high gain differential amplifier . Without 
it , a phenomenon called RF rectification can occur in the 
differential amplifier IC . Once an RF signal becomes recti 
fied inside the IC , it results in a DC offset error at the output 
and no amount of low pass filtering can remove the error . As 
the RFI changes over time the DC offset changes as well 
resulting in an ECG signal that is highly susceptible to 
artifacts . Two pickup electrodes can be used to acquire the 
signal , for example on either side of the chest . The ECG is 
typically sampled at 12 bits and 256 Hz by the micropro 
cessor . 
[ 0034 ] A bioimpedance measurement can be made by 
using a dedicated 12 - bit impedance converter network ana 
lyzer IC ( Analog Devices AD5933 ) in conjunction with a 

voltage to current stage and a programmable gain instru 
mentation amplifier . An electrode placed under the left 
armpit can be used to inject 425 uA of current at 50 kHz to 
a ground electrode found on the opposite side of the torso . 
The same electrodes used to pickup the ECG signal can be 
used to pick up the 50 KHz signal through a 5 KHz HPF and 
an RFI filter . The difference in voltage is proportional to 
body ' s impedance through the relationship V = IR . The 
AD5933 IC is capable of measuring the complex impedance 
of the signal . 
[ 0035 ] The PPG signal can be acquired by controlling a 
pair of LEDs ( Red and Infrared ) via a current limiting 
H - Bridge for light generation . The unabsorbed light is 
measured using a reverse - biased PID photodetector con 
nected to a transimpedance amplifier for initial gain . The 
measured signal is then fed to a second stage differential 
amplifier along with a DC - offset value generated in firm 
ware from the output of the microprocessor ' s DAC . The 
DC - offset value is meant to keep the signal within the rails 
of the differential amplifier so that the signal gain can be 
maximized . The output of the second stage amplifier is 
preferably then oversampled by a factor of 8 at 16384 Hz 
( for a final sampling rate of 256 Hz ) after a waiting period 
of 488 uS after the LEDs have changed states . The over 
sampling is applied to increase the signal - to - noise ratios of 
the PPG signals , which are highly susceptible to noise . 
[ 0036 ] Accelerometer data can be generated by a 
LIS302DL MEMS digital accelerometer at 400 Hz ( 8 bits 
per axis ) . The digital readings are preferably read by the 
microprocessor at a rate of 100 Hz . 
[ 0037 ] The acquired data can be placed into two buffers : 
one that is flushed out to the file system ( micro - SD ) , and one 
that is fed to the Bluetooth IC for transmission . Each value 
is preceded with a single byte ID for identification , and 
periodic " sync " blocks are inserted into the Bluetooth stream 
to aid in data alignment . Each packet of data consists of the 
ID byte , followed by two bytes containing the sample value . 
Periodic 32 - bit timestamps are also transmitted by utilizing 
two packets to represent the high and low words of a 32 - bit 
seconds counter . 
[ 0038 ] In one form , a subject is outfitted with four elec 
trodes and one pulse oximetry sensor . Two types of elec 
trodes can be used , carbon - rubber non - adhesive electrodes 
and carbon - rubber adhesive electrodes , although other com 
mercially available electrodes are readily contemplated for 
use in the embodiment . The electrodes are placed on the 
body as shown in FIG . 2 : ( A ) corresponds to the Bioimped 
ance current source electrode , ( C ) is the + ECG electrode , ( F ) 
is the - ECG electrode , and ( H ) is the analog ground elec 
trode ( AGND ) . The ECG leads are also used to simultane 
ously pick up the bioimpedance response signal . The device 
can be worn by either being placed in a stretchable chest 
strap with the non - adhesive electrodes attached to the inside 
of the strap via Velcro , or it is placed in a pouch worn around 
the neck with leads running to the adhesive electrodes . The 
PPG signal is acquired via a disposable Nellcor reflective 
pulse oximetry sensor affixed to the forehead and connected 
to the device . A typical example of the signals captured by 
the wearable sensing device described above from a human 
subject is shown in FIG . 3 . The signals are : ( A ) ECG , ( B ) 
X - axis accelerometer , ( C ) infrared photoplethysmograph 
( PPG ) , ( D ) real component of bioimpedance , and ( E ) imagi 
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gain . Some level of background light is detected by the 
sensor , and needs to be subtracted from the measured signal 
as well ( OFF SIGNAL + OFF QUPUTOFFSET ) . The RED 
DC TRACK parameter is the lower envelop of the actual 
acquired signal . Then Q can be given by the following 
equations ( shown for red only ) . 

REDAC = ARED ' AC ( 2 ) 

