(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

lﬂfb A0 000

(10) International Publication Number

WO 2007/149167 Al

(51)

21

(22)
(25)
(26)
(30)

(1)

(72)

(81)

International Patent Classification:
GOGF 17/00 (2006.01) GOGF 15/16 (2006.01)

International Application Number:

PCT/US2007/011771
International Filing Date: 16 May 2007 (16.05.2007)
Filing Language: English
Publication Language: English
Priority Data:
11/454,409 16 June 2006 (16.06.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

Inventors: GATES, Matthijs, A.; One Microsoft Way,
Redmond, WA 98052-6399 (US). RENERIS, Kenneth;
One Microsoft Way, Redmond, WA 98052-6399 (US).
SATHER, Dale; One Microsoft Way, Redmond, WA
98052-6399 (US).

Designated States (unless otherwise indicated, for every

(34)

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

Published:
with international search report

[Continued on next page]

(54) Title: APPLICATION PROGRAM INTERFACE TO MANAGE MEDIA FILES

Media
Source
102-1

——104-1—>

Media
Source
102-2

——104-2—> _ .
Media Processing

Device 106

Media
Processing
Sub-system

108

Display
110

Media
Source
102-n

—104-m—>|

07/1491677 A1 |00 0 T OO0

& (57) Abstract: An application program interface to manage media files may be described. An apparatus may comprise a media
processing sub-system having a processor and a memory. The memory may store an application program interface software library
having multiple software objects. The processor may execute the software objects in response to application program interface
commands in order to manage a virtual file comprising a hierarchy of name-value pairs used to store media content from multiple
media streams. Other embodiments are described and claimed.

WO 2007/149167 A1 |0 DA0 000 0T 00000 000

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

WO 2007/149167 PCT/US2007/011771

APPLICATION PROGRAM INTERFACE TO MANAGE MEDIA FILES

BACKGROUND

[0001] Media devices such as a personal video recorder or digital video recorder may
be used to store and reproduce digital media content. Examples of digital media content
may include television programs, movies, home videos, songs, images, pictures, and so
forth. The digital media content may be received from various media sources, such as a
cable provider, a satellite provider, a digital versatile disk (DVD) player, a compact disk
(CD) player, a digital video home system, a media content provider over an Internet
connection, computer files, and so forth. As a result, a media device may need to store an
ever-increasing volume of media content from different media sources using multiple files
and file types. This may significantly increase file management operations, file structure
complexity, and associated costs. Consequently, improved file management techniques
may be needed to solve these and other problems.
SUMMARY
[0002] This Summary is provided to introduce a selection of concepts in a simplified |
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is it
intended to be used fo limit the scope of the claimed subject matter.
[0603] Various embodiments may be generally directed to media systems. Some
embodiments may be directed to file management techniques for media systems in
| particular. In one embodiment, for example, a media processing system or sub-system may
include a processor, a memory, and a communications interface. The memory may be used
to store a media file manager for execution by the processor. The media file manager may

be used to implement a file allocation scheme for allocating space in a virtual file for

WO 2007/149167 PCT/US2007/011771

various use scenarios, such as storing multiple media streams and/or media files into a
single virtual file.

[0004] " Various embodiments may further include a software library of software objects
and defined application program interface (API) con;mands to support an API layer to
access and manage virtual files. The API layer may allow various custom applications to
utilize the file allocation scheme implemented using the media file manager. The API layer
may be used in conjunction with the media file manager, separate from the media file
manager, or in lieu of the media file manager, as desired for a given implementation.
[0005] In’operation, the media processing system may receive multiple media streams
of media information from various media sources over one or more communications
interfaces. The media file manager may store the multiple media streams in physical
memory with a single virtual file using a hierarchy of name-value pairs. The single virtual
file may have a logical file format that is different from the physical file format used to
store the virtual file. For example, the physical file format may store portions of the virtual
file using non-contiguous and/or non-sequential portions of physical memory. In this
manner, multiple media streams or media files may be stored using a single virtual file,
thereby decreasing file complexity and file management operations. Other embodiments
are described and claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 illustrates an exemplary embodiment of a media system.

[0007] FIG. 2 illustrates an exemplary embodiment of a media processing device.
[0008] FIG. 3 illustrates an exemplary embodiment of a logic flow.

[0009] FIG. 4 illustrates an exemplary embodiment of a first page table.

[0010] FIG. § illustrates an exemplary embodiment of a second page table.

[0011] FIG. 6 illustrates an exemplary embodiment of a third page table.

[0012] FIG. 7 illustrates an exemplary embodiment of a fourth page table.

WO 2007/149167 PCT/US2007/011771

[0013] FIG. 8 illustrates an exemplary embodiment of a logical diagram for an
application program interface.

DETAILED DESCRIPTION
[6014] Various embodiments may be directed to an application program interface (AP])
layer to support a file allocation scheme that may be used to store, retrieve, or otherwise
manage media content using any form of machine-readable or computer-readable media,
such as on-disk storage, for example. The file allocation scheme may be used to store
various types of media content received from various media sources into a single uniform
file structure comprising a single virtual file. In some cases, the virtual file may have a
logical file structure that is different from the physical file structure used to actually store
the media content, thereby releasing the virtual file from physical constraints and
requirements. The file allocation scheme is particularly well-suited for PVR and
multimedia applications, given the relatively larger volumes of media content associated
with television programs and movies, for example. The file allocation scheme, however, is
very flexible and extensibl‘e and is not necessarily bound to PVR or multimedia
applications. The file allocation scheme may be used as an on-disk storage container for
many applications and use scenarios. Because it is not tightly integrated with any one
given type of application and therefore very extensible, the file allocation scheme may be
applicable to any form of current and future applications having to manage larger volumes
of‘ data.
[0015] In various embodiments, the ﬁfe allocation scheme provides a file allocation
layer for a media file format in order to manage space in a file. In some embodiments, the
file allocation scheme includes various design features, such as supporting basic file
semantics, supporting file integrity and crash recoverability, supporting multiple writers
and multiple readers concurrently, allowing backward compatibility with older versions

and enforcing the performance requirements of a given media, and allowing large name-

WO 2007/149167 PCT/US2007/011771

value pairs to grow independently. The file allocation scheme may also include other
design features as desired for a given implementation.

[0016] Various embodiments may include an API layer to support the file allocation
layer. The API layer may include an API software library of software objects and a set of
defined API commands. Various application programs may use the API commands to
invoke various software objects to perform desired file management operations in
accordance with the file allocation scheme described herein. In particular, the file
allocation API layer models various file allocation functions, methods, services, or
procedures. In one embodiment, for example, the API layer may model signatures and
versions in a file header for a virtual file, allecation statistics regarding a virtual file, a
hierarchy of name-value pairs in a virtual file (including the ability to create and delete
name-value pairs), short and long values modeled as virtual files, the ability to zero ranges
in a short or long value, the explicit locking of short and long values for reading and
writing, and the subscription to events indicating when values have changed. Other file
allocation functions, methods, services, or procedures may be modeled as well, and the
embodiments are not limited in this context. Various APl commands and corresponding

software objects suitable to support the file allocation layer may be later described with

reference to FIG. 8.

