Title: A METHOD AND A DEVICE FOR INCREASED BIT RATE

Abstract: In a method and a device for setting the Transport Format Combination size step in a scheduler of a cellular radio system to be used by a user equipment transmitting data to a radio base station of the cellular radio system, the Transport Format Combination size step is set as a function of a number of pre-defined cell and/or user conditions. This will increase the user bit rate at low load. Specifically, the time to reach a high bit rate in low load situations is reduced. This leads to enhanced user experience for bursty services such as World Wide Web (WWW) services.

Fig. 2

Condition allowing increased TFC step size exist?

Set TFC step size to default step size

Set TFC step size to increased step size

No

Yes

203

201

205
A METHOD AND A DEVICE FOR INCREASED BIT RATE

TECHNICAL FIELD
The present invention relates to a method and a device for increasing the bit rate in a cellular radio system. In particular the invention relates to a method and a device for setting the TFC size step in a cellular radio system.

BACKGROUND
High Speed Packet Access (HSPA) is a technology used for data traffic in mobile communication systems. With HSPA it is now become possible to provide mobile broadband services since the peak bit rates reach up to 42 Mbps in Third Generation Partnership Project Release 8 (3GPP R8) for the downlink, and 11 Mbps (3GPP R8) in the uplink. For 3GPP R9 the peak rates are doubled. Bit rates of this magnitude are sufficient for many applications and can provide good user experience. However, these figures only represent part of what the user will experience when using these systems.

A common traffic type for internet connections is so-called bursty traffic, i.e. traffic having very high peak loads interrupted by periods with low or now load. Bursty traffic is for example common for many types of WWW sessions and uploads of small files. In these situations the user will never reach the above mentioned bitrates because in many situations rather slow ramp up period of the user's bit rate, i.e. user's Transport format is slowly increased. The reason for having a rather restrictive transport format ramp up is to ensure the system stability. If a too fast transport format ramp up, possibly from more than one user simultaneously, may create a high noise rise peak, which in turn will have a negative impact on coverage and capacity.
In existing HSPA systems noise rise is the limiting resource in the uplink. The system strives to utilize as much as possible of the allowable noise rise by increasing the Transport Format Combination (TFC) which in turn limits the maximum bit rate a UE can utilize for the active users in a controlled matter until it reaches the noise rise limit. If the noise rise limit is exceeded, the system will decrease the TFCs depending on how severe the noise rise peak is.

There is a constant need to improve the performance in mobile communication system. Hence, there exists a need for improving transmission of data traffic in a mobile communication system.

SUMMARY

It is an object of the present invention to overcome or at least reduce some of the problems associated with the above.

The above object and others are obtained by the method and apparatus as set out in the appended claims.

The inventors have realized that the existing method for increasing and decreasing the TFC in a cellular radio system, in particular a HSPA system, is designed to work in all load situations without leading to unstable system performance. The price for generality is sub optimal performance in certain situations. In particular when there are few users and low system load, the increase of the TFC is too moderate to be optimal.

The slow increase of TFC in combination with few users and small to medium file sizes lead to that much of the data is transmitted using low TFC (i.e. with low data rate) and when the TFC begin to reach their optimal level noise rise limit reached, the file is already
transmitted. Hence, the data rate never reaches its possible maximum level. This is the case for the common traffic type World Wide Web (WWW) services.

Thus, the TFC size is stepped up at an increased rate when certain conditions are fulfilled. In particular the conditions are set to identify situations when an increased step up rate is determined to not reduce the performance of other users and/or risk the stability of the system. A number of conditions can be used, either by themselves or in combination. In general, the conditions relate to the user equipment transmitting with low transmission power and/or that the cell conditions are such that the user equipment does not need to consider the impact on other user equipments or at least is determined to need to show less consideration than in normal conditions. As a result, the TFC size step is set as a function of cell and/or user conditions.

In accordance with one embodiment a method of setting the Transport Format Combination size step in a scheduler of a cellular radio system to be used by a user equipment transmitting data to a radio base station of the cellular radio system is provided. The method can comprise setting the Transport Format Combination size step as a function of a number of pre-defined cell and/or user conditions.