nary component of bioimpedance . Not shown are the y and 
z axis accelerometer signals , and the red PPG signal which 
are all captured as well . 
[ 0039 ] Turning now to physiological feature generation , 
the raw data collected from the wearable device is not 
directly analyzed with SBM . Instead a set of physiological 
features are derived from the raw waveform data . These 
derived features are what provide the insight into the status 
of human cardiopulmonary control system and in turn the 
overall health of an individual . According to one example , 
several features from two categories can be used , cardiac 
derived and respiratory derived . The cardiac derived fea 
tures are heart rate ( HR ) , pulse transit time ( PTT ) and the 
Red absorption to IR absorption PPG ratio ( or Q ) . In one 
example , the HR feature can be obtained directly by mea 
suring the interval between consecutive QRS peaks in the 
ECG signal . The peaks are detected using a multi - step 
procedure . First a digital HPF is applied to the ECG signal . 
Then the filtered signal is split into 10 second data windows 
that are de - trended to remove a straight line fit to the data . 
Next , within each window , the 98th percentile is calculated 
and the locations of all samples above the 98th percentile are 
found . All samples found reside on a set of local peaks 
within the 10 second window . The last step is to find the 
sample location of the maximum value for each of the local 
peaks within the window . These locations are the individual 
QRS peaks in the ECG waveform . Then the HR rate is 
simply the reciprocal of the time interval between each heart 
beat . 
[ 0040 ] PTT is the delay time between the QRS peak and 
PPG pulse peak . This feature is known to be inversely 
proportional to blood pressure . To calculate it , the robustness 
of the ECG QRS peak detection algorithm is exploited with 
first principles . Since it is known that a transit time of more 
than 250 ms is unlikely in a human , 250 ms windows starting 
from the QRS peak location for each heart beat can be used 
to search for the corresponding PPG peak . The maximum 
value within the window is the PPG peak . This is done for 
both the red and IR PPG signals . Because the PPG signals 
tend to be naturally noisy , before the peaks are located , the 
PPG signals are first digitally filtered using a median filter 
( to remove spiking ) followed by a band - pass filter with 
lower and upper cutoff frequencies of 0 . 5 Hz and 5 Hz 
respectively . 
[ 0041 ] The Q feature is the ratio of the blood absorption of 
red light to infrared light . Q is inversely known to be 
proportional to SpO2 ( blood oxygen saturation ) . Calculating 
Q is more complicated due to the analog and digital signal 
processing that takes place before the raw PPG data are 
acquired . With reference to FIG . 4 , Q is calculated as 
follows . The basic equation for Q is given by 

REDAC = A ( REDDCTRACK ) + B ( REDOUTPUTOFFSET ) - B 
( OFF OUTPUTOFFSET ) - ( QOFFSIGNAL ) ( 3 ) 

Here RED ' AC is the peak - to - peak value of the actual 
acquired PPG signal , and a and ß are scaling factors that are 
function of the analog to digital converters . 
[ 0043 ] There are two respiratory derived features that can 
be used in the embodiment , respiration rate ( RR ) and tidal 
volume ( TV ) ( or depth of breath ) . Both are calculated from 
the bioimpedance signal . The device acquires the real and 
imaginary parts of the bioimpedance separately . These are 
combined to form the magnitude which is used for extract 
ing RR and TV . Bioimpedance is highly susceptible to 
motion artifacts . Muscle movement and organ movement 
change the impedance of the human body causing undesired 
variation in the acquired signal . At the same time the signal 
is noisy and somewhat aperiodic in nature with respect to 
breathing . Because of these factors one method to obtain 
reasonable results for extracting RR and TV is a spectral 
based approach . The bioimpedance signal is first bandpass 
filtered with a narrow band digital filter with lower and 
upper cutoff frequencies of 0 . 133 Hz and 1 Hz ( correspond 
ing to a RR range of 8 to 60 breaths per minute ) . Next , a 
sliding window Discrete Fourier Transform ( DFT ) is applied 
to the filtered data with overlap to produce feature values 
every 20 seconds . The RR rate feature corresponds to the 
frequency at which the maximum value of the magnitude of 
the DFT occurs in each window . To reduce edge effects each 
window of data is multiplied with a window function that 
suppresses the end points to zero before the DFT is calcu 
lated . TV is defined to be the value of the magnitude of the 
DFT at the RR frequency , and quantitatively relates to true 
tidal volume but is not a directly calibrated measure of tidal 
volume . 
( 0044 ] In one form , two last steps are taken to finalize the 
feature generation process . First , in a noise filtering step that 
removes spikes and smoothes the feature data at the same 
time , a moving window trimmed mean filter is applied with 
50 % window overlap . The default window size is 40 sec 
onds and with an overlap of 50 % the resulting filtered 
features occur at a rate of 1 sample every 20 seconds . The 
second step is to align all the feature data in time so that they 
can be analyzed with SBM . This is achieved by interpolating 
all of the filtered features at the same time points using a 
shape - preserving piecewise cubic interpolator . An example 
of the filtered features is shown in FIG . 5 along with some 
of the raw signals : ( A ) ECG , ( B ) y - axis accelerometer , ( C ) 
red PPG , ( D ) bioimpedance magnitude , ( E ) respiration rate , 
( F ) tidal volume , ( G ) heart rate , ( H ) pulse transit time , and 
( 1 ) red to infrared ratio . Data region 505 occurred while the 
subject held his breath as is evident by tidal volume ( F ) 
going to zero . During the same period the red to IR PPG 
ratio ( 1 ) starts to increase indicating that O2 saturation is 
lowering . Region 510 occurred while the subject was walk 
ing briskly around . After about 45 seconds into the walk his 
respiration rate , tidal volume and heart rate increase ( ( E ) , ( F ) 
and ( G ) respectfully ) . Pulse transit time drops ( H ) , indicat 

( REDAC / REDDC ) 
( IRACIIRDC ) 

[ 0042 ] Here REDAC ( IRC ) is the amount of red ( infrared ) 
light absorbed by the blood and REDC ( IRD ) is the 
amount of red ( infrared ) light absorbed by the surrounding 
tissue . The PPG implementation comprises an LED driving 
stage , a PID photodiode with a transimpedance amplifier , 
and a second gain stage which subtracts out a DC offset 
( RED OUTPUTOFFSET in the FIG . 4 ) and adds additional 
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of exemplary observations ( the learned data ) on an input 
observation using a kernel function for comparisons . The 
kernel function generally yields a scalar value ( a “ similar 
ity ” ) on a comparison of the input observation to an exem 
plary observation from the library . The scalar similarity can 
then be used in generating an estimate as a weighted sum of 
at least some of the exemplars . For example , using 
Nadaraya - Watson kernel regression , the kernel function is 
used to generate estimates according to : 

yout K ( Xnew , x } " ) 
— ( Inferential form ) i = 1 

Yest = 

& K ( Sne , ) 
x ; K ( xnew , x ; ) ? xi K ( Swens 
K ( Anews x ; ) 