File Allocation Layer

[0017] FIG. 1 illustrates a block diagram for a media system 100. Media system 100
may represent a general system architecture suitable for implémenting various
embodiments. Media system 100 may comprise multiple elements. An element may
comprise any physical or logical structure arranged to perform certain operations. Each

element may be implemented as hardware, software, or.any combination thereof, as desired

WO 2007/149167 PCT/US2007/011771

for a given set of design parameters or performance constraints. Examples of hardware
elements may include devices, components, processors, microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits,
application specific integrated circuits (ASIC), programmable logic devices (PLD), digital
signal processors (DSP), field programmable gate array (FPGA), memory units, logic
gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples
of sofiware may inclqde any software components, programs, applications, computer
programs, application prdgrams, system programs, machine programs, operating system
software, middleware, firmware, software modules, routines, subroutines, functions,
methods, interfaces, software interfaces, application program interfaces (API), instruction
sets, computing code, computer code, code segments, computer code segments, words,
values, symbols, or any combination thereof. Although media system 100 as shown in
FIG. 1 has a limited number of elements in a certain topology, it may be appreciated that
media system 100 may include more or less elements in alternate topologies as desired for
a given implementation. The embodiments are not limited in this context.

[0018] In various embodiments, media system 100 may be arranged t6 communicate,
manage or process different types of information, such'as media information and control
information. Examples of media information may generally include any data representing
content meant for a user, such as voice information, video informat'ion, audio information,
image information, textual information, numerical information, alphanumeric symbols,
graphics, and so forth. Control information may refer to any data representing commands,
instructions or control words meant for an automated system. For example, control
information may be used to route media information through a system, to establish a
connection between devices, instruct a device to process the media information in a

predetermined manner, and so forth.

WO 2007/149167 PCT/US2007/011771

[0019] In various embodiments, media sysfem 100 may include media sources 102-1-n.
Media sources 102-1-n may comprise any physical or logical entity capable of sourcing or
delivering media information (e.g., digital video signals, audio signals, and so forth) and/or
control information to media processing device 106. Examples 61’ media sources 102-1-n
may include a DVD device, a VHS device, a digital VHS device, a personal video recorder
(PVR), a digital video recorder (DVR), a computer, a gaming console, a CD player, a
digital camera, a digital camcorder, and so forth.. Other examples of media sources 102-1-n
may include media distribution systems to provide broadcast or streaming analog or digital
media information to media processing device 106. Examples of media distribution
systéms may include, for example, over the air (OTA) broadcast systems, terrestrial cable
systems (CATV), satellite broadcast systems, and so forth. Media sources 102-1-n may be
internal or external to media processing device 106 as desired for a given implementation.
[0020] In various embodiments, media system 100 may comprise a media processing
device 106 to connect to one or more media sources 102-1-% over one or more
communications media 104-1-m. Media processing device 106 may comprise any logical
or physical entity that is arranged to process media information received from media
sources 102-1-n. In various embodiments, media processing device 106 may comprise, or
be impiemented as, a computing device, such as a computer, a set top box (STB), a media
server, a desktop computer, a personal computer (PC), a laptop computer, a handheld
computer, a home entertainment system, a home theater system, and so forth.

[0021] In various embodiments, media processing device 106 may include a media
processing sub-system 108. Media processing sub-system 108 may comprise a processor,
memory, and application hardware and/or software arranged to process media information
received from media sources 102-1-n. For example, media processing sub-system 108 may
be arranged to perform various media management operations, such as receiving media

information, storing media information, recording media information, playing media

WO 2007/149167 PCT/US2007/011771

information, performing trick modé operations for media information, performing seek
operations for media information, and so forth. Media processing sub-system 108 may
output processed media information to a display 110. Display 110 may be any display
capable of displaying media information received from media sources 102-1-n.

[0022] . FIG. 2 illustrates a more detailed block diagram of media processing device
106. In its most basic configuration, media processing device 106 typically includes at
least one processing unit 202 and memory 204. Processing unit 202 may be any type of
processor capable of executing software, such as a general-purpose processor, a dedicated
processor, a media processor, a controller, a microcontroller, an embedded processor, a
digital signal processor (DSP), and so forth. Memory 204 may be imﬁlemented using any
machine-readable or computer-readable media capable of storing data, including both
volatile and non-volatile memory. For example, memory 204 may include read-only
memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-
Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM),
programmable ROM (PROM), erasable programmable ROM (EPROM), electrically
erasable programmable ROM (EEPROM), flash memory, polymer memory such as
ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory,
silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any
other type of media suitable for storing information. As shown in FIG. 1, memory 204 may
store various software programs, such as one or more media applications 206 (inclu;ling
media application reader‘206a and media application writer 206b), a media file manager
208, and accompanying data.

[0023] Media processing device 106 may also have additional features and/or
functionality beyond configuration 106. For example, media processing device 106 may .
include removable storage 210 and non-removable storage 212, which may also comprise

various types of machine-readable or computer-readable media as previously described.

WO 2007/149167 PCT/US2007/011771

Media processing device 106 may also have one or more input devices 214 such as a
keyboard, mouse, pen, voice input device, touch input device, and so forth. One or more
output devices 2i6 such as a display (e.g., display 110), speakers, printer, and so forth may
also be included in media processing device 106 as well.

[0024] Media processing device 106 may further include one or more communications
connections 218 that allow media processing device 106 to communicate with other
devices. Communications connections 218 may include various types of standard
communication elements, such as one or more commu;lications interfaces, network
interfaces, network interface cards (NIC), radios, wireless transmitters/receivers
(transceivers), wired and/or wireless communication media, physical connectors, and so
forth. Communication media typically embodies computer readable instructions, data
structures, program modules or other data in a modulate‘d data signal such as a carrier wave
or other transport mechanism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By Way of example, and
not limitation, communication media includes wired communications media and wireless
communications media. Examples of wired communications media may include a wire,
cable, metal leads, printed circuit boards (PCB), backplanes, switch fabrics, semiconductor
materiél, twisted-pair wire, co-axial cable, ﬁber optics, a propagated signal, and so forth.
Examples of wireless communications media rﬂay include acoustic, radio-frequency (RF)
spectrum, infrared and other wireless media. The terms machine-readable media and
computer-readable media as used herein are meant to include both storage media and
communications media.

