wo 2016/114906 A1 |1 I} NN OO0 OO 0O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/114906 A1

21 July 2016 (21.07.2016) WIPO I PCT
(51) International Patent Classification: (74) Agents: SINGH, Tejinder et al.; Klein, O'Neill & Singh,
HO4L 9/08 (2006.01) LLP, 16755 Von Karman Avenue, Suite 275, Irvine, CA
. . 92606 (US).
(21) International Application Number:
PCT/US2015/067020 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
21 December 2015 (21.12.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/103,211 14 January 2015 (14.01.2015) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/631,112 25 February 2015 (25.02.2015) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: NETAPP, INC. [US/US]; 495 East Java Drive, . L
Sunnyvale, California 94089 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: SHAH, Peter D.; NetApp, Inc., 495 East Java GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Drive, Sunnyvale, California 94089 (US). SO, Won; Net-
App, Inc., 495 East Java Drive, Sunnyvale, California
94089 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR SECURING STORED INFORMATION

ST NETEDRE e

.................... < P ‘
< w8 p

e, f

MAMRGEMENT]
CONSCLE

DPERATING
BYSTEM

FIG 1A

(57) Abstract: Methods and systems for securing informa-
tion are provided. The method includes generating a hash
key by an input/output (I/O) processing module interfacing
with a processor executable application to encrypt a block of
data of a data container to secure and store the data contain-
er; generating cipher text for the block of data encrypted with
the hash key; using an encryption key to encrypt the hash key
for the block of data; providing the cipher text and the en-
crypted hash key by the I/O processing module to a storage
system for storage; where the I/O processing module segreg-
ates the encrypted hash key from the cipher text and main-
tains the encrypted hash key as part of metadata for the
cipher text; and storing the cipher text with the encrypted
hash key as the metadata for the cipher text for the block of
data.

WO 2016/114906 A1 |00V T AT U RO

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

WO 2016/114906 PCT/US2015/067020

METHODS AND SYSTEMS FOR SECURING STORED INFORMATION

TECHNICAL FIELD

{0001] The present disclosure relates 1o storage systems and more

particularly, to securing stored information.

BACKGROUND

{0002] Various forms of siorage systems are used today. These forms include

direct atlached storage, network attached storage (NAS) systems, storage area
networks (SANs), and others. Sforage systems are commonly used for a variety
of purposes, such as providing multiple users with access 1o shared data, backing
up data and others.

10003] A storage system typically includes at least one computing system {may
also be referred to as a “server” or “storage server”), which is a processing system
configured 1o store and retrieve data on behalf of one or more host computing
systems (“hosts”). The storage system may be presented to a host system for
storing information.

{0004] information stored by storage sysiems today should preferably be
secured. li is desirable to secure information closest to an application that is
generating the information. 1t is also preferable to efficiently store the secured data
Dy the storage system, using techniques like de-duplication. Continuous efforts are

being made to efficiently secure and store data.

SUMMARY
{0005] in one aspect, a machine implemented method is provided. The
method includes generating a hash key by an input/output (/O) processing module
interfacing with a processor executable application 10 encrypt a block of data of a
data container to secure and siore the data container; generating cipher text for
the block of data encrypted with the hash key; using an encryption key to encrypi
the hash key for the block of data; providing the cipher text and the encrypted
hash key by the /O processing module to a storage system for storage; where the
/O processing module segregates the encrypted hash key from the cipher text

and maintains the encrypted hash key as part of metadata for the cipher text; and

WO 2016/114906 PCT/US2015/067020

storing the cipher text with the encrypted hash key as the metadata for the cipher
text for the block of data.

{0006] in another aspect, a non-transitory, machine readable storage medium
having stored thereon instructions for performing a method is provided. The
machine executable code which when executed by at least one machine, causes
the machine to: generate a hash key by an inpuVouiput (I/O} processing module
interfacing with a processor executable application to encrypt a block of data of a
data container 10 secure and store the data container; generate cipher text for the
block of data encrypied with the hash key; use an encryption key to encrypt the
hash key for the block of data; provide the cipher text and the encrypted hash key
by the VO processing module 0 a siorage system for storage; where the VO
processing module segregates the encrypted hash key from the cipher text and
maintains the encrypted hash key as part of metadata for the cipher iext; and
store the cipher text with the encrypted hash key as the metadata for the cipher
text for the block of data.

{0007] in yet another aspect, a system having a memory containing machine
readable medium with machine executable code having stored thereon
instructions is provided. A processor module coupled to the memory is configured
to execuie the machine executable code to: generate a hash key 1o encrypt a
block of data of a data container to secure and store the data container; generate
cipher text for the block of data encrypted with the hash key; use an encryption
key to encrypt the hash key for the block of data; provide the cipher text and the
encrypted hash Key to a storage system for storage, where the encrypted hash
key from the cipher text and maintains the encrypted hash Key as part of metadata
for the cipher text; and store the cipher text with the encrypted hash key as the
metadata for the cipher text for the block of data.

[0008] This brief summary has been provided so that the nature of this
disclosure may be undersiood quickly. A more complete understanding of the
disclosure can be obtained by reference to the foliowing detailed description of the

various aspects thereof in connection with the attached drawings.

WO 2016/114906 PCT/US2015/067020

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The various features of the present disclosure will now be described
with reference to the drawings of the varicus aspects of the present disclosure. In
the drawings, the same components may have the same reference numerals. The
Hlustrated aspects are intended to Hlustrate, but not to limit the present disclosure.
The drawings include the following Figures:

{0010] Figure 1A shows an example of a non-clusier based siorage
environment, used according to one aspect of the present disclosure;

{0011 Figure 1B shows an example of an inpul/output {(/O) processing layer,
according to one aspect of the preseni disclosure;

{0012] Figures 1C-1E show examples of data storage layout formais,
according to one aspect of the present disclosure;

{0013] Figures 1F shows a process flow diagram for a write operation,
according to one aspect of the present disclosure;

[0014] Figures 1G shows a process flow diagram for a read operation,
according to one aspect of the present disclosure;

{0015] Figure 1H shows an exampile of a portion if a write operation using a log
structure;

{0016] Figure 11 shows an illustration of process blocks of Figure 1H;

{0017] Figure 2 shows a block diagram of a cluster based storage sysiem,
used according to one aspect of the present disciosure;

[0018] Figure 3 shows an exampie of a node used in a cluster based siorage
system, used according to one aspect of the present disclosure of the present
disclosure;

10019] Figure 4 shows a block diagram of an operating system, used according
to one aspect of the present disclosure; and

{0020] Figure 5 shows an example of a processing system used according (o

one aspect of the present disclosure.

