空心球形 NiMn₂O₄ 钴离子电池负极材料及制备方法

摘要

一种空心球形 NiMn₂O₄ 铀离子电池负极材料及制备方法，属于锂离子电池电极材料技术领域。该空心球粒径为 1~3 微米，空心壳由 NiMn₂O₄ 纳米晶构成，为多孔结构。多孔球壳有利于电解液的渗透，缩短了锂离子的扩散路程，作为锂离子电池负极材料具有优良的电化学循环稳定性和倍率性能。制备方法是基于“柯肯达尔效应”通过高温固相反应方法就可直接获得空心球形 NiMn₂O₄ 实心球形 MnCO₃ 为前驱体，低温焙烧得到多孔的实心球形二氧化锰，然后和镍盐一起焙烧制备得到空心球形尖晶石型 NiMn₂O₄ 负极材料，该制备方法工艺简单，无需模板剂，有利于规模化生产。
1. 一种空心球形 NiMn$_2$O$_4$ 锂离子电池负极材料，其特征在于：该空心球粒径为 1~3 微米，球壳由 NiMn$_2$O$_4$ 纳米晶构成，为多孔结构。

2. 一种如权利要求 1 所述空心球形 NiMn$_2$O$_4$ 锂离子电池负极材料的制备方法，其特征在于，包括以下步骤：

（1）分别配制浓度为 0.01~0.05 mol・L$^{-1}$ 的 MnSO$_4$ 溶液和浓度为 0.1~1 mol・L$^{-1}$ 的 NH$_4$HCO$_3$ 溶液；在搅拌过程中将无水乙醇和 NH$_4$HCO$_3$ 溶液同时加入到 MnSO$_4$ 溶液中，其中 MnSO$_4$ 和 NH$_4$HCO$_3$ 的物质的量的比为 1:10~1:20，无水乙醇的体积与 MnSO$_4$ 和 NH$_4$HCO$_3$ 混合溶液的总体积比为 0.02:1~0.1:1；持续搅拌反应 1~3 小时，得到白色沉淀，离心分离，用去离子水和乙醇分别洗涤沉淀 2~5 次以去除 SO$_4^{2-}$；将沉淀在 40~80℃真空干燥 10~24 小时，得到球形 MnCO$_3$ 白色粉末；

（2）将步骤 (1) 制备的 MnCO$_3$ 粉末在空气气氛下，以 1~5℃・分钟$^{-1}$ 的速率升温至 300~500℃并恒温 5~10 小时，然后自然冷却至室温，得到表面粗糙的多孔 MnO$_2$ 黑色粉末。

（3）将步骤 (2) 制备的 MnO$_2$ 粉末与镍盐按照 Mn/Ni 原子比为 2:1 混合并研磨 10~60 分钟，将混合物在空气气氛下，以 2~10℃・分钟$^{-1}$ 的速率升温至 600~900℃并恒温焙烧 5~15 小时，然后自然冷却至室温，得到空心球形 NiMn$_2$O$_4$ 黑色粉末。

3. 根据权利要求 2 所述的制备方法，其特征在于，在步骤 (3) 中，镍盐为乙酸镍，硝酸镍中的一种。
空心球形 NiMn₂O₄ 锂离子电池负极材料及制备方法

技术领域
[0001] 本发明属于锂离子电池电极材料及其制备技术领域，特别是涉及一种空心球形 NiMn₂O₄ 锂离子电池负极材料及制备方法。

背景技术
[0002] 金属氧化物锂离子电池负极材料具有质量比容量和体积比容量高等优点，近年来受到人们的广泛关注。其中尖晶石型 NiMn₂O₄ 具有较低廉的原料成本，较高的理论比容量，是一种具有良好发展潜力的锂离子电池负极材料。在文献（1）Journal of Materials Chemistry，2011，21：1026-10218 中，Fabrice M. Courtel 等人利用共沉淀方法制备出了纳米尖晶石型 NiMn₂O₄，并研究了其作为锂离子电池负极材料的电化学性能。该材料虽具有较高的初始比容量，但电化学循环稳定性差。
[0003] 对于锂离子电池电极材料而言，材料微观形貌对其性能有重要影响。采用简单工艺制备具有特殊微观形貌的 NiMn₂O₄ 电极材料以提高其电化学性能，是一项重要应用价值和科学意义的工作。空心球形电极材料有利于电解液的渗透，缩短了锂离子的扩散路径，有利于电极材料的性能发挥。采用固相反应方法制备空心球形尖晶石型 NiMn₂O₄ 锂离子电池负极材料尚未见文献报道。

