

US 20130186113A1

(19) United States

(12) Patent Application Publication CHUNG et al.

(10) Pub. No.: US 2013/0186113 A1

(43) **Pub. Date:** Jul. 25, 2013

(54) METHOD AND APPARATUS FOR ICE HARVESTING

(75) Inventors: **Terry Tae-II CHUNG**, New Fairfield, CT (US); **Andrey Balanev**, St.

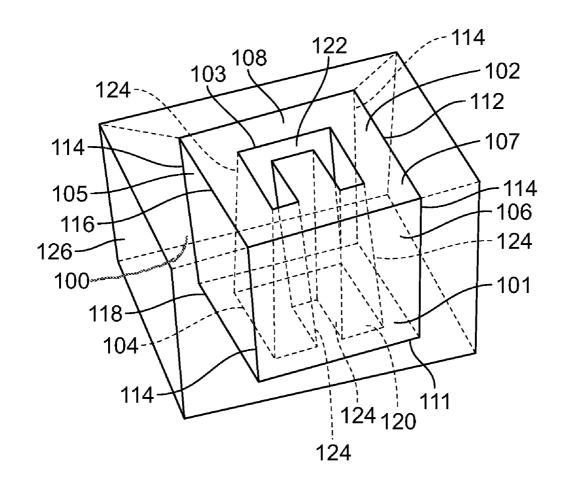
Petersburg (RU); **Sergey Markosov**, St. Petersburg (RU); **George Martsinovsky**, St. Petersburg (RU); **Vladimir Vasiliev**, St. Petersburg (RU); **Mikhail Verbitsky**, Stoughton, MA (US)

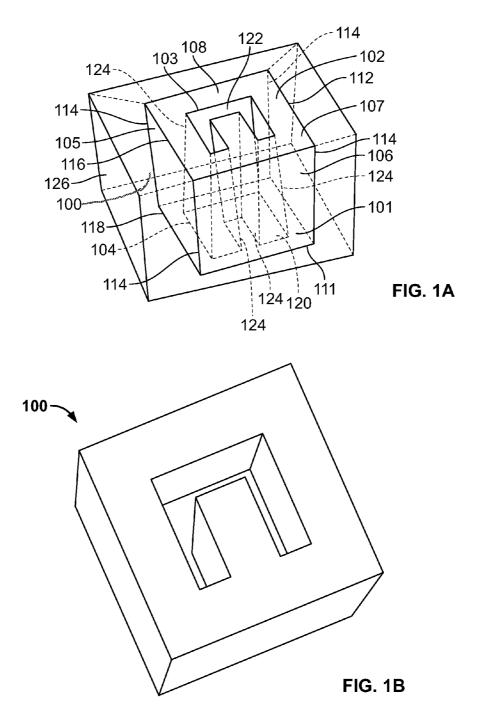
(73) Assignee: PEPSICO, INC., Purchase, NY (US)

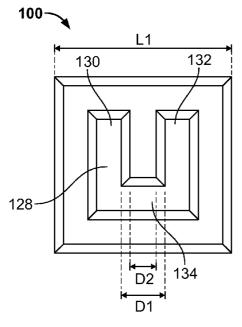
(21) Appl. No.: 13/618,799

(22) Filed: Sep. 14, 2012

Related U.S. Application Data

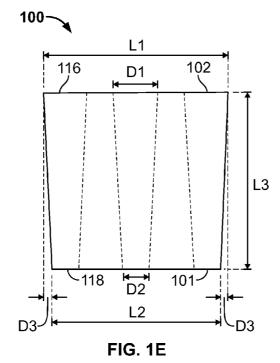

(60) Provisional application No. 61/588,954, filed on Jan. 20, 2012.

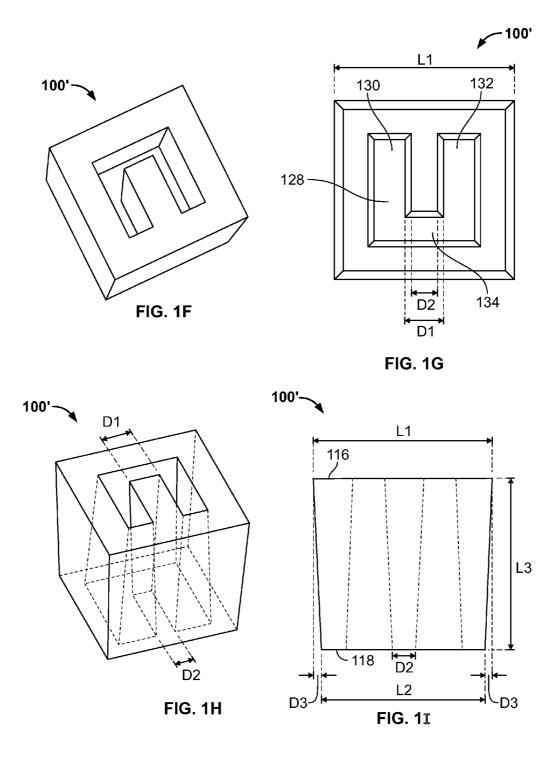

Publication Classification

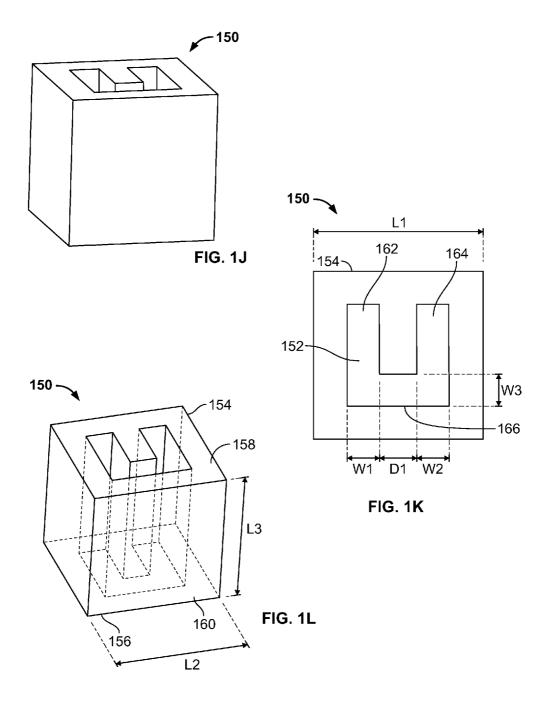

(51) **Int. Cl. F25C 1/22** (2006.01)

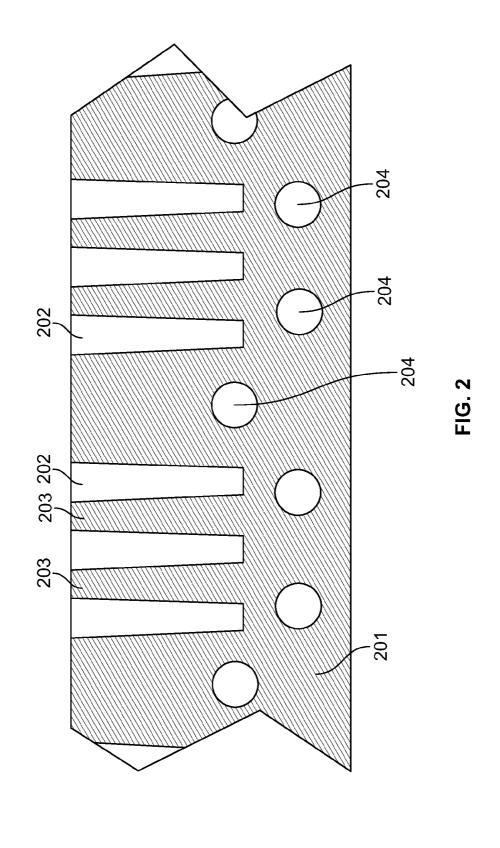
(57) ABSTRACT

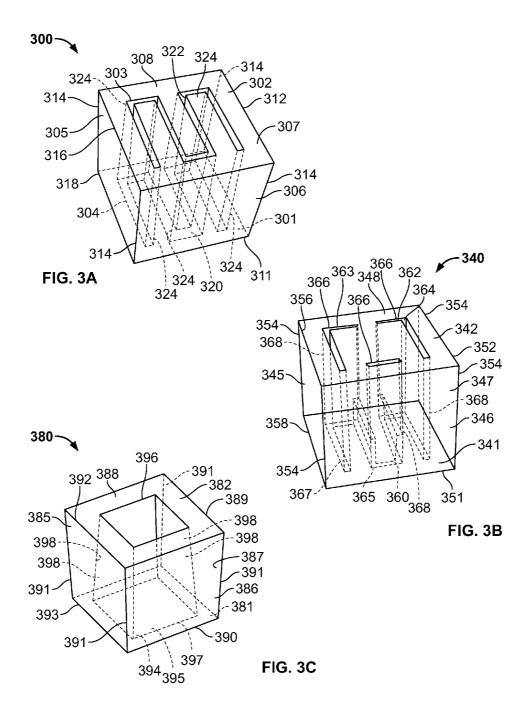
A mold defines a first volume for an ice cube, the mold comprising a bottom face having an inner perimeter and side faces. Each side face has an inner perimeter, top edge, and bottom edge. The top edge of each side face may be longer than the bottom edge. Each side face may extend inward from the top edge to the bottom edge. The mold may comprise a three-dimensional shape within the first volume, the three-dimensional shape comprising a second volume. The second volume may be defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape. The bulge may extend upwardly and taper between the bottom outer perimeter and the top outer perimeter. The mold may further define a third volume between the first and second volumes, with the mold configured to receive water within the third volume.

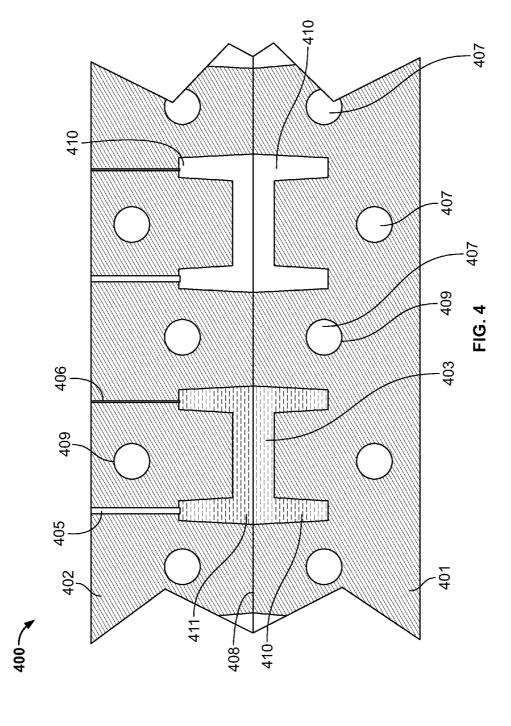


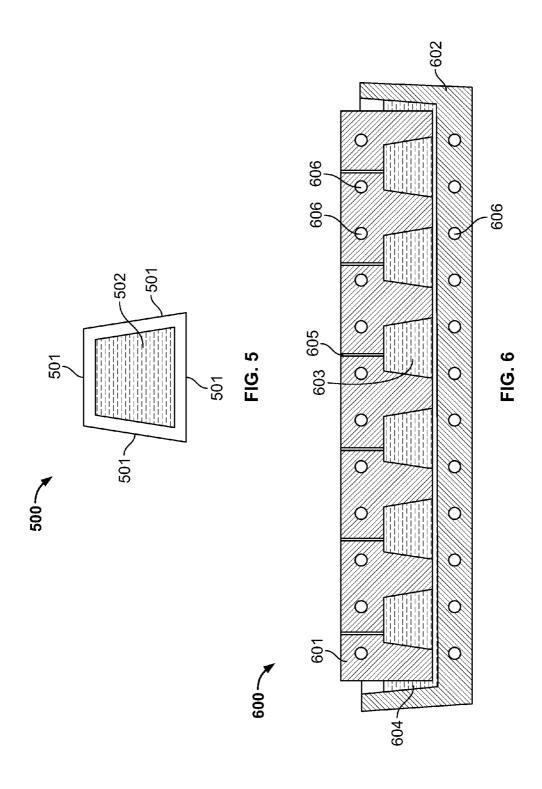





100 116 118 D2 FIG. 1D


FIG. 1C





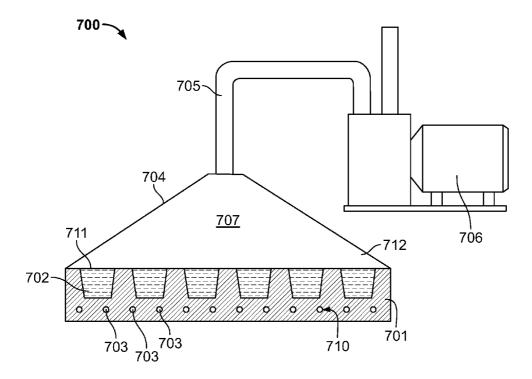


FIG. 7

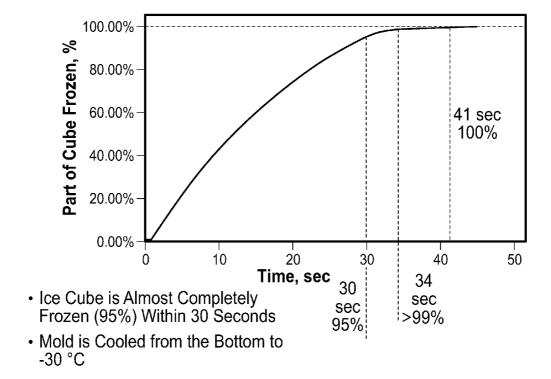


FIG. 8A

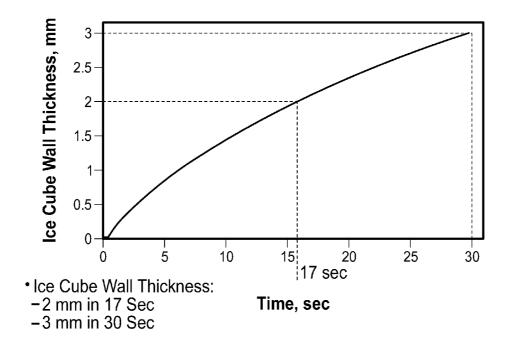


FIG. 8B

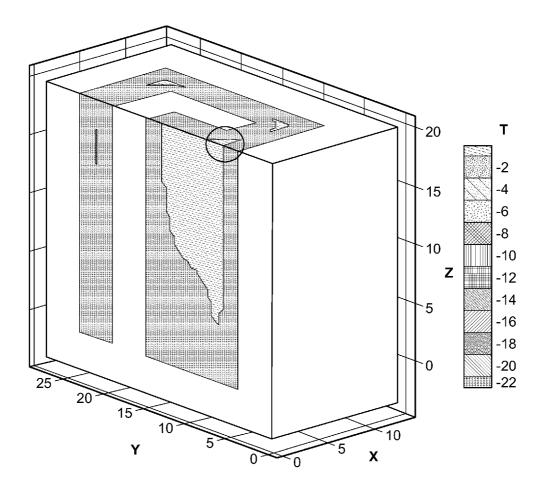


FIG. 9A

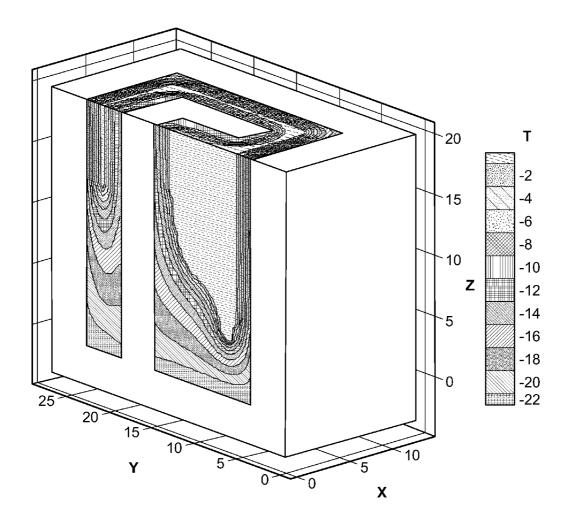


FIG. 9B

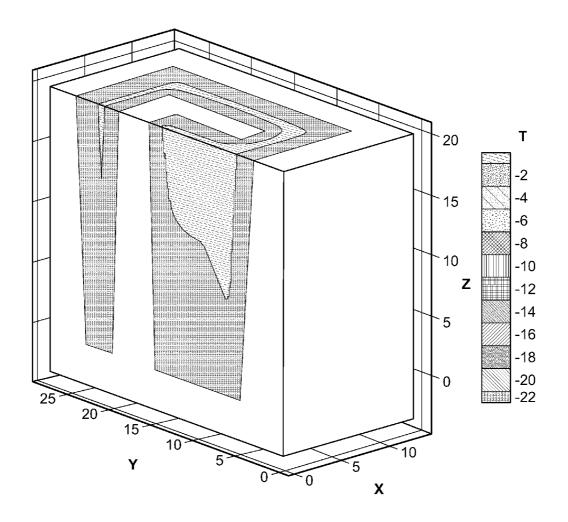


FIG. 9C

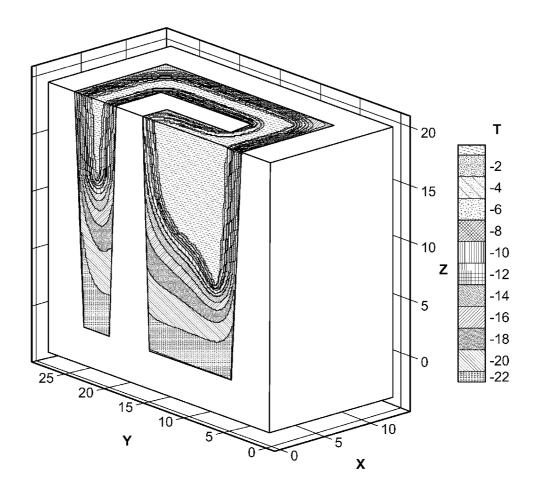


FIG. 9D

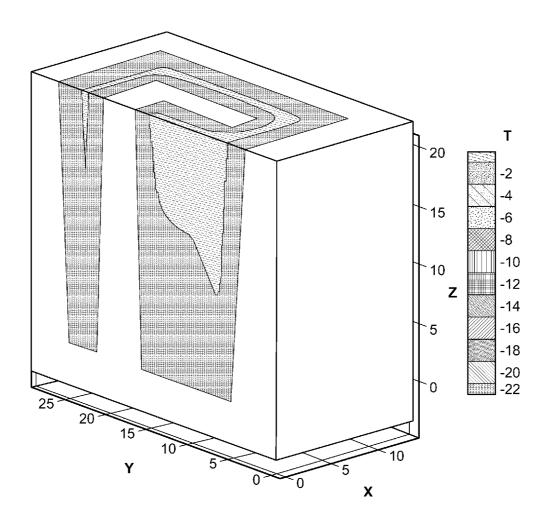


FIG. 9E

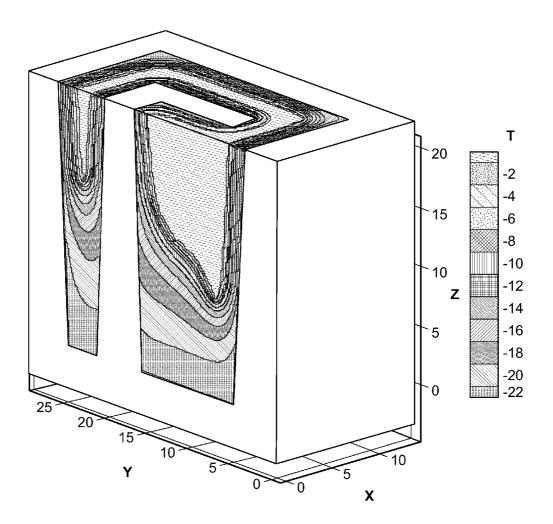
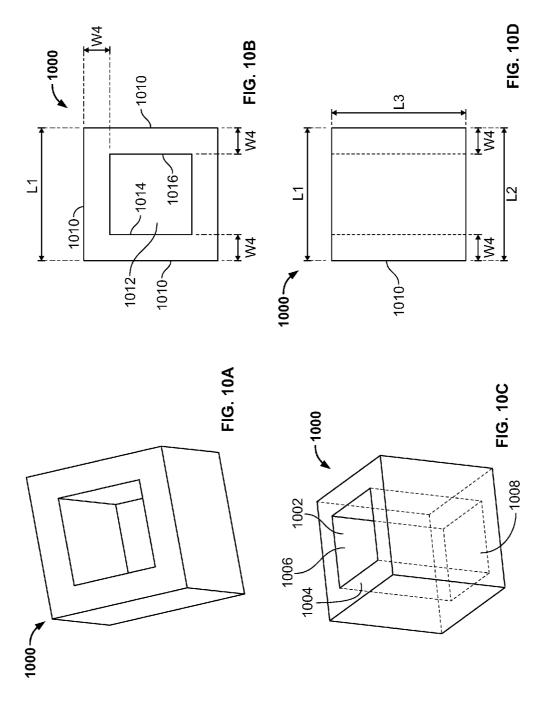
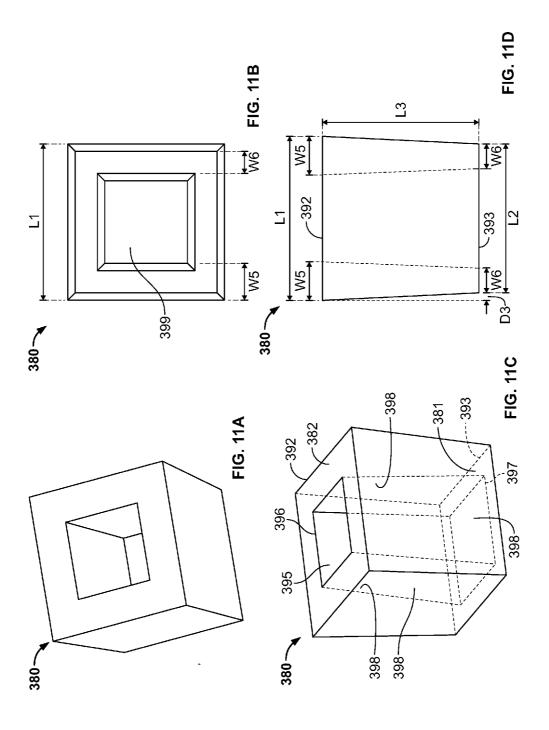
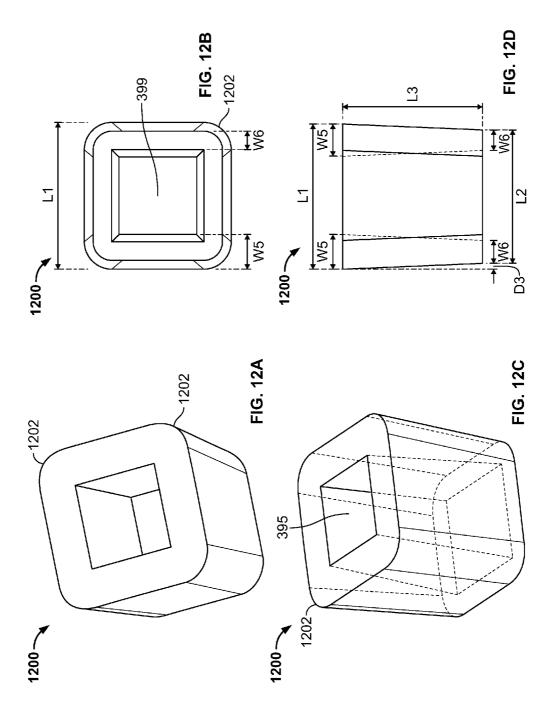
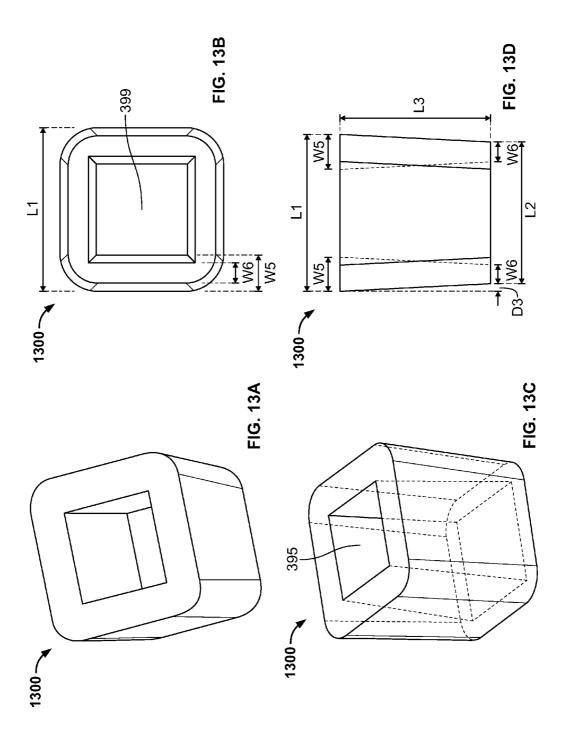