DETAILED DESCRIPTION

{0021} As a preliminary note, as used in this disclosure, the terms "component”

“module”, "system,” and the like are intended to refer 10 a computer-related entity,

either software-executing general purpose processor, hardware, firmware and a

WO 2016/114906 PCT/US2015/067020

combination thereof. For example, a component may be, bul is not limited to
Deing, a process running on a processor, a processor, an object, an executable, a
thread of execution, a program, and/or a computing device. By way of iliustration,
both an application running on a server and the server can be a component. One
or more components may reside within a process and/or thread of execution and a
component may be localized on one computer and/or distributed between two or
more computers. Also, these components can execute from varicus computer
readable media having various data structures stored thereon.

{0022] The components may communicaie via local and/or remote processes
such as in accordance with a signal having one or more daia packeis (e.g., data
from one component interacting with anocther component in a local system,
distributed system, and/or across a network such as the Internet with other
systems via the signal).

{0023] Computer execulable components can be stored, for example, at non-
transitory, computer readable media including, but not limited to, an ASIC
{application specific integrated circuit), CD (compact disc), DVD (digital video
disk), ROM (read only memory), floppy disk, hard disk, EEPROM (eleciricaily
erasable programmable read only memory), memory stick, non-transitory storage
media or any other storage device iype, in accordance with the claimed subject
matter.

[0024] in one aspect, as described below in detail, methods and systems for
efficiently storing and securing information are provided. As an example, one of
the methods include generating a hash key by an inputoutput (/O) processing
module interfacing with a processor executable application to encrypt each block
of data for a write request; generating cipher text for each block of data encrypted
with the hash key using an encryption key 1o encrypt the hash key for each block
of data; providing the cipher text and the encrypted hash key by the I/O processing
module 10 a storage system; and storing the cipher text with the encrypted hash
key as metadata for the cipher text for each block of data by the storage system.
{0025] in another aspect, methods and systems are provided where
cryptographic metadata is stored in a data container’s data stream that improves
overall performance for storing and managing data containers {for example, a file,
structured or unstructured data and used interchangeably throughout the

specification). The metadata is associated with portions of the data containers and

WO 2016/114906 PCT/US2015/067020

segregated from the actual data of the data container. This allows a storage
system 1o efficiently perform content-based operations, for example, de-
duplication, as described below in detail.

{0026] Non-Clustered Siorage Environment 100: Figure 1A depicts an

Hustrative aspect of a non-clustered storage environment 100, including a plurality
of host computing systems/devices 104.1-104.N {may also be referred to as host
system (or client) and host systems (or clients) 104), storage systems 108A-108N
{may aiso be referred to as storage system 108 or siorage systems 108), a
management conscle 120 and at least one interconnect system (or network) 106
communicably connecting host systems 104.1-104.N, storage systems 108 and
management console 120.

{00271 in one aspect, each host system 104 executes a processor executable
application 116 and an input/output (/O) processing module 118, Application 118
may generate and secure information that is then stored by the storage system
108. Details regarding application 118 and VO processing module 118 are
provided below.

{0028] Each storage system 108 may include or interface with a siorage
subsystern 114 {shown as 114A-114N) having mulliple mass storage devices
112A-112N (may also be referred 1o as siorage device or storage devices 112).
The mass storage devices 112 may be, for example, conventional magnetic disks,
optical disks such as CD-ROM or DVD based storage, magneto-optical (MO)
storage, or any other type of non-volatile storage devices suitable for storing
structured or unstruciured data.

[0029] The storage system 108 executes a storage operating system 109 for
managing storage space within storage subsystem 114 and presenting storage
space 1o host systems 104. As an example, storage operating system 1098 may be
the DATA ONTAP® storage operating system, available from NetApp®, Inc., that
implements a Write Anywhere File Layout (WAFL®) storage systemn, or any other
suitable storage operating system.

{0030] Storage operating system 109 and applications 116 running on the host
systems 104.1-104.N communicate according to well-known protocols, such as the
NFS protocol or the CIFS protocol, 1o make data stored on storage device 112
appear o users and/or application programs as though the data were stored

iocally on the host systems 104.1-104.N. CIFS means the Common Internet File

WO 2016/114906 PCT/US2015/067020

Systern Protocol, an access protocol that host systems use to request file access
services from storage systems over a network. NFS means a Network File
System, a protocol that allows a user 10 access storage over a network.

{0031] Storage operating system 109 can present or expori data stored ai
storage devices 112 as a volume {may also be referred 1o as a storage volume), or
one or more giree sub-volume units, to each of the host systems 104.1-104.N. in
one aspect, a volume is a logical data set which is an abstraction of physical
storage, combining one or more physical mass storage devices or parts thereof
into a single logical storage object. From the perspective of a host system 104,
each volume can appear 10 be a single storage drive. However, each volume can
represent the storage space in one storage device, an aggregate of some or all of
the storage space in muitiple storage devices, a RAID group, or any other suitable
set of storage space. Each volume may be configured to store data containers, for
example, data files, scripts, word processing documents, execuiable programs,
structured and unstructured data and the like. Specifically, each volume can
include a number of individually addressable files.

{0032] The storage operating system 108 may implement a high-level module,
such as a file systemn, o logically organize the information stored at storage
devices 112 as a hierarchical structure of directories, files, blocks, structured and
un-structured data (may be referred to as data containers). For example, each
"on-disk” data container may be implemented as set of data structures, i.e., blocks,
configured to store information, such as the actual daia for storage volumes.
These data blocks are organized within g logical volume block number (vbn) space
that is maintained by the file system. The file system organizes the storage data
blocks within the von space as a “logical volume”™; each logical volume may be,
although is not necessarily, associated with its own file system. The file system
typically consists of a contiguous range of vbns from zero to n, for a file system of
size n-1 blocks.

{0033] in one aspect, the siorage operaling system 1089 manages stored data
blocks by using content-based operations, for example, de-duplication. De-
duplication {s g technigue used for eliminating storage of duplicate coples of data
that is stored by the siorage system 108, One common de-duplication
implementation involves comparing data blocks and delermining a hash funclion.

When data is the same, the comparison results in a same hash function. In that

WO 2016/114906 PCT/US2015/067020

situation, the storage systemn 108 only siores one copy of the data, which saves
storage space.

{0034] in a typical mode of operation, one of the host sysiems 104.1-104.N
transmits one or more /O (input/output) commands, such as an NFS or CIFS
request, over network 106 1o the storage system 108 1o read or write information.
The storage system 108 issues one or more /0 commands to siorage device 112
to read or write the data on behalf of the host sysiem. The storage system 108
also issues an NFS or CIFS response containing the requested data over network
106 to the host system.

{0035] in some instances, operating system 109 may present siorage system
108 to host systems as virtual storage systems (may also be referred 10 as a
“‘vserver” and also referred 1o as virtual storage system). The virtual storage
system is addressable by the host systems and handles input/output commands,
iust like storage system 108. This allows one to present a physical storage system
as mutltiple virtual storage systems to various hosts.

{0036] The management conscle 120 may be, for example, a conventional PC,
workstation, or the like. The siorage management application 118 can be a
software application, typically used by a storage network administrator to manage
a pool of storage devices and other modules of system 100.

