发明名称
一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料

摘要
一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其制备方法包括CuS纳米粒子的制备、CuS浆液的制备、ATO浆液的制备和纳米ATO/CuS填料水性丙烯酸透明隔热涂料的制备。本发明通过将CuS和ATO纳米粒子作为无机填料加入到水性涂料，使得涂料的隔热性能得到大大提高，相比较传统纳米ATO填料水性丙烯酸透明隔热涂料5-6℃的温差效果，纳米ATO/CuS填料水性丙烯酸透明隔热涂料的温差可以达到11℃。并且该方法制备简单，工艺操作方便，成本低。通过这样的改进，能降低能量损耗，使得其在隔热玻璃涂料中具有很大的应用价值和前景，对于建设低能耗城市发展具有很好的促进作用。
1.一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其特征在于，所述涂料的制备方法包括CuS纳米粒子的制备，CuS浆液的制备，ATO浆液的制备和纳米ATO/CuS填料水性丙烯酸透明隔热涂料的制备；所述方法步骤如下：
 (1)CuS纳米粒子的制备
 称取50-200mg的乙酸铜-水化合物，10-30mg的升华硫，共混超声搅拌溶解于30-70mL的二甲基亚砜溶剂中，充分溶解后继续搅拌20-50分钟，加入到100mL聚四氟乙烯容器中，高压反应釜内100-180℃反应1-5小时；反应结束后冷却至室温，得到上清无色和大量黑色沉淀；高速离心取黑色沉淀，用去离子水和乙醇分别洗2-6次；再在50-100℃烘箱中干燥2-10小时，收集黑色沉淀即可。
 (2)CuS浆液的制备
 将100-500mg CuS纳米粒子加入到1-10mL去离子水中，再依次加入20-80mg硅烷偶联剂，10-30mg水性润湿流平剂，20-200mg分散剂，搅拌1-2小时，再超声10-50分钟直至分散均匀。
 (3)ATO浆液的制备
 将10-50g ATO纳米粒子加入到10-80mL去离子水中，再依次加入1-5g硅烷偶联剂，0.1-1gLH308水性润湿流平剂，0.1-3g BYK-190分散剂，搅拌1-2小时，再超声10-50分钟直至分散均匀。
 (4)纳米ATO/CuS填料水性丙烯酸透明隔热涂料的制备
 将ATO浆液，CuS浆液以及丙烯酸树脂在高速搅拌下混合在一起，其中ATO/CuS浆液体积分数为10:1；按质量计，ATO与CuS的混合浆液为10-30%，丙烯酸树脂分散体为30-80%；再依次加入0.1-1%的增稠剂，1-5%的硫醚类成膜助剂，1-5%的醇醚类成膜助剂，0.3-1%消泡剂，0.1-1%的润湿流平剂，0.1-3%的水性润湿流平剂，1-4%的分散剂，1-30%的去离子水；将体系pH调整至7-9，然后超声分散10-30分钟，以3000r/min高速搅拌1小时分散均匀。
2.根据权利要求1所述一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其特征在于，所述水性润湿流平剂为LH308水性润湿流平剂；所述流平剂为BYK-333；所述增稠剂为LH360聚氨酯增稠剂；所述硅烷偶联剂为硅烷偶联剂KH-570，其组成是γ-甲基丙烯酰氧基丙基三甲氧基硅烷或者3-(甲基丙烯酰氧)丙基三甲氧基硅烷；所述醇醚类成膜助剂为LH12成膜助剂；其组成是醇醚十二；所述醇醚类成膜助剂为LH12成膜助剂；其组成是丙二醇二甲醚；所述分散剂为BYK190水性体系润湿分散剂，其组成是含颜料亲和基团的高分子量嵌段共聚物溶液；所述消泡剂为BYK022消泡剂。
3.根据权利要求1所述一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其特征在于，所述纳米ATO粒子粒径为6-8nm，所述纳米CuS粒子粒径为≤100nm。
4.根据权利要求1所述一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其特征在于，所述涂料的涂膜玻璃制备方法为：
 先用稀盐酸和稀氢氧化钠溶液分别清洗干净的空白透明玻璃，再将纳米ATO/CuS填料水性丙烯酸透明隔热涂料均匀喷涂于玻璃表面，室温晾1-3小时后置于40-50℃的烘箱内继续干燥1-3小时即制得涂有隔热涂料膜的玻璃。
5.根据权利要求1所述一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，其特征在于，所述涂料的隔热测试方法为：
取2个密闭性好，厚度为5厘米的泡沫箱子，一面开口，开口朝上放置；两个箱子分别接入一个热电偶温度计；将2个箱子并排放置中间相隔一个1厘米的缝隙；将500W的碘钨灯放置于两个箱子之间的缝隙上方，距离箱子顶部40厘米；测试时，将涂有纳米ATO/CuS填料水性丙烯酸透明隔热涂料的玻璃和空白玻璃分别盖在两个箱子的朝上开口处；打开碘钨灯开关，每隔5分钟收集一次温度数据，比较两个箱子内的温度。
说明 书