[0025] In general operation, media processing device 106 mayl receive and store
various types of media information from one or more media sources 102-1-1 via

communications connections 218. Media processing device 106 may store the media

WO 2007/149167 PCT/US2007/011771

information using storage 210, 212, for example. Media file manager 208 may store media
information from multiple media streams in physical memory with a single virtual file
using a hierarchy of name-value pairs. The single virtual file may ha\}e a logical file format
that is different from the physical file format used to store the virtual file. For example, the
physical file format may store portions of the virtual file using non-contiguous portions of
memory from storage 210, 212. In other words, the logical file structure is disconnected
from the physical file structure. In this manner, media file manager 208 may coalesce
multiple media files into a single virtual file, thereby decreasing file complexity and file
management operations. Media processing device 106 in general, and media file manager
208 in particular, may be further described with reference to FIGS. 3-8 and accompanying
examples.

[0026] Operations for the above embodiments may be further described with reference
to the following figures and accémpanying examples. Some of the figures may include a
logic flow. Although such figures presented herein may include a particular logic flow, it
can be appreciated that the logic flow merely provides an example of how the general
functionality as described herein can be implemented. Further, the given logic flow does
not necessarily have to be executed in the order presented unless otherwise indicated. In
addition, the given logic flow may be implemented by a hardware element, a software
element executed by.a processor, or any combination thereof. The embodiments are not
limited in this context.

[0027] FIG. 3 illustrates one embodiment of a logic flow 300. Logic flow 300 may be
representative of the operations executed by one or more embodiments described herein,
spch as media system 100, media processing device 106, and/or media processing sub-
system 108. As shown in FIG. 3, multiple media streams of media information may be

received at block 302. The multiple media streams may be stored in a single virtual file

WO 2007/149167 PCT/US2007/011771

using a hierarchy of name-value pairs (NVPs) at block 304. The embodiments are not
limited in this context.

[0028] Media file manager 208 of media pr'ocessing sub-system 108 may be arranged
to implement a file allocation scheme for allocating space in a virtual file, such as a virtual
media file. The virtual file may comprise, for example, multiple NVPs in one or more
containers. A NVP may represent a specific binding between a name and a binary value.
One specific type of container may be referred to as a roof container. A root container may
comprise the highest-level container in a given file.

[0029] A NVP may comprise an NVP name and an NVP value. The NVP name may
comprise a globally unique identifier (GUID), file name, text name, string, or some other
unique file identifier. The NVP value may comprise several types of values, including a
resident value, a short value, or a long value. The different types of NVP values provide
distinctions that have performance and efficiency implications with regard to value size.
Residept values are stored in-band, adjacent to corresponding NVP names. Short values
are stored using a page table technique that implements a virtual file comprising muitiple
short pages. Short pages may refer to the shorter of two allocation units in a file of a
defined length. A page table may comprise an array of long pages or short pages
implemented using a tree of fixed-length arrays of page references, referred to as table
.pages as contained in short pages. Long values are stored using the same or similar page
table technique applied to long pages. A long page may refer to the longer of two
allocation units in a file of a defined length.

[0030] In various embodiments, media file manager 208 may partition a virtual file into
long pages, the length of which is determined when the file is created. A typical long page
size might be 256k bytes, for example. A given long page may be partitioned into a
number of short pages, the length of which is also determined when the file is created. A

typical short page size might be 4k bytes, for example. All long pages should be

10

WO 2007/149167 PCT/US2007/011771

partitioned in a consistent manner to ensure file integrity. New long pages are allocated at
the end of the file. Long pages can also be allocated from the SAL_File Header
FreeLongPages page table. If the page table is empty, pages are allocated at the end of the
file (e.g., the file is grown). New short pages are allocated by first allocating a long page
and then allocating short pages from it.

[0031] In general, page sizes may have various design constraints. For example, short
and long page sizes (as expressed in bytes) are typically a power of two. In another
example, long pages are generally longer than short pages. In yet another example, short
pages are typically at least as long as a file header. In still another example, the overall file
size is typically limited to 4,294,967,296 times the short page size (e.g., 16 terabytes if the
short page size is 4k bytes).

[0032] Pages are referenced by their offset values into the file as expressed in short
pages. Hence, the first short page in the file has the reference 0, as does the first long page
in the file. The second short page in the file has the reference 1, while the second long
page has a reference equal to the long page size divided by the short page size. For
example, the second long page may have a reference value of 64 given the values in the
previous scenario (e.g., 256k / 4k = 64).

[0033] In various embodiments, the first long page in the file is always partitioned into
short pages. The first short page in the file typically contains only the file header. For
example, media file manager 208 may store a file header for a virtual file in a first short
page of the virtual file. The file header contains signatures and versions, page sizes, the
page table for the root container and various fields concerning free space management in
the file. Media file manager 208 may use two defined signature GUIDs. The first
signature GUID indicates that the file complies with the format described herein. The

second signature GUID is used by an application to indicate how the file is formatted at the

11

WO 2007/149167

PCT/US2007/011771

next layer. Two version numbers are also defined for backward-compatible revisions of the

format at both layers.

[0034]

The root container is a short value containing the highest-level NVPs in the

virtual file. A short value may comprise a page table of short pages. Some of the values of

those NVPs may be containers themselves, so NVPs may form a hierarchy of arbitrary

depth. An example of a file header may be illustrated as follows:

typedef struct SAL_FILE_HEADER {

GUID SALSignature;
GUID ApplicationSignature;
ULONG SALVersion;
ULONG ApplicationVersion;
ULONG ShortPageSize;
ULONG LongPageSize;
ULONGLONG RootContainerSize;
PageTable RootContainer;
ULONG FreeShartPageCount;
ULONG FreeLongPageCount;
PageTable FreeShortPages;
PageTable FreeLongPages;
PAGEREF FirstFreeShortPage;
PAGEREF FirstFreeLongPage;

} SAL_FILE_HEADER

[0035]

// Identifies the format at this layer

// Identifies the format at the next layer

// The version of the format at this layer

// The version of the format at the next layer

// Short page size in byftes.

// Long page size in bytes.

/ Length of the root container in bytes.