In accordance with one embodiment the condition is a condition related to measurements and/or conditions related to the cell in which the user equipment is served.

In accordance with one embodiment the condition is one or many of: Number of M users in the serving cell, Number of scheduled/transmitting users in the serving cell per Transmission Time Interval, Scheduling headroom, Noise rise measurement, Number of simultaneously transmitting users each Transmission Time Interval.

In accordance with one embodiment the condition is a condition relating to measurements and/or conditions experienced by the user equipment.
In accordance with one embodiment the condition is one or many of: Power headroom level, Estimated intercell interference impact, Soft handover status, and user equipment buffer level.

In accordance with one embodiment a scheduler for setting the Transport Format Combination size step to be used by a user equipment transmitting data to a radio base station of a cellular radio system is provided. The scheduler is arranged to set the Transport Format Combination size step as a function of a number of pre-defined cell and/or user conditions.

In accordance with one embodiment the condition is that there are few users, a number below a threshold value, in the serving cell and in neighbouring cells. If there are many users in the system, there is always a risk that a fast step up will lead to increased interference and performance loss. The number of users is known to the system and easily monitored.

In accordance with one embodiment the condition is that the user subject to a fast TFC step up is using low power, below a threshold value. In particular the power can be measured to include power for DPCCH. Low power means that it is possible to increase power a lot without risk of interfering with other users. Low power can be indicated by available power headroom and/or Channel Quality Indicator (CQI) measurements.

In accordance with one embodiment the condition is that there is low noise rise, below a threshold value, in the system. This implies that it is possible to step up TFCs without exceeding the noise rise target. The noise rise can be measured in the radio base station NodeB.
When a condition or a combination of conditions for increased TFC size step is met, the TFC size can be set to increase at an increased rate, leading to higher bitrate for the user(s).

The method steps can in accordance with the invention be provided through the use of dedicated hardware as well as hardware capable of executing software. When provided by a processor, the method steps can be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared or distributed. Moreover, a "processor" or "controller" may include, without limitation, digital signal processor (DSP) hardware, ASIC hardware, read only memory (ROM), random access memory (RAM), and/or other storage media.

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described in more detail by way of non-limiting examples and with reference to the accompanying drawings, in which:

- Fig. 1 is a view illustrating a cellular radio system,
- Fig. 2 is a flow chart illustrating some procedural steps performed when setting the TFC size step in a cellular radio system for a user.

DETAILED DESCRIPTION
The present invention will now be described in more detail by way of non-limiting examples. The exemplary embodiments will for practical reasons be explained in the context of a HSPA system, but the invention is not limited to such a system and can be utilized in any cellular radio system In Fig. 1 a general view of an exemplary cellular radio system 100 is depicted. The system can for example be a HSPA system. The system comprises a number of radio base stations 101, here denoted NodeBs. A mobile station 103, here also denoted User Equipment UE that is in a geographical area covered by the radio base station can connect to the radio base station over an air-interface. The radio base station comprises a module with a scheduler 102 for setting the TFC to be used by a user
equipment when transmitting uplink data over the air-interface. While the scheduler 102 is depicted to be located in the radio base station NodeB, it is appreciated that the scheduler can be located in any suitable node of a radio system and adapted to perform the tasks as described herein. The mobile station 103 comprises a module 107 adapted to control the UE to perform functions to be performed. In particular the module 107 can be arranged to adjust the TFC used by the user equipment. The modules 102 and 107 can for example be implemented using a microcontroller operating on a set of computer software instructions stored on a memory in the modules 102 and 107, respectively.

The TFC can be increased depending on several conditions. Formally, the TFC for a user u in cell c can be written as:

$$TFC_{New} = TFC_{Old} + TFC_{Step}(cu)$$

Where TFC_{New} is the new TFC for user u in cell c, TFC_{Old} is the previous TFC for user u in cell c and $TFC_{Step}(c,u)$ is the step size with which the TFC is increased (or decreased) for user u in cell c. Conventional update procedures use a constant step size, i.e. $TFC_{Step}(c,u) = constant$.