Xest = - ( Autoassociative form ) 

ew 

ing an increase in blood pressure , while the PPG ratio ( I ) 
begins to slowly climb again , indicating lower O2 satura 
tion . Finally region 515 represents the subject running up 
and down a staircase three times with short rests in between 
As expected , similar behavior to that of region 510 is seen . 
[ 0045 ] Invariably sensor noise , artifacts due to sensor 
movement and other unexpected interference contaminate 
random time periods of the acquired sensor data . Including 
tainted data in an SBM model can potentially degrade model 
performance . SBM is purely data driven and learns normal 
ity from the training data . If the training data is contaminated 
with non - health related artifacts the model ' s representation 
of normal will be undesirably broadened . This generally 
affects its sensitivity in predicting the onset of anomalous 
behavior . 
[ 0046 ] To deal with sensor noise a number of digital 
filtering techniques can be applied to either the raw data or 
to the calculated features themselves . These include the 
techniques of median filtering , Infinite Impulse Response 
( IIR ) filters and Finite Impulse Response ( FIR ) filters ) . 
[ 0047 ] According to one approach , a strategy for detecting 
artifacts in the raw sensor data is based on a number of 
components . First , the first order difference of each axis of 
the accelerometer data is monitored for times when the 
absolute value of the difference is above a predefined 
threshold . These times indicate when sudden movements 
have occurred . Generally , these sudden movements result in 
transient behavior in the sensor data , most notably in the 
PPG data and bioimpedance data . The data from all sensors 
are then ignored from the first indication of sudden move 
ment until 10 seconds after the difference signals falls below 
the threshold again . This approach works well for detecting 
transients but does not detect sensor problems . The second 
component combines heuristic rules with first principles 
rules to detect sensor and / or feature generation errors . The 
set of rules is summarized below : 

10048 ] 1 . If TV < T , ( a threshold constant ) then RR is 
unreliable and is not used . Calculating RR is based on 
extracting the maximum spectral component of the 
bioimpedance signal within a narrow band and if TV is 
below Tty the person is not breathing , or is breathing so 
shallowly that the maximum component is meaning 
less ; it ' s just the maximum noise component in the 
frequency band during this state . 

[ 0049 ] 2 . If HR > 200 or Q ( PPG Red to IR ratio ) > T . ( a 
threshold constant ) , ignore the calculated feature value . 
A value of HR above 200 is well above the normal HR 
for a human so anything above 200 is likely an error . 
Similarly , Q , a proxy for SpO2 , is only realistic in a 
certain range ; however unlike HR the range varies from 
person to person due to sensor placement and the 
physical characteristics of the skin . So a unique T , is 
preferably calculated for each individual . 

[ 0050 ] 3 . If the PTT variance is greater than the HR 
variance by more than threshold constant Tyar , then 
ignore the feature data . This means that the pulsatile 
peaks of the PPG signals are not being identified 
correctly indicating that the PPG sensor is physically 
out of place or is being overcome by noise . 

[ 0051 ] Turning now to the process for estimating obser 
vations in order to be able to obtain residuals , a number of 
different kernel - based multivariate estimator methods may 
be used . What is generally intended by the term “ kernel - 
based ” is a multivariate estimator that operates with a library 

where Xnew is the input multivariate observation of physi 
ological features , X , are the exemplary multivariate obser 
vations of physiological features , Xest are the estimated 
multivariate observations , and K is the kernel function . In 
the inferential case , exemplars comprise a portion X , com 
prising some of the physiological features , and a portion Y , 
comprising the remaining features , Xnew has just the features 
in X ; , and Yest is the inferential estimate of those Y ; features . 
In the autoassociative case , all features are included in Xews 
X ; and in the Xest together — all estimates are also in the 
input . 
[ 0052 ] The kernel function , by one approach , provides a 
similarity scalar result for the comparison of two identically 
dimensioned observations , which : 
[ 0053 ] 1 . Lies in a scalar range , the range being bounded 
at each end ; 
[ 0054 ] 2 . Has a value of one of the bounded ends , if the 
two vectors are identical ; 
[ 0055 ] 3 . Changes monotonically over the scalar range ; 
and 
[ 0056 ] 4 . Has an absolute value that increases as the two 
vectors approach being identical . 
In one example , kernel functions may be selected from the 
following forms : 

Kalta , Xb ) = ella bolla 

Kykkor xv ) = ( 1 + 24 = tol " ) " 
Kokken X6 ) = 1 _ lke roll 

where X , and X , are input observations ( vectors ) . The vector 
difference , or “ norm ” , of the two vectors is used ; generally 
this is the 2 - norm , but could also be the 1 - norm or p - norm . 
The parameter h is generally a constant that is often called 
the “ bandwidth " of the kernel , and affects the size of the 
" field " over which each exemplar returns a significant result . 
The power à may also be used , but can be set equal to one . 
It is possible to employ a different h and à for each exemplar 
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X ; . Preferably , when using kernels employing the vector 
difference or norm , the measured data should first be nor 
malized to a range of 0 to 1 ( or other selected range ) , e . g . , 
by adding to or subtracting from all sensor values the value 
of the minimum reading of that sensor data set , and then 
dividing all results by the range for that sensor ; or normal 
ized by converting the data to zero - centered mean data with 
a standard deviation set to one ( or some other constant ) . 
Furthermore , a kernel function according to the invention 
can also be defined in terms of the elements of the obser 
vations , that is , a similarity is determined in each dimension 
of the vectors , and those individual elemental similarities are 
combined in some fashion to provide an overall vector 
similarity . Typically , this may be as simple as averaging the 
elemental similarities for the kernel comparison of any two 
vectors x and y : 