FIG. 9F

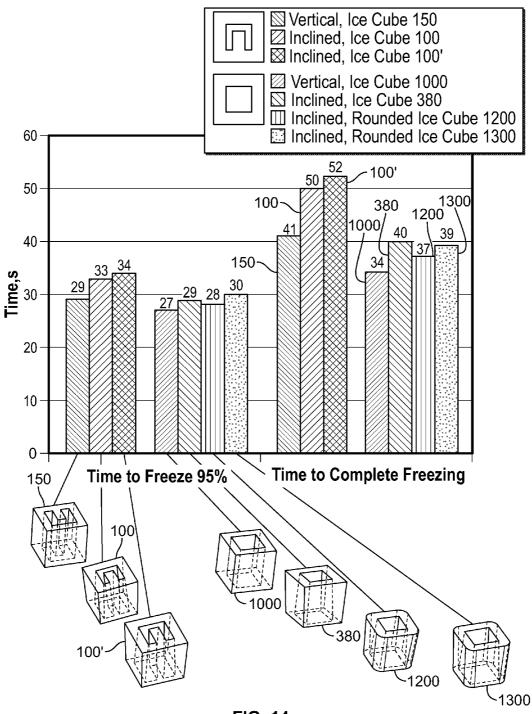
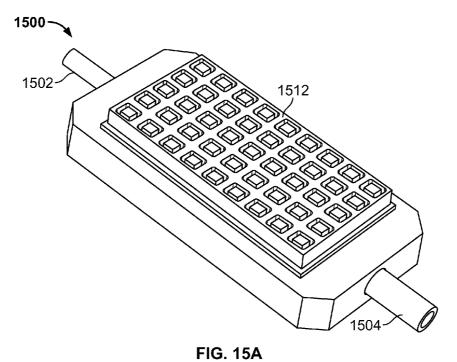
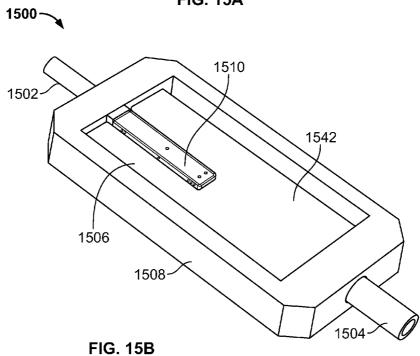
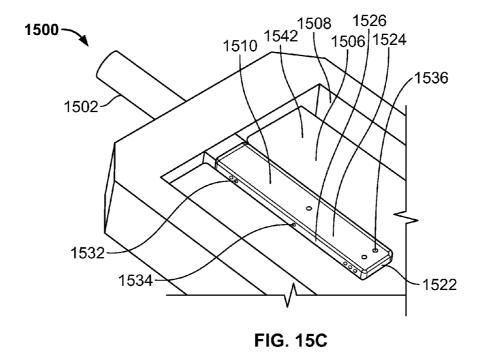





FIG. 14

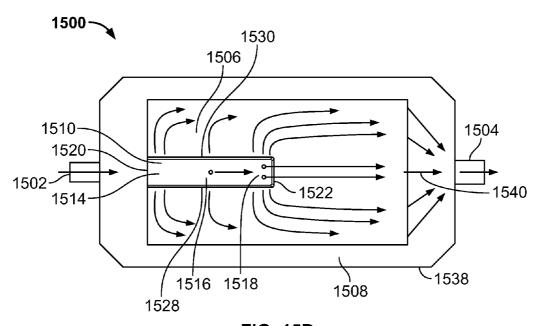
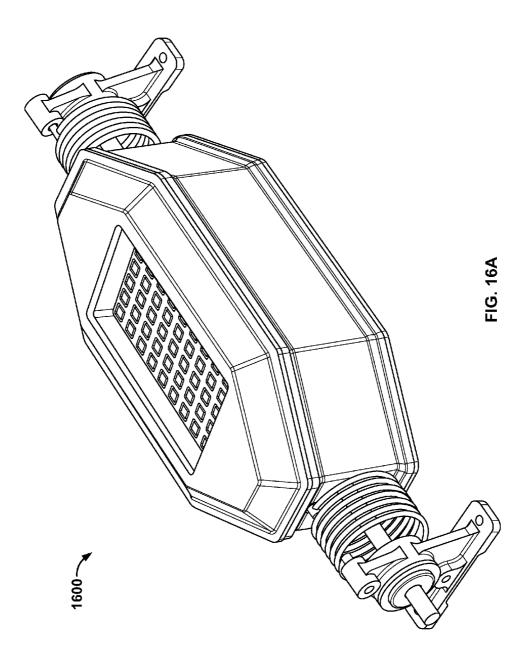



FIG. 15D

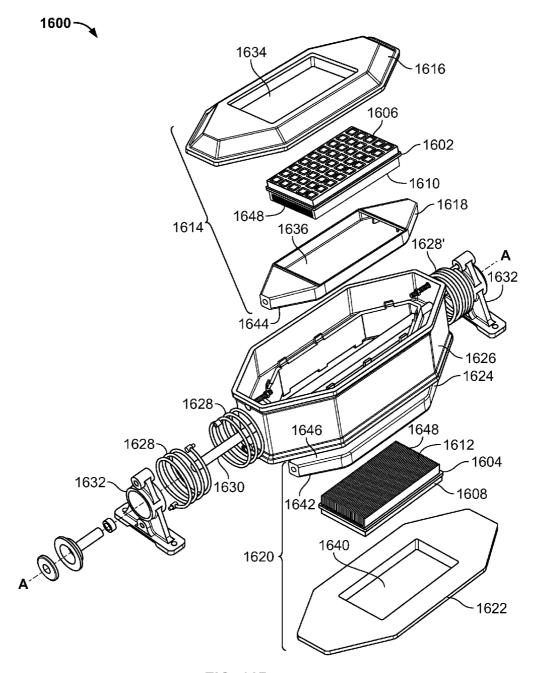


FIG. 16B

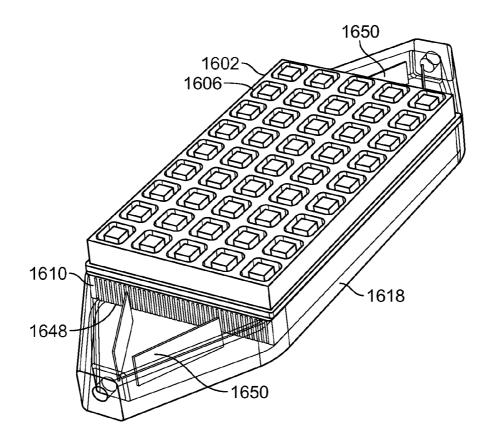


FIG. 17A

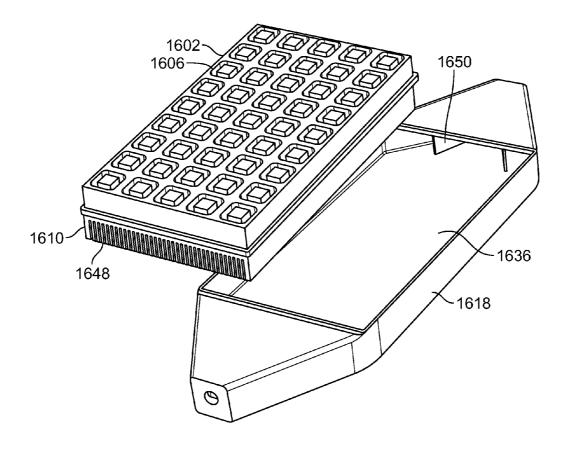


FIG. 17B

 Ξ

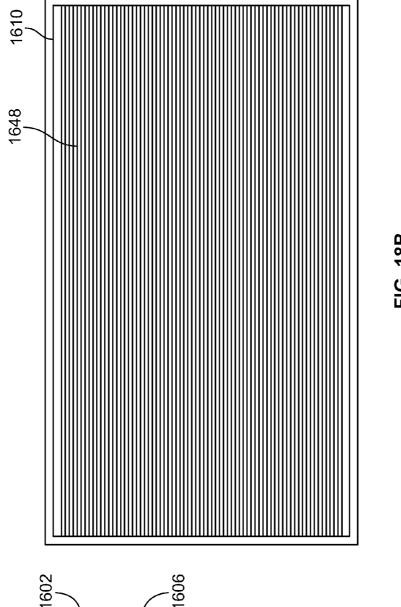
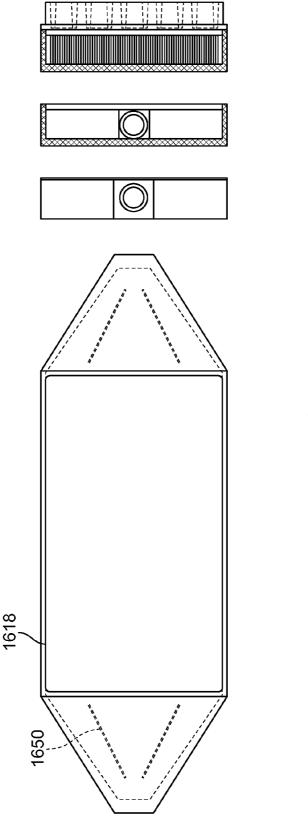
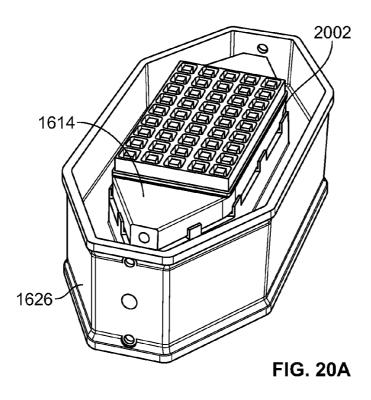
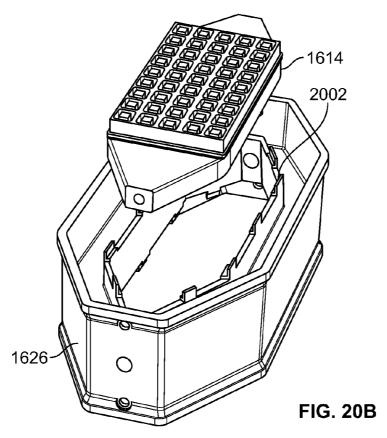





FIG. 18B

Ω

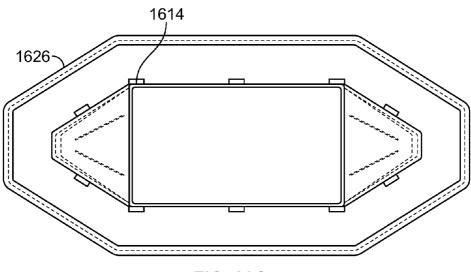
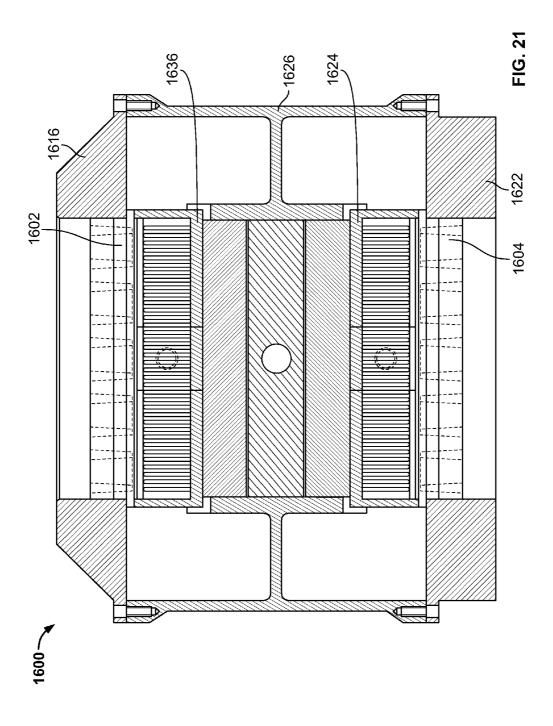



FIG. 20C

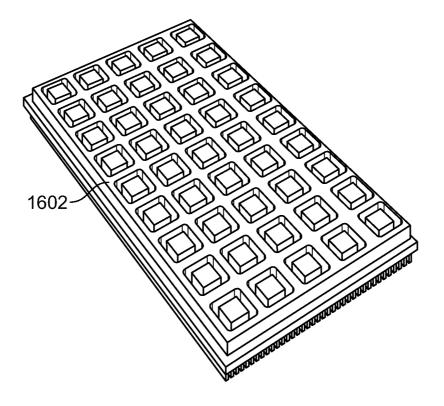
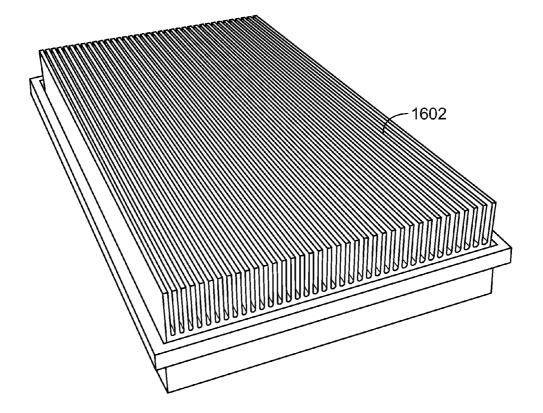
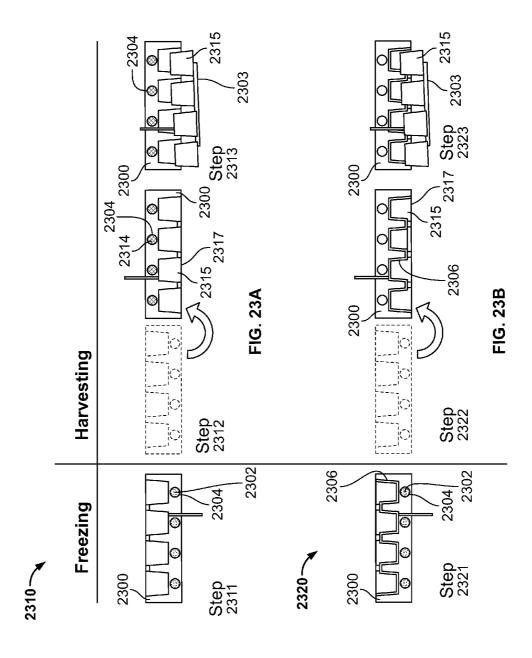
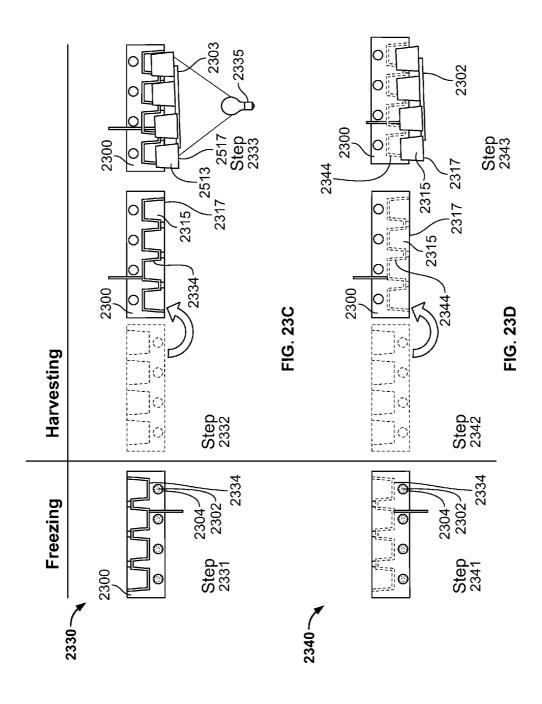
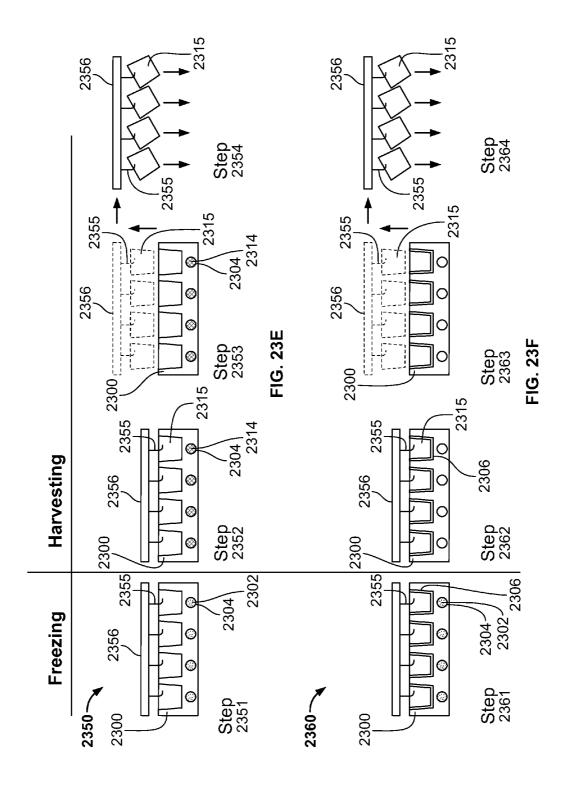
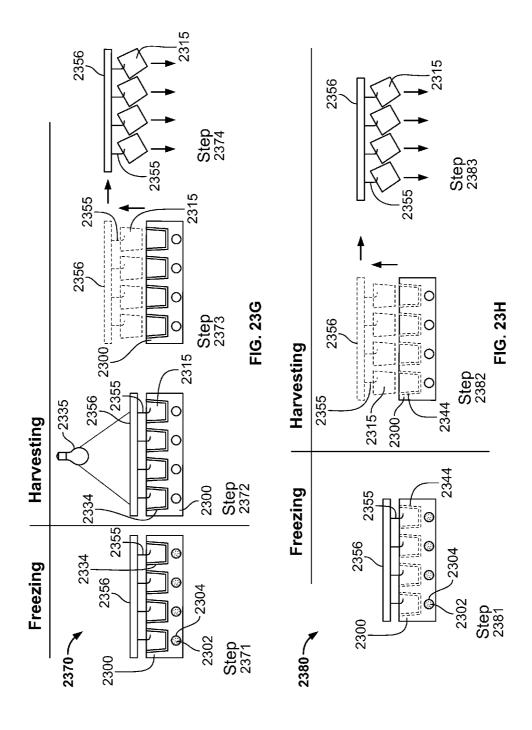
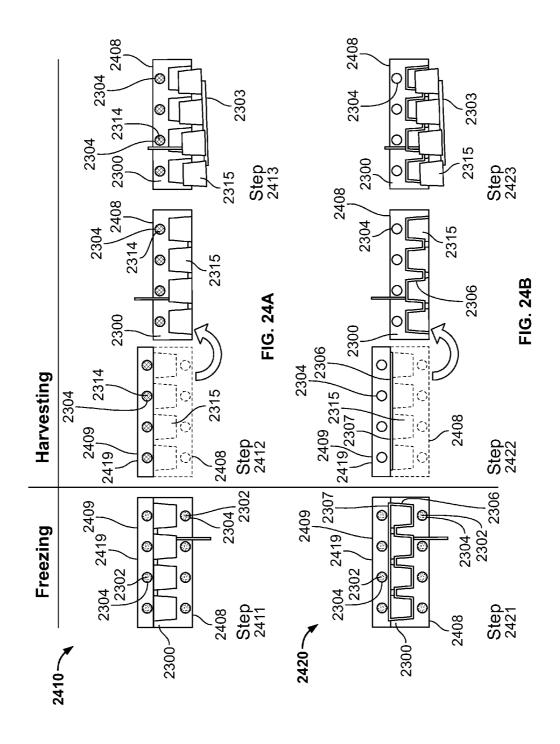
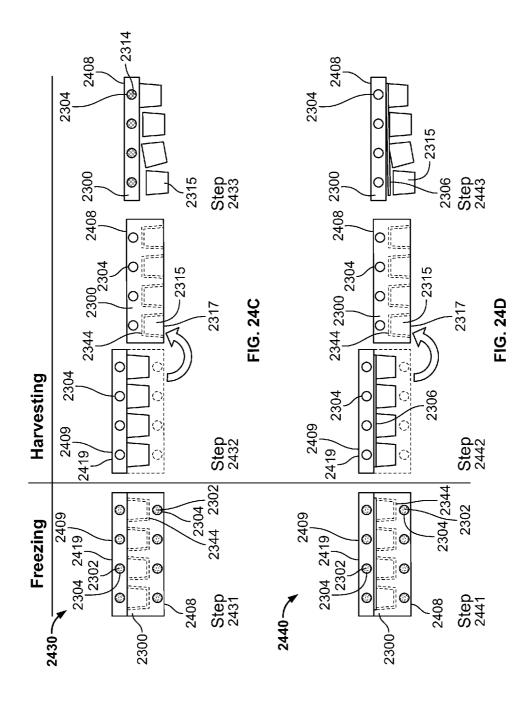