一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料

【0001】

技术领域

【0002】本发明涉及一种纳米ATO/CuS填料水性丙烯酸透明隔热涂料，属水性丙烯酸透明隔热涂料技术领域。

背景技术

【0003】节能是当今社会的一个新主题。能源消耗问题作为制约我国经济社会发展的三大考验之一，越来越受到了广泛的关注。其中建筑能耗在能源消耗中占有很大的比重，约占到总能源消耗的30%左右，这绝大部分是来自于取暖和空调造成的损耗，能占到20%以上。中国每年新建筑面积近45亿平方米，其中99%以上为高能耗建筑，建筑的环保节能问题尤为突出。因此，建筑节能市场巨大，对于实现节约能源，降低碳和其他有害物质排放，以及实现可持续发展有着重大的意义。建筑能耗的产生大部分来自于玻璃门窗等透光性较好，热量散发较快的组分。由于玻璃门窗能占到建筑墙面面积的30%，而能耗占总能耗的2/3，是建筑采暖和制冷能耗最主要的原因，这部分带来的建筑损耗不容小觑。近几年通过研究人员的探索和努力，节能玻璃门窗的应用越来越广泛，包括镀膜玻璃，阳光控制镀膜玻璃，玻璃贴膜，吸热玻璃，中空玻璃，真空玻璃等节能玻璃产品，使用量的年均增长率大于40%。但由于这类产品存在可见光透光率低、制造工艺复杂以及成本过高等缺点使得其在应用推广方面受到了限制。最新发展起来的透明隔热涂料以其较强的阻隔阳光的红外光以及紫外线，并保持较高可见光透光率等优点在玻璃隔热材料中脱颖而出。由于其对环境没有污染，制备工艺简单，生产成本低等原因，为玻璃隔热问题提供了新的方向。在建筑玻璃领域有很好的应用前景。

【0004】在隔热涂料中，研究者通过添加一定量的无机纳米粒子来对涂料性能进行改性。例如，现在常用氧化锡（ATO）和氧化铟（ITO）纳米粒子作为改性填料添加到玻璃涂料中使得涂料具有良好的可见光透率和很高的红外屏蔽效果。并且纳米玻璃隔热涂料只需涂刷几个微米的厚度，就可以达到非常好的隔热效果，操作方便且价格低廉。ATO纳米粒子本身具有很好的减反射，抗辐射和红外吸收等功能，且其良好的透光率，耐候性和稳定性，以及其低廉的成本，使得其成为现在主流的纳米隔热涂料的纳米填料。纳米硫化铜（CuS）是一种具有较长波长吸收的纳米材料，其特殊的带跃迁使得其吸收能到1000 nm以上。并且其制备过程相对简单，成本低，稳定性好，以此纳米材料为基础的器件有望具有吸收近红外光的特性而应用于太阳能热屏蔽器件中。目前为止，还没有有关CuS纳米粒子类隔热涂料的报道，这使得引入CuS纳米粒子到隔热涂料体系具有很大的意义。而将应用广泛的ATO纳米粒子和这种新型的CuS纳米粒子相结合制备符合隔热涂料，可以兼备这两种纳米粒子的各自的优点，具有很大的研究应用前景。
本发明目的是，为获得出色隔热效果的涂料，本发明提供一种纳米ATO/CuS填充水性丙烯酸透明隔热涂料。其对太阳光具有很好的选择透过性，采光性良好，且具有出色的隔热效果。

本发明所采取的技术方案是，本发明通过引入CuS(硫化铜)纳米粒子，再结合隔热涂料中常用的ATO(氧化锡)纳米粒子，混合制备涂料；通过硅烷偶联剂，分散剂，润滑剂，流平剂，丙烯酸酯等共混高速搅拌制得。