kernel function K is present as a kernel operator whereby 
each column vector from the first operand ( which can be a 
matrix , such as D is ) is compared using one of the kernel 
functions described above , to each row vector of the second 
operand ( which can also be a matrix ) . The monitored input 
observation is here shown as Xin ( t ) , and the autoassociative 
estimate is shown as ?in ( t ) . In contrast , localized SBM 
( LSBM ) is given by the following equation : 

( 14 ) | DID : 8D ( ) : ' ( Dry & X ( 1 ) Žin ( t ) = - 2 , Dt ) = { H | F ( H , Xin ( t ) ) } 
( ) ( Dt ) & D ( 1 ) ' ( Dt ) 8 X ( 1 ) 

K ( x , y ) = + ? Km . Yn K ( x , y ) = K ( Xm , ym ) 
= 1 

[ 0057 ] Then , elemental kernel functions that may be used 
according to the invention include , without limitation : 

( 10 ) Kh ( { m , Ym ) = elimymi ? 
( 11 ) Kalim , sm ) = ( 1 + 1 * w yur 

Ku ( km , Ym ) = 1 – Ixm - Youl " ( 12 ) 

[ 0058 ] The bandwidth h may be selected in the case of 
elemental kernels such as those shown above , to be some 
kind of measure of the expected range of the m ' h parameter 
of the observation vectors . This could be determined , for 
example , by finding the difference between the maximum 
value and minimum value of a parameter across all exem 
plars . Alternatively , it can be set using domain knowledge 
irrespective of the data present in the exemplars or reference 
vectors , e . g . , by setting the expected range of a heart rate 
parameter to be 40 to 180 beats per second on the basis of 
reasonable physiological expectation , and thus h equals 
“ 140 ” for the mth parameter in the model which is the heart 
rate . 
[ 0059 ] According to one approach , Similarity - Based 
Modeling is used as the kernel - based multivariate estimator . 
Three types of SBM models can be used for human data 
analysis tasks : 1 ) a fixed SBM model , 2 ) a localized SBM 
model that localizes using a bounding constraint , and 3 ) a 
localized SBM model that localizes using a nearest neighbor 
approach . The fixed SBM modeling approach generates 
estimates using the equation below . 

[ 0061 ] Although similar in form to the fixed SBM model , 
here the D matrix is redefined at each step in time using a 
localizing function F ( . ) based on the current input vector 
X ; y ( t ) and a normal data reference matrix H . Accordingly , 
matrix H contains a large set of exemplars of normal data 
observations , and function F selects a smaller set D using 
each input observation . By way of example , F can utilize a 
“ nearest neighbor ” approach to identify a set of exemplars to 
constitute D for the current observation as those exemplars 
that fall within a neighborhood of the input observation in 
m - dimensional space , where m is the number of features . As 
another example , function F can compare the input obser 
vation to the exemplars for similarity using a kernel - based 
comparison , and select a preselected fraction of the most 
similar exemplars to constitute D . Other methods of local 
ization are contemplated by the invention , including selec 
tion on the basis of fewer than all of the physiological 
features , and also selection on the basis of a distinct param 
eter not among the features , but associated with each exem 
plar , such as an ambient condition measure . 
10062 ] Models used for estimation in the present invention 
are preferably empirical models determined from data , in 
contrast to first - principles models that relate parameters by 
deterministic equations . Therefore , instead of deriving a 
model , the model must be trained with empirical data . 
Training a model of physiology comprises gathering exem 
plary observations of the physiological parameters or fea 
tures to be modeled and building a reference library of 
exemplars . These features can be range - normalized , or can 
be used in their native units of measurement in combination 
with an elementary kernel function , such as those shown in 
equations 10 - 12 , that uses a bandwidth that is proportional 
to the expected range in those native units of measure . In 
personalized modeling , observations are obtained of the 
features in question from the patient who will be monitored , 
during conditions in which the patient is deemed to be 
medically normal or medically stable . The patient need not 
be in pristine health , as the method of the present invention 
looks for relative change . The normal data preferably 
includes representation from all manner of activity that is to 
be modeled , and need not be limited to highly immobile , 
sedated or " steady state ” conditions , unless those are the 
only conditions that will be modeled . Exemplars are typi 
cally just observations selected for inclusion in the reference 
library from the larger set of available normal observations ; 
exemplars can also be determined as computed " centers ” of 
clustered normal data in the alternative . 
[ 0063 ] Once a model is trained by constituting its refer 
ence library , and selecting the kernel functions ) that will 
serve as similarity operations for estimate generation , the 

( 13 ) 
îin ( t ) = DDT 8D ) ' ?T & X ( 1 ) 

2 ( DT 8D - ( DT 8x ( 1 ) 

[ 0060 ] Here , D is a static m - by - n matrix of data consisting 
of n training data vectors with m physiological features , 
pre - selected from normal data during a training phase . The 
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when one variable is perturbed . The spillover measurement 
for each variable is calculated using a similar calculation , 
which is given by 