FIG. 22A


FIG. 22B



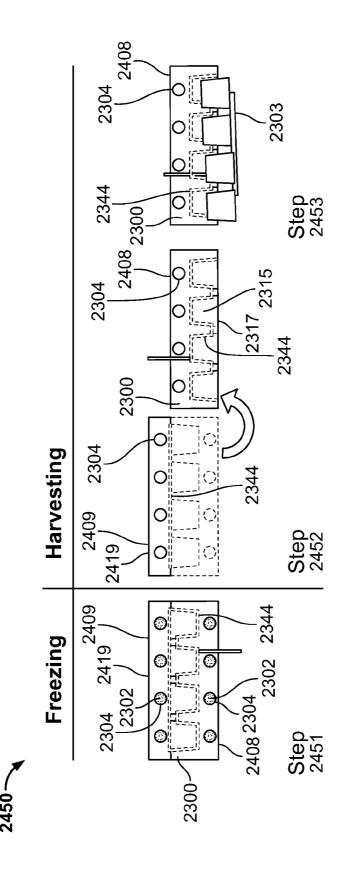
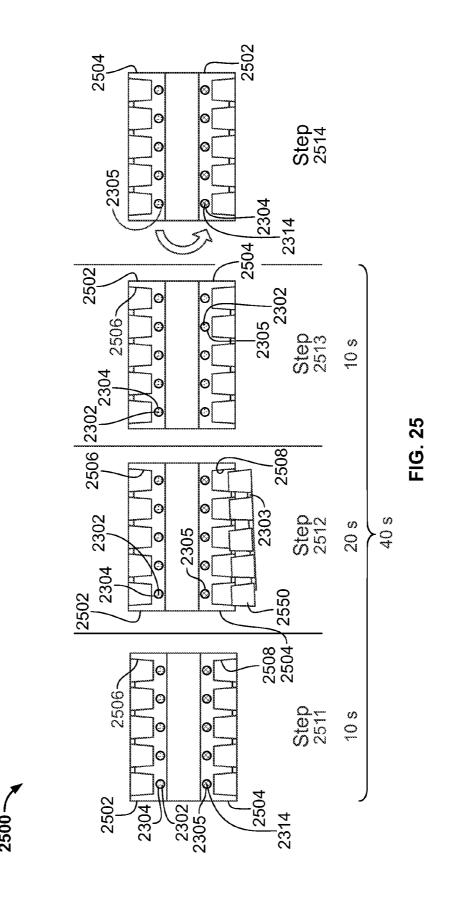
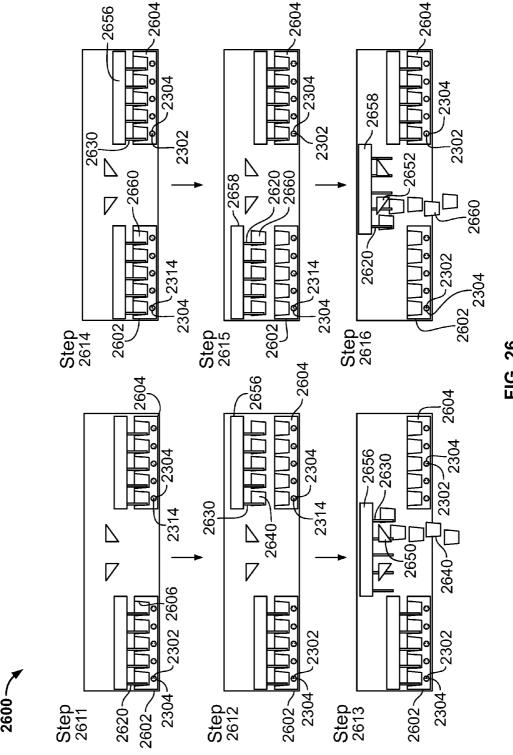
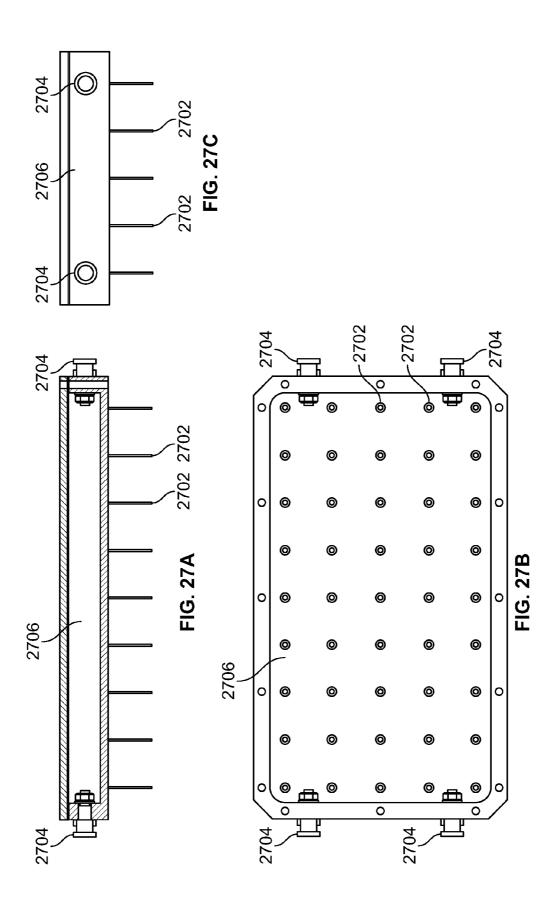
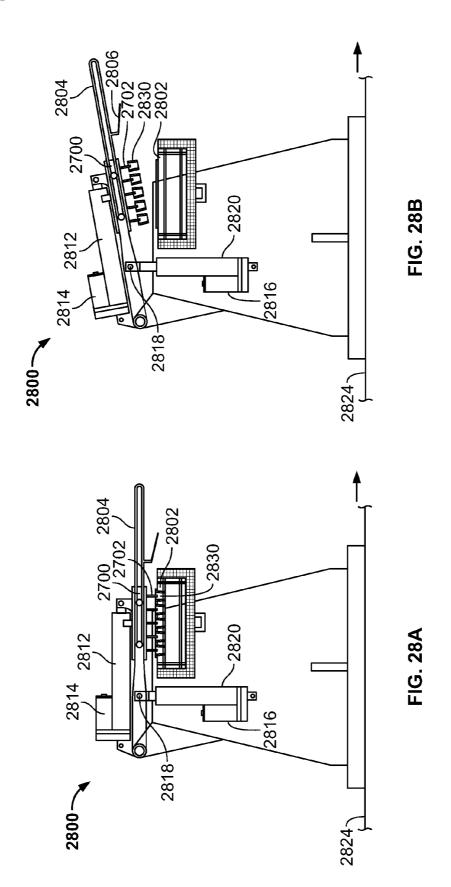
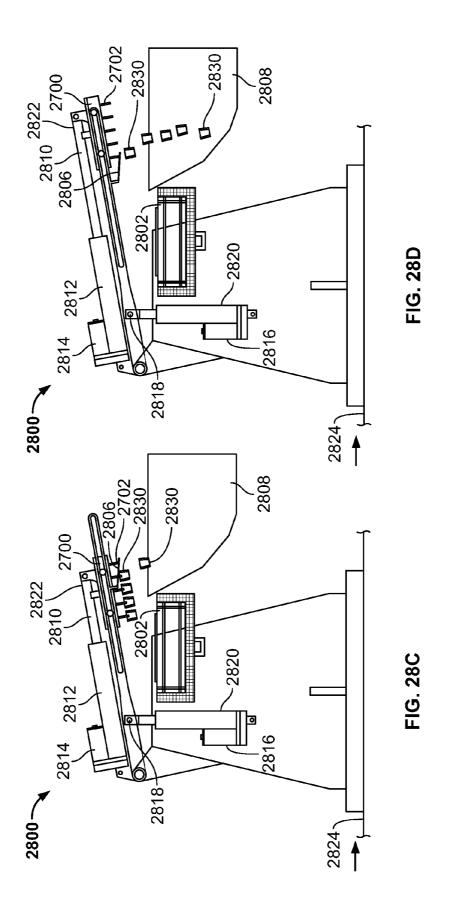
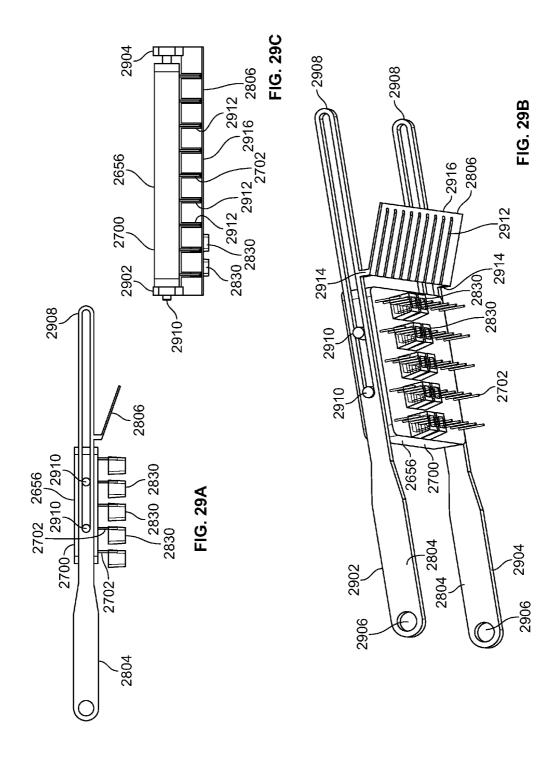
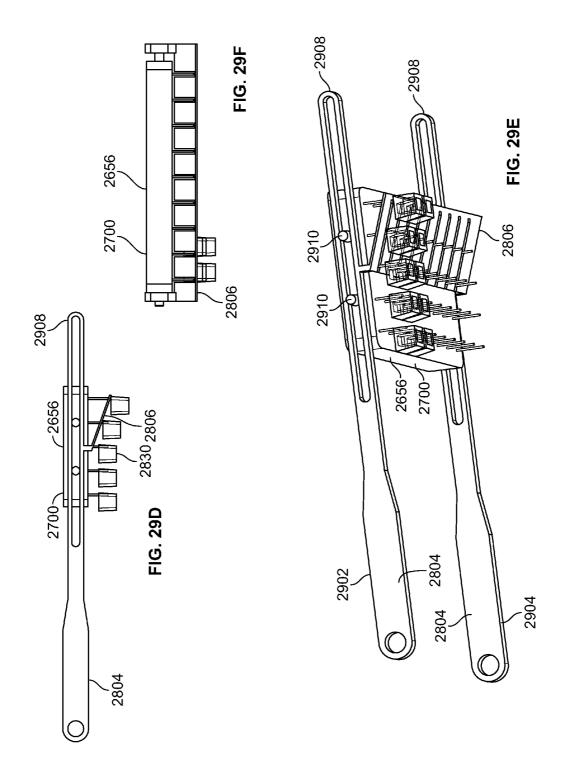
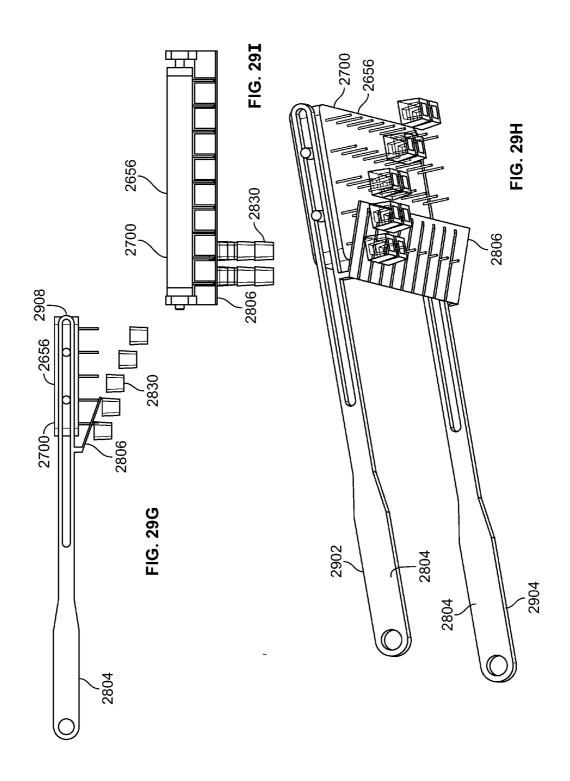
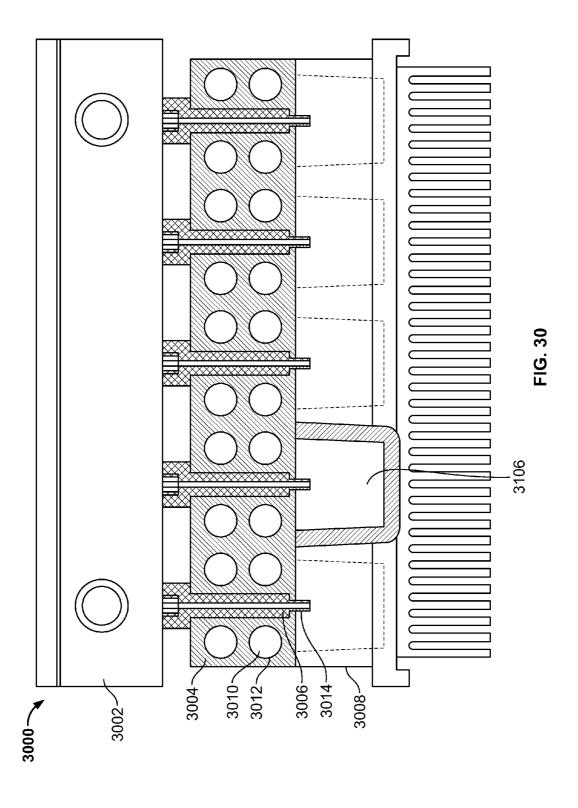



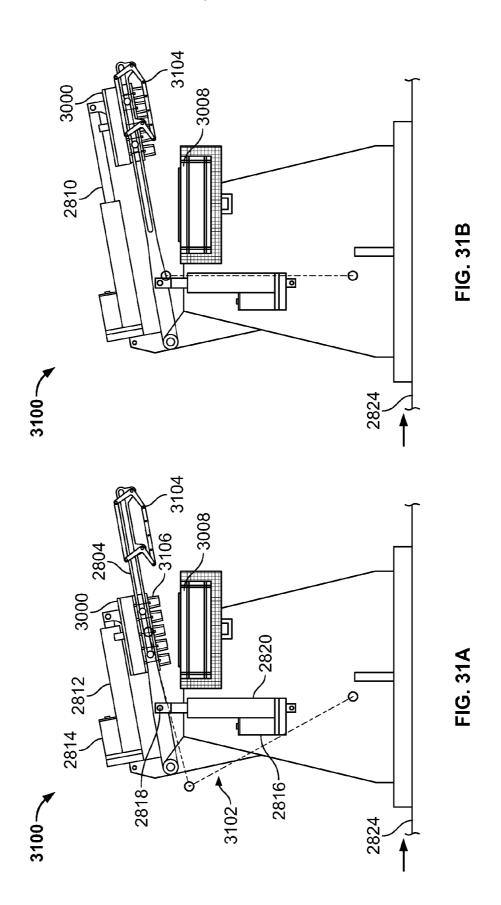
FIG. 24E


FIG. 26







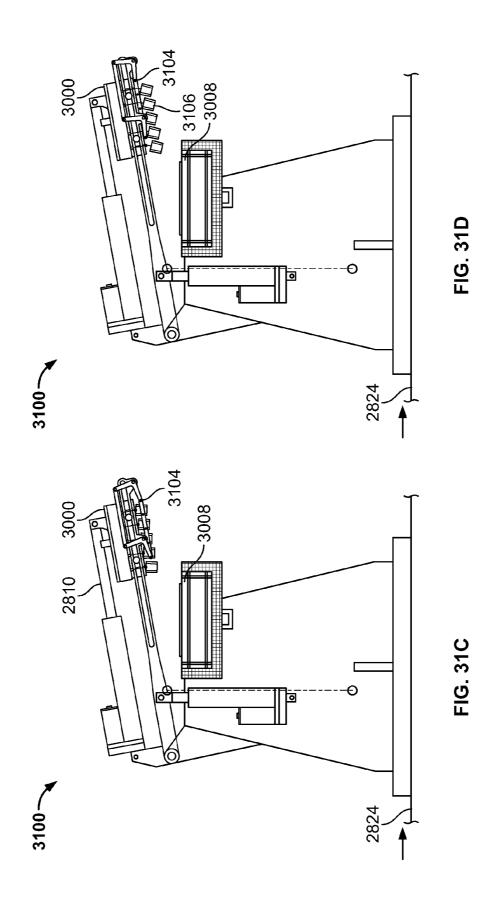
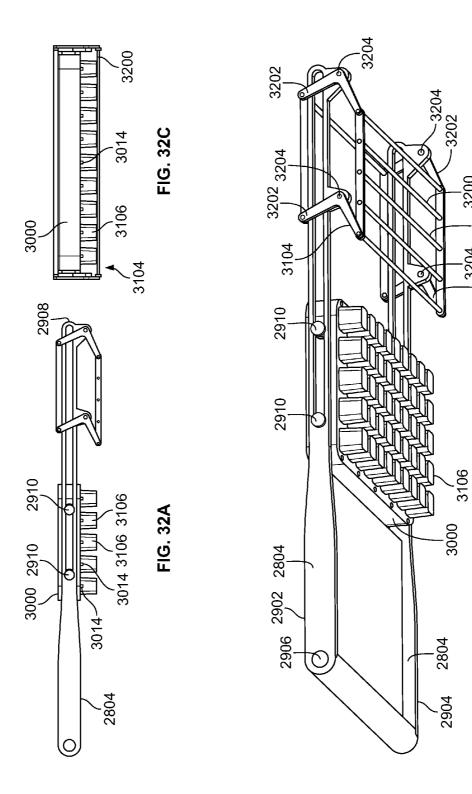
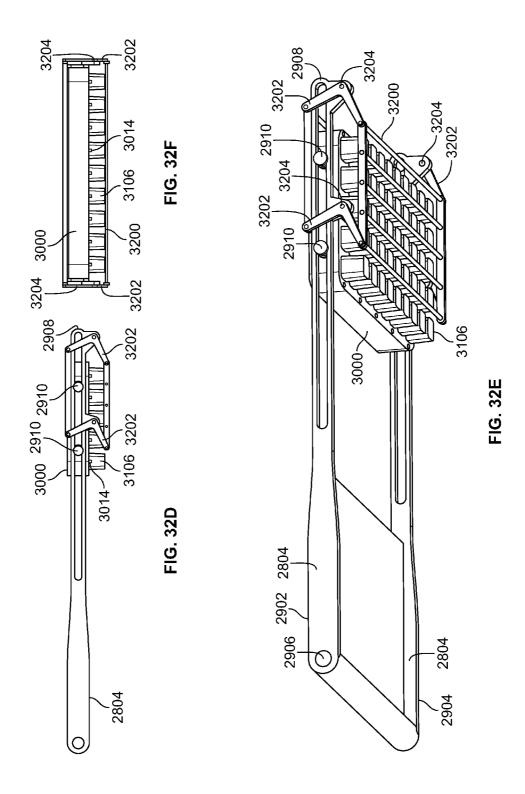
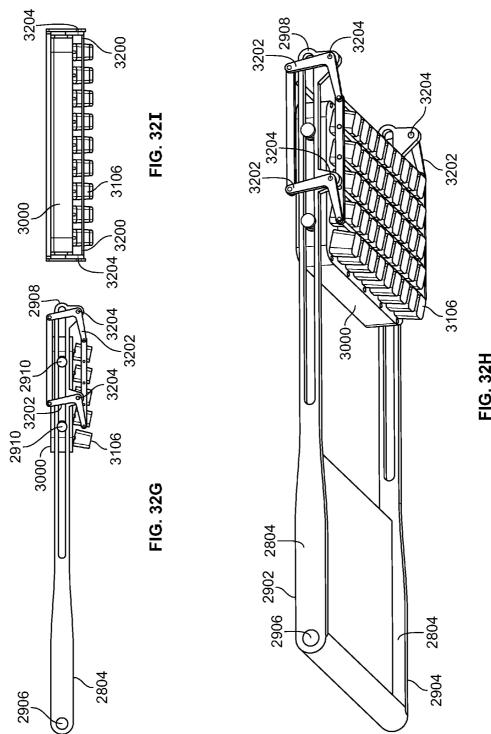
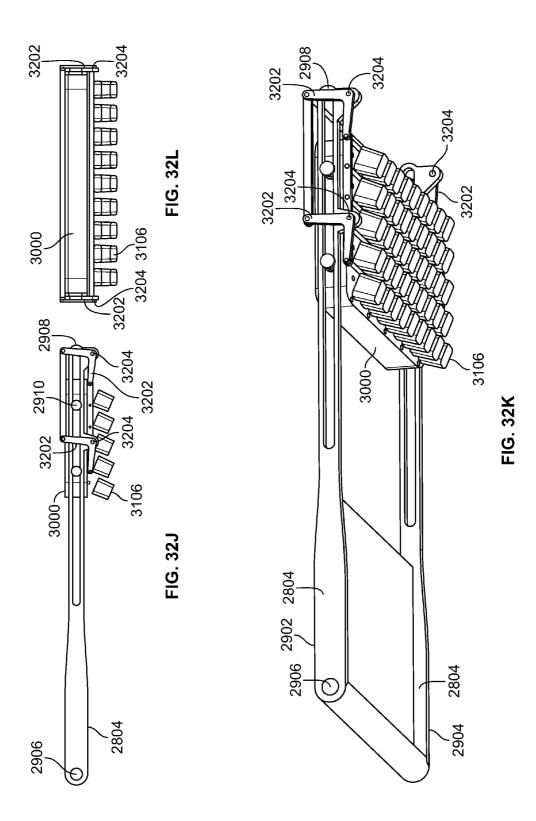






FIG. 32B

METHOD AND APPARATUS FOR ICE HARVESTING

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a non-provisional of and claims priority to pending provisional U.S. Application No. 61/588, 954, filed Jan. 20, 2012, and entitled "Method and Apparatus for Ice Making," the entire disclosure of which is hereby incorporated by reference in its entirety and for all purposes.