发明内容
[0004] 本发明的目的在于提供一种空心球形 NiMn₂O₄ 锂离子电池负极材料及制备方法，该材料具有优良的电化学循环稳定性和倍率性能，并且制备工艺简单，易于操作，适用于大规模生产。
[0005] 本发明的空心球形 NiMn₂O₄ 锂离子电池负极材料的空心球内径为 1~3 微米，球壳由 NiMn₂O₄ 纳米晶构成，为多孔结构。多孔球壳有利于电解液的渗透，缩短了锂离子的扩散路径，作为锂离子电池负极材料具有优良的电化学循环稳定性和倍率性能。
[0006] 本发明的制备空心球形 NiMn₂O₄ 锂离子电池负极材料的方法无需模板剂，基于“柯肯达尔效应”通过高温固相反应方法就可直接获得空心球形 NiMn₂O₄，其工艺流程示意图如图 1 所示，以空心球形 MnCO₃ 为前驱体，低温烧结得到多孔的空心球形二氧化锰，然后和镍盐一起熔烧制备得到空心球形尖晶石型 NiMn₂O₄ 负极材料。具体工艺步骤如下：
[0007] （1）分别配制浓度为 0.01~0.05 mol·L⁻¹ 的 MnSO₄ 溶液和浓度为 0.1~1 mol·L⁻¹ 的 NH₄HCO₃ 溶液；在搅拌过程中将无水乙醇和 NH₄HCO₃ 溶液同时加入到 MnSO₄ 溶液中，其中 MnSO₄ 和 NH₄HCO₃ 的物质的量的比为 1:10~1:20，无水乙醇的体积与 MnSO₄ 和 NH₄HCO₃ 混合溶液的总体积比为 0.02:1~0.1:1，持续搅拌反应 1~3 小时，得到白色沉淀，离心分离，用去离子水和乙醇分别洗涤沉淀 2~5 次以去除 SO₄²⁻；将沉淀在 40~80°C 真空干燥 10~24 小时，得到球形 MnCO₃ 白色粉末。
[0008] （2）将步骤（1）制备的 MnCO₃ 粉末在空气气氛下，以 1~5°C·分钟⁻¹ 的速率升温至 300~500°C 并恒温 5~10 小时，然后自然冷却至室温，得到表面粗糙的多孔 MnO₂ 黑色粉末。
（3）将步骤（2）制备的MnO₂粉末与镍盐按照Mn/Ni原子比为2:1混合并研磨10～60分钟，将混合物在空气气氛下，以2°-10°C/分钟的速率升温至600°-900°C并恒温焙烧5～15小时，然后自然冷却至室温，得到空心球形NiMn₂O₄黑色粉末。其中，镍盐为乙酸镍，硝酸镍中的一种。

图2 扫描电镜照片表明所合成的MnCO₃为球形，晶粒均匀、烧结Ni₂O₃制备MnO₂的扫描电镜照片如图3所示，MnO₂仍保持球形，表面粗糙，尖晶石型NiMn₂O₄的扫描电镜照片如图4所示，为空心球形，晶粒大小为1～3μm。采用X-射线衍射仪对合成材料结构进行表征。图5测试结果表明所制备的尖晶石型NiMn₂O₄纯度高且具有较高的结晶度。