In accordance with the invention, the $TFC_{Step}(c,u)$ is set to a function of cell and or user conditions. Thus, the condition can be a condition related to measurements and/or conditions related to the cell in which the user equipment is served. The condition can also be a condition relating to measurements and or conditions experienced by the user equipment. The condition can also be a combination of any such conditions. For example, all or a subset of the following conditions can be used to control the TFC step size. If any one of the conditions is fulfilled the TFC step size can be increased from the default TFC step size by the scheduler.

Cell conditions:

Number of M users in the serving cell
If the number \(M \) is below a threshold value the TFC step size is increased.

Number of scheduled/transmitting users in the serving cell per Transmission Time Interval (TTI)

If the number of users are below a threshold value the TFC step size is increased.

Scheduling headroom, i.e. Raise over Thermal (RoT) target - Noise rise measurement

If the scheduling headroom is above a threshold value the TFC step size is increased.

Number of simultaneously transmitting users each TTI

If the number of simultaneously transmitting users each TTI is below a threshold value the TFC step size is increased.

User conditions:

Power headroom level

If the power headroom level is above a threshold value the TFC step size is increased.

Estimated intercell interference impact, e.g. as determined by the CQI

If an estimated intercell interference impact is below a threshold value the TFC step size is increased.

Soft handover

If a user equipment is in soft handover the TFC step size is increased.

UE buffer level for example the amount of data in the transmission buffer

If the amount of data in the transmission buffer is above a threshold value the TFC step size is increased.
Thus, in accordance with the above, a user equipment that generates a low (absolute) output transmission power (for example because it is close to the radio base station) will not interfere with other user equipments and can therefore be allowed to increase the TFC step size at a higher rate than a user equipment generating a higher absolute) output transmission power. In addition when a user equipment is determined to have a low impact on other users the TFC step size can be increased at a higher rate.

In Fig. 2, some procedural steps performed in a scheduler 102 when setting the TFC step size in accordance with the above are depicted. First, in a step 201, it is checked if one or more predetermined conditions exist. The conditions can be any of the conditions listed above or another condition that is determined to allow changes in the grant at a rate which is dependent on the impact this will have on the rest of the network, e.g. a low power user equipment close to its serving NodeB will not generate a lot of interference, as a result, the scheduler, via the radio base station NodeB can order this user equipment to increase the TFC dramatically at an increased rate without having to worry about the effects. If the determination in step 201 is that no condition is fulfilled, the TFC size step is kept at a default level in a step 203. If, on the other hand, the determination in step 201 is that at least one condition is fulfilled, the TFC size step is set to an increase step size higher than the default level in a step 205. As a result, the TFC size step is set as a function of a number of pre-defined cell and/or user conditions.

The exact form of $TFC_{Step}(c,u)$ is implementation specific. As an example the following function can be used:

$$TFC_{Step}(c,u) = f(M, ShedHdr, PwrHdr, CQI)$$

The procedure can be further refined by taking into account the total increase of TFC in a cell each scheduling instant. This will typically make the algorithm more stable and avoid
exceeding the noise rise target. This can for example be implemented by applying the condition that the total TFC step for many users must be below a maximum step.

$$\sum TFCStep(cu) < TFCStep_{Max}$$

I.e. the number of users can impact the step size so that step size is proportional to the number of users, implying that the noise rise increase is approximately constant irrespective of number of users in the system.

Note that if $TFCStep$ is negative for some users, this allows higher total increase of the total $TFCstep$ for the remaining users. An alternative solution is to omit the users with decreasing TFCs in the sum $\sum TFCStep(c,u)$.

Using the methods and devices as described herein will increase the user bit rate at low load. Specifically, the time to reach a high bitrate in low load situations is reduced. This leads to enhanced user experience for bursty services such as World Wide Web (WWW) services.
CLAIMS

1. A method of setting the Transport Format Combination size step in a scheduler of a cellular radio system to be used by a user equipment transmitting data to a radio base station of the cellular radio system, characterized by the step of:

- setting (203, 205) the Transport Format Combination size step as a function of a number of pre-defined cell and/or user conditions.