10037] Communication between the storage management application 118 and
storage system 108 may be accomplished using any of the various conventional
communication protocols and/or application programming interfaces (APls), the
details of which are not germane 1o the technigue being introcduced here. This
communication may be enabled by network 106 or via a direct link {(not shown)
between the management console 120 and one or more of the storage systems.
{0038] Conventional encryption systems thal use standard encryption
technigues for securing information have shortcomings. For example, traditional
technigues may use random initiglization vectors for encryption. This generates
different cipher text blocks for identical plain text blocks. This makes it difficult for
storage systems to efficiently perform content-based operations, for example, de-
duplication because a storage system performing de-duplication will not be able to
easily de-crypt stored encrypted data containers

{0038] Convergent encryption (CE) including message-locked convergent

encryption {(MLE) techniques have been proposed to address the foregoing

WO 2016/114906 PCT/US2015/067020

challenges of conventional encryption systems. CE is based on a premise that
encryption of two identical pieces of data will produce identical cipher texts. MLE
involves encrypting a hash key by an encryption key.

{0040] Existing conventional systems that may use CE and MLE iechniques
also have shortcomings. For example, most existing CE systems use convergent
keys to secure arbitrarily sized files or objects. This makes it difficult for a storage
system to efficiently perform content-based operations, for example, de-
duplication. Furthermore, when existing CE systems use a hash key to encrypt
block level data, they typically use a dedicated meiadata server for managing the
metadata and keys for the stored data. This of course results in higher cost and
complexity for storing and accessing data.

{0041] Other conventional systems use complex key generation protocols with
application servers and key servers. These solutions are also complex, and the
encryption operation itself may use multiple network operations that affect overall
performance. The various aspects described herein overcome conventional
system short comings as described below in detail.

{0042] Host System 104.1: Figure 1B shows a block diagram of host system

104. Host system 104 execules application 116 for performing one or more
functions within an operating system contexi. The operating system may be based
on Linux, Windows ®, Unix or any other iype. Application 116 may be an email
application (Exchange Server), a database application (inciuding Oracle®
database application, SQL and others), word-processing and or any other
application type. The adaptive aspecis disciosed herein are not limited 1o any
specific application.

{0043] To read or write data at storage system 108, application 116 generates
an /O request. When the /O request is to write data, the request also includes the
data that needs to be wrilten. For retrieving data, the 1O request, provides a
ingical biock address (LBA} and a LUN (or volume identifier).

{0044] The /O reguest is provided to or intercepted by the VO processing
module 118 that may have a plurality of modules. As an example, a receive
module 120 of the /O processing module receives the write request with the data
that needs to be written. in one aspect, the receive module 120 may inciude a
driver {not shown) that is used to interface with the /O processing module 118

used by the host system 104.1 to transmit YO requests. The driver in that case

WO 2016/114906 PCT/US2015/067020

interfaces between the application and other components of the VO processing
module 118

{0045] The data 125 for the /O request is provided to a hashing module 122
that generates a converged key {(or a hash key) 124. The hash key 124 varies
depending on the data. The hash key is provided 1o an encryption module 126 that
also receives the daia 125 that needs 1o be written. The encryption module 126
encrypts the data 125 using the hash key 124. The hash key 124 is also encrypied
by using an encryption key obtained from a key store 128. It is noteworthy that the
key store 128 may be external to the /O processing module 118 or to host system
104.1. As an example, the encryption key may be a 256-bit key complying with the
Advanced Encryption Standard (AES). Of course the adaptive aspects described
herein are not imited to any specitic encryption key type.

{0046] The encryption module 126 generates cipher text 132 and the
encrypted hash key 130. Both the cipher text 132 and the encrypted hash key are
provided 1o the storage system 108 for storage. The encrypted hash key 130 is
stored as metadata for the cipher iexi 132. As an example, each block of data is
stored as cipher text with the associated metadata as described below with
respect to Figures 1€ and 1D.

{0047] To retrieve stored data, /O processing module 118 retrieves the
metadata for a block, retrieves the encryption key that is used to encrypt the hash
key and then uses the hash key to decrypt the data. Neither the application 116
nor storage system 108 need o make any changes in order to write or read client
data.

[0048] To perform content-based operations, like de-duplication, the slorage
system 108 stores the cipher text once.

{0048] File lavout/Segment Layout: Figure 1C shows an example of a layout

136 used fo secure data according 10 one aspect of the present disclosure. File
layout 136 may include a plurality of segments 138A-138N, where, as an example,
each segment may be of fixed size, for example, 512k. Each segment is
associated with a physical offset and a logical offset shown as 146 in Figure 1C.
The logical offset is associated with the logical block address and the physical
offset is associated with the actual storage device. lt is noteworthy that the
segmentation and the internal file structure is handled by the VO processing layer

118 and the storage system 108 is unaware of the segmentation.

WO 2016/114906 PCT/US2015/067020
10

{00507 Each segment has a consistent layout 140. As an example, each
segment may include certain number of fixed size storage blocks, for example, 4k.
it is noteworthy that the storage block size may be variable to implement the
various aspects of the present disclosure. As an example, the first block is used as
a “key biock” 142A, while blocks 144A-144N are used to store data blocks Le.
cipher text encrypted by a hash key. Details of segment layout 140 are shown as
an example, in Figure 1D.

[0051] Key block 142A includes metadata for each segment. The first section
of key block 142A includes generic metadata information {shown as “meta”) 150,
while the remaining portions 152A-152N store the encrypted hash key 130 for
each data block. The metadata 150 includes a logical size of the file that is stored,
shown as 1504, a block 1V 150B and a reserved section 150C. Block IV 150B is
an inifiglization vector, a randomized binary string used by the encryption module
126 for encrypling the metadata key block. Details of using the /O processing
module 118 and the segment layoul 140 are provided below with respect o
Figures 1F and 1G. it is noteworthy that although Figure 1D shows metadata 150
and keys 152A-152N as part of per-segment metadata 148, the encryption keys
and metadata 150 are considered as part of the overall metadata for the segment.
{0052] in one aspect, the order of blocks may be shuified within a segment so
that the internal structure of a file can be hidden. In such an implementation, even
if a hacker can determine the number of blocks within a file, the hacker may not be
able to determine which parts of an encrypted file correspond to those blocks.
{0053] in another aspect, the metadata described above may be maintained
within a log structure. The log structure may include a table of hash keys with a
plurality of fields. One of the field’s is the hash key itself and the associated block
number. Each time a data block is writlen, the hash key is wrilten to the key block.
if there is an older version of the hash key, it is not cverwritten, instead the new
key is written 1o an unused entry. This allows the system 1o store both versions of
the key. The new version of the cipher text is written replacing the clder version,
without replacing the hash key. This provides crash tolerance in a situation where
if the system crashes while a key block is being updated, toth possibie hash keys
are saved in the key block and one of hash keys can be used to retrieve the
associated data. The empty slots of the log structure are purged, for example,

after the data blocks are persistently stored.