( 16 ) mean?iio – ?ila ; D 
Spillover ; = M - 1 2 . A ; i = 1 , i + j 

where Âio is the estimate for variable i when no variables are 
perturbed , î ; w is the estimate of variable i when variable j 
is perturbed by A ; , and A ; is the perturbation amount used 
when variable i is itself perturbed . 
[ 0067 ] Finally , the error metric is simply the root mean 
squared error of the difference between the actual value and 
its estimate divided by the standard deviation of the actual 
value , or equivalently the residual RMS divided by the 
actual value standard deviation : 

( 17 ) Error = rms ( x – Â ) rms ( residual ) 
???? 

model can be used to generate estimates responsive to 
monitored input observations . With each input observation , 
an estimate of at least some of the physiological features is 
generated according to one of the embodiments of equations 
4 , 5 , 13 or 14 above . The estimated features are then 
differenced with the measured values of those features in the 
instant observation to create a residual for each such feature . 
Given that real - world signals have inherent measurement 
noise and inherent system noise , and given that empirical 
models will have some inherent inaccuracy , residuals will 
occur not only for deviating data from deteriorating physi 
ology , but also for data from normal physiology . However 
the statistical character of the residuals for normal data will 
be much better behaved than for deviating data . A number of 
well known methods for testing raw data can be applied to 
the residuals , including thresholds . A threshold can be 
applied to a residual such that small variations are tolerated , 
by larger values trigger an alert . Series of decisions on 
residuals for individual physiological parameters can be the 
basis for rules relating to the genuine existence of a persis 
tent deviating health condition , for example by counting the 
number of threshold exceedances in a window of observa 
tions . Rule patterns can be applied across residuals for 
different physiological features , triggered only when the 
pattern of deviations in the residuals is identified . Generally , 
these decision methods applied to residuals are more sensi 
tive and less prone to error than the same approaches applied 
to raw data , because normal variation has been removed in 
the residuals by the differencing with the estimated features 
from the model . Essentially , SBM is removing the normal 
variation in the actual data and leaving behind abnormal data 
in the form of residuals ( normal as defined by the training 
data ) . 
[ 0064 ] The performance of a model can be measured using 
a nonparametric perturbation - based approach that is particu 
larly well suited for comparing modeling techniques used 
for anomaly detection applications . The performance of a 
model is assessed using three metrics : 1 ) robustness , 2 ) 
spillover and 3 ) error . The robustness metric is a measure 
ment of the likelihood that a model will follow ( or over - fit ) 
a perturbation introduced into the data . With reference to 
FIG . 6 , to measure robustness , first estimates for all of the 
variables in a model are made based on a test data set 
containing normal data ( îo in FIG . 6 ) . Next , a perturbation 
A is added to each variable one at a time in the model as 
shown ( x , in FIG . 6 ) . Finally , estimates are generated for 
each of the perturbed variables ( @ , in FIG . 6 ) . The robust 
ness metric for each variable in a model is then given by the 
following equation : 

[ 0068 ] The equations listed above define the metrics for 
each variable in a model . In each case , a smaller value is 
better . The overall performance metrics for a model are 
calculated by averaging the results for each variable in each 
case . 
[ 0069 ] Turning to one form of residual testing , a multi 
variate density estimation approach can be applied to the 
residual data . The approximated densities in the normal 
behavior of the data are used to determine the likelihood ( in 
the form of a multivariate health index ( MHI ) ) that a new 
data point is part of the normal behavior distribution . The 
density estimates are calculated using a non - parametric 
kernel estimator with a Gaussian kernel . The estimator is 
shown in the equation below . The resulting density function 
is essentially a mixture of N individual multivariate Gauss 
ian functions each centered at x ; : 

M ( 18 ) À 1 f ( x ) = N ( 2 . 71d / 2 had 1 | | * — x ; ll ] expl - 2 22 " ] 

mean ( ??o - îal ) ( 15 ) 
Robustness = 

where N is the number of training vectors , h is a bandwidth 
parameter , d is the dimensionality of the vectors , and f ( x ) is 
a scalar likelihood . Importantly , the X and X , here are not 
multivariate observations of physiological features , but are 
instead multivariate residual observations derived from the 
original observations by differencing with the estimates . 
Importantly also , the density " estimation ” here is not the 
same as the estimation process described above for estimat 
ing physiological feature values based on measured values ; 
the “ estimate ” here is empirically mapping out a probability 
distribution for residuals using the normal multivariate 
residual exemplars , as a Gaussian mixture model . This 
estimated distribution is then used to compute a likelihood 
that a new multivariate residual from an input observation of 
physiological features is a member of that distribution or 
not . The exemplars X ; can be selected from regions of 
normal data residuals generated by SBM using test data that 
is deemed “ normal ” or representative of desired or stable 

[ 0065 ] Here , perfect robustness is achieved when Robust 
ness is equal to 0 , that is , when the unperturbed and 
perturbed estimates are identical . A larger value indicates 
more over - fitting and hence less model robustness . 
[ 0066 ] The spillover metric measures the relative amount 
that variables in a model deviate from normality when 
another variable is perturbed . In contrast to robustness , 
spillover measures the robustness on all other variables 
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physiological behavior . Before the density estimates are 
made , all residuals are scaled to have unit variance and zero 
mean , or at least are scaled to have unit variance . The means 
and standard deviations used for the scaling procedure are 
calculated from known normal data residuals . The multi 
variate health index ( MHI ) in one form is a function of f ( x ) 
and is given by : 