2. The method according to claim 1, wherein, the condition is a condition related to measurements and/or conditions related to the cell in which the user equipment is served.

3. The method according to claim 2, wherein the condition is one or many of: Number of M users in the serving cell, Number of scheduled/transmitting users in the serving cell per Transmission Time Interval, Scheduling headroom, Noise rise measurement, Number of simultaneously transmitting users each Transmission Time Interval.

4. The method according to any of claims 1 - 3, wherein, the condition is a condition relating to measurements and/or conditions experienced by the user equipment.

5. The method according to claim 4, wherein the condition is one or many of: Power headroom level, Estimated intercell interference impact, Soft handover status, user equipment buffer level.

6. A scheduler (102) for setting the Transport Format Combination size step to be used by a user equipment (103) transmitting data to a radio base station (101) of a cellular radio system (100), characterized in that the scheduler is arranged to set the Transport Format Combination size step as a function of a number of pre-defined cell and/or user conditions.

7. The scheduler according to claim 6, wherein, the condition is a condition related to measurements and/or conditions related to the cell in which the user equipment is served.
8. The scheduler according to claim 7, wherein the condition is one or many of: Number of M users in the serving cell, Number of scheduled/transmitting users in the serving cell per Transmission Time Interval, Scheduling headroom, Noise rise measurement, Number of simultaneously transmitting users each Transmission Time Interval.

9. The scheduler according to any of claims 6 - 8, wherein, the condition is a condition relating to measurements and or conditions experienced by the user equipment.

10. The scheduler according to claim 9, wherein the condition is one or many of: Power headroom level, Estimated intercell interference impact, Soft handover status, user equipment buffer level.
Fig. 1
Condition allowing increased TFC step size exist?

201

203 No

Set TFC step size to default step size

Yes 205

Set TFC step size to increased step size

Fig. 2
A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L, H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 20080273463 Al (WHITEHEAD, MICHAEL ET AL), 6 November 2008 (06.11.2008), abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 20090190526 Al (PANI, DIANA ET AL), 30 July 2009 (30.07.2009), abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 20090086709 Al (PANI, DIANA ET AL), 2 April 2009 (02.04.2009), abstract</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

&S document member of the same patent family

Date of the actual completion of the international search: 26 January 2011

Date of mailing of the international search report: 08-02-2011

Name and mailing address of the ISA/Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. + 46 8 666 02 86

Authorized officer
Eddie Rmaili / Eo
Telephone No. + 46 8 782 25 00

Form PCT/ISA/21 0 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 20060057978 A1 (LOVE, ROBERT T. ET AL), 16 March 2006 (16.03.2006), abstract</td>
<td>1-10</td>
</tr>
</tbody>
</table>
International patent classification (IPC)
H04W 72/12 (2009.01)
H04W 28/06 (2009.01)
H04L 12/56 (2006.01)
H04W 28/10 (2009.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded:
• From "Cited documents" found under our online services at www.prv.se (English version)
• From "Anfdrda dokument" found under "e-tjanster" at www.prv.se (Swedish version)
Use the application number as username. The password is EMVBDGQPJU.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 20090316639</td>
<td>24/12/2009</td>
<td>NONE</td>
</tr>
<tr>
<td>US 20080273463</td>
<td>06/11/2008</td>
<td>NONE</td>
</tr>
<tr>
<td>US 20090190526</td>
<td>30/07/2009</td>
<td>NONE</td>
</tr>
<tr>
<td>US 20090086709</td>
<td>02/04/2009</td>
<td>NONE</td>
</tr>
<tr>
<td>US 20060268938</td>
<td>30/11/2006</td>
<td>NONE</td>
</tr>
<tr>
<td>US 20060057978</td>
<td>16/03/2006</td>
<td>NONE</td>
</tr>
</tbody>
</table>