/ A 'short’ value containing NVPs

/ Number of pages in the FreeShortPages table
// Number of pages in the FreeLongPages table
// The table of recycled short pages

// The table of recycled long pages

// The next short page io be allocated

// The next long page to be allocated

NVPs are stored in containers, either the root container or the value of some

other NVP. They bind a GUID or text name to a binary value. NVPs are stored one after

the other starting at the beginning of the container. In one embodiment, for example, they

are padded to 64-bit boundaries. The end of the collection of NVPs in a container is

indicated either by encountering the end of the container, or by an NVP with a label of

GUID_NULL and a ValueSize of zero. An NVP can be effectively deleted by setting its

label to GUID _NULL. Example type definitions for a NVP are shown as follows:

typedef struct SAL_GUID_NVP_HEADER {

GUID Name; // GUID_NULL indicates an unused NVP.
ULONG MvpSize ; // Nvp size
ULONG PrefixSize ; // prefix bytes

ULONGLONG ValueSize;

// unpadded size of value, top 4 bits stolen;

// does not include prefix bytes

12

WO 2007/149167 PCT/US2007/011771

// value or PageTable, padded to 64-bit boundary

} SAL_GUID_NVP_HEADER

typedef struct SAL_TEXT _NVP_HEADER {

GUID - TextNvpGuid; // Always TEXT NVP_GUID

ULONG- NvpSize ; // Nvp size

ULONG PrefixSize ; // prefix bytes

ULONGLONG ValueSize; // unpadded size of value, top 4 bits stolen;
// does not include prefix bytes

ULONG NameSize; // unpadded size of name (in WCHARs)

ULONG Reserved ; // reserved (alignment)

// name, padded to 64-bit boundary with L'0' values
// value or PageTable, padded to 64-bit boundary
} SAL_TEXT _NVP_HEADER;

[0036] In some embodiments, the four highest bits of ValueSize may be used to provide
information about a given NVP. For example, a NVP_FLAG _TEXT value indicates the
NVP has a text name and that the header takes the form of a TextNvpHeader. A
NVP_FLAG_CONTAINER value indicates that the NVP value contains more NVPs. A
NVP_FLAG _SHORT value indicates the value is actually stored in a page table of short
pages and that the value after the header is a PageTable structure. A NVP_FLAG_LONG
indicates the value is actually stored in a page tabie of long pages and that the value after

the header is a PageTable structure. An example of these definitions is shown as follows:

cpp_quote ("define NVP_FLAG_TEXT 0x1000000000000000L")
cpp_quote ("#define NVP_FLAG_CONTAINER 0x2000000000000000L")
cpp_quote ("H#define NVP_FLAG_RESIDENT 0x4000000000000000L")
cpp_quote ("#define NVP_FLAG_SHORT 0x8000000000000000L")
cpp_quote ("#define NVP_FLAG_RESERVED 0xcOD0000000000000L")
cpp_quote ("#define NVP_FLAG MASK 0xf000000000000000L ")

cpp_quote ("#define NVP_VALUE_MASK (~NVP_FLAG_MASK)")

cpp_quote ("idefine GET_VALUE_FROM_NVP_VALUESIZE_FIELD(valuefield)
((valuefield) & NVP_VALUE_MASK)")

cpp_quote ("H#define GET_FLAGS_FROM_NVP_VALUESIZE_FIELD(valuefield)
((valuefield) & NVP_FLAG_MASK)")

cpp_quote ("#define FORM_NVP_VALUESIZE_FIELD(flags,value)
(((flags) & NVP_FLAG_MASK) | ((value) & NVP_VALUE_MASK))")

cpp_quote ("#define FORM_NVP_VALUESIZE _FIELD WITH _NEW_VALUE(valuefield value)
();"01%14_NVP_ VALUESIZE _FIELD(GET FLAGS_FROM_NVP_VALUESIZE_FIELD(valuefield), (v
alue)))”)

cpp_quote ("#define FORM_NVP _VALUESIZE FIELD WITH NEW_FLAGS(valuefield flags)

13

WO 2007/149167 PCT/US2007/011771

(FORM_NVP_VALUESIZE_FIELD((flags),GET_VALUE_FROM_NVP_VALUESIZE_FIELD(valuef

ield)))")
[0037] In some embodiments, the NVPs may be stored using a page table technique. A
page table may comprise an array of long pages or short pages implemented using a tree of
fixed-length arrays of page references, referred to as table pages as contained in short
pages. The tree may be built, for example, having short pages referenced from a page
table, table pages referenced from short pages, and data pages referenced from table pages.
[0038] Page tables take the form of a sparse array of data pages. Page tables of short
pages are used to store “short” values. Page tables of long pages are used to store “long”
values. In both cases, arrays are implemented as a hierarchy of fixed length tables in short
pages. Each “table page” may comprise of page references, either to data pages or to other
table pages. Some e.xample page tables may be illustrated and described with reference to
FIGS. 4-7.
[0039] FIG. 4 illustrates an exemplary embodiment of a first page table. FIG. 4
illustrates a page table 400. A root structure 402 for page table 400 may include a
reference to the top page 404 and an integer table depth 406. An example of a type

definition for a page table may be shown as follows:

typedef struct PageTable {

PAGEREF TopPage;
ULONG Depth;

} PageTable;

As shown in FIG. 4, page table 400 comprises a basic page table having a top page 404
with a null top page reference and a table depth 406 of 0. In this configuration, page table
400 represents a value consisting entirely of zeros. It is worthy to note that a page table
typically has no length semantics. For example, page table 400 can represent a value

consisting of any number of zeros.

14

WO 2007/149167 PCT/US2007/011771

[0040] FIG. 5 illustrates &n exemplary embodiment of a second page table. FIG. 5
illustrates a page table 500. Page table 500 provides an example of a page table having a
root structure 502 with a top page 504 referencing a single data page 510 as shown by
arrow 508, and a table depth 506 of zero. The data in data page 510 is interpreted as
occurring at an offset of 0 in the represented value.

[0041] FIG. 6 illustrates an exemplary embodiment of a third page table. FIG. 6
illustrates a page table 600. Page table 600 provides an example of a page table having a
root structure 602 with a top page 604 referencing a single table page 610 as shown by
arrow 608, and a table depth 606 of 1. At a table depth 606 of 1, table page 610 includes
table page values (TPVs) of 0 to V-1 that may reference data pages or null references. As
shown in FIG. 6, for example, page table 600 includes a TPV [0] with a reference 612-1 to
a data page 614-1, and a TPV [3] with a reference 612-2 to a data page 614-2, with the
remaining TPVs having null references.

[0042] FIG. 7 illustrates an exemplary embodiment of a fourth page table. FIG. 7
illustrates a page table 700. Page table 700 provides an example of a page table having a
root structure 702 with a top page 704 referencing a first table page 710 as shown by arrow
708, and a table depth 706 of 2. At a table depth 706 of 2, first table page 710-1 includes
TPVs of 0 to N-1 that may reference other table pages or null references. As shown in FIG.
7, for example, page table 700 includes a TPV [1] with a reference 712 to a second table
page 710-2, with the remaining TPVs having null references. Second tablé page 710-2 may
also include TPVs of 0 to M-1 that may reference data pages or null references. For
example, second table page 710-2 may include a TPV tO] with a reference 716-1 to a data
page 718-1, a TPV [3] with a reference 716-2 to a data page 718-2, with the remaining
TPVs having null references. It may be appreciated that table pages 710-1, 710-2 may each

have a table depth of 1. There are no defined limits to page table depth, but depths greater

than 3 are atypical.