( 19 ) MHI ( X ) = 105 . 
Of course , the likelihood determined from equation 18 need 
not be converted as in equation 19 in order to be useful , and 
equation 19 is used primarily to invert the signal trend ( so 
that higher equates to rising health risk ) . Tests may be 
applied directly to the result of equation 18 . 
[ 0070 ] A comparison of the efficacy of applying the mul 
tivariate density estimation approach to residuals is high 
lighted in FIGS . 7A - 7B . Chart 705 ( FIG . 7A ) shows a 
multivariate density estimation similar to that described 
above except applied to raw physiological feature data ( the 
actual values of heart rate , respiration rate , etc . ) ; while chart 
710 ( FIG . 7B ) shows the multivariate density estimation as 
described above applied to residuals generated from a ker 
nel - based model ( SBM ) . MHI results are shown for physi 
ological data both unperturbed ( normal ) and with an artifi 
cially - induced perturbation ( abnormal ) . The perturbation 
was introduced as a slow drift in a subset of ambulatory 
physiological features from the start of the data , with a 
maximum drift achieved at the end of the data . In both chart 
705 and 710 , the MHI computed for “ normal ” unperturbed 
data is shown as a solid line , and the MHI computed for 
" abnormal ” perturbed data is shown as a dotted line . A 
detection threshold ( 717 , 720 ) was determined for each 
approach based on statistics for a test set of normal data , 
where the statistics were for raw data in the case of chart 705 
and for residuals in the case of chart 710 . A decision 
algorithm was further applied to the MHI to ascertain a 
persistent , reliable threshold exceedance alert , in this case x 
successive MHI threshold exceedances yields an alert deci 
sion . The decision can be latched until a series of y succes 
sive values for MHI are observed below the threshold , in 
which case the alert is removed . Alternatively , an alert can 
be latched when there have been x threshold exceedances in 
a window of in observations , and the alert removed when 
there have been y observations below the threshold in a 
window of b observations . In each case , the vertical line 
( 730 , 735 ) indicates the point at which a decision was made 
that the data are not from the normal behavior distribution 
and hence indicate an abnormal condition . As can be seen , 
detection occurs about one - third of the way from the start of 
the simulated disturbance for the residual - driven MHI , 
whereas detection using raw data in combination with a 
multivariate density estimation does not occur until much 
later in the data . This is due to the combination of a model 
of normalcy removing normal variation , with the multivari 
ate density estimation of likelihood of normalcy applied to 
residuals . This residual - based MHI method has the novel 
advantages of providing substantially earlier detection of an 
incipient pattern of deviation in health , and providing a 

single index of patient deviation to summarize individual 
residuals for the multiple physiological features being moni 
tored . 
[ 0071 ] According to one approach , the system described 
herein can be deployed to provide predictive monitoring of 
patient health in an ambulatory , at - home environment , par 
ticularly for patients with chronic diseases that may dete 
riorate unpredictably . Multiple physiological features are 
derived from one or more biosignals and parameters cap 
tured from a wearable or implanted device ( or both ) , and 
transmitted to an analytics data center , where one or more 
servers are disposed to process the physiological features 
using empirical , kernel - based models . The models are pref 
erably personalized to the data from the patient captured 
during periods when the patient is considered to be in normal 
or acceptably stable health , to provide a model of normal 
physiology for the patient . Monitored data is estimated using 
the personalized model , and the monitored values are dif 
ferenced with the estimated values of the physiological 
parameters to yield residuals . The residuals are then pro 
cessed through one or more methods of analysis to yield 
alerts regarding the patient ' s health status . According to one 
technique , the residuals can individually be tested with rules , 
such as thresholds . These thresholds can further be tested for 
persistence . Patterns of residual tests can be recognized to 
yield even more specific health status information . Accord 
ing to another technique , the multivariate observation of 
residuals can be examined for likelihood of belonging to a 
“ normal ” residual distribution using an empirical multivari 
ate probability density estimation , and this likelihood may 
then be converted to a multivariate health index , typically as 
an inverse log value of the likelihood . The MHI provides an 
instant ranking of patient health status , and the MHI can be 
tested using a threshold , as well as persistence rules , to yield 
alerts regarding patient health status . All such analytics can 
be presented via a web - based or client - server - based user 
interface to medical practitioners , and in this way a large 
population of patients can be monitored together by medical 
staff with improved efficiency . All such monitored patients 
of a health care institution or practice group can be managed 
for early warning of deteriorating health at home , and the 
patients can be prioritized for specific follow - up based on 
health status . Patients with early indications of health dete 
rioration can be contacted to verify compliance with medi 
cations , inquire about how the patient feels , and investigate 
recent patient behavior that may have exacerbated a chronic 
illness . Medical staff may advantageously avert a more 
costly health emergency for the patient with efficient inter 
ventions including instructing the patient to make adjust 
ments to medications , comply with medications , or come in 
for an examination and preventative intervention . 
[ 0072 ] SBM can also be deployed with cross subject 
modeling , instead of an entirely personalized model . A 
model then comprises data from other human subjects . Due 
to the person to person variation in feature data it is 
necessary to scale each subject ' s data . A generic cross 
population model can be used as a temporary means for 
monitoring a human when no historical data are available for 
the individual as long as the individual ' s feature data are 
properly scaled . The scaling can be accomplished based on 
statistics calculated during a standardized set of activities 
when the monitoring device is first put on . The data acquired 
during the standard activities ( which can comprise lying 
down , sitting , standing , walking and climbing stairs , for 
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example ) is typically scaled to a zero - mean , one - standard 
deviation range . The monitoring is not as sensitive as it 
would be for a personalized model but it at least provides a 
minimal level of health monitoring while waiting to acquire 
a suitable set of data to generate a personalized model . 
[ 0073 ] Turning to FIG . 8 , another approach obtains residu 
als from reference data representative of a known illness , 
malady or health deterioration , so that a multivariate prob 
ability density estimator can be determined for that health 
deterioration , in contrast to determining it for normal or 
stable health . Hence , one or more probability density esti 
mators 810 can be created in this way ( including one for 
normal data ) , and applied to multivariate residual observa 
tions 820 from monitored data 830 . Likelihoods that the 
monitored residual observation belongs to each of the dis 
tributions can be compared in parallel in a decisioning step 
840 , and not only can deviation from normal be detected , but 
the nature of the health deterioration can be categorized . 
Likelihoods can simply be displayed to medical staff , or the 
likeliest scenario or the set of scenarios with a sufficiently 
high likelihood can be indicated as the probable state ( s ) of 
the patient in 840 . In another approach to decisioning 840 , 
the likelihoods or MHI values for each of a plurality of 
maladies are normalized using test statistics generated from 
known examples of each such malady processed through 
model estimation and residual generation , so that they can be 
expressed in terms of the typical variance expected for 
residual vectors fitting each such category . Then the nor 
malized values are compared to determine which category is 
in fact most likely represented by the current monitored data . 
Series of MHI or likelihood values for each malady category 
can also be processed heuristically to rank categories , for 
example with moving window averages or medians . 
[ 0074 ] According to another form , patients in a hospital 
are monitored with multivariate physiological parameters 
derived from sensors using conventional bedside monitors , 
ventilators , and / or wearable or implanted devices . Data is 
streamed via Ethernet network or WiFi to a central station / 
nursing station or to a hospital centralized data center , 
coupled to interfaces for medical staff real - time monitoring . 
Data is also streamed via Ethernet network or WiFi to 
analytics server ( s ) for processing using empirical , kernel 
based models as described herein . Estimates are made of the 
physiological features , and residuals are generated ; models 
may be generic instead of personalized , since no personal 
data may be available for a patient from a period when that 
patient was in acceptable physiological health . In such a 
case , a model can comprise data from other humans col 
lected in similar hospital conditions when the humans were 
in acceptable health . Such a model can further be tailored to 
the monitored patient on the basis of major contributors to 
normal physiological variation , such as body mass , gender , 
age , and medical condition ( e . g . , similar cardiac ejection 
fraction or similar respiratory performance ) . Residuals are 
processed as described above to generate MHI and / or rules 
based decisions . Patient health status for all monitored 
patients in the ward or hospital or ICU can be monitored by 
onsite medical staff or off - site medical staff to provide early 
warning of developing health issues , such as infection , 
pneumonia , and sepsis . 
[ 0075 ] With the advantage of early warning as provided by 
the invention , the health alerts of patients can be managed in 
a proactive manner , rather than being a crisis that must be 
immediately responded to . The user interface provides for 