将本发明方法合成的空心球形尖晶石型NiMn₂O₄作为锂离子电池负极材料，与市售乙炔黑导电剂和聚偏氟乙烯PVDF粘结剂按70:20:10的质量比混合均匀，涂在集流体铜箔上，80°C烘干，并压片至30～70μm的厚度，用冲片机制得直径为1cm的电极片，于120°C真空（<10 Pa）干燥24小时。以金属锂片作为对电极，采用Celgard 2400隔膜，1mol·L⁻¹的LiPF₆+EC+DMC+DEC（EC/DMC/DEC体积比为1:1:1）为电解液，在德国M. Braun公司Unilab型干燥氮气手套箱（H₂O<1ppm，O₂<1ppm）中组装成实验电池，采用武汉蓝电CT2001A型电池测试仪在室温条件下进行电化学性能测试，充放电截止电压范围为0.01～3V（vs. Li⁺/Li⁻），测试结果如图6和图7，空心球形尖晶石结构NiMn₂O₄电极材料具有优良的电化学循环稳定性和倍率性能。

本发明的特点及优点在于：空心球形NiMn₂O₄尖晶石材料的球壳由NiMn₂O₄纳米晶构成，多孔结构，多孔壳有利于电解液的渗透，缩短了锂离子的扩散路径，作为锂离子电池负极材料具有优良的电化学循环稳定性和倍率性能。另外，本发明方法无需模板剂，可以通过高温固相反应直接获得空心球形NiMn₂O₄尖晶石材料，具有工艺简单、易操作的特点，适用于大规模生产。

附图说明

图1为本发明方法合成空心球形尖晶石型NiMn₂O₄的工艺流程示意图。
图2为实施例1中制备的MnCO₃前驱体的扫描电镜照片。
图3为实施例1中制备的MnO₂的扫描电镜照片。
图4为实施例1中制备的NiMn₂O₄的扫描电镜照片。
图5为本发明实施例1中制备的NiMn₂O₄的X射线衍射谱图。横坐标为角度2θ,单位为°;纵坐标为衍射强度,单位为:绝对单位 (a.u.)。
图6为实施例1中制备的NiMn₂O₄的电化学循环性能曲线。横坐标为循环周数,单位为:周;纵坐标为放电比容量,单位为:毫安时·克⁻¹ (mAh·g⁻¹)。
图7为实施例1中制备的NiMn₂O₄的倍率性能曲线。横坐标为循环周数,单位为:周;纵坐标为放电比容量,单位为:毫安时·克⁻¹ (mAh·g⁻¹)。

具体实施方式

实施例1
将1.69 g的MnSO₄·H₂O和7.9 g的NH₄HCO₃分别溶于200 mL去离子水得到各自的溶液；向搅拌中的MnSO₄溶液中加入20 mL无水乙醇，同时加入配好的NH₄HCO₃溶液，反应1小
时，得到白色沉淀，用无水乙醇和去离子水洗涤离心分离各 3 次以去除 S\text{O}_4^{2-}；将得到的样品置于 50°C 烘箱中干燥 20 小时，得到如图 2 所示的球形 MnCO_3 粉末。

【0022】将上述 MnCO_3 粉末置于马弗炉中，以 3°C・分钟^{-1} 的速率升温至 400°C 并恒温 5 小时，然后自然冷却至室温，得到如图 3 所示的黑色的球形 MnO_2 粉末。

【0023】称取 1 g 上述 MnO_2 和 1.431 g Ni(\text{Ac})_2・4H_2O 放入烧杯中，加入 80 mL 的无水乙醇，在 50°C 下加热搅拌分散至干燥；将得到的混合料倒入玛瑙研钵中研磨 30 分钟混匀，放入马弗炉中，以 3°C・分钟^{-1} 的速率升温至 750°C 并恒温 12 小时，自然冷却至室温，得到如图 4 所示的空心球形 NiMn_2O_4 尖晶石材料。