WO 2016/114906 PCT/US2015/067020
11

{0054] Figure 1E shows an example of using the log structure, according o
one aspect of the present disciosure. In this aspect, metadata segment has slois
O-n (151A-151N) that are used to store encrypted hash keys with the associated
block number, however, the hash keys don't necessarily have fo be in order. For
example, slot 0 does not need to store the encrypted hash key for data block
and instead may store an encrypted hash key for ancther block,

[0055] Meta 150 includes the logical file size 150A and the block initialization
vector 150, described above with respect to Figure 1D. Meta 150 also includes a
iog head pointer 153 thai points to a log-structure described above. The log head
pointer 153 may be part of the reserved space 150C. As an example, the log
structure maybe implemented as a circular log and the pointer 153 points to a last
written slot (151A-151N) (also shown in Figure).

{0056] in one aspect, the log structure may be over-provisioned so that therg
are extra Key slots in each segment’'s metadaia block. This allows the system 1o
store multiple encrypted hash keys for a subset of the dlocks within a segment.
Details and examples of using the log structure are provided below.

{0057] Process Flow: Figure 1E shows a process 152 for writing data using /O
processing module 118, according o one aspect of the present disclosure. The
process begins in bilock B154, when host system 104.1 with application 116 and
/O processing module 118 is initialized and operational. Storage system 108 and
storage operating system 109 are also operational.

{0058] in block B156, application 116 generates a write request to write data
using storage system 108. The data may be writien as g file. The write request
includes a file name, a byte offset into the file, size of the data payload and the
data itself. The write request may include other information that are not germane
to the innovative aspects and hence are not being described. The /0O processing
module 118 receives or intercepts the write request. The hashing module 122
takes the data payload and splits the data payload into fixed size blocks. As an
example, the block size is the same as the block size used by the storage system
108 to store data. For each block of data, a hashing key 124 is generated. The
hashing module 122 may use any standard hashing technique (for example, the
secure hash algorithm (SHA-256, SHA-1 or any other technique)) or a proprietary
technigue to generate the hashing key 124.

WO 2016/114906 PCT/US2015/067020
12

{0059] in block B160, the encryption module 126 encrypis each data block by
a hash key that is generated based on the data for each block. In one aspect, the
encryption module 126 uses an encryption key to modify the hash key. The
modified hash key is them used to encrypt the data block. The encrypted data
block results in cipher text 132, Each hash key {or the moditied hash key) is also
encrypted by an encryption key (for example, a 256-bit, AES key). It is noteworthy
that when the hash key is modified, then at least two encryption keys are used,
one for generating the modified hash key {0 generate the cipher text and a second
encryption key 1o protect the modified hash key. An example of block B160, using
the log structure described above with respect to Figure 1E is described below
with respect to Figure 1H.

{0060] Based on the cipher text 132 and the encrypted hash key, in biock
B162, the /O processing module 118 generates a new /O request to write the
cipher text and encrypied hash key at storage devices 112. Thereafter, in biock
8164, the /O processing module 118, provides the cipher text and the encrypted
key to the storage system 108. The storage system 108 simply stores the cipher
text and the encrypted hash key as shown on Figure 1D above. The write request
is then completed in block B166. A response is sent 1o the application 116 and the
process ends.

{0061] Figure 1F shows a process 168 to read stored data, according to one
aspect. The process begins in block B170, when the host system 104.1 and the
storage system 108 are operational. The process assumes that some data for one
or more dafa containers is stored at the storage devices. To read the data,
application 116 issues a read request, providing a file name and a file offset.
[0062] in block B172, read request is received or intercepted by the VO
processing module 118. In block B174, the 1/O processing module 118 obtains the
cipher text and the associated metladata with the encrypted hash key from the
storage system 108. In block B1786, the /O processing module 118 obtains the
encryption key for each encrypted hash key. As an example, the encryption key
may be stored at the key store 128. The hash key is first decrypted and then the
hash key is used 1o decrypt the cipher text. In one aspect, when the log structure
described above with respect to Figure 1E is used, then the process uses a block
number to search for the encrypted hash key. If there is more than one key for the

same block number, then the most recent key is used for executing process block

WO 2016/114906 PCT/US2015/067020
13

B176. The unencrypled data is then provided {o the application in block B178 and
the process ends.

{0063] Figure 1H shows an example of executing process block B160 of Figure
1F, according to one aspect of the present disclosure. An example of the Figure
1H process is provided in Figure 11 where a segment for a log having sight blocks
is shown as 191. In this structure there are 8 slots that are already full and there is
an exira slot labelied as “Empty”.

{0064] Referring now to Figure 1H, in block B160A, the process determines if
there is new empty slot available within a segment to siore a key for a previous
block that has been written (for example, CEKey3 and the updated encrypied hash
key is shown as CEKey3d' shown in Figure 11). When an empty siot is available,
then the updated encrypted hash key is written in block B1680B. This is shown as
193 in Figure 1E, where CEKey3' is written at the empty slot.

{0065] if an empty slot is not available, then the process searches the segment
to see it a duplicate encrypted hash key exists for a block. When a duplicate
iocation is found, then the encrypted hash key is written at the oldest slot in block
B160C. This is shown as 195 in Figure 11, where the old CEKey3 is replaced by
CEKEY®S', an updated version for CEKey5. Thereafter, the log head pointer is
updated in block B160D. This is shown as 197 in Figure 1l, where the pointer
points o the latest slot that was written.

[0068] As described above, data is stored securely and efficiently in a crash-
tolerant manner. Conteni-based operations by the storage system 108 are not
affected because the storage system 108 stores the cipher text and the metadata
together, just like regular, unsecured data.

[0067] Clustered Storage Environment 200: The adaptive aspects described

herein can be implemented in a cluster based system that has a distributed
architecture. Figure 2 depicts an illustrative aspect of a clustered storage
environment 200 including a plurality of host systems 204.1-204.2 {similar to hosts
104.1-104.N), a clustered storage system 202 and at least one computer network
206 communicably connecting the host systems 204.1-204.2 and the clustered
storage system 202. The clustered storage system 202 includes a plurality of
nodes 208.1-208.3, a cluster switching fabric 210, and a plurality of mass storage
devices 212.1-212.3 for storing cipher text and the associated metadata, as

described above.

WO 2016/114906 PCT/US2015/067020
14

{0068] Each of the plurality of nodes 208.1-208.3 may be configured to operate
as a storage system. Each node may include an N-module, a D-module, and an
M-host, each of which can be implemented as a separate processor executable or
machine implemented module. Specifically, node 208.1 includes an N-module
214.1, a D-module 216.1, and an M-host 218.1, node 208.2 includes an N-module
214.2, a D-module 216.2, and an M-host 218.2, and node 208.3 includes an N-
module 214.3, a D-module 216.3, and an M-host 218.3.