several levels of alert management : Alerts can be dismissed 
( investigation by medical staff shows the alert to be anoma 
lous ) ; alerts can be confirmed and elevated ( investigation by 
medical staff shows a definite health issue is present that 
needs intervention ) ; and alerts can be marked for further 
follow - up and observation ( investigation shows close moni 
toring is warranted but immediate intervention is not 
required or advised ) . 
[ 0076 ] A system is provided for advanced warning of 
health problems , using a wearable sensing device for cap 
turing rich physiological data streams from a human outside 
the hospital , in the daily routine of their home life , providing 
high visibility into a patient ' s physiological status outside 
the reach of the physician ' s office or the hospital ward . 
Automated processing of this data using algorithms that 
remove the normal variation present in ambulatory data , to 
provide robust and early detection of anomalies indicative of 
incipient health issues is novel and inventive . The potential 
for this combination of device plus algorithm to revolution 
ize patient care is enormous , especially for the chronically ill 
patient population . This platform is exactly the kind of tool 
needed by physicians to improve patient outcomes , avoid 
unnecessary costs , and greatly extend the leverage of the 
medical workforce . 
[ 0077 ] It will be appreciated by those skilled in the art that 
modifications to the foregoing preferred embodiments may 
be made in various aspects and as set forth with particularity 
in the appended claims . It is deemed that the spirit and scope 
of the invention encompasses such modifications and altera 
tions to the preferred embodiment as would be apparent to 
one of ordinary skill in the art and familiar with the 
teachings of the present application . 
What is claimed is : 
1 . A system for monitoring the health of a human , 

comprising : 
a device disposed to receive multiple physiological sig 

nals from a plurality of sensors arranged to capture 
physiological signals from a monitored human , having 
microprocessor hardware programmed to derive mul 
tiple physiological features from said signals ; 

a computer configured to receive monitored observations 
of said multiple physiological features from said 
device , to generate estimates of said features in the 
monitored observations using a model embodying 
behavior of said multiple physiological features under 
normal health conditions , and to generate residuals of 
said features by differencing the monitored observa 
tions with the estimates thereof ; and 

a computer - accessible memory storing a set of exemplary 
observations of residuals of said multiple physiological 
features characteristic of a normal health state for the 
monitored human , generated using said model ; 

said computer being specially configured to determine a 
likelihood that said residuals are representative of a 
pattern of residuals for said normal health state , using 
a Gaussian mixture model based on said set of exem 
plary observations of residuals to approximate a prob 
ability distribution for normal residual patterns , 
whereby said likelihood consolidates the behaviors of 
the individual residuals for each of the features into one 
overall index to summarize any deviation of the physi 
ological health of said human from normal . 