15

WO 2007/149167 PCT/US2007/011771

[0043] In various embédiments, media file manager 208 may manage free space for a
virtual file using a first recycled page table and a second recycled page table for an array of
short pages and long pages, respectively. Media file manager 208 manages free space in
two similar but separate ways for short and long pages. There are two page tables of
recycled pages, one for short pages and one for long pages. A first recycled page table may
be referred to as Header. FreeShortPages, for example. The first recycled page table
Header.FreeShortPages is always fully populated from index 0 to index
Header.FreeShortPageCount. A second recycled page table may be referred to as
Header.FreeLongPages, for example. The second recycled page table
Header.FreeLongPages is always fully populated from index 0 to index
Header.FreeLongPageCount. Recycled pages are added and removed at the end of the
arrays.

[0044] In some cases, a queue rather than a stack may be desired, particularly for free
long pages. This is to prevent a reverse correlation between time and file position in some
scenarios. Short pages used for short values might also benefit from being managed ina
queue, though short pages used for other purposes may be kept in a stack. Page tables may
be used to implement queues using two indices. This approach, however, will have a
tendency to créate unnecessarily deep page tables over long periods of time, such as if a file
is used for days to implement a circular buffer. The depth should not become too large,
although eliminating top pages that contain only one non-null reference and adjusting the
indices as required would manage this scenario.

[0045] Header.NextShortPage and Header.NextLongPage may be used to indicate
where fresh pages should be allocated. Short pages are allocated from
Header.NextShortPage until Header. NextShortPage reaches a long page boundary. When
this occurs, a new long page should be allocated, and short pages may be allocated from the

new allocated long page. Long pages may be allocated from Header.NextLongPage. This

16

WO 2007/149167 PCT/US2007/011771

is just the end of the file. In some cases, it may be desirable to coalesce free short pages
into a free long page, which may be useful as a compaction tool.

[0046] In some embodiments, media file manager 208 may be arranged to write state
inforrpation to a recovery log while building a virtual file in order to recover the virtual file
in case of failure conditions, such as a power disruptions or system failures. The recovery
log is written into long pages after the end of the virtual file (e.g., at
Header.NextLongPage) as established in the current snapshot. A long page in the recovery
log consists of a header in the first short page, a trailer in the last short page, and short data
pages starting with the second short page. The recovery log should be managed to ensure it
does not collide with unrecoverable writes to the virtual file. An example of a recover log

header and recovery log trailer may be shown as follows:

typedef struct RecoveryLogHeader {

GUID Signature; // Identifies a recovery log header

ULONG SequenceNumber;

ULONG ShortPageCount, // Number of short pages in the page array
ULONG LongPageCount; / Number of long pages in the page array
BOOLEAN Last; // Indicates this is the last long page in the log
PAGEREF PageRefs{]; // A reference for each page in the array

} RecoveryLogHeader;
typedef struct RecoveryLogTrailer {

GUID Signature; // Identifies a recovery log trailer
ULONG SequenceNumber; // Must match the header's sequence number

} Reco;)eryLogTrailer;

For some page size combinations, the RecoveryLogHeader as described above might
exceed the length of a short page. The probabiiity for this scenario may be reduced or
entirely prevented by, for example, disallowing such cases by constraining page sizes,
using more than one short page for the recovery log header, and/or restricting the number
of short pages per long page used for the log.

[0047] In some embodiments, media file manager 208 may implement various cache

techniques to enhance performance. Media file manager 208 may partition a virtual file

17

WO 2007/149167 PCT/US2007/011771

into one or more long pages and short pages, write a portion of the long pages and short
pages to a cache, and access the cached pages with multiple threads. In one embodiment,
for example, thelcache may be shared between processes using named shared memory.
Cached pages may be assigned one of four states: (1) Clean; (2) Dirty; (3) Snapshot; and -
(4) Snapshot ghost. In addition, some pages are recoverable while others are not depending
on which part of the ﬁie they come from. For example, all long pages are typically
unrecoverable. Short pages are typically recoverable unless there are scenarios in which
short pages will be written at high frequency and recovery is not required for them.

[0048] For all pages, initial states for the pages may be defined in accordance with
threé rules: (1) all pages read from disk start out clean; (2) all newly-created pages start out
dirty; and (3) clean pages that are locked for write, not written to, and then unlocked, are
left clean. The commit to disk procedure occurs concurrently with client read/writé
activity. Unrecoverable pages may be committed at a higher frequency than recoverable
pages, but unrecoverable pages should be committed whenever recoverable pages are
committed.

[0049] A process for committing unrecoverable pages may be accomplished as follows.
For example, all (unrecoverable) dirty pages become snapshot. Snapshot pages are treated
like clean pages excépt that when they are written to, a copy is made, the copy is dirty and
the original is snapshot ghost. Snapshot and snapshot ghost pages are written to their
respective places in the file. Snapshot ghost pages are flushed. Snapshot pages become
clean.

[0050] A process for committing all pages may be accomplished as follows. All dirty
pages become snapshot. Snapshot pages are treated like clean pages except that when they
are written to, a copy is made, the copy is dirty and the original is snapshot ghost. The
dirty copies are exposed out of the cache for 10s rather thanA their snapshot ghost versions.

Unrecoverable snapshot and unrecoverable snapshot ghost pages are written to their

18

WO 2007/149167 PCT/US2007/011771

respective places in the file. Recoverable snapshot and recoverable snapshot ghost pages
are written to the recovery log. Recoverable snapshot and recoverable snapshot ghost
pages are written to their respective places in the file. Snapshot ghost pages are flushed.
Snapshot pages become clean. The recovery log is flushed.

[0051] In some embodiments, media file manager 208 may implement various
concurrency rules to prevent collisions. Media file manager 208 may partition a virtual file
into multiple resources each having a lock, and read media information from the virtual file
by multiple applications using the resource locks. The concurrency rules implemented in
the allocation layer are intended to achieve the highest degree of independence between the
various file readers, file writers and disk input/output (I/O). The cache may be used to
communicate between readers and writers, and also to isolate readers and writers from disk
1/0.

[0052] A virtual file may be partitioned into various “file resources.” For example, file
resources may include: (1) a header; (2) short page allocation; (3) long page allocation; (4)
root container expansion; (5) root container access; (6) value expansion {e.g., per value);
and (7) value access (e.g., per value). Each resource may have its own lock. Most locks
are taken and released in a single call to the allocation layer. The exception is “value
access” and “value expansion.” The allocation layer API should allow the application to
lock these resources explicitly across many calls to the allocation layer. Various
dependency rules may be established to determine what resources may be locked by a
given consumer when other resources are locked. These rules prevent cycles that would
otherwise deadlock the allocation layer. These rules also allow the “application layer” to

enforce semantics on the NVP values by preventing readers from reading the content

before it is all there.