一种纳米ATO/CuS填充水性丙烯酸透明隔热涂料，按质量百分比计，包括以下组分：ATO与CuS的混合浆液10~30%，丙烯酸树脂分散体30~80%。

所述涂料的制备方法包括CuS纳米粒子的制备、CuS浆液的制备、ATO浆液的制备和纳米ATO/CuS填充水性丙烯酸透明隔热涂料的制备。

一种纳米ATO/CuS填充水性丙烯酸透明隔热涂料的制备方法步骤如下：

（1）CuS纳米粒子的制备：
取50~200mg的乙酸铜一水化合物，10~30mg的升华硫，共混超声搅拌溶解于30~70mL的二甲基亚砜溶剂中，充分溶解后继续搅拌20~50分钟，加入到100mL聚四氟乙烯容器中，高压反应釜内100~180℃反应1~5小时；反应结束后冷却至室温，得到上清无色和无黑色沉淀；高温离心取黑色沉淀，用去离子水和乙醇分别洗2~6次；再在50~100℃烘箱中干燥2~10小时，收集黑色沉淀即得。

（2）CuS浆液的制备：
将100~500 mg CuS纳米粒子加入到1~10 mL去离子水中，再依次加入20~80 mg KH-570硅烷偶联剂，10~30 mg LH308水性润湿流平剂，20~200 mg BYK-190分散剂，搅拌1~2小时，再超声10~50分钟直至分散均匀；

（3）ATO浆液的制备：
将10~50g ATO纳米粒子加入到1~80 mL去离子水中，再依次加入1~5g KH-570硅烷偶联剂，0.1~1g LH308水性润湿流平剂，0.1~3g BYK-190分散剂，用氨水调节pH至7~8，搅拌1~2小时，再超声10~50分钟直至分散均匀；

（4）纳米ATO/CuS填充水性丙烯酸透明隔热涂料的制备：
将ATO浆液，CuS浆液以及丙烯酸树脂在高速搅拌下混合在一起，其中ATO浆液与CuS浆液的体积比为1:1~1:1:1:5；按质量计ATO与CuS的混合浆液为10~30%，丙烯酸树脂分散体为30~80%；再依次加入0.1~1% LH360聚氨酯增稠剂，1~5% LH12酯类成膜助剂，1~5% DPM醇醚类成膜助剂，0.3~1% BYK-022消泡剂，0.1~1% BYK-333流平剂，0.1~3% LH308水性润湿流平剂，1~4% BYK-190分散剂，1~30%去离子水，将体系pH值调整至7~9，然后超声分散10~30分钟，以3000r/min高速搅拌1小时分散均匀。

所述水性润湿流平剂为LH308水性润湿流平剂，主要组成为有机硅聚合物。

所述润湿流平剂为BYK-333。

所述增稠剂为LH360聚氨酯增稠剂，主要组成为非离子聚醚型聚氨酯。

所述硅烷偶联剂为硅烷偶联剂KH-570，主要组成为γ-甲基丙烯酰氧基丙基三甲氧基硅烷或者3-(甲基丙烯酰氧基)丙基三甲氧基硅烷。

所述的醇醚类成膜助剂为LH12成膜助剂，主要组成为醇醚十二；所述的醇醚类成膜助剂三乙二醇甲醚，成膜助剂LH12加入前应溶解于DPM中。
所述分散剂为BYK190水性体系润湿分散剂，主要组成为含颜料亲和基团的高分子量嵌段共聚物溶液。

所述消泡剂为BYK22消泡剂。

所述纳米ATO粒子粒径为6~8 nm。

所述纳米CuS粒子粒径为≤100 nm。

与传统透明隔热涂料相比，本发明涂料具有出色的隔热性能。

本发明将分别掺杂有ATO/CuS，ATO，ATO/TiO2填料的水性丙烯酸透明隔热涂料做了隔热实验对比，实验结果最大温差分别为11℃，5.3℃，8.9℃。掺杂有ATO/CuS填料的水性丙烯酸透明隔热涂料的隔热效果最佳。

本发明做实验对比采用的玻璃涂料的涂膜制备方法为：先用稀盐酸和稀氢氧化钠溶液分别擦洗干净的空白透明玻璃，再将纳米ATO/CuS填料水性丙烯酸透明隔热涂料，纳米ATO/TiO2填料水性丙烯酸透明隔热涂料，纳米ATO填料水性丙烯酸透明隔热涂料分别均匀喷涂于三块玻璃表面，室温晾1~3小时后置于40~50℃的烘箱内连续干燥1~3小时即得涂有隔热涂料膜的玻璃，涂膜厚度为40~70 μm。