2 . A system according to claim 1 , wherein said model is 
a kernel regression estimator that has a library of exemplary 



US 2018 / 0325460 A1 Nov . 15 , 2018 

buman 

observations of said features representative of normal health 
conditions , and generates said estimates of said features in 
the monitored observations as a weighted sum of at least 
some of said exemplary observations . 

3 . A system according to claim 2 , wherein the monitored 
observation of features is used to localize said model , by 
determining a subset of said exemplary observations to use 
for generating said estimates , based on a measure of simi 
larity between said monitored observation and said exem 
plary observations . 

4 . A system according to claim 1 , wherein said model is 
a similarity - based model that has a library of exemplary 
observations of said features representative of normal health 
conditions , and generates said estimates of said features in 
the monitored observations as a weighted sum of at least 
some of said exemplary observations . 

5 . A system according to claim 4 , wherein the monitored 
observation of features is used to localize said model , by 
determining a subset of said exemplary observations to use 
for generating said estimates , based on a measure of simi 
larity between said monitored observation and said exem 
plary observations . 

6 . A system according to claim 1 , wherein said computer 
is further specially configured to test said likelihood to 
render a decision whether the monitored observation of said 
multiple features is characteristic of said normal health state , 
by comparing it to a threshold . 

7 . A system according to claim 6 , wherein said computer 
is further specially configured to test a series of said ren 
dered decisions for persistence of like decisions regarding 
whether the features are characteristic of said normal health 
state or not . 

8 . A system according to claim 1 , wherein said device is 
a cell phone . 

9 . A system according to claim 1 , wherein said device is 
a hospital bedside vital signs monitor . 

10 . A system according to claim 1 , wherein said computer 
is configured to first scale said residuals for the monitored 
features , using the means and standard deviations calculated 
from normal data residuals , and wherein said exemplary 
observations of residuals characteristic of a normal health 
state are likewise scaled . 

11 . A system according to claim 1 , wherein said device 
receives sensor data from sensors embedded inside the 
monitored human in connection with an implanted cardiac 
device . 

12 . A system according to claim 1 , wherein said device 
receives sensor data by wireless transmissions via extremely 
local radio protocol of measurements of sensors attached to 
the monitored human . 

13 . A system according to claim 1 , wherein said device 
receives physiological signals comprising an electrocardio 
gram , a bioimpedance , and a photoplethysmogram for at 
least two wavelengths . 

14 . A system according to claim 13 , wherein said device 
derives physiological features from the physiological sig 
nals , comprising a heart rate , a respiration rate , a pulse 
transit time , and a ratio of absorption of the at least two 
wavelengths 

15 . A system according to claim 14 , wherein the physi 
ological signals received by the device further comprise at 
least one accelerometer signal , and the device is further 
configured to identify what times the accelerometer signal 

indicates motion artifact is likely present in the derived 
features in order to ignore features at those times . 

16 . A computerized system for monitoring the health of a 
human , configured by program code to perform the steps of : 

receiving multivariate monitored observations of multiple 
vital sign features derived from physiological signals 
captured by at least one sensor on the monitored 
human ; 

storing a model embodying behavior of said multiple vital 
sign features under normal health conditions personal 
ized to the monitored human ; 

generating estimates of at least some of said multiple vital 
sign features in the multivariate monitored observa 
tions using said model ; 

generating monitored residuals of the at least some of said 
multiple vital sign features by differencing those fea 
tures of the monitored observations that are estimated 
with the estimates thereof ; 

storing a set of exemplary observations of residuals of 
said multiple vital sign features characteristic of a 
normal health state personalized to the monitored 
human and generated using said model ; and 

determining a likelihood that said monitored residuals are 
representative of a pattern of residuals for said normal 
health state , using a Gaussian mixture model based on 
said set of exemplary observations of residuals to 
approximate a probability distribution for normal 
residual patterns , whereby said likelihood consolidates 
the behaviors of the individual residuals for each of the 
features into one overall index to summarize any devia 
tion of the physiological health of said human from 
normal . 

17 . A computerized system according to claim 16 , further 
configured to test said likelihood to render a decision 
whether the monitored observation of said multiple vital 
sign features is characteristic of said normal health state , by 
comparing it to a threshold . 

18 . A computerized system according to claim 17 , further 
configured to test a series of said rendered decisions for 
persistence of like decisions regarding whether the features 
are characteristic of said normal health state or not . 

19 . A computerized system according to claim 16 , 
wherein determining a likelihood further comprises scaling 
said residuals for the monitored vital sign features , using the 
means and standard deviations calculated from known nor 
mal data residuals , and wherein said exemplary observations 
of residuals of said multiple vital sign features characteristic 
of a normal health state personalized to the monitored 
human , are likewise scaled . 

20 . A computerized system according to claim 16 , 
wherein said model is a kernel based estimator that has a 
library of exemplary observations of said vital sign features 
representative of normal health conditions , and generates 
said estimates of said features in the monitored observations 
as a weighted sum of at least some of said exemplary 
observations . 

21 . A computerized system according to claim 20 , 
wherein the monitored observation of features is used to 
localize said kernel - based model , by determining a subset of 
said exemplary observations to use for generating said 
estimates , based on a measure of similarity between said 
monitored observation and said exemplary observations . 

22 . A computerized system according to claim 16 , further 
configured to host a web - based user interface and present a 
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list of patients prioritized based on said likelihood for each 
patient that said monitored residuals are representative of a 
pattern of residuals for said normal health state . 

23 . A computerized system according to claim 16 , 
wherein said multiple vital sign features comprises a heart 
rate , a respiration rate , a pulse transit time , and a ratio of 
absorption of the at least two wavelengths . 