19

WO 2007/149167 PCT/US2007/011771

[0053]) Most resources can be locked in one of two ways: (1) read lock; (2) write lock.
The locking rules are as follows: (1) any number of readers can share a resource with zero
writers; and (2) a write lock is exclusive of all other locks.

[0054] In some cases, locks are taken by the block layer code for short intervals to
assure coherency of NVPs, page tables, allocation tables, and so forth. In other cases, locks
are taken over intervals determined by calls to the block layer API under the control of the
application.

[0055] Read locks are taken by readers over intervals during which data and semantic
coherency of the resource in question must be maintained in order for a series of correlated
read operations to succeed. No reads are attempted without taking a read lock. Write locks
are taken by writers over intervals in which a series of correlated write operations are to
occur to maintain the coherency of a resource. No writes are attempted without taking a
write lock

[0056] In order to allow readers to read from a file resource while a writer is writing to
that same file resource, writers keep a set of private dirty pages while they have a given
resource locked. Readers do not see these dirty pages until the writer commits them in the
process of releasing the write lock. The data is not necessarily committed when the writer
releases a writer lock. It is fine for the writer to make a number of writes (locking and
unlocking each time) without committing. Only a single writer is allowed at one time in
the absence of a general way to merge the dirty pages produced concurrently by two
writers. Commit locks may be reduced or eliminated if the dirty pages are versioned.
[0057] To assure coherency across multiple file resources, the allocation layer should
guarantee to readers that committed changes will never go out to the disk out of order. The
cache should reduce this type of problem. The pages can be committed out of order, but as

long as they remain in the cache, in order, the reader can get their content in the correct

20

WO 2007/149167 PCT/US2007/011771

order. When writes are cominitted, events may need to bé thrown so that readers can be

informed of value changes.

Application Program Interface Layer

[0058] Various embodiments may further include an API layer including an API
software library of software objects interoperable with corresponding defined API
commands to support the above-referenced file allocation layer. The API layer may allow
varjous custom applications to utilize the file allocation scheme implemented using media
file manager 208. The API layer may be used in conjunction with media file manager 208,
separate from media file manager 208, or in lieu of media file manager 208, as desired for a
given implementation.
[06059] In general, an API is a computer process or technique that allows other
processes to work together. In the familiar setting of a personal computer running an

~ operating system and various applications such as MICROSOFT WORD®, an API allows
the applicaﬁon to communicate with the operating system. An application makes calls to
the operating system API to invoke operating system services. The actual code behind the
operating system APl is located in a collection of dynamic link libraries (DLLs).
[0060] Similar to other software elements, an API can be implemented in the form of
computer executable instructions whose services are invoked by another sofiware element.
The computer executable instructions can be embodied in many different forms.
Eventually, instructions are reduced to machine-readable bits for processing by a computer"
processor. Prior to the generation of these machine-readable bits, however, there may be
many layers of functionality that convert an API implementatioﬁ into various forms. For

example, an API that is implemented in C++ will first appear as a series of human-readable

21

WO 2007/149167 PCT/US2007/011771

lines of code. The API will ‘t‘hen be compiled by compiler software into machine-readable
code for execution on a processor, such as processing unit 202, for example.

[0061] The proliferation of different programming languages and execution
environments have brought about the need for additional layers of functionality between
the original implementation of programming code, such as an API implementation, and the
reduction to bits for processing on a device. For example, a computer program initially
created in a high-level language such as C++ may be first converted into an intermediate
language such as MICROSOFT® Intermediate Language (MSIL). The intermediate
language may then be compiled by a Just-in-Time (JIT) compiler immediately prior to
execution in a particular environment. This allows code to be run in a wide variety of
processing environments without the need to distribute multiple compiled versions. In light
of the many levels at which an API can be implemented, and the continuously evolving
techniques for creating, managing, and processing code, the embodiments are not limited to
any particular programming language or execﬁtion environment.

[0062] FIG. 8 illustrates a logical diagram for a software architecture 800. Software
architecture 800 may illustrate \}arious software elements arranged to implement and/or use
the file allocation scheme described with reference to FIGS. 1-7. As shown in FIG. 8,
software architecture 800 may include various custom applications 802-1-p, API layer 804,
and an API software library 808. API software library 808 may include multiple file
objects éOG-l-q. It may be appreciated that software architecture 800 may include more or
less software elements as desired for a given implementation.

[0063] Custom applications 802-1-p may comprise any application software,
application hardware, or combination of both, designed to interact or utilize the file
allocation scheme as previously described. An example of a custom application 802 may
include media application ‘206. Media application 206 may further include a media

application reader (MAR) 206a and a media application writer (MAW) 206b.

22

WO 2007/149167 PCT/US2007/011771

[0064] Custom applicaticns §02-1-p may be programmed or designed to use various
API commands as defined by APT layer 804. The various defined API commands (and
associated parameters) of APl layer 804 give access to API software library 808. API
software library 808 may include various software objects, referred to herein as file objects
806-1~g. Custom applications 802-1-p may use one or more API commands to invoke one
or more corresponding file objects 806-1-g to perfom; a specific set of file related
functions. A set of API commands and corresponding file objects 806-1-g will be
explained in further detail later.

[0065) In various embodiments, one or more custom applications 802-1-p may access,
manipulate, or otherwise interact with a virtual file using one or more APl commands that
correspond or invoke one or more file objects 806-1-g of APT software library 808. File
objects 806-1-g, and any other elements identified as an object in the illustrations and
accompanying description, are discrete units of software typically generated using object-
oriented programming techniques. In some cases, custom applications 802-1-p, API layer
804, and/or the various API commands can be implemented as one or more objects. Many
object types are available and widely used in the industry, and the particular object types
ma'y vary as desired for a given implementation. It is worthy to note that functions
described herein and in the claims as accomplished by an object may also be achieved
through multiple objects designed to interface with each other. The embodiments are not
limited in this context.