本发明进行对比实验的隔热测试方法为：取2个密闭性好，厚度为5厘米的泡沫箱子，一面开口，开口朝上放置。两个箱子分别插入一个热电偶温度计，将2个箱子并排放置中间相隔一个1厘米的缝隙。将500W的碘钨灯放置于两个箱子之间的缝隙上方，距箱子顶部40厘米。测试时，将涂有纳米ATO/CuS填料水性丙烯酸透明隔热涂料的玻璃和空白玻璃分别盖在两个箱子的朝上开口处。打开碘钨灯开关，每隔5分钟收集一次温度数据。

本发明的有益效果是，本发明首次将CuS纳米粒子作为填料引入到玻璃隔热涂料中，由于CuS可以吸收1000nm以上的红外光，所以掺有CuS纳米粒子的涂料具有很好的隔热效果。本发明将CuS纳米粒子和ATO纳米粒子结合在一起，通过合适的配方调配得到了分散性好、涂覆性能良好的隔热涂料。本发明制备所得的涂料具有良好的透光性能，对可见光有很好的透过性，而对红外线有很好的吸收功能。在500W碘钨灯照射5分钟后和空白玻璃对比有11℃的温差，在30分钟后温差可以达到4.9℃。本涂料性能稳定，透光性好，且具备出色的隔热性能，价格成本低廉，在隔热玻璃涂料领域具有很大的应用潜力。

附图说明

图1为本发明制备方法流程图；
图2为CuS纳米粒子的XRD衍射图；
图3为CuS纳米粒子水溶液的紫外吸收图；
图4为CuS纳米粒子的SEM电镜图；
图5为纳米ATO/CuS填料水性丙烯酸透明隔热涂料的水溶液的紫外吸收图；
图6为纳米ATO/CuS填料水性丙烯酸透明隔热涂料的SEM电镜图；
图7为纳米ATO/CuS以及ATO/TiO2，ATO填料水性丙烯酸透明隔热涂料的隔热效果图；
图8为纳米ATO/CuS填料水性丙烯酸透明隔热涂料的隔热测试图；
图9为纳米ATO/CuS填料水性丙烯酸透明隔热涂料的隔热示意图。

具体实施方式
在以下实施例中，磁力搅拌转速为500~2000 r/min，高速剪切搅拌的转速为2000~4000 r/min。所有的测试表征均在室温条件下进行（T=25°C）。

实施例具体步骤如图1所示。

实施例1：合成CuS纳米粒子

称取99mg的乙酸铜一水化合物，16mg的升华硫，共混超声搅拌溶解于40mL的二甲基亚砜溶剂中，充分溶解后继续磁力搅拌40分钟，加入到100mL聚四氟乙烯容器中，高压反应釜内120°C反应3小时。反应结束后冷却至室温，得到上清无色和大量黑色沉淀，高速离心取黑色沉渣，用去离子水和乙醇分别洗3次，再在50°C烘箱中干燥2小时，收集黑色沉淀即可。

实施例2：

制备纳米ATO/CuS填料水性丙烯酸透明隔热涂料

（1）制备8% CuS浆液：

将400mg CuS纳米粒子加入到4410mL的去离子水中，再依次加入75mg KH-570硅烷偶联剂，15mg LH308水性润湿流平剂，100mg BYK-190分散剂；振荡超声20分钟直至分散均匀，再磁力搅拌2小时。

（2）制备30% ATO浆液：

将30g ATO纳米粒子加入到66.75mL去离子水中，再依次加入2g KH-570硅烷偶联剂，0.25g LH308水性润湿流平剂，1g BYK-190分散剂；振荡超声20分钟直至分散均匀，再磁力搅拌2小时。

（3）制备ATO/CuS混合浆液：

将30% ATO浆液和8% CuS浆液按体积分数10:1混合，磁力搅拌20分钟。

（4）制备纳米ATO/CuS填料水性丙烯酸透明隔热涂料：

按质量计，将总量25%的ATO/CuS浆液和总量45%的丙烯酸树脂分散体在高速搅拌下混合在一起，再依次加入0.5% LH360聚氨酯增稠剂，3.5% LH12成膜助剂，3.3% DPM成膜助剂，0.5% BYK-022消泡剂，1% LH308水性润湿流平剂，1% BYK-190分散剂，0.2% BYK-333流平剂，20%去离子水，用氨水将体系pH调整至7-9，然后超声分散20分钟，以3000 r/min高速搅拌1小时分散均匀。