[00649] The N-modules 214.1-214.3 include functionality that enables the
respective nodes 208.1-208.3 to connect 10 one or more of the host sysiems
204.1-204.2 over the computer network 206, while the D-modules 216.1-216.3
connect to one or more of the storage devices 212.1-212.3.

0G70] The M-hosts 218.1-218.3 provide management functions for the
clustered storage system 202. Accordingly, each of the plurality of server nodes
208.1-208.3 in the clustered storage server arrangement provides the functionality
of a storage server.

{0071} A switched virtualization layer including a plurality of virtual interfaces
(ViFs) 220 is provided below the interface between the respective N-modules
214.1-214.3 and the host systems 204.1-204.2, allowing storage 212.1-212.3
associated with the nodes 208.1-208.3 to be presented to the host sysiems 204.1-
204.2 as a single shared storage pool. For example, the switched virtualization
layer may implement a virtual interface architecture. Figure 2 depicts only the
ViFs 220 at the interfaces o the N-modules 214.1, 214.3 for clarity of illustration.
{0072] The clustered storage system 202 can be organized into any suitable
number of vservers, in which each virtual storage system represents a single
storage system namespace with separate network access. Each vserver has a
user domain and a security domain that are separate from the user and security
domains of other virtual storage systems. Host systems can access storage space
via a VServer from any node of the clustered systemn 202.

{0073] Each of the nodes 208.1-208.3 may be defined as a computer adapted
to provide application services o one or more of the host systems 204.1-204.2.
The nodes 208.1-208.3 are interconnected by the switching fabric 210, which, for

example, may be embodied as a Gigabit Ethernet swiich or any other interconnect

type.

WO 2016/114906 PCT/US2015/067020
15

[0074] Although Figure 2 depicts three N-modules 214.1-214.3, the D-modules
216.1-216.3, and the M-Hosts 218.1-218.3, any other suitable number of N-
modules, D-modules, and M-Hosis may be provided. There may also be different
numbers of N-modules, D-modules, and/or M-Hosts within the clustered storage
system 202. For exampie, in altemnative aspects, the clustered storage system
202 may include a plurahity of N-moduies and a plurality of D-modules
interconnecied in a configuration that does not reflect a one-to-one
correspondence between the N-modules and D-modules.

{0075] The host systems 204.1-204.2 of Figure 2 may be implemenied as
general-purpose computers configured 1o interact with the respective nodes 208.1-
208.3 in accordance with a client/server model of information delivery. In the
presently disclosed aspect, the interaction between the host systems 204.1-204.2
and the nodes 208.1-208.3 enable the provision of network dala storage services.
{0076] Specifically, each host system 204.1, 204.2 may request the services of
one of the respective nodes 208.1, 208.2, 208.3, and that node may return the
results of the services requested by the host system by exchanging packets over
the computer network 206, which may be wire-based, optical fiber, wireless, or any
other suitable combination thereof. The host systems 204.1-204.2 may issue
packets according to file-based access protocols, such as the NFS or CIFS
protocol, when accessing information in the form of files and directories.

{00771 Storage Systern Node 208.1: Figure 3 is a block diagram of a node

208.1 that is illustratively embodied as a storage system comprising of a plurality
of processors 302A and 3028, a memory 304, a network adapter 310, a cluster
access adapter 312, a storage adapter 316 and local storage 313 interconnected
by a system bus 308. The local storage 313 comprises one or more storage
devices utilized by the node to locally store configuration information {e.g., in a
configuration data structure 314).

{0078] The cluster access adapter 312 comprises a plurality of poris adapied
o couple node 208.1 to other nodes of cluster 100. In the illusirative aspect,
Ethernet {or any other protocol) may be used as the clustering protocol and
interconnect media, although it will be apparent 1o those skilled in the art that other
types of protocols and interconnects may be ulilized within the cluster architecture
described herein. In alternate aspects where the N-modules and D-modules are

implemented on separate storage systems or computers, the cluster access

WO 2016/114906 PCT/US2015/067020
16

adapter 312 is utilized by the N/D-moduie for communicating with other N/D-
modules in the cluster 100.

{0079] Each node 208.1 is illustratively embodied as a dual processor storage
system executing a storage operating system 306 (similar to 109, Figure 1) that
preferably implements a high-level module, such as a file system, to logically
organize the information as a hierarchical structure of named directories and files
on siorage 212.1. However, it will be apparent {0 those of ordinary skill in the art
that the node 208.1 may allernatively comprise a single or more than two
processor systems. lllustralively, one processor 302A executes the functions of
the N-module 104 on the node, while the other processor 302B executes the
functions of the D-module 106.

{0080] The memory 304 illustratively comprises storage locations that are
addressable by the processors and adapters for storing programmabile insiructions
and dala siructures. The processor and adapiers may, in turn, comprise
processing elements and/or logic circuitry configured 10 execute the programmable
instructions and manipulale the data structures. It will be apparent to those skilled
in the art that other processing and memory means, including various computer
readable media, may be used for storing and executing program instructions
pertaining 1o the present disclosure.

{0081} The storage operating sysiem 306, portions of which is typically
resident in memory and executed by the processing elements, functionally
organizes the node 208.1 by, inter alia, invoking storage operations in support of
the storage service implemented by the node.

[0082] The network adapter 310 comprises a plurality of ports adapted to
couple the node 208.1 {0 one or more hosts 204.1/204.2 over point-to-point links,
wide area networks, virtual privale networks implemented over a public network
{Internet) or a shared local area network. The network adapter 310 thus may
comprise the mechanical, electrical and signaling circuitry needed to connect the
node to the network. llustratively, the compuier network 206 may be embodied
as an Ethernet network, a Fibre Channel network or any other network type. Each
host 204.1/204.2 may communicate with the node over network 206 by
exchanging discrete frames or packets of data according o pre-defined protocols,
such as TCP/IP.

WO 2016/114906 PCT/US2015/067020
17

10083] The storage adapter 316 cooperates with the storage operating system
306 executing at node 208.1 to write and access information requested by the
hosts as described above. The information may be stored on any type of attached
array of writable storage device media such as video tape, optical, DVD, magnetic
tape, bubble memory, electronic random access memory, micro-electro
mechanical and any other similar media adapted o store information, including
data and parity information. However, as illustratively described herein, the
information is preferably stored on storage device 212.1. The storage adapter 316
comprises a plurality of ports having input/output (/O) interface circuitry that
couples to the storage devices over an /O interconnect arrangement, such as a
conventional high-performance, FC link topology.

{0084] Operating System: Figure 4 illustrates a generic example of storage

operating system 306 executed by node 208.1, according 1o one aspect of the
present disclosure. The storage operating system 306 manages all the storage
volumes and conducts read and write operations and interfaces with the VO
processing module 118 described above in detail.