[0066] More particularly, file objects 806-1-g may represent discrete units of software
arranged to perform various file related operations needed to implement one or more
aspects of the media file allocation scheme as previously described. In various
embodiments, API layer 804 and API software library 808 may be designed to mod.el
various media file allocation functions, methods, or procedures. For example, API layer

804 and API software library 808 may model or support such functions as supporting

23

WO 2007/149167 PCT/US2007/011771

signatures and versions in the file header for a virtual file, defining and retrieving allocation
statistics regarding a virtual file, supporting a hierarchy of NVPs in a virtual file (including
the ability to create and delefe NVPs), generating short and long values (modeled as virtual
files), the ability to zero ranges in a short or long value, the explicit locking of short and
long values for reading and writing, subscribing to events indicating when values have
changed, and other functions as well. The embodiments are not limited in this context.
[0067] In various embodiments, one or more file objects 806-1-g may comprise an
instance of a specific class. One class, for example, might contain objects that provide
services for creating a file, while another class might contain objects for reading data from
the file, and yet another class might contain objects for writing data to a file. Typically, a
programmer knows an object's class prior to running an instance of that object. The class
of an object is looked up in a class library, such as API software library 808 or a sub-set
thereof. Such a library has access to a directory of all available classes of objects. A client
application can call a function in a library specifying the class of object.it wants and the
first supported interface to which it wants a pointer. The library then causes a server
application that implements an object of that class to start running. The library also passes
back to the initiating client application a pointer to the requested interface on the newly
instantiated object. The client can then ask the object directly for pointers to any other
interfaces the obj;act supports.

[0068] Interfaces supported by objects are generally thought of as a contract between
the object and its clients. The object promises to support the interface's methods as the
interface defines them, and the client applications promise to invoke the methods correctly.
Thus, an object and the clients must agree on a way to explicitly identify each interface, a
common way to describe, or define, the methods in an interface, and a concrete definition
of how to implement an interface. Objects can therefore be described in terms of the

interface parameters that they inherit, as well as the class parameters that they inherit.

24

WO 2007/149167 PCT/US2007/011771

Where a class of objects has a function for writing data to a file, for example, an instance
that inherits the class will also be able to write data to a file, as well as any additional
features and functions provided in the instance. Where a clz;ss supports a particular
interface, an instance of the class inherits the "contract" and therefore also supports the
interface. .The objects through which various aspects of the embodiments are implemented
generally conform to these programming principles and understandings of the definitions
for objects, classes, inheritance, and interfaces. It should be clear, however, that
modifications and improvements to object-oriented programming techniques are constantly
occurring, and the embodiments are not limited to objects of a particular type or with any
specific features. Thé API provided can be implemented through objects of any kind now
in use or later developed.

[0069] In one embodiment, for example, API layer 804 may include an inferface ISAL
class. In accordance with the interface ISAL class, API layer 804 may receive a file create
command to create a virtual file. A file create object may create the virtual file with a file
handle in response to the file create command. The file create object may return the file
handle for the virtual file to the calling application 802. Similarly, an open file command
may be used to open a given virtual file. An example of an interface ISAL class and

accompanying API commands may be shown as follows:

object,

uuid (397656 EO-B3E6-4361-88B84-2BC63DB775D7),
pointer_default(unique),

focal

interface ISAL : IUnknown

{

HRESULT

CreateFile (
[in] LPCWSTR szFilename,
[in] DWORD awSharing,
[in] DWORD dwCreation,
[in] ULONG cSids,
[insize_is(cSids)] PSID * ppSids,
[in] REFGUID AppSig,
[in] DWORD AppVer,
[out] ISALFile ** PDFile

25

WO 2007/149167 PCT/US2007/011771

)i

HRESULT

OpenkFile (
[in] LPCWSTR szFilename,
fin] DWORD dwSharing,
fin] ULONG cSids,
[in,size_is(cSids)] PSID * ppSids,
[out] ISALFile** ppFile

)i

i

[0070] In one embodiment, for example, API layer 804 may include an interface

ISALFiie class. In accordance with the interface ISALFile class, API layer 804 may receive
a get file information command, and return file information for a virtual file in response to
the get file information command. The interface ISALFile class may also include a get root
container command, and send a list of NVPs from a root container. An example of an

interface ISALFile class and accompanying API commands may be shown as follows:

cpp_quote (/) {AE0340A45-DE98-43ff-8016-DDEFF70BCF61}")
cpp_quote ("DEFINE_GUID(CLSID_SAL,")
cpp_quote ("Oxaec03ala5, Oxde98, Ox45(f, 0x80, 0x16, 0xda’ Oxef, Oxf7, Oxb, Oxcf, 0x61);")

ypedef struct {

GUID SALSignature; // Identifies the format at this layer

GUID ApplicationSignature; // Identifies the format at the next layer
ULONG SALVersion; // The version of the format at this layer
ULONG ApplicationVersion; // The version of the format at the next layer
ULONG ShortPageSize; // Short page size in bytes.

ULONG LongPageSize; // Long page size in bytes.

ULONGLONG RootContainerSize; // Length of the root container in bytes.
ULONG FreeShortPageCount; // Number of pages in the FreeShoriPages table
ULONG FreeLongPageCount; // Number of pages in the FreelLongPages table
PAGEREF FirstFreeShortPage; /! The next short page to be allocated
PAGEREF FirstFreelLongPage; // The next long page to be allocated

}SAL_FILE_INFO ;

object,
uuid (DE5A3D59-744E-47bb-9B26-352440531921),
pointer_default(unique)

interface ISALFile : IUnknown

{

HRESULT
GetFilelnfo (
fout] SAL_FILE_INFO * pFilelnfo

26

WO 2007/149167 PCT/US2007/011771

) ;

HRESULT
OpenRootContainer (
Jout] ISALContainerReader ** ppContainer
)

[0071] In one embodiment, for example, API layer 804 may include an interface
ISALContainerReader class. In accordance with the interface ISALContainerReader class_,
API layer 804 may receive a container read command, and read a NVP from a container.
The interface ISALContainerReader class may also include a read lock acquire command, a
read lock release command, a get resident value command, a get value command, and a get
container command. An example of an interface ISALContainerReader class and

accompanying API commands may be shown as follows:

object,
wuid (57950673-5697-4f30-94F9-9F05 E4B5E966),
pointer_default(unique)

interface ISALContainerReader : [Unknown

{
HRESULT
AcquireReadLock ();
HRESULT
ReleaseReadLock ();
HRESULT
OpenNVPByName (
[in] PROPVARIANT * pName,
Jout] ISALNVPReader ** ppNVPReader
HRESULT
OpenNVPByIndex (
[in] ULONG Index,
out pValueSize,
[ULONGLONG * ValuesS
[fout] PROPVARIANT * pName,
[out] ISALNVPReader ** PPNVPReader
HRESULT
GetNVPCount (
[our ULONG * pcNVPs
) ;
4