实施例3：

对比涂料纳米ATO/TiO2填料水性丙烯酸透明隔热涂料的制备

（1）制备30% ATO浆液：

将30g ATO纳米粒子加入到66.75mL去离子水中，再依次加入2g KH-570硅烷偶联剂，0.25g水性润湿流平剂308，1g BYK-190分散剂；振荡超声20分钟直至分散均匀，再磁力搅拌2小时。

（2）制备8% TiO2浆液：

将8g TiO2纳米粒子（粒径≤15nm）加入到88mL去离子水中，再依次加入1.5g KH-570硅烷偶联剂，2g LH308水性润湿流平剂，2g BYK-190分散剂；振荡超声20分钟直至分散均匀，再磁力搅拌2小时。

（3）制备ATO/TiO2混合浆液：

将30% ATO浆液和8% TiO2浆液按体积分数10:1混合，磁力搅拌20分钟。

（4）制备纳米ATO/TiO2填料水性丙烯酸透明隔热涂料：
按质量计，将总量25%的AT0/T10的聚液和总量45%的丙烯酸树脂分散体在高速搅拌下混合在一起，再依次加入0.7%LH360聚氨酯增稠剂，4% LH12成膜助剂，3.8%的DPM成膜助剂，0.3%BYK-022消泡剂，1%H308水性湿润剂，2%BYK-190分散剂，0.2%BYK-333，18%去离子水。用氨水将体系pH调整至7-9，然后超声分散20分钟，以3000r/min高速搅拌1小时分散均匀。

【0036】实施例4：
对比涂料纳米AT0填料水性丙烯酸透明隔热涂料的制备
（1）制备30% AT0聚液：
将30g AT0纳米粒子加入到66.75 mL去离子水中，再依次加入KH-570硅烷偶联剂2g，LH308水性湿润剂0.25g，BYK-190分散剂1g，振荡超声20分钟直至分散均匀，再磁力搅拌2小时。

【0037】（2）制备纳米AT0填料水性丙烯酸透明隔热涂料：
将总质量25%的AT0桨液和总质量45%的丙烯酸树脂在高速搅拌下混合在一起，再依次加入0.6%LH360聚氨酯增稠剂，4%LH12成膜助剂，3.8% DPM成膜助剂，0.4%BYK-022消泡剂，2%H308水性湿润剂，1%BYK-190分散剂，0.2%BYK-333，18%去离子水。用氨水将体系pH调整至7-9，然后超声分散20分钟，以3000r/min高速搅拌1小时分散均匀。

【0038】实施例5：涂层样品制备
先用稀盐酸和稀氢氧化钠溶液分别擦拭干净的空白透明玻璃，再将纳米AT0/CuS填料水性丙烯酸透明隔热涂料，纳米AT0/T10的填料水性丙烯酸透明隔热涂料，纳米AT0水性丙烯酸隔热涂料分别均匀喷涂于三块玻璃表面，室温晾1小时候置于50℃的烘箱内继续干燥1小时即制得三块涂有三种不同类型纳米填料的隔热涂层膜的玻璃，厚度均为50 μm。

【0039】实施例6：
CuS纳米粒子XRD衍射测试：
取20mg的CuS纳米粒子进行XRD衍射测试，如图2所示，可以清楚的看到尖锐的特征峰102，103，006，110，108，116，与六方晶型标准卡片所示的一致，从而确认为CuS。

【0040】实施例7：
CuS纳米粒子紫外测试：
将实施例一种制备的CuS纳米粒子取5mg，溶解于10 mL DMSO溶剂中，加入1滴分散剂后超声至分散均匀。使用紫外分光光计进行吸收测试，发现在两个主峰，一个在400-500 nm，一个在700 nm以上，该吸收峰在1100 nm以后仍有上升的趋势，如图3所示。说明该CuS的吸收可以达到红外区域。

【0041】实施例8：
CuS纳米粒子扫描电镜SEM测试：
将CuS纳米粒子粉末经过分散，铺放，镀导电膜等三个步骤制样后，电镜观察其微观形貌为又状片层堆积而成，每个片层厚度为100 nm，分散均匀，SEM电镜图如图4所示。