{0085] in one example, storage operating sysiem 306 may include several
modules, or “layers” executed by one or both of N-Module 214 and D-Module 216.
These layers include a file system manager 400 that keeps track of a directory
structure (hierarchy) of the data stored in storage devices and manages read/write
operations, i.e. executes read/write operations on storage in response o host
systermn 204.1/204.2 requests, as described above.

{0086] Operating system 306 may also include a protocol layer 402 and an
associated network access layer 406, 1o allow node 208.1 to communicate over a
network with other systems, such as host systems 204.1/204.2. Protocol layer
402 may implement one or more of various higher-level network protocols, such as
NFS, CIFS, Hypertext Transfer Protocol (HTTP), TOP/IP and cthers, as described
below.

{0087] Network access layer 406 may include one or more drivers, which
implement one or more lower-level protocols to communicate over the network,
such as Ethernel. Interactions between host systems’ 204.1/204.2 and mass
storage devices 212.1 are illustrated schematically as a path, which illustrates the

flow of data through operating system 306.

WO 2016/114906 PCT/US2015/067020
18

10088] The operating system 306 may also include a storage access layer 404
and an associated storage driver layer 408 to aliow D-module 216 to communicate
with a storage device. The storage access layer 404 may implement a higher-
level storage protocol, such as RAID, while the storage driver layer 408 may
implement a lower-level storage device access protocol, such as FC or SCSHL
{0088] As used herein, the term “storage operating system” generally refers o
the computer-executable code operable on a computer to perform a storage
function that manages data access and may, in the case of a node 208.1,
implement data access semantics of a general purpose operaling system. The
storage operating sysitem can also be implemented as a microkernel, an
application program operating over a general-purpose operating system, such as
UNDX® or Windows XP®, or as a general-purpcse operating system with
configurable functionality, which is configured for storage applications as
described herein.

[0083] in addition, it will be understood 10 those skilled in the art that the
various inventive aspects described herein may apply io any type of special-
purpose {e.g., file server, filer or siorage serving appliance) or general-purpose
computer, including a standalone computer or portion theresof, embodied as or
including a storage system. Moreover, the teachings of this disclosure can be
adapted to a variety of storage system architectures including, but not limited to, a
network-attached storage environment, a storage area network and a storage
device directly-attached to a client or host computer. The term “storage system”
should therefore be taken broadly to include such arrangemenis in addition to any
subsystems configured o perform a storage function and associated with other
equipment or systems. |t should be noted that while this description is written in
terms of a write any where file system, the teachings of the present disclosure may
be utilized with any suitable file system, including a write in place file system.
10081} Processing_System: Figure 5 is a high-level block diagram showing an
example of the architecture of a processing system that may be used according o
one aspect. The processing system 500 can represent host 104, 204 or storage
system 108, for example. Note that certain standard and well-known components
which are not germane 1o the present disclosure are not shown in Figure 5.

{0092] The processing system 500 includes one or more processor(s) 502 and

memory 504, coupled o a bus system 505, The bus system 505 shown in Figure

WO 2016/114906 PCT/US2015/067020
19

5 is an abstraction that represents any one or more separate physical buses
and/or point-to-point connections, connected by appropriate bridges, adapters
and/or controllers. The bus system 505, therefore, may include, for example, a
system bus, a Peripheral Component Interconnect (PCl) bus, a HyperTransport or
industry standard architecture (ISA) bus, a small computer system interface (SCSH)
bus, a universal serial bus (USB), or an Institute of Electrical and Electronics
Engineers (IEEE) standard 1394 bus (sometimes referred to as “Firewire”).

{0093] The processor(s) 502 are the ceniral processing units (CPUs) of the
processing system 500 and, thus, control its overall operation. In certain aspects,
the processors 502 accomplish this by executing software stored in memory 504,
A processor 502 may be, or may include, one or more programmable general-
purpnse or special-purpose microprocessors, digital signal processors (DSPs),
programmable controllers, application specific integrated circuits {ASICs),
programmable logic devices (PLDs), or the like, or a combination of such devices.
{0084} Memory 504 represents any form of random access memory (HAM),
read-only memory (ROM), flash memory, or the like, or a combination of such
devices. Memory 504 includes the main memory of the processing system 500.
Instructions 506 which implement the process steps described above with respect
to Figures 1k and 1F may reside in and execute (by processors 502} from memory
504.

{0095] Also connected 1o the processors 502 through the bus system 505 are
one or more internal mass storage devices 510, and a network adapter 512.
Internal mass storage devices 510 may be or include any conventional medium for
storing large volumes of data in a non-volatile manner, such as cne or more
magnetic or optical based disks. The network adapier 512 provides the
processing system 500 with the ability to communicate with remote devices {e.g.,
storage servers 20) over a network and may be, for example, an Ethernet adapter,
a Fibre Channel adapter, or the like.

{0096] The processing system 500 also includes one or more input/output (/O)
devices 508 coupled to the bus system 63. The VO devices 508 may include, for
example, a display device, a keyboard, a mouse, ete.

{0097] Cloud Computing: The system and techniques described above are

applicable and useful in the upcoming cloud computing environment. Cloud

computing means computing capability that provides an abstraction between the

WO 2016/114906 PCT/US2015/067020
20

computing rescurce and its underlying technical architecture {e.g., servers,
storage, networks), enabling convenient, on-demand network access to a shared
pool of configurable computing rescurces that can be rapidly provisioned and
released with minimal management effort or service provider interaction. The term
“‘cloud” is intended to refer to the Internet and cloud computing allows shared
resources, for example, software and information 1o be available, on-demand, like
a public utifity.

{0098] Typical cloud computing providers deliver common business
applications online which are accessed from another web service or sofiware like a
web browser, while the software and data are stored remotely on servers. The
cloud computing architecture uses a layered approach for providing application
services. A first layer is an application layer that is executed at host system
computers. After the application layer, is a cloud platform and cloud infrastructure,
followed by a “server” layer that includes hardware and compuier software
designed for cloud specific services. In this example, a source storage system and
a destination siorage system may be presented in a cloud for storing information.
{0099] Thus, a method and apparatus for securing stored data have been
described. Note that references throughout this specification to “one aspect” or
“an aspect” mean that a particular feature, structure or characteristic described in
connection with the aspect is included in at least one aspect of the present
disclosure. Therefore, it is emphasized and should be appreciated that two or
more references 10 "an aspect” or “one aspect” or “an alternative aspect” in various
portions of this specification are not necessarily all referring 1o the same aspect.
Furthermore, the particular features, structures or characteristics being referred to
may be combined as suitable in one or more aspects of the present disclosure, as
will be recognized by those of ordinary skill in the arl.

{0100] While the present disclosure is described above with respect to what is
currently considered its preferred aspects, it is to be undersiood that the disclosure
is not limited to that described above. To the contrary, the disclosure is intended to
cover various modifications and equivalent arrangements within the spirit and

scope of the appended claims.