FIELD OF THE INVENTION

[0002] This disclosure relates generally to a method and ice making apparatus for ice harvesting, wherein the ice may be used in a variety of settings, including beverage dispensers, e.g., for cafeterias, restaurants (including fast food restaurants), theatres, convenience stores, gas stations, and other entertainment and/or food service venues, with reduced overall dimensions of apparatus and decreased freezing time for ice.

BACKGROUND

[0003] Ice making machines described in the art typically form clear crystalline ice by freezing water that flows over a cooled surface.

[0004] Existing ice making machines have several shortcomings. For example, they form ice cubes relatively slowly, which leads to a low ice production rates at a given number of ice forming cells. For example, conventional ice making machines typically have ice production cycles of about 10-15 minutes. In order to provide required ice consumption during peak hours, conventional machines are typically equipped with a large size hopper. During storage, ice in the hopper requires mechanical agitation to avoid freezing of ice cubes together. This noticeably increases complexity and overall dimension of the ice making machine. Very often, a large hopper for ice storage is required, which in turn may require the hopper to be located remotely from the point of dispense. Transportation of ice from a remote location to the point of dispensing may add to complexity and operation of ice making. In addition, ice stored for a significant period of time may become contaminated. Conventional machines are not equipped to provide for harvesting of ice that is commensurate with ice production cycles of less than about 10-15 min-

[0005] Therefore there is a need for a new ice making machine, which would provide faster ice cube freezing, and enable close to "ice-on-demand" production and harvesting rates, which in turn translates to a smaller overall machine footprint.

SUMMARY

[0006] In an aspect of the disclosure an ice cube mold is provided. The mold defines a first volume for an ice cube, the mold comprising a bottom face having an inner perimeter and side faces. Each side face of the mold has a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge. The corresponding top edge of each side face is longer than the corresponding bottom edge. Each side face extends inward from the corresponding top edge to the corresponding bottom edge. The mold comprises a three-dimensional shape, the three-dimensional shape located within the first volume, the three-dimensional shape compris-

ing a second volume. The second volume is defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape. The bulge extends upwardly between the bottom outer perimeter and the top outer perimeter. The bulge tapers as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The mold further defines a third volume between the first volume and the second volume, with the mold configured to receive water within the third volume. [0007] The above and other aspects, features and advantages of the present disclosure will be apparent from the following detailed description of the illustrated embodiments thereof which are to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIGS. 1A through 1L show ice cube geometries in accordance with at least one aspect of the disclosure.

[0009] FIG. 2 shows cross-sectional view of a mold fragment in accordance with at least one aspect of the disclosure.
[0010] FIGS. 3A through 3C show ice cubes of various geometries of bulges and fins which increase area mold-water interface in accordance with at least one aspect of the disclosure.

[0011] FIG. 4 shows cross-sectional view of the mold fragment in accordance with at least one aspect of the disclosure.

[0012] FIG. 5 shows ice cube configuration in accordance with at least one aspect of the disclosure.

[0013] FIG. 6 shows cross-sectional view of the mold fragment in accordance with at least one aspect of the disclosure.

[0014] FIG. 7 shows a cross-sectional view of the mold fragment in accordance with at least one aspect of the disclosure.

[0015] FIG. 8A depicts percentage by volume of ice cube 150 versus time.

[0016] FIG. 8B depicts ice cube wall thickness in mm versus time

[0017] FIGS. 9A through 9F depict portions of ice cubes that comprise water and portions of ice cubes that comprise ice after 30 seconds of freezing in accordance with at least one aspect of the disclosure.

[0018] FIGS. 10A through 10D illustrate an ice cube in accordance with at least one aspect of the disclosure.

[0019] FIGS. 11A through 11D illustrate another ice cube in accordance with at least one aspect of the disclosure.

[0020] FIGS. 12A through 12D illustrate an additional ice cube in accordance with at least one aspect of the disclosure.
[0021] FIGS. 13A through 13D illustrate yet a further ice cube in accordance with at least one aspect of the disclosure.
[0022] FIG. 14 illustrates time to freeze 95% by volume and time to achieve complete freezing of ice cubes in accordance with at least one aspect of the disclosure.

[0023] FIGS. 15A through 15D illustrate a distribution apparatus in accordance with at least one aspect of the disclosure.

[0024] FIG. 16A is a perspective view of an assembled embodiment of back-to-back ice cube molds in accordance with at least one aspect of the disclosure.

[0025] FIG. 16B is an exploded view of the embodiment shown in FIG. 16A.

[0026] $\,$ FIG. 17A and FIG. 17B illustrate a mold shown in FIG. 16A and FIG. 16B in accordance with at least one aspect of the disclosure.

[0027] FIG. 18A is a side view of a mold in accordance with at least one aspect of the disclosure.

[0028] FIG. 18B is a bottom view of the mold shown in FIG. 18A.

[0029] FIG. 19 is a bottom view a cover in accordance with at least one aspect of the disclosure.

[0030] FIGS. 20A through 20C illustrate an embodiment in accordance with at least one aspect of the disclosure.

[0031] FIG. 21 illustrates a full assembly cross section view and an exploded perspective view of an embodiment in accordance with at least one aspect of the disclosure.

[0032] FIG. 22A and FIG. 22B are top and bottom perspective views of an embodiment in accordance with at least one aspect of the disclosure.

[0033] FIGS. 23A through 23H illustrate various ice harvesting procedures, each of which includes at least one aspect of the disclosure.

[0034] FIGS. 24A through 24E illustrate additional various ice harvesting procedures, each of which includes at least one aspect of the disclosure.

[0035] FIG. 25 illustrates another ice harvesting procedure that includes at least one aspect of the disclosure.

[0036] FIG. 26 illustrates yet another ice harvesting procedure that includes at least one aspect of the disclosure.

[0037] FIGS. 27A through 27C illustrate an embodiment in accordance with at least one aspect of the disclosure.

[0038] FIGS. 28A through 28D illustrate an ice harvesting and apparatus in accordance with at least one aspect of the disclosure.

[0039] FIGS. 29A through 29I illustrate ice harvesting and apparatus in accordance with at least one aspect of the disclosure.

[0040] FIG. 30 illustrates a side view of a water filling system in accordance with at least one aspect of the disclosure.

[0041] FIGS. 31A through 31D illustrate ice harvesting and apparatus in accordance with at least one aspect of the disclosure.

[0042] FIGS. 32A through 32L illustrate ice harvesting and apparatus in accordance with at least one aspect of the disclosure.

DETAILED DESCRIPTION

[0043] In an aspect of the disclosure, an ice making machine may be provided with reduced overall dimensions and decreased freezing time of an ice cube to provide "ice-on-demand" production.

[0044] In an aspect, heat flow from water in a mold may be increased toward the mold. The heat flow may be enhanced by increasing area of a mold-water interface.

[0045] In an aspect, a predetermined ice cube shape may be used to reduce freezing time. The predetermined ice cube shape may have a shape of a truncated pyramid similar to a regular dice ice cube.

[0046] In an aspect, a mold with a plurality of cells and plurality of channels for cooling agent may be used. In order to provide freezing of water surface at the open side of a cell, an evaporator may be utilized. The ice making machine may comprise a cooling agent distribution system configured to deliver a pathway for a cooling agent that provides substantially equal heat removal from a plurality of ice cube molds.

[0047] In an aspect of the disclosure an ice making apparatus may be provided. The ice making apparatus may comprise a mold, the mold defining a first volume for an ice cube,

the mold comprising a bottom face having an inner perimeter and side faces. Each side face of the mold may have a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge. The corresponding top edge of each side face may be longer than the corresponding bottom edge. Each side face may extend inward from the corresponding top edge to the corresponding bottom edge. The mold may comprise a three-dimensional shape, the three-dimensional shape located within the first volume, the three-dimensional shape comprising a second volume. The second volume may be defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape. The bulge may extend upwardly between the bottom outer perimeter and the top outer perimeter. The bulge may taper as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The mold may further define a third volume between the first volume and the second volume, with the mold configured to receive water within the third volume. The apparatus may comprise a cooling device configured to cool water within the third volume sufficiently to freeze the water.

[0048] In one aspect of the disclosure an ice making apparatus may be provided comprising a mold. The mold may comprise an upper part and a lower part. Each of the parts may comprise a plurality of ice cube mold cells corresponding to a plurality of ice cube mold cells of the other mold part. The mold may be configured so that a first mold cell of the lower part of the mold and a corresponding second cell of the upper part of mold comprises a single enclosure. The single enclosure may define a volume for a single ice cube. A first channel may be configured to fill the first mold cell and the corresponding second mold cell with water. A second channel may be configured to allow air to escape from the single enclosure when the first mold cell and the second mold cell are filled with water. A plurality of passageways may be configured to receive a cooling agent and provide sufficient heat transfer from water within the mold cells to the mold cells, and freezing the water within the mold cells.

[0049] In an aspect, an ice making apparatus may be provided that comprises an evaporator. The evaporator may be separate from the mold. The evaporator and the mold may be combined wherein evaporation occurs in the mold. A dual or two loop system may be employed. In a two loop system, evaporation occurs in an evaporator, e.g., a heat carrier is cooled in the evaporator. After being cooled in the evaporator, the heat carrier is placed in heat transfer contact with the mold, and the heat carrier cools the mold. In an aspect, the heat carrier flows through a portion of the mold to cool the mold.

[0050] In one aspect of the disclosure, an ice making apparatus may be provided comprising a mold and a plate. The mold may be positioned over the plate. The mold may comprise a plurality of ice cube mold cells, each ice cube mold cell may comprise an opening at the bottom of the cell, and an air escape channel at the top of the cell to allow air to escape from the ice cube mold cell when the plate is filled with water. The mold and the plate may each comprise a plurality of passageways, each passageway configured to receive a cooling agent and provide sufficient heat transfer from water within the ice cube mold cells to the ice cube mold cells, and freeze water within the ice cube mold cells. Each ice cube mold cell may comprise a corresponding channel to allow air to escape from the ice cube mold cell when the plate is filled with water.

[0051] In one aspect of the disclosure, a method of making a plurality of ice cubes may be provided. The method may comprise placing a mold over a plate. The mold may comprise a plurality of cells. Each cell may comprise an opening at the bottom of the cell, and an air escape channel at the top of the cell. The method may comprise filling each of the plurality of cells by filling the plate with water, and transferring heat from water within the plurality of cells to the mold cells and freezing water within the cells.

[0052] In one aspect of the disclosure, an ice making apparatus may be provided comprising a mold, wherein the mold may comprise a plurality of cells. Each cell may comprise an opening at a top of each cell. The mold may comprise a plurality of passageways for a cooling agent, and an upper part. The upper part may be hermetically enclosed with a cover. The upper part may comprise a vacuum chamber. A vacuum pump may be provided, the vacuum pump configured to pump wet air from the mold. A pipe may be provided, the pipe extending from the vacuum chamber of the mold to the vacuum pump. When pressure in the vacuum chamber starts to decrease, dissolved gases start to leave the bulk of water in each cell. The vacuum pump may be configured to pump wet air from the mold so that the pressure in the vacuum chamber drops below 61 0.5 Pa ((0.18 in Hg) at 32° F.).

[0053] In one aspect of the disclosure, an ice cube is provided. The ice cube may comprise a top face having an outer perimeter, a bottom face having an outer perimeter, and side faces. Each side face may include a corresponding outer perimeter, a corresponding top edge, and a corresponding bottom edge, the corresponding top edge of each side face being longer than the corresponding bottom edge, each side face extending inward from the corresponding top edge to the corresponding bottom edge. The top face, bottom face and side faces may define a first volume. In an embodiment, a three-dimensional shape may be provided, the three-dimensional shape located within the first volume. The three-dimensional shape may comprise a second volume. The second volume may be defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge. The bulge may extend upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The bulge may taper as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The ice cube may further define a third volume between the first volume and the second volume, the third volume comprising ice, and second volume comprising unfrozen liquid or air, or a combination of unfrozen liquid and

[0054] In an aspect, a cooling agent distribution apparatus may be provided. The cooling agent distribution apparatus may comprise an inlet, an outlet, and a distribution device. The inlet may be configured to receive a cooling agent. The distribution device may be configured to receive the cooling agent from the inlet. The distribution device may be configured to distribute cooling agent in a manner that the cooling agent provides substantially equal or even cooling to a plurality of molds that comprise a liquid to be cooled by the cooling agent.

[0055] In an aspect, an ice making machine may be provided that is configured to produce ice faster than conventional ice making machines. Conventional ice making apparatus, such as ice making apparatus used to make ice for beverage dispensers, typically have ice production cycles of about 10-15 minutes, i.e., about 4-6 cycles per hour. In an

aspect of the present disclosure, an ice making machine may be provided that produces ice in less than 1 minute, i.e., more than 60 cycles per hour. In an aspect of the present disclosure, an ice making machine may be provided that produces ice in about 30 seconds, i.e., about 120 cycles per hour. In an aspect of the present disclosure, an ice making machine may be provided that produces ice in about 17 seconds or less, i.e., about 212 cycles per hour or more. In an aspect of the present disclosure, an ice making machine may be provided that produces ice in about 15 seconds, i.e., about 240 cycles per hour. The above 30 second and 17 second times are freezing times. Time is needed to fill cells with water, freeze it, disengage the ice from the mold, and to harvest the ice. Therefore, the production cycle is about 70-90 seconds, which includes a 30 second freezing time, and the production cycle is about 60-80 seconds, which includes a 17 second freezing time.

[0056] In an aspect, an ice making machine may be provided that comprises an ice harvesting apparatus. The ice harvesting apparatus may comprise various structures for facilitating removal of ice cubes from a mold. The ice harvesting apparatus may be configured to be incorporated into the ice making machine and/or cooperate with the ice making machine disclosed herein.

[0057] In an aspect of the disclosure, an ice making apparatus comprising a mold is provided. The apparatus comprises an arm and an ice cube mold comprising a plurality of ice cube mold cells. The ice cube mold is configured to cool a liquid in the ice cube mold cells sufficient such that an ice cube is formed in each ice cube mold cell. The apparatus comprises a water filling system, the water filling system configured to move along the arm. The water filling system comprises water filling dispensers. Each water filling dispenser is configured to dispense a liquid to be frozen into a corresponding ice cube mold cell. Each water filling dispenser is configured to move an ice cube formed in the corresponding ice cube mold cell away from the corresponding ice cube mold cell when the water filling system moves away from the ice cube mold. Moreover, the apparatus comprises an ice cube remover. The ice cube remover may be configured to push ice cubes off the water filling dispensers when the water filling system is moved along the arm toward the ice cube remover.

[0058] In an aspect of the disclosure, an ice making apparatus is configured to provide conditions for fast (on-demand) production. This is achieved by increased intensity of heat exchange between water and mold which is achieved by specially designed cells which increase the surface area of the water-mold interface.

[0059] FIG. 1A illustrates an embodiment in accordance with aspects of the disclosure. More specifically, FIG. 1A illustrates a shape of an of ice cube 100 with an increased area of mold-water interface. Ice cube 100 may be formed using a corresponding ice cube mold 126. Ice cube 100 comprises a top face 102, a bottom face 101, and four side faces 105, 106, 107 and 108. In an embodiment, the top face 102, the bottom face 101, and the four side faces 105, 106, 107, and 108 may be parallelograms. Top face 102 may have an outer perimeter 112, and bottom face 101 may have an outer perimeter 111. Each of the four side faces 105, 106, 107, and 108 may have an outer perimeter 114. The outer perimeter 114 of each side face may have a top edge 116 and a bottom edge 118. In an embodiment, the top edge 116 of each side face 105, 106, 107, and 108 may be longer than bottom edge 118 of each side face 105, 106, 107, and 108. In an embodiment, each of the side

faces 105, 106, 107 and 108 may extend or slant inward from the top edge 116 of each side face.

[0060] In an embodiment of the disclosure, a mold 126 is provided. Mold 126 may define a first volume for an ice cube, such as ice cube 100. Mold 126 may comprise a bottom face having an inner perimeter. Mold 126 may also comprise side faces. Each side face of the mold may have a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge. The corresponding top edge of each side face may be longer than the corresponding bottom edge, each side face extending inward from the corresponding top edge to the corresponding bottom edge. The bottom face and side faces of mold 126 may respectively correspond to the bottom face 101, and side faces 105, 106, 107 and 108 of ice cube 100. Mold 126 nay comprise a top face having an inner diameter. Top face of mold 126 may correspond to the top face 102 of ice cube 100.

[0061] In an embodiment of the disclosure, a three-dimensional shape 122 is provided. In an embodiment, three-dimensional shape 122 may be generally a three-dimensional "U"-shape 120. The U-shape 120 may have a top outer perimeter 103, and a bottom outer perimeter 104, and side fins 124. In an embodiment, top outer perimeter 103 may be smaller than the bottom outer perimeter 104. In an embodiment, side fins 124 may taper as they extend upwardly from the bottom outer perimeter 104 to top outer perimeter 103.

[0062] FIGS. 1B, 1C, 1D, and 1E illustrate various views of ice cube 100. FIG. 1B is a perspective view of ice cube 100 after it has been removed from mold 126 shown in FIG. 1A. Ice cube 100 may have the following dimensions: each top edge 116 may have length L1 (see FIGS. 1C and 1D), each bottom edge 118 may have a length L2 (see FIG. 1D), and a length L3 between a plane of the top face 102 and a plane of the bottom face 101 (see FIG. 1D). In an embodiment, ice cube 100 may have inclined outer side walls and length L1 may be greater than length L2. In an embodiment, length L1 may be 21 mm, length L2 may be 19 mm, and length L3 may be 20 mm. As shown in FIG. 1C, after the three-dimensional shape 122 is removed from ice cube 100, a void 128 is defined by ice cube 100. Void 128 may comprise legs 130 and 132, which face each other, and a connecting portion 134 that is connected to each leg. In an embodiment, the distance D1 between the legs 130 and 132 may be greater at the top face 102 than the distance D2 at the bottom face 101. For example, distance D1 may be 5 mm, and distance D2 may be 3 mm. Due to tapering of ice cube 100 between length L1 and length L2, the difference in length between length L1 and length L2 is shown as distance D3 at each end of length L2. In an embodiment, D3 may be 1 mm.

[0063] FIGS. 1F, 1G, 1H, and 1I illustrate various views of an embodiment of an ice cube 100'. In an embodiment shown in FIGS. 1F through 1I, length L1 may be 23 mm, length L2 may be 21 mm, length L3 may be 22 mm, distance D1 may be 5 mm, and distance D2 may be 3 mm. Ice cube 100' may have a similar shape as ice cube 100, with different dimensions for L1, L2 and/or L3. Due to tapering of ice cube 100' between length L1 and length L2, the difference in length between length L1 and length L2 is shown as distance D3 at each end of length L2. In an embodiment, D3 may be 1 mm.

[0064] FIGS. 1J, 1K, and 1L illustrate an ice cube 150 having vertical walls. Ice cube 150 may have a void 152. Ice cube 150 may have the following dimensions: each top edge 154 may have length L1, each bottom edge 156 may have a length L2, and a length L3 between a plane of the top face 158

and a plane of the bottom face 160. In an embodiment, length L1 may be 20 mm, length L2 may be 20 mm, and length L3 may be 20 mm. As shown in FIG. 1K, after a three-dimensional shape (not shown) that corresponds to void 152 is removed from ice cube 150, void 152 is defined by ice cube 150. The three-dimensional shape that corresponds to void 152 may have a shape similar to three-dimensional shape 122 discussed in connection with FIG. 1A, but with vertical walls rather than inclined walls. Void 152 may comprise legs 162 and 164, which face each other, and a connecting portion 166 that is connected to each leg. In an embodiment, the distance D1 between the legs 162 and 164 may be 4 mm. Leg 162 may have a width W1, leg 164 may have a width W2, and connecting portion 166 may have a width W3. In an embodiment, W1, W2, and W3 may each be 4 mm.