【0024】将该空心球形尖晶石型 NiMn_2O_4 作为锂离子电池负极材料，与市售乙炔黑导电剂和聚偏氟乙烯 PVDF 黏结剂按 70:20:10 的质量比例混合均匀，涂在集流体铜箔上，80°C 烘干，并压片至 50 μm 的厚度，用冲片机制得直径为 1 cm 的电极片，于 120°C 真空 (<10 Pa) 干燥 24 小时。以金属锂片作为对电极，采用 Celgard 2400 隔膜，1 mol・L^{-1} 的 LiPF_6・EC:DMC:DEC (EC:DMC:DEC 体积比为 1:1:1) 为电解液，在德国 M. Braun 公司 Unlab 型干燥氢气手套箱 (H_2O < 1 ppm, O_2 < 1 ppm) 中组装成实验电池，采用武汉盛电 CT2001A 型电池测试仪在室温条件下进行电化学性能测试，充放电截止电压范围为 0.01 V ～ 3 V (vs. Li^+//Li)，测试结果如图 6 和图 7，空心球形尖晶石结构 NiMn_2O_4 电极材料具有优良的电化学循环稳定性，循环 248 周后比容量还有 400 mAh・g^{-1}，该材料还具有优异的倍率性能，在 1 A・g^{-1} 的电流密度下，比容量仍能达到 330 mAh・g^{-1}。

【0025】实施例 2

【0026】将 1.69 g MnSO_4・H_2O 和 15.8 g NH_4HCO_3 分别溶于 500 mL 去离子水得到各自的溶液；向搅拌中的 MnSO_4 溶液中加入 50 mL 无水乙醇，同时加入配好的 NH_4HCO_3 溶液，反应 2 小时，得到白色沉淀，用无水乙醇和去离子水洗涤离心分离各 3 次以去除 S\text{O}_4^{2-}；将得到的样品置于 60°C 烘箱中干燥 15 小时，得到球形 MnCO_3 粉末。

【0027】将上述 MnCO_3 粉末置于马弗炉中，以 5°C・分钟^{-1} 的速率升温至 400°C 并恒温 8 小时，然后自然冷却至室温，得到黑色球形 MnO_2 粉末。

【0028】称取 1 g 上述 MnO_2 和 1.431 g Ni(\text{Ac})_2・4H_2O 放入烧杯中，加入 80 mL 的无水乙醇，在 50°C 下加热搅拌分散至干燥；将得到的混合料倒入玛瑙研钵中研磨 30 分钟混匀，放入马弗炉中，以 5°C・分钟^{-1} 的速率升温至 800°C 并恒温 10 小时，自然冷却至室温，得到空心球形 NiMn_2O_4 尖晶石材料。

【0029】实施案例 3

【0030】将 1.69 g MnSO_4・H_2O 和 11.85 g NH_4HCO_3 分别溶于 300 mL 去离子水得到各自的溶液；向搅拌中的 MnSO_4 溶液中加入 60 mL 无水乙醇，同时加入配好的 NH_4HCO_3 溶液，反应 3 小时，得到白色沉淀，用无水乙醇和去离子水洗涤离心分离各 3 次以去除 S\text{O}_4^{2-}；将得到的样品置于 80°C 烘箱中干燥 10 小时，得到球形 MnCO_3 粉末。

【0031】将上述 MnCO_3 粉末置于马弗炉中，以 1°C・分钟^{-1} 的速率升温至 450°C 并恒温 10 小时，然后自然冷却至室温，得到黑色球形 MnO_2 粉末。

【0032】称取 1 g 上述 MnO_2 和 1.672 g Ni(NO_3)_2・6H_2O 放入烧杯中，加入 80 mL 无水乙醇，在 50°C 下加热搅拌分散至干燥；将得到的混合料倒入玛瑙研钵中研磨 60 分钟混匀，放入马
弗炉中，以 5℃·分钟⁻¹ 的速率升温至 700℃ 并恒温 15 小时，自然冷却至室温，得到空心球形 NiMn₂O₄ 尖晶石材料。
图 1

图 2

球形MnCO₃ → 球形MnO₂ → 空心球形NiMn₂O₄
图 3

图 4
图 7