WO 2016/114906 PCT/US2015/067020
21

What is claimed is:

1. A machine implemented method, comprising:

generating a hash key by an input/output (/O) processing module
interfacing with a processor executable application to encrypt a block of data ot a
daia container 1o secure and store the data container;

generating cipher text for the block of data encrypted with the hash key;

using an encryption key o encrypt the hash key for the block of daig;

providing the cipher text and the encrypted hash key by the /O processing
module 0 a storage system for storage, wherein the 1/O processing module
segregates the encrypted hash key from the cipher text and maintains the
encrypted hash key as part of metadata for the cipher text; and

storing the cipher text with the encrypted hash key as the metadaia for the

cipher texi for the block of data.

2. The method of Claim 1, wherein cipher text for a plurality of data blocks is
maintained within a segment with metadata for each of the plurality of data blocks

stored within the segment.

3. The method of Claim 2, wherein the segment is implemented as a circular

iog data structure having extra memory slots for storing the encrypted hash key.

4. The method of any preceding Claim, wherein the VO processing module

modifies the hash Key with another encryption key to generate the cipher fext.

5. The method of any preceding Claim, wherein the metadata is stored as part

of a data stream of the data container.

6. The method of any preceding Claim, further comprising:
obtaining metadata for stored cipher text in response {0 a read request;
using the encryption key 1o decrypt the hash key for each data block; and
using the hash key to decrypt cipher text for providing data in response o

the read reguest.

WO 2016/114906 PCT/US2015/067020
22

7. The method of any preceding Claim, wherein the metadata is for a portion

of the data container and segregated from data of the data container.

8. A non-transitory, machine readable storage medium having stored thereon
instructions for performing a method, comprising machine executable code which
when execuied by at ieast one machine, causes the machine 1o:

generate a hash key by an inputoutput (1O} processing module interfacing
with a processor executable application 1o encrypt a block of data of a data
container {0 secure and store the data container;

generate cipher texi for the block of data encrypted with the hash key;

use an encryption key o encrypt the hash key for the block of data;

provide the cipher text and the encrypted hash key by the /O processing
module to a storage system for storage, whersin the /O processing module
segregates the encrypted hash key from the cipher text and maintains the
encrypted hash key as part of metadata for the cipher text; and

store the cipher {ext with the encrypted hash key as the metadaia for the

cipher text for the block of data.

a. The non-transitory, storage medium of Claim 8, wherein cipher text for a
plurality of data blocks is maintained within a segment with metadata for each of

the plurality of blocks stored within the segment.

10. The non-transitory, storage medium of Claim 9, wherein the segment is
implemented as a circular log data structure having exira memory slots for storing

the encrypied hash key.

11. The non-transitory, storage medium of any of Claims 8 {o 10, wherein the
/O processing module modifies the hash key with another encryption key fo

generate the cipher text.

12. The non-transitory, storage medium of any of Claims 8 to 11, wherein the

metadata is stored as part of a data stream of the data container.

WO 2016/114906 PCT/US2015/067020
23

13. The non-transitory, storage medium of any of Claims 8 to 12, wherein the
executable code further causes the machine to:
obtain metadata for stored cipher text in response {0 a read request;
use the encryption key to decrypt the hash key for each data block; and
use the hash key to decrypt cipher text for providing data in response o the

read request.

14. The non-transitory, storage medium of any of Claims 8 {o 13, wherein the
metadata is for a portion of the data container and segregated from data of the

data container.

15, A system comprising:

a memory containing a machine readable medium comprising machine

executable code; and a processor module coupled to the memory, the

processor module configured 1o execute the machine executable code to:

generaie a hash key to encrypt a block of data of a daia container to secure
and store the data container;

generate cipher text for the block of data encrypted with the hash key;

use an encryption key 10 encrypt the hash key for the block of data;

provide the cipher text and the encrypted hash key to a storage system for
storage, wherein the encrypted hash key is segregated from the cipher text and
maintained as part of metadata for the cipher text; and

store the cipher text with the encrypted hash key as the metadaia for the

cipher text for the block of data.

16. The system of Claim 15, wherein cipher texi for a plurality of data blocks is
maintained within a segment with metadata for each of the plurality of blocks
stored within the segment.

17. The system of Claim 16, wherein the segment is implemented as a circular

iog data structure having extra memory slots for storing the encrypted hash key.

18. The system of any of Claims 15 to 17, wherein the hash key is modified with

ancther encryption key 1o generate the cipher text.

WO 2016/114906 PCT/US2015/067020
24

19. The system of any of Claims 15 to 18, wherein the metadata is stored as

part of a data stream of the data container.

20. The system of any of Claims 15 fo 19, wherein the processor module further
executes the machine executable code to:

obtain meiadata for stored cipher texi in response to a read request;

use the encryption key to decrypt the hash key for each data block; and

use the hash key to decrypt cipher text for providing data in response 1o the

read request.

STING

3

&

PCT/US2015/067020

418
TR A

2

108K
PRI RN RS

{\V\
DPER,

RN

W N
&N

it Nan N

104

NRRARR R
~

¥

R
&

§
}‘l\

R

§T:;\

3N

R

RAARIAR A,

-

AAREIARRRR A A

o

3

_T
-

SERVRRURR
E 3

&
R WY,

&
RS

brraiuiasesorsmrr?

Ay

“E#:

R

iy

p—

)

1/13

%

?

R
T

108BA

PRI o2 N

e

g

8

,‘ o

“

w54
%

kol
s,

G e
" £

2

P
e

e

.\M“w
o

:}

AR N

o

RN
]
13

o sinserrne

%

£

T

QRAGE
HER

OB

&

tl
et

R

§
3

AN
A

AN

M

)

N

WO 2016/114906

1188

£

s,
£

A
L
12

Up———
.
3
&Y
it

2

WO 2016/114906

2/13

PCT/US2015/067020

APPLICATION 118

RECEIVE MODULE 1

g

DATA 125

HASH KEY
HASHING MODULE 122 124
3 |
ENCRYPTION
MODULE KEY%;ORE
126 —
ENCRYPTED
CEPHE?ZTEXT HASH KEY
AT 4 130
134

k

V

TO STORAGE SYSTEM 108

FIG. 1B

PCT/US2015/067020

215

Nyv L OFkl aril Vil Vvl
¢k BEd z ejed 1 eleq oeea | spog Aoy
OvT IncAeT uawsas

oT o oy e 039550 [B150T [gy

-

3/13

TTTBRIISHO 1e15Ald 039540 [221sAUd \
NEE ogelL asect vecl
u juswifbeg 7 wewbeg | | uswbsg | o uswbdsg

WO 2016/114906

9ET INOAET ajid 4SIQ-uD

PCT/US2015/067020

WO 2016/114906

4/13

at ol

mmm LZT £9 0 g
m el =061 VUYL
m DBAISSEM Al 3201g azig jeaibo
NG 2 Aoy T Aoy Y2gl 04l
971 Aoy 0 A2 e
YT BIRpEISIA UBWBas-I3
Nyl 7L eeq =2 Vil Yérl
ozl eleq i 1 BleQ g E1RQ 3§01 A

o1 1hodet uswdag

PCT/US2015/067020

WO 2016/114906

5/13

0 g

3T "B
85¢ €77 I6]T N,mm,ﬂ |
€61
2051 peal Y051 051
DAISH o1 BzIs 814 1e31807 JOI32A UOIIRZHERINUL Y20I]

i,

i,
R

S

g,
e,
,,,,,,

ot
e

28 e

it
23015

UYL
e

WO 2016/114906 PCT/US2015/067020

6/13
{/ Start N
i
_B15t
Generate g write VO processing module
request by an generates a hash key based
application on data for the write reguest
B1i56 B158

!