[0065] Ice cube 150 may be formed in accordance with the following procedure. An empty mold is cooled down from the bottom of the mold to about -30 to about -35 degrees. The mold is filled with room temperature water using a syringe. In about 30-35 seconds, ice cube 150 may be frozen to about 95% by volume, and 100% frozen in about 45 seconds. FIG. 8A depicts the percentage by volume of ice cube 150 versus time.

[0066] An ice cube having the same dimensions as ice cube 150 is formed in accordance with the following procedure. An empty mold is cooled down from the bottom of the mold to about -30 to about -35 degrees Celsius. The mold is filled with room temperature water using a syringe. In about 17 seconds, unfrozen water may be sucked from the mold, leaving a layer of ice on the mold surfaces. The average wall thickness may be about 2 mm after 17 seconds of freezing. When the freezing time is extended to 30 seconds, the average wall thickness was about 3 mm. FIG. 8B depicts the ice cube wall thickness in mm versus time.

[0067] FIG. 9A depicts the portions of ice cube 150 that comprises water and the portion of ice cube 150 that comprises ice after 30 seconds of freezing in accordance with the above procedure. FIG. 9B depicts temperature (in degrees Celsius) for ice cube 150 after 30 seconds of freezing in accordance with the procedure described above with respect to FIG. 8A.

[0068] Ice cube 100 described in connection with FIGS. 1B through 1E may be formed in accordance with the following procedure. An empty mold is cooled down to about -35 degrees Celsius. The mold is filled with room temperature water using a syringe. FIG. 9C depicts the portions of ice cube 100 that comprises water and the portion of ice cube 100 that comprises ice after 30 seconds of freezing in accordance with the above procedure. FIG. 9D depicts temperature (in degrees Celsius) for ice cube 100 after 30 seconds of freezing in accordance with the procedure described above.

[0069] Ice cube 100' described in connection with FIGS. 1F through 1I may be formed in accordance with the following procedure. An empty mold is cooled down to about -35 degrees Celsius. The mold is filled with room temperature water using a syringe. FIG. 9E depicts the portions of ice cube 100' that comprises water and the portion of ice cube 100 that comprises ice after 30 seconds of freezing in accordance with the above procedure. FIG. 9F depicts temperature (in degrees Celsius) for ice cube 100 after 30 seconds of freezing in accordance with the procedure described above.

[0070] FIG. 2 shows an embodiment of an mold 200 in accordance with at least one aspect of the disclosure. Mold 200 may be configured to correspond to the ice cube depicted

in FIG. 1. Mold body 201 may include a plurality of individual ice cube mold cells 202. Each mold cell may include fins 203 connected to the mold body 201. Channels 204 for a cooling agent may be located in proximity to the cells 202 in order to provide efficient heat transfer to freeze water in the mold cells 202.

[0071] In an aspect of the disclosure, using an ice cube shape as shown in FIG. 1 may result in about a 10-fold reduction of ice cube freezing time as compared to a monolithic cube of the same external dimensions.

[0072] Other embodiments in accordance with the disclosure are depicted in FIGS. 3A, 3B, and 3C. As shown in FIGS. 3A, 3B, and 3C, bulges and/or fins may have different shapes and may be configured to increase the area of the mold-surface interface.

[0073] FIG. 3A illustrates a shape of an of ice cube 300 with an increased area of mold-water interface in accordance with at least one aspect of the disclosure. As shown in FIG. 3A, ice cube 300 may have a top face 302, a bottom face 301, and side faces 305, 306, 307 and 308. In an embodiment, top face 302, bottom face 301, and the four side faces 305, 306, 307, and 308 may be parallelograms. Ice cube 300 may be formed using a corresponding ice cube mold, such as mold 126 shown in FIG. 1. Top face 302 may have an outer perimeter 312, and bottom face 301 may have an outer perimeter 311. Each of the four side faces 305, 306, 307, and 308 may have an outer perimeter 314. The outer perimeter 314 of each side face may have a top edge 316, and a bottom edge 318. In an embodiment, the top edge 316 of each side face 305, 306, 307, and 308 may be longer than the bottom edge 318 of each side face 305, 306, 307, and 308. In an embodiment, each of the side faces 305, 306, 307 and 308 may extend or slant inward from the top edge 316 of each side face. In an embodiment, a mold 320 is provided. Mold 320 may comprise a three-dimensional shape 322. In an embodiment, three-dimensional shape 322 may be generally a three-dimensional truncated "M"-shape. Three-dimensional shape 322 may have a top outer perimeter 303, a bottom outer perimeter 304, and side fins 324. In an embodiment, top outer perimeter 303 may be smaller than bottom outer perimeter 304. In an embodiment, side fins 324 may taper as they extend upwardly from the bottom outer perimeter 304 to top outer perimeter 303.

[0074] FIG. 3B illustrates a shape of an of ice cube 340 with an increased area of mold-water interface in accordance with at least one aspect of the disclosure. As shown in FIG. 3B, ice cube 340 may have a top face 342, a bottom face 341, and side faces 345, 346, 347 and 348. In an embodiment, the top face 342, the bottom face 341, and the four side faces 345, 346, 347, and 348 may be parallelograms. Ice cube 340 may be formed using a corresponding ice cube mold. Top face 342 may have an outer perimeter 352, and bottom face 341 may have an outer perimeter 351. Each of the four side faces 345, 346, 347, and 348 may have an outer perimeter 354. The outer perimeter 354 of each side face may have a top edge 356 and a bottom edge 358. In an embodiment, the top edge 356 of each side face 345, 346, 347, and 348 may be longer than the bottom edge 358 of each side face 345, 346, 347, and 348. In an embodiment, each of the side faces 345, 346, 347 and 348 may extend or slant inward from the top edge 356 of each side face. In an embodiment, a mold 360 is provided. Mold 360 may comprise a three-dimensional shape 362. In an embodiment, three-dimensional shape 362 may be generally a set of three-dimensional "L"-shapes, with two of the three-dimensional L-shapes (363, 364) being mirror images of each other.

A third three-dimensional shape 365 may be positioned between and may join the three-dimensional L-shapes (363, 364). The three-dimensional shape 362 may have a top outer perimeter 366, a bottom outer perimeter 367, and side fins 368. In an embodiment, top outer perimeter 366 may be smaller than the bottom outer perimeter 367. In an embodiment, side fins 368 may taper as they extend upwardly from the bottom outer perimeter 367 to top outer perimeter 366.

[0075] FIG. 3C illustrates a shape of an of ice cube 380 with an increased area of mold-water interface in accordance with at least one aspect of the disclosure. As shown in FIG. 3C, ice cube 380 may have a top face 382, a bottom face 381, and side faces 385, 386, 387 and 388. In an embodiment, the top face 382, the bottom face 381, and the four side faces 385, 386, 387, and 388 may be parallelograms. Ice cube 380 may be formed using a corresponding ice cube mold. Top face 382 may have an outer perimeter 389, and bottom face 381 may have an outer perimeter 390. Each of the four side faces 385, 386, 387, and 388 may have an outer perimeter 391. The outer perimeter 391 of each side face may have a top edge 392 and a bottom edge 393. In an embodiment, the top edge 392 of each side face 385, 386, 387, and 388 may be longer than bottom edge 393 of each side face 385, 386, 387, and 388. In an embodiment, each of the side faces 385, 386, 387 and 388 may extend or slant inward from the top edge 392 of each side face. In an embodiment, a mold 394 may be provided. Mold 394 may comprise a three-dimensional shape 395. In an embodiment, three-dimensional shape 395 may have a shape generally the same as ice cube 380, but is smaller in size. In an embodiment, three-dimensional shape 395 may be an upside down mirror image of a reduced volume of ice cube 380. Three-dimensional shape 395 may have top outer perimeter 396 and a bottom outer perimeter 397. In an embodiment, top outer perimeter 396 may be smaller than the bottom outer perimeter 397. In an embodiment, three-dimensional shape 395 may have side faces 398. Side faces 398 may taper as they extend upwardly from the bottom outer perimeter 397 to top outer perimeter 396.

[0076] An embodiment of a mold 400 is shown in FIG. 4 in accordance with various aspects of the disclosure. Mold 400 may comprise a first part 401 and a second part 402. Each of the parts may have a plurality of ice cube mold cells 410. The cells may be placed so that one cell on first part 401 and one cell on second part 402 form a single enclosure 403 to make a single ice cube. Enclosure 403 may be filled with water 411 through channel 405. Channel 406 may allow air to escape from enclosure 403 when the latter is being filled with water 411. Each part 401 and 402 of the mold may also include a plurality of passageways 409 for cooling agent 407. In order to seal enclosures 403, the first part 401 and/or the second part 402 may be covered with a sealing coating 408 at a surface area where the first part 401 meets the second part 402.

[0077] FIG. 5 illustrates an ice cube configuration in accordance with aspects of the disclosure. Ice cube 500 may be used to reduce freezing time. In this configuration, ice cube 500 may have a shape of a truncated pyramid similar to a regular dice ice cube. Unlike a regular dice ice, however, ice cube 500 may define an internal volume 502 that is not completely frozen, thus providing a structure of ice cube walls 501, which enclose internal volume 502 filled with water.

[0078] Because volume of ice in the ice cube 500 is significantly lower than that of a monolithic ice cube of the same exterior dimension, ice cube freezing time to form ice cube

500 may be about 20-fold less as compared to ice cube freezing time to form a monolithic cube of the same external dimensions.

[0079] FIG. 6 illustrates a mold design that may produce ice cube 500 illustrated in FIG. 5. Mold 600 may comprise a mold 601 and a plate 602. Mold 601 and plate 602 may each have a plurality of passageways 606 for a cooling agent (not shown). Mold 601 may also comprise a plurality of ice cube cells 603. Each cell 603 may have a corresponding channel 605 to let air escape from the cell when plate 602 is filled with water 604.

[0080] The freezing time may be chosen so that the resulting wall thickness of the ice cube may be sufficient to provide required mechanical strength of the ice cube. Because the volume of ice in ice cube 500 is significantly less than that of a monolithic ice cube of the same exterior dimension, the time needed to freeze the ice cube structure of ice cube 500, i.e., ice cube walls 501, may be reduced by a factor of about 20-fold for a wall thickness of about 2-3 mm.

[0081] An alternative approach for production of ice cubes is shown in FIG. 7 in accordance with at least one aspect of the disclosure. Ice making apparatus 700 may comprise a mold 701. Mold 701 may comprise a plurality of cells 702 and a plurality of passageways 710 for a cooling agent 703. In order to provide freezing of water surface at the open side 711 of cell 702, water evaporation may be utilized. An upper part 712 of mold 701 may be hermetically enclosed with a cover 704. Upper part 712 may be connected by a pipe 705 to a vacuum pump 706, which may be configured to pump wet air from mold 701.

[0082] As the pressure above water surface (e.g., in vacuum chamber 707) starts to decrease, dissolved gases start to leave the bulk of water. When the pressure drops below the point of water vapor partial pressure (which is 61 0.5 Pa (0.18 in Hg) at 32° F.) water/ice start to intensively evaporate. This causes significant heat energy removal from the remaining liquid water

[0083] FIGS. 10A, 10B, 10C, and 10D depict ice cube 1000. As shown in these figures, ice cube 1000 may be formed using a three-dimensional shape 1002. Three-dimensional shape 1002 may comprise vertical walls 1004, and have a top face 1006 and a bottom face 1008 that are squares. Each outside wall 1010 of ice cube 1000 may be a square. Each outside wall 1010 may have a length L1. In an embodiment, length L1 may be 20 mm. Each outside wall 1010 may have a width W4. In an embodiment, width W4 may be 4 mm. The thickness or width of each outside wall 1010 may be 4 mm, and the void 1012 defined in ice cube 1000 after three-dimensional shape 1002 is removed, may have a distance of 12 mm between opposing inner faces 1014 and 1016 of ice cube 1000.

[0084] Ice cube 1000 may be formed in accordance with the following procedure. An empty mold corresponding to the shape of ice cube 1000 may be cooled down to -35 degrees Celsius. The mold is filled with room temperature water using a syringe.

[0085] FIGS. 11A, 11B, 11C, and 11D depict ice cube 380 shown in FIG. 3C. Three-dimensional shape 395 is shown in FIG. 11C. Ice cube 380 may have the following dimensions: each top edge 392 may have length L1; each bottom edge 393 may have a length L2, and a length L3 between a plane of the top face 382 and a plane of the bottom face 381. In an embodiment, L1 may be 21 mm, L2 may be 19 mm, and L3 may be 20 mm. As shown in FIG. 11B, after the three-dimensional

shape 395 is removed from ice cube 380, a void 399 is defined by ice cube 380. As discussed with respect to FIG. 3C, in an embodiment, three-dimensional shape 395 may be an upside down mirror image of a reduced volume of ice cube 380. Three-dimensional shape 395 may have top outer perimeter 396 and a bottom outer perimeter 397. In an embodiment, top outer perimeter 396 may be smaller than the bottom outer perimeter 397. In an embodiment, three-dimensional shape 395 may have side faces 398. Side faces 398 may taper as they extend upwardly from the bottom outer perimeter 397 to top outer perimeter 396. The width from void 399 to the top edge 392 may be a width W5. In an embodiment, width W5 may be 5 mm. The width from void 399 to the bottom edge 393 may be a width W6. In an embodiment, width W6 may be 3 mm. The difference in length between length L1 and length L2 is shown as distance D3 at each end of length L2. In an embodiment, D3 may be 1 mm.

[0086] FIGS. 12A, 12B, 12C, and 12D depict ice cube 1200. Ice cube 1200 has rounded outside corners 1202, but is otherwise similar to ice cube 380 shown in FIGS. 11A, 11B, 11C, and 11D.

[0087] FIGS. 13A, 13B, 13C, and 13D depict ice cube 1300. Ice cube 1300 has a similar shape as ice cube 1200 shown in FIGS. 12A, 12B, 12C, and 12D, except that ice cube 1300 has different dimensions than ice cube 1200. For example, in FIG. 13A through 13D, length L1 may be 23 mm, length L2 may be 21 mm, and length L2 may be 22 mm. In FIG. 13A through 13D, width W5 may be 5 mm, width W6 may be 3 mm, and distance D3 may be 1 mm.

[0088] FIG. 14 illustrates time to freeze 95% by volume and time to achieve complete freezing of ice cubes 150, 100, 100', 1000, 380, 1200, and 1300 respectively.

[0089] FIG. 15A, FIG. 15B, FIG. 15C and FIG. 15D illustrate a cooling agent distribution apparatus 1500 in accordance with at least one aspect of the disclosure. Apparatus 1500 may comprise an inlet 1502, an outlet 1504, and a distribution device 1506. Inlet 1502 may be configured to receive a flow of a cooling agent having a first temperature. Distribution device 1506 may be configured to receive the flow of the cooling agent from inlet 1502. Apparatus 1500 may further comprise pan 1508. Distribution device 1506 may be configured to distribute cooling agent in a manner that the cooling agent provides substantially equal or even cooling to a plurality of molds 1512 that may comprise a liquid to be cooled by the cooling agent. Distribution device 1506 may comprise a pan 1508 and a distribution body 1510. Body 1510 may be configured to receive the flow of cooling agent from inlet 1502. Pan 1508 may be configured to receive the flow of cooling agent from body 1510 as the cooling agent flows from body 1510, and cools a plurality of molds 1512 as the cooling agent flows through pan 1508 to outlet 1504. The cooling agent may have a second temperature at outlet 1504. The second temperature of the cooling agent at outlet 1504 may be different than the first temperature of the cooling agent at the inlet 1502. For example, the second temperature of the cooling agent at outlet 1504 may be higher than the first temperature of the cooling agent at inlet 1502.

[0090] Distribution device 1506 may comprise any suitable combination of pan shape and body shape for distribution of cooling agent in pan 1508 to provide substantially equal or even cooling to a plurality of molds 1512 that may comprise a liquid to be cooled by the cooling agent. As shown in FIG. 15B, FIG. 15C, and FIG. 15D, distribution device 1506 may comprise a body or tube 1510 may be elongated. Body 1510

may be bar-shaped. Body 1510 may comprise a first section 1514, a second section 1516, and a third section 1518. First section 1514 may be closer to inlet 1502 than the second section 1516, and second section 1516 may be closer to inlet 1502 than the third section 1518. Second section 1516 may be closer to outlet 1504 than first section 1514. Third section 1518 may be closer to outlet 1504 than first section 1514 and second section 1516. Thus, second section 1516 may be a middle section that is between first section 1514 and third section 1518. In an embodiment, body 1510 may lie on a surface 1542 of pan 1508. In another embodiment, body 1510 may extend over but not lie on surface 1542 of pan 1508. As shown in FIGS. 15B, 15C, and 15D, body 1510 may have a length, width and height that is each less than a corresponding length, width, and height of the pan 1508.

[0091] In an embodiment, body 1510 may comprise a first end 1520, a second end 1522, a top surface 1524 and a bottom surface 1526, the bottom surface 1526 opposite the top surface 1524. Bottom surface 1526 of body 1510 may lie on surface 1542 of pan 1508. Body 1510 may comprise a first side surface 1528, and a second side surface 1530, the second side surface 1530 opposite the first side surface 1528. First end 1520 may be in fluid communication with inlet 1502. Second end 1522 may be at an end of third section 1518.

[0092] First section 1514 may define a first set of holes 1532. First set of holes 1532 may comprise two holes at first side surface 1528, and two holes at second side surface 1530, the two holes at second side surface 1530 opposite the two holes at first side surface 1528.

[0093] Second section 1516 may define a second set of holes 1534. Second set of holes 1534 may comprise one hole at top surface 1524, one hole at first side surface 1528, and one hole at second side surface 1530.

[0094] Third section 1518 may define a third set of holes 1536. Third set of holes 1536 may comprise two holes at top surface 1524, three holes at first side surface 1528, and three holes at second side surface 1530.

[0095] FIG. 15D illustrates arrows that shows the flow of a cooling agent from the first, second, and third sets of holes and into pan 1508. Pan 1508 may have an end 1538. End 1538 may define one or more holes 1540. Hole(s) 1540 may be a plurality of holes, as shown in FIG. 15D. As shown in FIG. 15D, flow of a cooling agent may exit pan 1508 through hole(s) 1540 and into outlet 1504. In an alternative to hole(s) 1540 or in addition to hole(s) 1540, end 1538 may comprise a funnel or frusto-conical shape configured to receive flow of a cooling agent from pan 1508 and convey the flow of the cooling agent to outlet 1504.

[0096] Those of skill in the art will recognize that, in accordance with the disclosure, as cooling agent flows from body 1510 and into pan 1508, and then flows towards outlet 1504, the cooling agent will cool liquid that may be placed in the plurality of molds 1512 by removing heat from the liquid. Those of skill in the art will recognize that, in accordance with the disclosure, the placement, number, and sizing of each of the holes of the first, second, and third sets of holes may be varied to distribute cooling agent in a manner that the cooling agent provides substantially equal or even cooling to a plurality of molds 1512 that may comprise a liquid to be cooled by the cooling agent. Those of skill in the art will recognize that, in accordance with the disclosure, the equal or even cooling of the liquid in the plurality of molds may result in liquid in each mold freezing at about the same rate, thereby forming an ice cube in each mold at about the same time.

[0097] Those of skill in the art will recognize that, in accordance with the disclosure, cooling agent distribution apparatus 1500 and/or distribution device 1506 may be used in for the making of ice cubes, such as the ice cubes disclosed herein, e.g., ice cube 100 (shown in FIGS. 1A through 1E), ice cube 100' (shown in FIG. 1F through 1I), ice cube 150 (shown in FIGS. 1J through 1K), ice cubes formed in ice cube mold cells 202 (FIG. 2), ice cube 300 (shown in FIG. 3A), ice cube 340 (shown in FIG. 3B), ice cube 380 (shown in FIG. 3C, and FIGS. 11A through 11D), ice cubes formed in ice cube mold cells (see FIG. 4), ice cube 500 (see FIG. 5), ice cubes formed in ice cube mold cells 603 (see FIG. 6), ice cubes formed in ice cube mold cells 702 (see FIG. 7), ice cube 1000 (shown in FIGS. 10A through 10D), ice cube 1200 (shown in FIGS. 12A through 12D), and ice cube 1300 (shown in FIGS. 13A through 13D).

[0098] Apparatus 1500 may also be used to facilitate removal of ice cubes from molds 1512. For example, after ice cubes have been formed in molds 1512, the flow of the cooling agent may be stopped, and a flow of a warming agent, also called a hot cooling agent, may be sent through the same pathway as the cooling agent, i.e., the warming agent may be sent through inlet 1502, distribution device 1506, pan 1508, and outlet 1504. The warming agent may have a first temperature at inlet 1502, and a second temperature at outlet 1504. The second temperature of the warming agent at outlet 1504 may be different than the than the first temperature of the warming agent at inlet 1502. For example, the second temperature of the warming agent at outlet 1504 may be lower than the first temperature of the warming agent at inlet 1502. As the warming agent flows through pan 1508, the warming agent heats the ice-mold interface, thereby loosening the ice cubes from molds 1512.

[0099] The ice harvesting apparatus may comprise two molds. Each mold may comprise a plurality of mold cells. The two molds may be anti-phase and rotational with respect to each other.