【0042】实施例9：
本发明实施例纳米AT0/CuS填料水性丙烯酸透明隔热涂料紫外测试：
将实施例2制备的纳米AT0/CuS填料水性丙烯酸透明隔热涂料取5 mg，溶解于10 mL水溶剂中，超声至分散均匀。使用紫外分光光计进行吸收测试，发现CuS纳米粒子所属的红外区域
特征峰仍然明显存在，如图5所示。

【0043】实施例10：

本发明实施例纳米ATO/CuS填充水性丙烯酸透明隔热涂料扫描电镜SEM测试；

将纳米ATO/CuS填充水性丙烯酸透明隔热涂料经过分散，铺设，镀导电膜等三个步骤制样后，电镜观察其微观形貌为致密的膜状物且分散均匀，如图6所示。

【0044】实施例11：

隔热性能测试：

取2个密闭性好，厚度为5厘米的泡沫箱子，一面开口，开口朝上放置。两个箱子分别接入一个热电偶温度计。将2个箱子并排放置中间相隔一个1厘米的缝隙。将500W的碘钨灯放置于两个箱子之间的缝隙上方，距箱子顶部40厘米。测试时，将涂有纳米ATO/CuS或ATO或ATO/TiO₂填充水性丙烯酸透明隔热涂料的玻璃和空白玻璃分别盖在两个箱子的朝上开口处，打开碘钨灯开关，每隔5分钟收集一次温度数据，隔热测试如图8所示，隔热效果如图9所示：

隔热测试效果如下表所示：

<table>
<thead>
<tr>
<th></th>
<th>0 min</th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
<th>20 min</th>
<th>25 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATO/CuS</td>
<td>27.5℃</td>
<td>38℃</td>
<td>45.9℃</td>
<td>51℃</td>
<td>54.8℃</td>
<td>56.8℃</td>
<td>57.8℃</td>
</tr>
<tr>
<td>ATO/TiO₂</td>
<td>27℃</td>
<td>40.1℃</td>
<td>50℃</td>
<td>54.4℃</td>
<td>56.9℃</td>
<td>58℃</td>
<td>59.4℃</td>
</tr>
<tr>
<td>ATO</td>
<td>27.5℃</td>
<td>43.7℃</td>
<td>50.5℃</td>
<td>55.4℃</td>
<td>57.8℃</td>
<td>59.4℃</td>
<td>60.1℃</td>
</tr>
<tr>
<td>空白玻璃</td>
<td>27.5℃</td>
<td>49℃</td>
<td>55.6℃</td>
<td>59℃</td>
<td>61℃</td>
<td>62.1℃</td>
<td>62.7℃</td>
</tr>
</tbody>
</table>

如表格所示，在加热过程中，温度上升速度从高到低分别为空白玻璃，纳米ATO填充水性丙烯酸透明隔热涂料玻璃，纳米ATO/TiO₂填充水性丙烯酸透明隔热涂料玻璃，纳米ATO/CuS填充水性丙烯酸透明隔热涂料玻璃。其中，仅在5 min之内，纳米ATO/CuS填充水性丙烯酸透明隔热涂料玻璃就和空白玻璃显示有11℃的温差，远大于纳米ATO/TiO₂填充水性丙烯酸透明隔热涂料玻璃（7.8℃）以及纳米ATO填充水性丙烯酸透明隔热涂料玻璃（5.3℃）。并且，在30 min后温度趋于稳定后，纳米ATO/CuS填充水性丙烯酸透明隔热涂料玻璃的最高温

【0045】根据本发明所合成的纳米ATO/CuS填充水性丙烯酸透明隔热涂料为水性涂料，对环境及人体都没有伤害，是环境友好型绿色材料。本发明所述的纳米ATO/CuS填充水性丙烯酸透明隔热涂料具有很好的隔热效果，使夏天室内阻隔室外强烈的太阳光带来的热量，减少空调的使用；冬天室内的热量不易散失，减少取暖装置的使用频率。这样可以大大降低能量损耗，对于建设环境友好型的可持续发展具有极大的意义。
图1

ATOM纳米粒子
制备ATOM浆液

制备CuS纳米粒子
制备CuS浆液

纳米ATOM/CuS填料透明隔热涂料

图2
图3

图4
图5

图6
图9