4
Encrypt data with hash key and
encrypt hash key with an encryplion
key
B160

:

VO processing module generales an /O
request to write the hash key encrypled
« data {cipher text) and the encrypted
/" hash key at a storage device
. B162
152

y

Provide the /O reguest {o the storage
system write the hash key encrypled
data as cipher text with the encrypted
key as part of metadata for a data
siream
B164

¥

Complete O request
B166

FIG. 1F

WO 2016/114906 PCT/US2015/067020
7/13

{'/ Stat
v B170
Recel Y d Obtain cipher text and
eceve a iea .| encrypted hash key from the
reques g storage system
B172 R174
i
Decrypt hash key and use the hash
key to decrypt the cipher {ext
B176
Provide data to the application
B178
168 Complete read
request
B180

FIG. 16

WO 2016/114906

PCT/US2015/067020

8/13

Locate a first

B160A

available

slot

Whean available, write replacement
key, when available
B1608

Write key at a slot that has a duplicate
key
B160C

:

8160

Update log head
pointer
B160D

FiG. 1H

PCT/US2015/067020

WO 2016/114906

9/13

T 'Sid
peaji o7 iy

4

Shewas | “Aesuan | SAeuan | SAenan | YAewan | SAewan| Aenan | Men3n | CAenId

&

SUOILIBSUL OM] 121je 318]s {eulld

pean 307
@ - 561
Fheyan | “Aenan | SAenan | Sheyan | TAewas | Tewan | TAean | TAewan | %ewan | 4
Shanm
{FAay3n saoejdad) SAmNID Buneinsgo SASNID ABY MBU JO UCIIIBSUY
peap 801)
L < €67

Ayduig | “Aeyan | SAengo | SAeyan | YAewan | fAenan | YAenan | HAenan | CAenan | o

{1015 Axduia sijid) BAay 3D Bunaiosgo “FASNIY) ‘AN Mau JO UoITIBsY]

peap 807
% t61

Awduig | “Aenian | PAenian | fAeniaD | "Aean | FAean | YAenian | TAeaD | PAeNaD | e

T =¥ Yim ‘8o)o0iq w3

PCT/US2015/067020
10/13

WO 2016/114906

¢ Ol

: JAON
e8Le : T
LSOHW £80¢ L
£9Lg cvle YAR
e I e .
bmmmﬁ a mﬁﬁmag N S10SNOD
/ \\\ LNIWIDYNYI
& 9Le & vle YR H E....,...M
Planaon-a [s1naon-n Ole . ¢ v0C
S Ogyd 02z J INTITD
: ONIHDLIMS ET N !
¢8I | 7oz V7| walsno }
LSOH-W IA0N -~ 90¢
RHOMLIEN
\ / T [T
a— 7 X) ININD
| Fgle I vie L 4
T 3inaon-a T 31n0oReN e |
— ¥
Ve 507 812 n >
FAITA JGON LEOH-WN

PCT/US2015/067020
11/13

WO 2016/114906

£ Old

oLe
WA DrdAv4 e
HSYMOLS ONIHOLIMS \\\j S EIS07
WOHA/OL AHNLONHELS NOMA/OL
- - YAVA OIINOD
W M g8Le M

p—— IDVHOLS p—

1% clel yziavay YOO 0lg
HALdVaY 59300V T HILAVOY
IDVHOLS HALSNTD MHOMLEN

s
80¢
az0c Yoo
a0¢ MOSSINO U HOSSHDOM
WNILSAS

ONILYHILO

\ IOVHOLS

807 POE AHOWAW

PCT/US2015/067020

WO 2016/114906

12/13

¥ Old

L'ele Cy0c/L v0g
FOVHOLS SINID
WOHA/OL WONH/OL
| }
_— | m 50%
80¥ | | u3AV1 SSI00V
SUIAIHT FOVIOLS M m WHOMLIN
e]

2007 | : .
HIAV] | m Z0v
$S300V JOVHOLS | HIAAYTIO00LO¥d
m ;

b o e e m

o0% FOVYNYIN WILSAS 31

/

80¢

Buissan0id O

gLl
ehe

PCT/US2015/067020

WO 2016/114906

13/13

HHOMLIN WOHA/OL

G Ol

ZLg ole 805
H3LdYAY dOVHOLS A
AHOMLIN SSVIN DINSA Of
m w
mmm\m — “ T
80G% SNOILONYLSNI AT
— 06 AHOWIW H0S§300ud
Q04

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/067020

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L9/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

11 September 2012 (2012-09-11)
column 2, 1line 46 - line 65

figures 2B, 3A

line 33 - Tine 58
line 15 - line 33
column 7, 1line 33 - line 57
column 8, Tine 15 - Tine 63
figures 5-7

column 4,
column 5,

ET AL) 15 July 2014 (2014-07-15)
column 5, 1ine 24 - line 67

US 8 266 430 Bl (LUMB CHRISTOPHER R [US])

column 3, Tine 55 - column 5, line 46

US 8 397 083 Bl (SUSSLAND ROBERT JAN [US]
ET AL) 12 March 2013 (2013-03-12)

US 8 782 441 Bl (OSTERWALDER CYRILL [US]

1-20

1-20

1-20

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
"A" document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

U=

UK

"Qr

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

16 March 2016

Date of mailing of the international search report

23/03/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Apostolescu, Radu

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/067020
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20127072713 Al (BEGUM HUSSAINA N [IN] 1-20
ET AL) 22 March 2012 (2012-03-22)
abstract

paragraph [0011] - paragraph [0012]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/067020
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8266430 Bl 11-09-2012 US 8266430 Bl 11-09-2012
US 2013024687 Al 24-01-2013
US 2014237232 Al 21-08-2014
US 2015229476 Al 13-08-2015
US 8397083 Bl 12-03-2013 NONE
US 8782441 Bl 15-07-2014 US 8782441 Bl 15-07-2014
US 2014289539 Al 25-09-2014
US 2012072713 Al 22-03-2012 US 2012072713 Al 22-03-2012
US 2012185691 Al 19-07-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report
	Page 42 - wo-search-report