[0100] FIG. 16A and FIG. 16B illustrate a mold device 1600 that may comprise back-to-back ice cube molds 1602 and 1604. FIG. 16A is a perspective view of mold device 1600 when assembled. FIG. 16B is an exploded view of mold device 1600 shown in FIG. 16A. Mold 1602 may comprise a first plurality of mold cells 1606, e.g., forty-five mold cells, on one side of the mold 1602, and a first heat transfer device 1610 on an opposite side of the first plurality of mold cells 1606. Mold 1604 may comprise a second plurality of mold cells 1608, e.g., forty-five mold cells, on one side of mold 1604, and a second heat transfer device 1612 on an opposite side of the second plurality of mold cells 1608.

[0101] Mold device 1600 may comprise a first subassembly 1614. First subassembly 1614 may comprise mold 1602, a first mold cover 1616, a first heat transfer device 1610, and a first heat transfer device cover 1618. First mold cover 1616 may comprise a thermally insulated cover and/or comprise thermally insulated material. First mold cover 1616 may define a first opening 1634. First mold cover 1616 may be configured so that when it is placed over mold 1602, first opening 1634 allows for the plurality of mold cells 1606 to be filled with a liquid, e.g., water, when mold 1602 is in an upwardly facing position. Mold 1602 may be configured so that first heat transfer device 1610 may be placed in compartment 1636 of first heat transfer device cover 1618.

[0102] Mold device 1600 may comprise a second subassembly 1620. Second subassembly 1620 may comprise mold

1604, a second mold cover 1622, a second heat transfer device 1612, and a second heat transfer device cover 1624. Second mold cover 1622 may define a second opening 1640. Second mold cover 1624 may be configured so that when it is placed over mold 1604, second opening 1640 allows for the plurality of mold cells 1608 to be filled with a liquid, e.g., water, when mold 1604 is in an upwardly facing position. Mold 1604 may be configured so that second heat transfer device 1612 may be placed in compartment 1642 of second heat transfer device cover 1624.

[0103] Mold device 1600 may comprise a housing 1626. Housing 1626 may be thermally insulated and/or comprise thermally insulated material. Mold device 1600 may comprise inlet cooling agent tubes 1628, outlet cooling tubes $1628^{\mbox{\tiny !}},$ shaft 1630 and shaft supports 1632. Inlet cooling agent tubes 1628 and outlet cooling agent tubes 1628' may be flexible. Inlet cooling agent tubes 1628 may be configured to supply a cooling agent to at least the first heat transfer device 1610 when the first heat transfer device 1610 is in an upwardly facing position, or supply a cooling agent to at least the second heat transfer device 1612 when the second heat transfer device 1612 is in an upwardly facing position. Shaft 1630 may be supported by shaft supports 1632. Shaft 1630 may be configured to rotate about an axis A-A so that first subassembly 1614 and the second subassembly 1620 may change positions. For example, the first subassembly 1614 may be rotated from an upwardly facing position as shown in FIG. 16A to a downwardly facing position, and the second subassembly 1620 may be rotated from a downwardly facing position as shown in FIG. 16B to an upwardly facing position. [0104] First subassembly 1614 and second subassembly 1620 may be back-to-back when placed in housing 1626. In other words, a back 1644 of the first heat transfer device 1618 may face a back 1646 of the second heat transfer device cover 1624.

[0105] Those of skill in the art will recognize that in accordance with the disclosure, the first heat transfer device 1610 and second heat transfer device 1612 may be any suitable heat transfer device, including but not limited to a heat transfer device comprising cooling fins 1648.

[0106] FIG. 17A and FIG. 17B illustrate mold 1602 in combination with first heat transfer device 1610 and first heat transfer device 1610 and first heat transfer device cover 1618. FIG. 17A is a perspective of the combination, and FIG. 17B is an exploded view of the combination. Dividers 1650 may be used at each end of first heat transfer device cover 1618. Dividers 1650 may be configured to obtain a desired flow of a cooling agent from an inlet tube 1628 (see FIG. 16B) to the first heat transfer device 1610 and from the first heat transfer device 1610 to an outlet tube 1628' (see FIG. 16B). As shown in FIG. 16B, mold 1604, second heat transfer device 1612, and second heat transfer device cover 1624 may have a similar or the same configuration as that of mold 1602, first heat transfer device 1610, and first heat transfer device cover 1618, respectively.

[0107] FIG. 18A illustrates a side view of mold 1602 and first heat transfer device 1610 previously described. FIG. 18B is a bottom view of the first heat transfer device 1610. Mold 1604 and second heat transfer device 1612 may have a similar or the same configuration as that of mold 1602 and first heat transfer device 1610, respectively. Cooling fins 1648 may have a radius R1 as shown in FIG. 18A. As shown in FIG. 18A, the dimensions of mold 1602 and first heat transfer device 1610 are depicted as distances A, B, C. Distance A is the height of cooling fins 1648. Distance B is the height of first

heat transfer device 1610. Distance C is the height of the combination of mold 1602 and first heat transfer device 1610. [0108] FIG. 19 illustrates a top view of first heat transfer device cover 1618 as previously described. Second heat transfer device cover 1624 may have a similar or the same configuration.

[0109] FIG. 20A, FIG. 20B, and FIG. 20C illustrate the first subassembly 1614 when placed in housing 1626. FIG. 20A is a perspective view, FIG. 20B is an exploded view, and FIG. 20C is a top view. Clips 2002 may be used to maintain the position of first subassembly in housing 1626. Second subassembly 1620 when placed in housing 1626 may have a similar or the same configuration as that of first subassembly 1614

[0110] FIG. 21 illustrates mold device 1600 in a full assembly cross section view.

[0111] FIG. 22A illustrates a top perspective view of a mold 1602. FIG. 22B illustrates a bottom perspective view of mold 1602.

[0112] FIGS. 23A, 23B, 23C, 23D, 23E, 23F, 23G, and 23H illustrate various ice harvesting procedures, each of which may be used to harvest a plurality of ice cubes.

[0113] FIG. 23A illustrates ice harvesting procedure 2310. The following is a description of procedure 2310. In step 2311 of procedure 2310, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2311 may be about 30 seconds. The freezing of water to form ice cubes in step 2311 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2312 of procedure 2310, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top 2317 of the ice cubes 2315 face down. Also in step 2312, a warming agent 2314, also called a hot cooling agent, may be used to heat mold 2300 to allow the ice cubes 2315 to be loosened from mold 2300. The warming agent 2314 may be passed through channels 2304. The passing of the warming agent 2314 through channels 2304 may occur during or shortly after rotation of mold 2300. In step 2313 of procedure 2310, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. In step 2313, removal of ice cubes 2315 from mold 2300 may be facilitated by passing of the warming agent 2314 through channels 2304. [0114] FIG. 23B illustrates ice harvesting procedure 2320. The following is a description of procedure 2320. In step 2321 of procedure 2320, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2321 may be about 30 seconds. The freezing of water to form ice cubes in step 2321 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2322 of procedure 2320, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top 2317 of the ice cubes 2315 face down. In step 2323 of procedure 2320, a thin electric heater 2306 may be used to heat mold 2300 to loosen the ice cubes 2315 from mold 2300. Thin electric heater 2306 may surround or be at each ice-mold

interface. Also in step 2323 of procedure 2320, ice cubes 2315

may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. Procedure 2320 may provide quick heating of the ice-mold interface.

[0115] FIG. 23C illustrates ice harvesting procedure 2330. The following is a description of procedure 2330. In step 2331 of procedure 2330, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2331 may be about 30 seconds. The freezing of water to form ice cubes in step 2331 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2332 of procedure 2330, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top 2317 of the ice cubes 2315 face down. In step 2333 of procedure 2330, a light source 2335 is turned on, and light emitted from light source 2335 is absorbed by light absorbing coating 2334 on mold 2300, thereby heating mold 2300 to loosen the ice cubes 2315 from mold 2300. Also in step 2333 of procedure 2330, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. Procedure 2330 may provide quick heating of the ice-mold interface.

[0116] FIG. 23D illustrates ice harvesting procedure 2340. The following is a description of procedure 2340. In step 2341 of procedure 2340, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2341 may be about 30 seconds. The freezing of water to form ice cubes in step 2341 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2342 of procedure 2330, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top 2317 of the ice cubes 2315 face down. In step 2343 of procedure 2340, low adhesion coating 2344 on mold 2300 in combination with gravity permits the ice cubes 2315 to loosen from mold 2300. Also in step 2343 of procedure 2340, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. By using low adhesion coating 2344, the need for heating of the ice-mold interface may be reduced or eliminated.

[0117] FIG. 23E illustrates ice harvesting procedure 2350. The following is a description of procedure 2350. In step 2351 of procedure 2350, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2331 may be about 30 seconds. The freezing of water to form ice cubes in step 2351 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. Prior to freezing, extractors 2355 may be placed in the water that will be frozen to form the ice cubes. In step 2352 of procedure 2350, mold 2300 may be heated using a warming cooling agent 2314 that is passed through channels 2304, thereby allowing the ice cubes 2315 to loosen from mold 2300. In step 2353 of procedure 2350, the ice cubes 2315 may be removed from mold 2300 by raising extractors 2355, as shown by the arrow in FIG. 23E,

and/or lowering mold 2300 away from extractors 2355 (not shown by an arrow). Extractors 2355 may be on extractor bar 2356. In step 2353, removal of ice cubes 2315 from mold 2300 may be facilitated by passing of the warming agent 2314 through channels 2304. In step 2354 of procedure 2350, the ice cubes 2315 may be released from extractors 2355 by heating the extractors 2355.

[0118] FIG. 23F illustrates ice harvesting procedure 2360. The following is a description of procedure 2360. In step 2361 of procedure 2360, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2361 may be about 30 seconds. The freezing of water to form ice cubes in step 2361 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. Prior to freezing, extractors 2355 may be placed in the water that will be frozen to form the ice cubes. In step 2362 of procedure 2360, quick heating of the ice-mold interface may be achieved using a thin film electric heater 2306, thereby allowing the ice cubes 2315 to loosen from mold 2300. Thin electric heater 2306 may surround or be at each ice-mold interface. In step 2363 of procedure 2360, the ice cubes 2315 may be removed from mold 2300 by raising extractors 2355 as shown by the arrow in FIG. 23F, and/or lowering mold 2300 away from extractors 2355 (not shown by an arrow). Extractors 2355 may be on extractor bar 2356. In step 2364 of procedure 2360, the ice cubes 2315 may be released from extractors 2355 by heating the extractors 2355.

[0119] FIG. 23G illustrates ice harvesting procedure 2370. The following is a description of procedure 2370. In step 2371 of procedure 2370, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2371 may be about 30 seconds. The freezing of water to form ice cubes in step 2371 may be achieved by passing a cooling agent 2302 through channels 2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. Prior to freezing, extractors 2355 may be placed in the water that will be frozen to form the ice cubes. In step 2372 of procedure 2370, quick heating of the ice-mold interface may be achieved using a light source 2335. The light emitted from light source 2335 may be absorbed by light absorbing coating 2334, thereby allowing the ice cubes 2315 to loosen from mold 2300. In step 2373 of procedure 2370, the ice cubes 2315 may be removed from mold 2300 by raising extractors 2355 as shown by the arrow in FIG. 23G, and/or lowering mold 2300 away from extractors 2355 (not shown by an arrow). Extractors 2355 may be on extractor bar 2356. In step 2374 of procedure 2370, the ice cubes 2315 may be released from extractors 2355 by heating the extractors 2355.

[0120] FIG. 23H illustrates ice harvesting procedure 2380. The following is a description of procedure 2380. In step 2381 of procedure 2380, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2381 may be about 30 seconds. The freezing of water to form ice cubes in step 2381 may be achieved by passing a cooling agent 2302 through channels

2304. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. Prior to freezing, extractors 2355 may be placed in the water that will be frozen to form the ice cubes. In step 2382 of procedure 2380, the ice cubes 2315 may be removed from mold 2300 by raising extractors 2355 as shown by the arrow in FIG. 23H, and/or lowering mold 2300 away from extractors 2355 (not shown by an arrow). Extractors 2355 may be on extractor bar 2356. The removal of the ice cubes 2315 from mold 2300 may be assisted by using a low adhesion coating 2344. Low adhesion coating 2344 on mold 2300 as shown in FIG. 23H, in combination with movement of extractors 2355 away from mold 2300 permits the ice cubes 2315 to loosen from mold 2300. By using low adhesion coating 2344, the need for heating of the ice-mold interface may be reduced or eliminated. In step 2383 of procedure 2380, the ice cubes 2315 may be released from extractors 2355 by heating the extractors 2355. FIGS. 24A, 24B, 24C, 24D, and 24E, illustrate various ice harvesting procedures, each of which may be used to harvest a plurality of ice cubes. [0121] FIG. 24A illustrates ice harvesting procedure 2410. The following is a description of procedure 2410. In step 2411 of procedure 2410, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2411 may be about 17 seconds. The freezing of water to form ice cubes in step 2411 may be

achieved by passing a cooling agent 2302 through channels 2304. Mold 2300 may comprise a first set of channels 2408 of channels 2304 below the bottom of ice cubes to be formed. A second set of channels 2409 of channels 2304 may also be provided above the top of the ice cubes to be formed. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2412 of procedure 2410, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top of the ice cubes face down. Prior to or after rotation in step 2412, the second set of channels 2409 may be removed away from the ice cubes 2315. As shown in step 2412, removal of a plate 2419 comprising the second set of channels 2409 away from the ice cubes 2315 may be facilitated by passing a warming agent 2314 through channels 2304 of the second set of channels 2409. In step 2412, a warming agent 2314, also called a hot cooling agent, may be used to heat mold 2300 to allow the ice cubes 2315 to be loosened from mold 2300. The warming agent may be passed through channels 2304 of the first set 2408 of channels. The passing of the warming agent through channels 2304 of the first set 2408 of channels may occur during or shortly after rotation of mold 2300. In step 2413 of procedure 2410, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. In step 2413, removal of ice cubes 2315 from mold 2300 may be facilitated by passing of the warming agent 2314 through channels 2304 of the first set of channels 2408.

[0122] FIG. 24B illustrates ice harvesting procedure 2420. The following is a description of procedure 2420. In step 2421 of procedure 2420, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2421 may be about 17 seconds. The freezing of water to form ice cubes in step 2421 may be achieved by passing a cooling agent 2302 through channels

2304. Mold 2300 may comprise a first set of channels 2408 of channels 2304 below the bottom of ice cubes to be formed. A second set of channels 2409 of channels 2304 may also be provided above the top of the ice cubes to be formed. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2422 of procedure 2420, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top of the ice cubes face down. Prior to or after rotation in step 2422, the second set of channels 2409 may be removed from the ice cubes 2315. As shown in step 2422, removal of the second set of channels 2409 away from the ice cubes 2315 may be facilitated using a portion 2307 of a thin electric heater 2306. In step 2422, a thin electric heater 2306 may be used to heat mold 2300 to loosen the ice cubes 2315 from mold 2300. Thin electric heater 2306 may surround or be at each ice-mold interface. Alternatively, or in addition to heating in step 2422, heater 2306 may be used in step 2423 of procedure 2420 to loosen the ice cubes 2315 from mold 2300. In step 2423, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. Procedure 2420 may provide quick heating of the ice-mold interface.

[0123] FIG. 24C illustrates ice harvesting procedure 2430. The following is a description of procedure 2430. In step 2431 of procedure 2430, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2431 may be about 17 seconds. The freezing of water to form ice cubes in step 2431 may be achieved by passing a cooling agent 2302 through channels 2304. Mold 2300 may comprise a first set of channels 2408 of channels 2304 below the bottom of ice cubes to be formed. A second set of channels 2409 of channels 2304 may also be provided above the top of the ice cubes to be formed. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2432 of procedure 2430, mold 2300 is rotated, e.g., rotated 180 degrees, so that the top 2317 of the ice cubes 2315 face down. Prior to or after rotation in step 2432, the second set of channels 2409 may be removed away from the ice cubes 2315. In step 2432 of procedure 2430, low adhesion coating 2344 on mold 2300 in combination with gravity permits the ice cubes to loosen from mold 2300. In step 2433 of procedure 2430, removal of ice cubes 2315 from mold 2300 may be facilitated by heating the mold 2300, thereby decreasing the time of harvesting of ice cubes. In step 2433, a warming agent 2314, also called a hot cooling agent, may be used to heat mold 2300 to allow the ice cubes to be loosened from mold 2300. The warming agent 2314 may be passed through channels 2304 of the first set of channels

[0124] FIG. 24D illustrates ice harvesting procedure 2440. The following is a description of procedure 2440. In step 2441 of procedure 2440, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2441 may be about 17 seconds. The freezing of water to form ice cubes in step 2441 may be achieved by passing a cooling agent 2302 through channels 2304. Mold 2300 may comprise a first set of channels 2408 of channels 2304 below the bottom of ice cubes to be formed. A second set of channels 2409 of channels 2304 may also be

20 seconds.

provided above the top of the ice cubes to be formed. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2442 of procedure 2440, mold 2300 is rotated, e.g., rotated 180 degrees, so that the tops 2317 of the ice cubes 2315 face down. Prior to or after rotation in step 2442, the second set of channels 2409 may be removed away from the ice cubes 2315. In step 2443 of procedure 2440, a thin electric heater 2306 may be used to heat mold 2300 to loosen the ice cubes from mold 2300. Thin electric heater 2306 may surround or be at each ice-mold interface. Also in step 2443 of procedure 2440, ice cubes may be removed from mold 2300 by using gravity. Removal of ice cubes may be facilitated by also using a harvest assist rod (not shown in FIG. 24D), such as harvest assist rod 2303, previously discussed. Procedure 2440 may provide quick heating of the ice-mold interface.

[0125] FIG. 24E illustrates ice harvesting procedure 2450. The following is a description of procedure 2450. In step 2451 of procedure 2450, water in a mold 2300 undergoes freezing, with the top of the top face of ice cubes being formed facing up. This freezing in step 2451 may be about 17 seconds. The freezing of water to form ice cubes in step 2451 may be achieved by passing a cooling agent 2302 through channels 2304. Mold 2300 may comprise a first set of channels 2408 of channels 2304 below the bottom of ice cubes to be formed. A second set of channels 2409 of channels 2304 may also be provided above the top of the ice cubes to be formed. Channels 2304 may be the same or similar to channels 204 previously described with respect to FIG. 2, or passageway 409 previously described with respect to FIG. 4. Mold 2300 may have a similar or same configuration as that of mold 1602, previously described. In step 2452 of procedure 2450, mold 2300 is rotated, e.g., rotated 180 degrees, so that the tops 2317 of the ice cubes 2315 face down. Prior to or after rotation in step 2452, the second set of channels 2409 may be removed away from the ice cubes 2315. The removal of the second set of channels 2409 may be facilitated by using a low adhesion coating 2344 at the ice-mold interface at the tops 2317 of ice cubes, and the second set of channels 2409. In step 2453 of procedure 2450, low adhesion coating 2344 on mold 2300 in combination with gravity permits the ice cubes 2315 to loosen from mold 2300. Also in step 2453 of procedure 2450, ice cubes 2315 may be removed from mold 2300 by using gravity, and a harvest assist rod 2303. By using low adhesion coating 2444 in procedure 2450, the need for heating of the ice-mold interface may be reduced or eliminated.

[0126] FIG. 25 illustrates ice harvesting procedure 2500. The following is a description of procedure 2500. Two back-to-back molds 2502 and 2504 may be provided. Molds 2502 and 2504 may each comprise 45 cube molds. Molds 2502 and 2504 may be the same or similar to molds 1602 and 1604 previously described. Mold device 1600, previously described, may comprise molds 2502 and 2504. Mold device 1600 may be used to perform procedure 2500. Each of molds 2502 and 2504 may be used to produce 45 ice cubes every 40 seconds, which corresponds to 1.4 pounds of ice cubes per minute. Molds 2502 and 2504 in combination provide an 80 second ice cube production cycle, which includes freezing and harvesting of 90 ice cubes from molds 2502 and 2504, collectively.

[0127] In step 2511 of procedure 2500, water is filled into the cube molds 2506 of mold 2502. During step 2511, cooling of mold 2502 may be achieved by passing a cooling agent 2302 through channels 2304. During step 2511, heating of mold 2504 may begin to loosen ice cubes previously frozen in cube molds 2508 of mold 2504. Heating of mold 2504 may occur by passing a warming agent 2314 through channels 2305 of mold 2504. Step 2511 may take about 10 seconds. [0128] After water is filled into cube molds 2506 of mold 2502 in step 2511, step 2512 may then be conducted. In step 2512, cooling of mold 2502 may continue by continuing to pass cooling agent 2302 through channels 2304, thereby beginning of freezing the water in cube molds 2506. In step 2512, heating of mold 2504 may continue by continuing to pass the warming agent 2314 through channels 2305 of mold 2504. Heating of mold 2504, in combination gravity and using a harvest assist rod 2303 to knock or push ice cubes

[0129] In step 2513, cooling of mold 2502 may continue by continuing to pass cooling agent 2302 through channels 2304, thereby continuing to freeze the water in cube molds 2506. In step 2513, cooling of mold 2504 may begin by passing cooling agent 2302 through channels 2305. Step 2513 may take about 10 seconds.

from cube molds 2506, results in a harvesting of ice cubes

2550 from mold 2504 in step 2512. Step 2512 may take about

[0130] In step 2514, molds 2502 and 2504 are rotated 180 degrees so that mold 2502 and corresponding channels 2304 take the place of mold 2504 and corresponding channels 2305. Procedure 2500 may be repeated, beginning with cube molds 2508 of mold 2504 being filled with water instead of cube molds 2506 of mold 2502 in accordance with step 2511, and beginning of heating of mold 2502 (to loosen ice cubes previously frozen in cube molds 2506 of mold 2502 in step 2513), e.g., heating mold 2502 by passing warming agent 2314 through channels 2304.

[0131] FIG. 26 illustrates ice harvesting procedure 2600. The following is a description of procedure 2600. Two molds 2602 and 2604 may be provided. Molds 2602 and 2604 may each comprise 45 cube molds. Molds 2602 and 2604 may be the same or similar to molds 1602 and 1604 previously described. Mold device 1600, previously described, may comprise molds 2602 and 2604. Mold device 1600 may be used to perform procedure 2600. Each of molds 2602 and 2604 may be used to produce 45 ice cubes every 40 seconds, which corresponds to 1.4 pounds of ice cubes per minute. Molds 2602 and 2604 in combination provide an 80 second ice cube production cycle, which includes freezing and harvesting of 90 ice cubes from molds 2602 and 2604, collectively.

[0132] In step 2611 of procedure 2600, water is filled into the cube molds 2606 of mold 2602. Water may be filled using water filling needles 2620. Cooling of mold 2602 may also occur during step 2611. During step 2611, cooling of mold 2602 may also occur by passing a cooling agent 2302 through channels 2304. During step 2611, mold 2604 may be heated to loosen ice cubes 2640 previously formed in mold 2604. For example, this heating may be performed as shown in step 2611 of FIG. 26 by passing a warming agent 2314 through channels 2304 of mold 2604, or by using a thin film electric heater, e.g., thin film electric heater 2306 as discussed in connection with FIGS. 23B, FIG. 24B, and 24D, or by using a light absorbing coating 2332 and light source 2335 as discussed in connection with FIGS. 23C and 23G.

[0133] In step 2612, cooling of mold 2602 continues to freeze the water in mold 2602. During step 2612, extractor bar 2656 may be moved away from mold 2604, thereby moving water filling needles 2630 and ice cubes 2640 away from mold 2604. Moving of ice cubes 2640 away from mold 2604 may be facilitated by continuing to heat mold 2604, thereby heating the ice-mold interface.

[0134] In step 2613, cooling of mold 2602 continues to freeze the water in mold 2602. During step 2613, extractor bar 2656 may be moved towards ice cube remover 2650. Ice cube remover 2650 may be a rod or bar. When ice cubes 2640 come into contact with ice cube remover 2650, ice cube remover 2650 knocks or pushes ice cubes 2640 off of water filling needles 2630. During step 2613, cooling agent 2302 may begin to be passed through channels 2304 of mold 2604 in order to begin to cool mold 2604.

[0135] Step 2614 is the mirror image of step 2611. During step 2614, extractor bar 2656 is returned back to mold 2604 and water filling needles 2630 begin to fill mold 2604 with water. During step 2614, mold 2602 may be heated to loosen ice cubes 2660 previously formed in mold 2602. Heating of mold 2602 during step 2614 may be similar to heating of mold 2604 as previously discussed in connection with step 2611. As shown in FIG. 26, during step 2614, a warming agent 2314 is passed through channels 2304 of mold 2602 to loosen ice cubes 2660 from mold 2602. During step 2614, cooling agent 2302 may continue to be passed through channels 2304 of mold 2604 in order to being to cool mold 2604. Freezing of water in mold 2604 may begin in step 2614.

[0136] Step 2615 is the mirror image of step 2612. During step 2615, passing cooling agent 2302 through channels 2304 continues, thus continuing the cooling of mold 2604, and the freezing of the water in mold 2604. During step 2615, extractor bar 2658 is moved away from mold 2602, thereby moving water filling needles 2620 associated with extractor bar 2568 and ice cubes 2660 away from mold 2602. Moving of ice cubes 2660 away from mold 2602 may be facilitated by continuing to heat mold 2602, thereby heating the ice-mold interface.

[0137] In step 2616, heating of mold 2604 may begin to heat the ice-mold interface. In step 2616, extractor bar 2658 may be moved towards ice cube remover 2652. Ice cube remover 2652 may be a rod or bar. When ice cubes 2660 come into contact with ice cube remover 2652, ice cube remover 2652 knocks or pushes ice cubes 2660 off of water filling needles 2620. During step 2616, cooling agent 2302 may begin to be passed through channels 2304 of mold 2602 in order to begin to cool mold 2602.

[0138] Each mold 2602 and 2604 may have an 80 second ice cube production cycle in accordance with procedure 2600.
[0139] FIGS. 27A, 27B, and 27C illustrate a water filling system 2700 in accordance with at least one aspect of the disclosure. FIG. 27A is a side view, FIG. 27B is a bottom view, and FIG. 27C is a front view of water filling system 2700. Water filling system 2700 comprises water supply needles 2702, water inlets 2704, and chamber 2706. Water enters through water inlets 2704 and empties into chamber 2706. Water exits chamber 2706 through water supply needles 2702. Needles 2702 may be the same as needles 2620 and 2630 previously described.

[0140] FIGS. 28A, 28B, 28C, and 28D illustrate an ice harvesting apparatus 2800. Ice harvesting apparatus may comprise water filling system 2700, and water filling needles 2702. As shown in FIG. 28A, water may be filled into mold

2802, and frozen using a cooling agent (not shown). After the water has been frozen, the water filling system 2700, including water filling needles 2702 may be moved away from mold 2802 as shown in FIG. 28B, thereby removing ice cubes 2830 that are attached to needles 2702. The water filling system 2700 may be retained on an arm 2804. Arm 2804 may be supported by support 2820. Arm 2804 may be pivoted or tilted up and away from mold 2802 as shown in FIG. 28B, taking with arm 2804 the water filling system 2700 and ice cubes attached to needles 2702. Motor 2816 may provide power to tilt arm 2804. Those of skill in the art will recognize that in accordance with the disclosure, motor 2816 may be any suitable motor, including but not limited to a hydraulic motor. Arm 2804 may be pivoted on pivot 2818 on support 2820.

[0141] Water filling system 2700 may be moved along arm 2804 towards ice cube remover 2806, as shown in FIG. 28C. When the ice cubes 2830 attached to needles 2702 come into contact with ice cube remover 2806, the ice cubes are knocked or pushed off of needles 2702, and drop into ice hopper 2808, as shown in FIG. 28C and FIG. 28D. Water filling system 2700 may comprise an extractor bar, e.g., extractor bar 2656 or 2658, previously described. Alternatively, extractor bar 2656 or 2658 may comprise a water filling system, e.g., water filling system 2700. Ice cube remover 2806 may be the same as or similar to ice cube remover 2650 or 2652, previously described.

[0142] Water filling system 2700 may be connected to extension arm 2810. Extension arm 2810 may be configured to extend and retract from housing 2812. Motor 2814 may be configured to provide power to move a distal end 2822 of extension arm 2810 away from housing 2812, thereby moving water filling system 2700 towards ice cube remover 2806. After ice cubes 2830 have been removed from needles 2720 by ice cube remover 2806, motor 2814 may provide power to move distal end 2822 of extension arm 2810 back towards housing 2812, thereby moving water filling system 2700 back to mold 2802. After water filling system 2700 is moved along arm 2804 to mold 2802, arm 2804 may then be pivoted or tiled down (powered by motor 2816) so that arm 2804 is perpendicular to the floor 2824, whereupon water filling system 2700 may fill mold 2802 with water and the ice cube making and ice cube harvesting procedure may be repeated. Those of skill in the art will recognize that in accordance with the disclosure, motor 2814 may be any suitable motor, including but not limited to a hydraulic motor.

[0143] FIGS. 29A through 29I further illustrates ice harvesting in accordance with the apparatus shown in FIGS. 28A, 28B, 28C, and 28D. FIGS. 29A, 29D, and 29G are side views, FIGS. 29B, 29E, and 29H are bottom perspective views, and FIGS. 29C, 29F, and 29I are front views of water filling system 2700, arm 2804, and ice cube remover 2806. For illustration purposes, two rows of ice cubes 2830 are shown in these figures for a total of ten (10) ice cubes 2830, although water filling system has 45 water filling needles in an array of 9×5. Ice cube remover 2806 may comprise channels 2912. Channels 2912 may be configured to allow needles 2702 to enter and move through channels 2912. Ice cube remover 2806 may be attached to arms 2902 and 2904. Ice cube remover 2806 may have posts 2914 that extend down from loops 2908 of arms 2902 and 2904. Ice cube remover 2806 may have a grid 2916 that slants down at an angle from posts 2914. Grid 2916 may define channels 2912.

[0144] As shown in FIGS. 29A through 29I, water filling system 2700 also comprises an extractor bar 2656, and

needles 2702. In the embodiment shown, arm 2804 comprises a first arm 2902 and a second arm 2904. Each arm 2902 and 2904 may define a pivot hole 2906 and an elongated loop 2908. Pivot holes 2906 may be configured to receive pivots 2818. Wheels 2910 may be configured to rotate and move along the elongated loop 2908 of each arm 2902 and 2904. Wheels 2910 may rotate when water filling system 2700 is moved along arm 2804, i.e., each arm 2902 and arm 2904.

[0145] As shown in FIGS. 29A through 29I, ice cubes 2830 may be moved in relation to ice cube remover 2806 until they are knocked or pushed off of needles 2702 by ice cube remover 2806.

[0146] The apparatus shown and described above in connection with FIGS. 27A through 27C, FIGS. 28A through 28D, and FIGS. 29A through 29I may be used in a 30 second harvesting operation.

[0147] The following is a description of an apparatus that may be used in a harvesting operation that may be less than 30 seconds. More specifically, the apparatus described below in connection with FIGS. 30 through 32L may be used in a harvesting operation that is about 17 seconds.

[0148] FIG. 30 illustrates a side view of a water filling system 3000. Water filling system 3000 may comprise a water filling vessel 3002, a cooled cover 3004, and insulated water channels 3006. Also shown in FIG. 30 is ice cube mold 3008. Ice cube mold 3008 may be the same as or similar to mold 1602 or 2802, previously described. Water may flow from water filling vessel 3002, through the insulated water channels 3006, which are cooled by cooled cover 3004, thus cooling the water. The water may flow from insulated water channels 3006 through water filling nozzles 3014 and into ice cube mold 3008. A cooling agent 3010 may flow through cooling channels 3012. Cooling channels 3012 may be perpendicular to insulated water channels 3006. Water may be cooled further by ice cube mold 3008 until the water turns to ice in ice cube mold 3008.

[0149] FIG. 31A, 31B, 31C, and 31D illustrate an ice harvesting apparatus 3100. Ice harvesting apparatus 3100 may be similar to ice harvesting apparatus 2800, previously described. Ice harvesting apparatus 3100 may comprise water filling system 3000, an articulating cooling agent supply line 3102, and an ice cube remover 3104. In other respects ice harvesting apparatus 3100 may be similar to or the same as ice harvesting apparatus 2800. As previously noted, mold 3008 may be the same as or similar to mold 1602 or 2802, previously described. For illustration purposes, ice cubes 3106 are shown only in FIG. 31A and FIG. 31D.

[0150] As shown in FIG. 30, water may be filled into mold 3008, and frozen in mold 3008. After the water has been frozen in mold 3008, the ice-mold interface may be loosened by heat applied to mold 3008 in accordance with warming or heating of molds previously discussed herein, or the ice-mold interface may be loose due to a low adhesion coating on mold 3008. Once the ice-mold interface is sufficiently loose, the water filling system 3000, including water filling nozzles 3014 may be moved away from mold 3008 as shown in FIG. 31A, thereby removing ice cubes 3106 that are attached to water filling nozzles 3014. The water filling system 3000 may be retained on an arm 2804. Arm 2804 may be supported by support 2820. Arm 2804 may be pivoted or tilted up and away from mold 3008 as shown in FIG. 31A, taking with arm 2804 the water filling system 3000 and ice cubes 3106 attached to water filling nozzles 3014. Motor 2816 may provide power to tilt arm 2804. Those of skill in the art will recognize that in accordance with the disclosure, motor 2816 may be any suitable motor, including but not limited to a hydraulic motor. Arm 2804 may be pivoted on pivot 2818 on support 2820.

[0151] Water filling system 3000 may be moved along arm 2804 towards ice cube remover 3104, as shown in FIG. 31B. When the ice cubes 3106 attached to nozzles 3014 come into contact with ice cube remover 3104, the ice cubes 3106 are knocked or pushed off of nozzles 3014, and drop into an ice hopper, such as ice hopper 2808, as shown in FIG. 28C and FIG. 28D. Water filling system 3000 may comprise an extractor bar, e.g., extractor bar 2656 or 2658, previously described. Alternatively, extractor bar 2656 or 2658 may comprise a water filling system, e.g., water filling system 3000. Ice cube remover 3104 may be the same as or similar to ice cube remover 2650 or 2652, previously described.

[0152] Water filling system 3000 may be connected to extension arm 2810. Extension arm 2810 may be configured to extend and retract from housing 2812. Motor 2814 may be configured to provide power to move a distal end 2822 of extension arm 2810 away from housing 2812, thereby moving water filling system 3000 towards ice cube remover 3104. After ice cubes 3106 have been removed from nozzles 3014 by ice cube remover 3104, motor 2814 may provide power to move distal end 2822 of extension arm 2810 back towards housing 2812, thereby moving water filling system 3000 back to mold 3008. After water filling system 3000 is moved along arm 2804 to mold 3008, arm 2804 may then be pivoted or tiled down (powered by motor 2816) so that arm 2804 is perpendicular to the floor 2824, whereupon water filling system 3000 may fill mold 3008 with water and the ice cube making and ice cube harvesting procedure may be repeated. Those of skill in the art will recognize that in accordance with the disclosure, motor 2814 may be any suitable motor, including but not limited to a hydraulic motor.

[0153] FIGS. 32A through 32L further illustrates ice harvesting in accordance with the apparatus shown in FIGS. 31A, 31B, 31C, and 31D. FIGS. 32A, 32D, 32G, and 32J are side views, FIGS. 32B, 32E, 32H, and 32 K are bottom perspective views, and FIGS. 32C, 32F, 321, and 32L are front views of water filling system 3000, arm 2804, and ice cube remover 3104. As shown in this embodiment, five rows of ice cubes 3106, with nine ice cubes in each row provide a total of forty-five (45) ice cubes (9×5 array) for harvesting. Ice cube remover 3104 may comprise ice cube removing bars 3200. Ice cube remover 3104 may be attached to arms 2902 and 2904. Ice cube remover 3104 may have brackets 3202 that may be configured to pivot about pivots 3204, thereby raising or lowering ice cube removing bars 3200 as desired.

[0154] FIGS. 32A through 32C show the position of ice cubes 3106 in relation to brackets 3202 before ice cubes 3106 are moved along arms 2902 and 2904 towards brackets 3203. FIGS. 32D through 32F show the position of ice cubes after ice cubes have moved along arms 2902 and 2904 so that they hover over ice cube removing bars 3200. FIGS. 32G through 32H show the position of ice cube removing bars 3200 after they have been pivoted into the spaces between the ice cubes 3106. FIGS. 32J through 32K show that as ice cube removing bars 3200 are pivoted further about pivots 3204, bars 3200 knock or pushice cubes 3106 off of nozzles 3014. At the same time, or in an alternative embodiment, after bars 3200 have been pivoted into the spaces between the ice cubes 3106, the water filling system 3000 may be moved further along arm 2804 until they are knocked or pushed off of nozzles 3014 by bars 3200.

[0155] In an aspect of the disclosure an ice making apparatus is provided. The ice making apparatus may comprise a mold, the mold defining a first volume for an ice cube, the mold comprising a bottom face having an inner perimeter and side faces. Each side face of the mold may have a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge. The corresponding top edge of each side face may be longer than the corresponding bottom edge. Each side face may extend inward from the corresponding top edge to the corresponding bottom edge. The mold may comprise a three-dimensional shape, the three-dimensional shape located within the first volume, the three-dimensional shape comprising a second volume. The second volume may be defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape. The bulge may extend upwardly between the bottom outer perimeter and the top outer perimeter. The bulge may taper as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The mold may further define a third volume between the first volume and the second volume, with the mold configured to receive water within the third volume. The apparatus may comprise a cooling device configured to cool water within the third volume sufficiently to freeze the water. Those of skill in the art will recognize that in accordance with the disclosure, any suitable cooling device may be used to freeze water in the mold. For example, the cooling device may comprise one or more passageways configured to receive a cooling agent having a sufficiently low temperature that when the cooling agent flows through the one or more passageways, heat transfer will occur between the water in the mold and the mold such that the water in the mold will freeze. A suitable cooling device may comprise an evaporator.

[0156] In an aspect, the bottom face and the side faces of the mold comprise parallelograms. In an aspect, the ice making apparatus may comprise an evaporator, the evaporator configured to provide a cooling agent to the cooling device, the cooling agent having a temperature sufficient to freeze the water in the third volume. In an aspect, the mold may comprise a mold body. The mold body may comprise a plurality of molds cells. In an aspect, each mold cell may comprise a fin. Each fin may be connected to the mold body. In an aspect, the mold may comprise a plurality of passageways. Each passageway may be configured to receive a cooling agent and provide sufficient heat transfer from water within the mold cells to the mold cells, and freezing the water within the mold cells.

[0157] In an aspect, the three-dimensional shape may comprise a substantially three-dimensional U-shape. In an aspect, the three-dimensional shape may comprise a substantially three-dimensional truncated M-shape. In an aspect, the three-dimensional shape may comprise a set of at least two three-dimensional L-shapes. In an aspect, the at least two three-dimensional L shapes may be mirror images of each other. In an aspect, the three-dimensional shape may further comprise a third three-dimensional shape. The third three-dimensional shape may be positioned between and joining the at least two three-dimensional L-shapes. In an aspect, the bulge may comprise at least two fins. In an aspect, the bulge may comprise four side faces. In an aspect, the four side faces may be parallelograms.

[0158] In an aspect of the disclosure an ice making apparatus is provided comprising an mold. The mold may comprise an upper part and a lower part. Each of the parts may

comprise a plurality of ice cube mold cells corresponding to a plurality of ice cube mold cells of the other part. The mold may be configured so that a first mold cell of the lower part of the mold and a corresponding second cell of the upper part of the mold comprises a single enclosure. The single enclosure may define a volume for a single ice cube. A first channel may be configured to fill the first mold cell and the corresponding second mold cell with water. A second channel may be configured to allow air to escape from the single enclosure when the first mold cell and the second mold cell are filled with water. A plurality of passageways may be configured to receive a cooling agent and provide sufficient heat transfer from water within the mold cells to the mold cells, and freezing the water within the mold cells.

[0159] In an aspect, a seal coating may be provided at a surface area wherein the upper part meets the lower part.

[0160] In an aspect of the disclosure an ice making apparatus is provided comprising a mold and a plate. The mold may be positioned over the plate. The mold may comprise a plurality of ice cube mold cells, each ice cube mold cell may comprise an opening at the bottom of the cell, and an air escape channel at the top of the cell to allow air to escape from the ice cube mold cell when the plate is filled with water. The mold and the plate may each comprise a plurality of passageways, each passageway configured to receive a cooling agent and provide sufficient heat transfer from water within the ice cube mold cells to the ice cube mold cells, and freeze water within the ice cube mold cells. Each ice cube mold cell may comprise a corresponding channel to allow air escape from the ice cube mold cell when the plate is filled with water.

[0161] In an aspect, the ice cube mold cells may have a shape of a truncated pyramid.

[0162] In an aspect of the disclosure a method of making a plurality of ice cubes is provided. The method may comprise placing a mold over a plate. The mold may comprise a plurality of cells, each cell having an opening at the bottom of the cell, and an air escape channel at the top of the cell. The method may comprise filling each of the plurality of cells by filling the plate with water, and transferring heat from water within the plurality of cells to the mold cells and freezing water within the cells.

[0163] In an aspect, in the above method, at least one ice cube may comprise the shape of a truncated pyramid.

[0164] In an aspect, each of the plurality of ice cubes may comprise a wall having a thickness sufficient to provide mechanical strength of an ice cube and an interior volume that is not completely frozen.

[0165] In an aspect, the thickness of the wall of each of the plurality of ice cubes may be in the range of about 2-3 mm.

[0166] In an aspect of the disclosure an ice making apparatus is provided comprising a mold, wherein the mold may comprise a plurality of cells. Each cell may have an opening at a top of each cell. The mold may comprise a plurality of passageways for a cooling agent, and an upper part. The upper part may be hermetically enclosed with a cover. The upper part may comprise a vacuum chamber. A vacuum pump may be provided, the vacuum pump configured to pump wet air from the mold. A pipe may be provided, the pipe extending from the vacuum chamber of the mold to the vacuum pump. When pressure in the vacuum chamber starts to decrease, dissolved gases start to leave the bulk of water in each cell. The vacuum pump may be configured to pump wet air from the mold so that the pressure in the vacuum chamber drops below 61 0.5 Pa ((0.18 in Hg) at 32° F.).

[0167] In an aspect of the disclosure an ice cube is provided. The ice cube may comprise a top face having an outer perimeter, a bottom face having an outer perimeter, and side faces. Each side face may include a corresponding outer perimeter, a corresponding top edge, and a corresponding bottom edge, the corresponding top edge of each side face being longer than the corresponding bottom edge, each side face extending inward from the corresponding top edge to the corresponding bottom edge. The top face, bottom face and side faces may define a first volume. In an embodiment, a three-dimensional shape may be provided, the three-dimensional shape located within the first volume. The three-dimensional shape may comprise a second volume. The second volume may be defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge. The bulge may extend upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The bulge may taper as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape. The ice cube may further define a third volume between the first volume and the second volume, the third volume comprising ice, and second volume comprising unfrozen liquid or air, or a combination of unfrozen liquid and

[0168] In an aspect of the disclosure, an increase in ice production rate can be achieved. The increase in ice production rate may be achieved by increasing ice cube surface area. For example, by increasing ice cube surface area, about 40-50 second freezing times and about 90 second entire ice production cycle may be achieved relative to 10-15 minute ice production cycles of convention method and apparatus.

[0169] A 90 second ice production cycle can translate into about 1.4 lbs./minute of an ice-on-demand production rate well within a footprint area, e.g., about 22 feet by 30 feet, and power limitations (e.g., less than about 5.5 kW), if a mold is expanded from a typical 45 cubes per mold to 50 cubes per mold.

[0170] The mold may be configured to provide mechanical robustness and hermetic properties under conditions when temperature changes may occur of many degrees Fahrenheit (e.g., hundreds of degrees Fahrenheit) in a few seconds and on a spacious scale of millimeters, i.e., extremely high temperature gradients.

[0171] In an aspect, harvesting of ice may be provided wherein positioning of each ice cube is controllable. In an aspect, an ice harvesting apparatus may provide improved ice delivery wherein each ice cube or a predetermined of ice cubes may be individually delivered to a predetermined location. In an aspect an ice harvesting apparatus may be provided that reduces or avoids the need for ice hopper agitation.

[0172] In an aspect, a de-aeration apparatus and method may be provided that allows for the making and harvesting of transparent or relatively transparent ice cubes.

[0173] In an aspect, an apparatus is provided comprising a distribution device, the distribution device comprising an inlet, an outlet, a pan, and a distribution body. The inlet may be configured to receive a cooling agent having a predetermined first temperature. The distribution body may be configured to receive the cooling agent from the inlet. The distribution body may be configured to distribute the cooling agent into the pan at predetermined locations of the pan and provide substantially equal cooling to a plurality of molds in heat transfer communication with the cooling agent as the cooling agent flows through the pan to the outlet. The outlet

may be configured to receive the cooling agent from the pan, wherein the cooling agent has second temperature upon exit of the pan through the outlet, the second temperature of the cooling agent at the outlet being different than the first temperature of the cooling agent at the inlet.

[0174] In an aspect, the first temperature of the cooling agent at the inlet is lower than the second temperature of the cooling agent at the outlet. In an aspect, the first temperature of the cooling agent at the inlet is sufficient to freeze water in a plurality of molds in contact with the cooling agent. In an aspect, the distribution body has a length, width, and height that is each less than a corresponding length, width, and height of the pan. The distribution body may define holes to distribute the cooling agent into the pan at predetermined locations of the pan.

[0175] In an aspect, the distribution body may comprise a first end, a second end, a first side surface, and a second side surface. The second side surface may be opposite the first side surface, and a bottom surface, wherein the bottom surface is opposite the top surface, wherein the first end is in fluid communication with the inlet, wherein the second end is closer to the outlet than the first end. The distribution body may comprise a first section, a second section, and a third section, wherein the first section is between the inlet and the second section, wherein the second section is between the first section and the third section, and wherein the third section comprises the second end. The first section may defines a first set of holes, the first set of holes comprising at least one hole located at the first side surface and at least one hold located at the second side surface. The second section may define a second set of holes, the second set of holes comprising at least one hole located at the first side surface and at least one hole located at the second side surface. The third section may define a third set of holes, the third set of holes comprising at least one hole located on at the first side surface and at least one hole located on the second side surface.

[0176] The first set of holes comprises two holes at the first side surface and two holes at the second side surface opposite the two holes at the first side surface. The second set of holes may comprise a hole at the first side surface and a hole at the second side surface opposite the hole at the first side surface. The second set of holes may comprise a hole at the top surface of the distribution body. The third set of holes may comprise three holes at the first side surface and three holes at the second side surface opposite the three holes at the first side surface. The third set of holes may comprise two holes at the top surface of the distribution body.

[0177] In an aspect, the pan may comprise an end in fluid communication with an outlet. The end of the pan may comprise a plurality of holes in fluid communication with the outlet. The end of the pan may comprise a funnel in fluid communication with the outlet.

[0178] In an aspect, the apparatus may comprise a mold, the mold comprising a plurality of ice cube molds, the mold configured to lie over a bottom surface of the pan and be positioned in heat transfer communication with the cooling agent between the distribution body and an end of the pan.

[0179] In an aspect, the inlet may be configured to receive a warming agent, the warming agent having a predetermined inlet temperature, wherein when the warming agent flows through the pan, the warming agent warms an ice-mold interface between ice cubes previously formed in the plurality of molds. The warming agent may have an outlet temperature at

the outlet, the inlet temperature of the warming agent being higher than the outlet temperature of the warming agent.

[0180] In an aspect, an apparatus may be provided comprising a distribution device, the distribution device comprising an inlet, an outlet, a pan, and a distribution body. The inlet may be configured to receive a warming agent having a predetermined inlet temperature. The distribution body may be configured to receive the warming agent from the inlet, the distribution body configured to distribute the warming agent into the pan at predetermined locations of the pan and provide substantially equal warming to a plurality of molds in heat transfer communication with the warming agent as the warming agent flows through the pan to the outlet. The outlet may be configured to receive the warming agent from the pan, wherein the warming agent has an outlet temperature upon exit of the pan through the outlet, the outlet temperature of the warming agent at the outlet being different than the inlet temperature of the warming agent at the inlet.

[0181] In an aspect, the inlet temperature of the warming agent at the inlet is higher than the outlet temperature of the warming agent at the outlet. In an aspect, the inlet temperature of the warming agent at the inlet is sufficient to warm an ice-mold interface between ice and the plurality of molds.

[0182] In an aspect, a device is provided comprising a first ice cube mold, the first ice cube mold comprising a top face and a bottom face, the top face of the first ice cube mold comprising a first plurality of mold cells. The device may comprise a second ice cube mold, the second ice cube mold comprising a top face and bottom face, the top face of the second ice cube mold comprising a second plurality of mold cells (1608). The device may comprise a housing, the housing having an axis that is parallel to the bottom face of the first ice cube mold and parallel to the bottom face of the second ice cube mold. The first ice cube mold may be positioned in the housing with the top face of the first ice cube mold facing up. The second ice cube mold may be positioned in the housing with the top face of the second ice cube mold facing down, wherein the bottom face of the first ice cube mold is in a back-to-back orientation with the bottom face of the second ice cube mold. The housing may be configured to rotate about the axis and rotate the first ice cube mold so that the top face of the first ice cube mold faces down, and the rotate the second ice cube mold so that the top face of the second ice cube mold

[0183] The device may comprise a shaft. The shaft may be configured to rotate the housing about the axis. The device may comprise a first subassembly. The first subassembly may comprise the first ice cube mold, a first top cover, and a first bottom cover, the first ice cube mold retained between the first top cover and the first bottom cover. The device may comprise a second subassembly. The second subassembly may comprise the second ice cube mold, a second top cover, and a second bottom cover, the second ice cube mold retained between the second top cover and the second bottom cover.

[0184] The device may comprise a first heat transfer device, the first heat transfer device positioned between first ice cube mold and the first bottom cover; and a second heat transfer device, the second heat transfer device positioned between second ice cube mold and the second bottom cover. The first heat transfer device may comprise a first set of cooling fins, and the second heat transfer device may comprise a second set of cooling fins. The first top cover may define a first top cover opening. The first top cover opening may be configured so that when the first top cover is placed over the first ice cube

mold, the first top cover opening allows for the plurality of mold cells of the first ice cube mold to be filled with a liquid when the first ice cube mold is in an upwardly facing position. The first top cover opening may be configured so that the first top cover opening allows for a plurality of ice cubes formed in the mold cells of the first ice cube mold to drop from the mold cells of the first ice cube mold when the first ice cube mold is in a downwardly facing position.

[0185] The device may comprise a cooling agent tube configured to supply a cooling agent in heat transfer communication with the first ice cube mold and freeze liquid in the mold cells of the first ice cube mold when the first ice cube mold is in the upwardly facing position. The device may comprise a warming agent tube configured to supply a warming agent in heat transfer communication with the first ice cube mold and heat an ice-mold interface between ice and the mold cells of the first ice cube mold when the first ice cube mold is in the downwardly facing position.

[0186] In an aspect, a method is provided comprising freezing a liquid in a plurality of mold cells of an ice cube mold to form ice cubes, the ice cube mold facing up. The method may comprise rotating the ice cube mold so that the ice cube mold faces down. The method may comprise warming the ice cube mold to loosen an ice-mold interface between the ice cubes and the ice cube mold and allow the ice cubes to drop out of the ice cube mold. The method may comprise moving a harvest assist rod relative to the ice cube mold to facilitate removal of ice cubes from the ice cube mold. The freezing of the liquid may comprise method may comprise cooling the liquid with a cooling agent in heat transfer communication with the liquid. The method may comprise sending the cooling agent through a plurality of channels, wherein each channel corresponds one of the mold cells. The warming of the ice cube mold may comprise warming the ice cube mold with a warming agent in heat transfer communication with the ice cube mold. The method may comprise sending the warming agent through a plurality of channels, wherein each channel corresponds one of the mold cells. The warming of the ice cube mold may comprise heating of the ice cube mold with a thin film electric heater, the thin film electric heater positioned around at least a portion of each mold cell. The warming of the ice cube mold may comprise heating of the ice cube mold with a light source and a light absorbing coating, the light absorbing coating positioned around at least a portion of each mold cell and which absorbs light emitted from the light

[0187] The freezing of the liquid may comprise cooling the liquid with a cooling agent in heat transfer communication with the liquid by sending the cooling agent through a plurality of channels, wherein there is a first set of channels below the mold cells, and a second set channels above the mold cells, and wherein there is a channel above and below each corresponding mold cell. The second set of channels may be positioned within a heat transfer plate. The method may comprise, after freezing of the liquid in the mold, warming of the heat transfer plate to loosen an ice-plate interface between the ice cubes in the mold and the plate. The warming of the heat transfer plate may comprise sending the warming agent through the second set of channels. The warming of the heat transfer plate may comprise heating of the heat transfer plate with a thin film electric heater.

[0188] In an aspect, a method is provide comprise freezing a liquid in a plurality of mold cells of an ice cube mold to form ice cubes, the ice cube mold facing up. The method may

US 2013/0186113 A1 Jul. 25, 2013

comprise rotating the ice cube mold so that the ice cube mold faces down. The method may comprise providing a low adhesion coating around at least a portion of the mold cells sufficient to allow the ice cubes to at least partially drop out of the ice cube mold after the step of rotating. The method may comprise moving a harvest assist rod relative to the ice cube mold to facilitate removal of the ice cubes from the ice cube mold. The method may comprise cooling the liquid with a cooling agent in heat transfer communication with the liquid by sending the cooling agent through a plurality of channels, wherein there is a first set of channels below the mold cells, and a second set channels above the mold cells, and wherein there is a channel above and below each corresponding mold cell.

[0189] In an aspect, a method is provided comprising placing liquid in a plurality of mold cells of an ice cube mold, placing an extractor in the liquid in each of the mold cells, and freezing the liquid in each of the mold cells to form ice cubes, the ice cube mold facing up. The method may comprise warming the ice cube mold to loosen an ice-mold interface between the ice cubes and the ice cube mold. The method may comprise moving each extractor away from the ice cube mold, thereby moving an ice cube corresponding to each extractor away from the ice cube mold. The method may comprise warming each extractor to loosen an ice-mold interface between each ice cube and the corresponding extractor to allow each ice cube to drop from the corresponding extractor.

[0190] The warming of the ice cube mold may comprise warming the ice cube mold with a warming agent in heat transfer communication with the ice cube mold. The method may comprise sending the warming agent through a plurality of channels, wherein each channel corresponds one of the mold cells. The warming of the ice cube mold may comprise heating of the ice cube mold with a thin film electric heater, the thin film electric heater positioned around at least a portion of each mold cell. The warming of the ice cube mold may comprise heating of the ice cube mold with a light source and a light absorbing coating, the light absorbing coating positioned around at least a portion of each mold cell and which absorbs light emitted from the light source.

[0191] In an aspect, a method is provided comprising placing liquid in a plurality of mold cells of an ice cube mold, placing an extractor in the liquid in each of the mold cells, freezing liquid in each of the mold cells to form ice cubes, the ice cube mold facing up, and providing a low adhesion coating around at least a portion of the mold cells sufficient to allow the ice cubes to be moved away from the ice cube mold when the extractors are moved away from the ice cube mold. The method may comprise moving each extractor away from the ice cube mold, thereby moving an ice cube corresponding to each extractor away from the ice cube mold. The method may comprise warming each extractor to loosen an ice-mold interface between each ice cube and the corresponding extractor to allow each ice cube to drop from the corresponding extractor.

[0192] In an aspect, a method is provided comprising freezing a liquid in a plurality of mold cells of an ice cube mold to form ice cubes, the ice cube mold facing up, the freezing of the liquid further comprising cooling the liquid with a cooling agent in heat transfer communication with the liquid by sending the cooling agent through a plurality of channels, wherein there is a first set of channels below the mold cells, and a second set channels above the mold cells, and wherein there is a channel above and below each corresponding mold cell,

wherein the second set of channels are positioned within a heat transfer plate. The method may comprise providing a low adhesion coating on the heat transfer plate sufficient to allow the heat transfer plate to be removed from the ice cubes while leaving the ice cubes in the mold cells. The method may comprise providing a low adhesion coating on at least a portion of the mold cells sufficient to allow the ice cubes to move at least partially away from the ice cube mold when the ice cube mold is rotated and the ice cube mold faces down. The method may comprise rotating the ice cube mold so that the ice cube mold faces down and the first set of channels is above the mold cells.

[0193] The method may comprise warming of an ice-mold interface between the ice cubes and the ice cube mold sufficient to allow ice cubes to drop from the ice cube mold when the ice cube mold is rotated so that the ice cube mold faces down. The warming may comprise sending a warming agent through the first set of channels. The warming may comprise heating of the ice cube mold with a thin film electric heater, the thin film electric heater positioned around at least a portion of each mold cell.

[0194] In an aspect, an apparatus is provided, the apparatus comprising an arm. The apparatus may comprise an ice cube mold comprising a plurality of ice cube mold cells, the ice cube mold configured to cool a liquid in the ice cube mold cells sufficient that an ice cube formed in each ice cube mold cell. The apparatus may comprise a water filling system. The water filling system may be configured to move along the arm. The water filling system may comprise water filling dispensers, each water filling dispenser configured to dispense a liquid to be frozen into a corresponding ice cube mold cell. Each water filling dispenser may be configured to move an ice cube formed in the corresponding ice cube mold cell away from the corresponding ice cube mold cell when the water filling system moves away from the ice cube mold. The apparatus may comprise an ice cube remover. The ice cube remover may be configured to push ice cubes off the water filling dispensers when the water filling system is moved along the arm toward the ice cube remover.

[0195] The water filling dispensers may comprise water filling needles and/or needles. The water filling system may comprise a cooled cover. The cooled cover may be configured to surround a portion of each water filling needle and/or nozzle. The cooled cover may be configured to cool water prior to being dispensed into the ice cube mold cells.

[0196] The arm may be configured to tilt from a horizontal position to a tilted position away from the ice cube mold.

[0197] As will be recognized by those skilled in the art, the above described embodiments may be configured to be compatible with fountain system requirements, and can accommodate a wide variety of fountain offerings, including but not limited beverages known under any PepsiCo branded name, such as Pepsi-Cola®, and custom beverage offerings. The embodiments described herein offer speed of service at least and fast or faster than conventional systems. The embodiments described herein may be configured to be monitored, including monitored remotely, with respect to operation and supply levels. The embodiments described herein are economically viable and can be constructed with off-the-shelf components, which may be modified in accordance with the disclosures herein.

[0198] Those of skill in the art will recognize that in accordance with the disclosure any of the features and/or options in

one embodiment or example can be combined with any of the features and/or options of another embodiment or example.

[0199] The disclosure herein has been described and illustrated with reference to the embodiments of the figures, but it should be understood that the features of the disclosure are susceptible to modification, alteration, changes or substitution without departing significantly from the spirit of the disclosure. For example, the dimensions, number, size and shape of the various components may be altered to fit specific applications. Accordingly, the specific embodiments illustrated and described herein are for illustrative purposes only and the disclosure is not limited except by the following claims and their equivalents.

We claim:

- 1. An ice making apparatus comprising:
- a mold for an ice cube, the mold comprising:
 - a first volume defined by the mold;
 - a bottom face having an inner perimeter;
 - side faces, each side face having a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge, the corresponding top edge of each side face being longer than the corresponding bottom edge, each side face extending inward from the corresponding top edge to the corresponding bottom edge; and
 - a three-dimensional shape, the three-dimensional shape located within the first volume, the three-dimensional shape comprising a second volume, the second volume defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape, the bulge extending upwardly between the bottom outer perimeter and the top outer perimeter, the bulge tapering as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape;
 - the mold further defining a third volume between the first volume and the second volume, the mold configured to receive water within the third volume; and
- a cooling device configured to cool water within the third volume sufficiently to freeze the water.
- 2. The ice making apparatus of claim 1, wherein the bottom face and the side faces of the mold comprise parallelograms.
- 3. The ice making apparatus of claim 1, further comprising an evaporator, the evaporator configured to provide a cooling agent to the cooling device, the cooling agent having a temperature sufficient to freeze the water in the third volume.
- 4. The ice making apparatus of claim 1, wherein the mold comprises a mold body, the mold body comprising a plurality of molds cells.
- 5. The ice making apparatus of claim 4, wherein each mold cell comprises a fin, each fin connected to the mold body.
- 6. The ice making apparatus of claim 5, wherein the mold comprises a plurality of passageways, each passageway configured to receive a cooling agent and provide sufficient heat transfer from water within the mold cells to the mold cells, and freezing the water within the mold cells.
- 7. The ice making apparatus of claim 1, wherein the three-dimensional shape comprises a substantially a three-dimensional U-shape.
- **8**. The ice making apparatus of claim **1**, wherein the three-dimensional shape comprises a substantially a three-dimensional truncated M-shape.

- **9**. The ice making apparatus of claim **1**, wherein the three-dimensional shape comprises a set of at least two three-dimensional L-shapes.
- 10. The ice making apparatus of claim 9, wherein the at least two three-dimensional L shapes are mirror images of each other
- 11. The ice making apparatus of claim 10, wherein the three-dimensional shape further comprises a third three-dimensional shape, the third three-dimensional shape being positioned between and joining the at least two three-dimensional L-shapes.
- 12. The ice making apparatus of claim 1, wherein the bulge comprises at least two fins.
- 13. The ice making apparatus of claim 1, wherein the bulge comprises four side faces.
- 14. The ice making apparatus of claim 13, wherein the four side faces are parallelograms.
 - 15. An ice making apparatus comprising:
 - an mold, the mold comprising an upper part and a lower part, each of the parts having a plurality of ice cube mold cells corresponding to a plurality of ice cube mold cells of the other part, the mold configured so that a first mold cell of the lower part of the mold and a corresponding second cell of the upper part of the mold comprises a single enclosure, the single enclosure defining a volume for a single ice cube.
 - a first channel configured to fill the first mold cell and the corresponding second mold cell with water,
 - a second channel configured to allow air to escape from the single enclosure when the first mold cell and the second mold cell are filled with water, and
 - a plurality of passageways, each passageway configured to receive a cooling agent and provide sufficient heat transfer from water within the mold cells to the mold cells, and freezing the water within the mold cells.
- 16. The ice making apparatus of claim 15, further comprising a seal coating at a surface area wherein the upper part meets the lower part.
 - 17. An ice making apparatus comprising:
 - a plate; and
 - a mold, the mold positioned over the plate, the mold comprising a plurality of ice cube mold cells, each ice cube mold cell having an opening at the bottom of the cell, and an air escape channel at the top of the cell to allow air to escape from the ice cube mold cell when the plate is filled with water:
 - the mold and the plate each comprising a plurality of passageways, each passageway configured to receive a cooling agent and provide sufficient heat transfer from water within the ice cube mold cells to the ice cube mold cells, and freeze water within the ice cube mold cells;
 - each ice cube mold cell comprising a corresponding channel to allow air escape from the ice cube mold cell when the plate is filled with water.
- 18. The ice making apparatus of claim 17, wherein the ice cube mold cells have a shape of a truncated pyramid.
- 19. A method of making a plurality of ice cubes, the method comprising:
 - placing a mold over a plate, the mold comprising a plurality of cells, each cell having an opening at the bottom of the cell, and an air escape channel at the top of the cell,
 - filling each of the plurality of cells by filling the plate with water, and

- transferring heat from water within the plurality of cells to the mold cells and freezing water within the cells.
- 20. The method of making a plurality of ice cubes of claim 19, wherein at least one ice cube comprises the shape of a truncated pyramid.
- 21. The method of making a plurality of ice cubes of claim 19, wherein each of the plurality of ice cubes comprises a wall having a thickness sufficient to provide mechanical strength of an ice cube and an interior volume that is not completely frozen.
- 22. The method of claim 21, wherein the thickness of the wall of each of the plurality of ice cubes is in the range of about 2-3 mm.
 - 23. An ice making apparatus comprising:
 - a mold, the mold comprising plurality of cells, each cell having an opening at a top of each cell, the mold comprising a plurality of passageways for a cooling agent, and an upper part that is hermetically enclosed with a cover, the upper part comprising a vacuum chamber,
 - a vacuum pump configured to pump wet air from the mold, and
 - a pipe, the pipe extending from the vacuum chamber of the evaporator to the vacuum pump,
 - wherein as pressure in the vacuum chamber starts to decrease, dissolved gases start to leave the bulk of water in each cell, the vacuum pump configured to pump wet

- air from the evaporator so that the pressure in the vacuum chamber drops below 61~0.5~Pa~((0.18~in~Hg)~at~32°~F.).
- 24. A mold for an ice cube, the mold comprising:
- a first volume defined by the mold;
- a bottom face having an inner perimeter;
- side faces, each side face having a corresponding inner perimeter, a corresponding top edge, and a corresponding bottom edge, the corresponding top edge of each side face being longer than the corresponding bottom edge, each side face extending inward from the corresponding top edge to the corresponding bottom edge; and
- a three-dimensional shape, the three-dimensional shape located within the first volume, the three-dimensional shape comprising a second volume, the second volume defined by a top outer perimeter, a bottom outer perimeter, and at least a bulge of the three-dimensional shape, the bulge extending upwardly between the bottom outer perimeter and the top outer perimeter, the bulge tapering as it extends upwardly between the bottom outer perimeter and the top outer perimeter of the three-dimensional shape;
- the mold further defining a third volume between the first volume and the second volume, the mold configured to receive water within the third volume.

* * * * *