27

WO 2007/149167 PCT/US2007/011771

[0072] In one embodiment, for example, API layer 804 inay include an interface
ISALContainerWriter c}ass. In accordance with the interface ISALContainerWriter class,
API layer 804 may receive a container write command, and write a NVP to a container.
The interface ISALContainerWriter class may also include a write lock acquire command,
a commit changes and release write lock command, a discard changes and release write
lock command, a set resident value command, a clear value command, a set short value
command, a set long value command, and a create container command. An example of an
interface ISALContainerWriter class and accompanying APl commands may be shown as

follows:

object,
uuid (90E71790-57E1-47¢3-9E2C-844A497547784),
pointer_default(unique)

imterface ISALComtainerWriter : 1ISALContainerReader

{

HRESULT

AcquireWriteLock () ;

HRESULT

Commit () ;

HRESULT

ReleaseWriteLock () ;

HRESULT

CreateNVP (
[in] PROPVARIANT * pName,
[in] ULONGLONG ValueSize,
[out] ISALNVPWriter ** PNVP Writer

)

I

[00731 In one embodiment, for example, API layer 804 may include an interface
ISALNVPReader class. In accordance with the interface ISALNVPReader class, API layer
804 may receive a value reader command, and read a short value or a long value from a
container. The inferface ISALNVPReader class may also include an is long command, a

get length command, a read lock acquire command, read lock release command, and a copy

28

WO 2007/149167 PCT/US2007/011771

from command. An example of an interface ISALNVPReader class and accompanying API

commands may be shown as follows:

object,
uuid (F821DCDC-E279-46eb-B012-2405984311CA),
pointer_default(unique)

interface ISALNVPReader : {Unknown

{
HRESULT
AcquireReadLock ();
HRESULT
ReleaseReadLock ();
HRESULT
CopyFrom (
[in] ULONGLONG ValueOlffset,
[in] ULONG ch,
fout] BYTE™* pb
HRESULT
GetValueSize (
[fout] ULONGLONG * pValueSize
A

[0074] In one embodiment, for example, API layer 804 may include an interface
ISALNVPWriter class. In accordance with the interface ISALNVPWriter class, API layer
804 may receive a value writer command, and write a short value or a long value to a
container. The interface ISALNVP Writer class may also include a write lock acquire
command, a commit changés and release write lock command, a discard chanées and
release write lock command, a copy to command, a set length command, a retire to offset
command, and a retire range command. An example of an interface ISALNVP Writer class

and accompanying API commands may be shown as follows:

object,
uuid (8819572D-DE92-4fb3-9680-E576FFF1A739),
pointer_default(unique)

interface ISALNVPWriter : ISALNVPReader
{

29

WO 2007/149167 PCT/US2007/011771

HRESULT
AcquireWriteLock () ;

HRESULT
Commit ();

HRESULT
ReleaseWriteLock () ;

HRESULT
CopyTo (
[in] 'ULONGLONG ValueOffset,
[in] ULONG cb,
[in] BYTE* pb
)i

HRESULT
RetireToQffset (

[in] ULONGLONG ull EndOffset
)5

} :

[0075]) Numerous specific details have been set forth herein to provide a thorough
understanding of the embodiments. It will be understood by those skilled in the art,
however, that the embodiments may be practiced without these specific details. In other
instances, well-known operations, components and circuits have not been described in
detail so as not to obscure the embodiments. It can be appreciated that the specific
structural and functional details disclosed herein may be representative and do not
necessarily limit the scope of the embodiments.

[0076] It is also worthy to note that any reference to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment. The appearances
of the phrase “in one embodiment” in various places in the specification are not necessarily
all referring to the same embodiment.

[0077] . Some embodiments may be described using the expression "coupled” and
"connected" along with their derivatives. It should be-understood that these terms are not
intended as synonyms for each other. For example, some embodiments may be described
using the term “connected” to indicate that two or more elements are in direct physical or

electrical contact with each other. In another example, some embodiments may be
30

WO 2007/149167 PCT/US2007/011771

described using the term "coupled" to indicate that two or more elements are in direct
physical or electrical contact. The term "coupled,” however, may élso mean that two or
more elements are not in direct contact with each other, but yet still co-operate or interact
with each other. The embodiments are not limited in this context.

[0078] Some embodiments may be implemented, for example, using a machine-
readable medium or article which may store an instruction or a set of instructions that, if
executed by a machine, may cause the machine to perform a method and/or operations in
accordance with the embodiments. Such a machine may include; for example, any suitable
processing platform, computing platform, computing device, computing device, computing
system, processing system, computer, processor, or the like, and may Be impiemented using
any suitable combination of hardware and/or software. The machine-readable medium or
article may include, for example, any suitable type of memory unit, memory device,
memory article, memory medium, storage device, storage article, storage medium and/or
storage unit, for example, memory, removable or non-removable media, erasable or non-
erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy
disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R),
Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical
media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a
fape, a cassette, or the like.

[0079] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

31

WO 2007/149167 PCT/US2007/011771

CLAIMS

1. An article comprising a machine-readable étorage medium containing instructions
that if executed enable a system to receive an application program interface command
corresponding to a software object (806) from a software library (808), and access a virtual
file with media information for multiple media streams stored using a hierarchy of name-

value pairs with said software object.

2. The article of claim 1, further comprising instructions that if executed enable the
system to receive a file create command to create said virtual file, create said virtual file
with a file handle in response to said file create command, and send said file handle for said

virtual file.

3. The article of claim 1, further comprising instructions that if executed enable the
system to receive a get file information command, and send file information for said virtual

file in response to said get file information command.

4. The article of claim 1, further comprising instructions that if executed enable the
system to receive a get root container command, and send a list of name-value pairs from a

root container.

5. The article of claim 1, further comprising instructions that if executed enable the

system to receive a container read command, and read a name-value pair from a container.

6. The article of claim 1, further comprising instructions that if executed enable the

system to receive a container write command, and write a name-value pair to a container.

32

WO 2007/149167 PCT/US2007/011771

7. The article of claim 1, further comprising instructions that if executed enable the
system to receive a value reader command, and read a short value or a long value from a

container.

8. The article of claim 1, further comprising instructions that if executed enable the
system to receive a value writer command, and write a short value or a long value to a

container.

9. The article of claim 1, further comprising instructions that if executed enable the

system to receive a read lock command, and lock a short value or a long value for reading.

10. The article of claim 1, further comprising instructions that if executed enable the

system to receive a write lock command, and lock a short value or a long value for writing.

11. An apparatus comprising a media processing sub-system having a processor (202)
and a memory (204), said memory storing an application program interface software library
(808) having multiple software objects (806), said processor to execute said software
objects in response to application program interface commands in order to manage a virtual
file comprising a hierarchy of name-value pairs used to store media content from multiple

media streams.

12. The apparatus of claim 11, said application program interface software library
including at least one of a file create object responsive to a file create command, a file
information object responsive to a get file information command, a root container object

responsive to a get root container command, a container read object responsive to a

33

WO 2007/149167 PCT/US2007/011771

container read command, a coritainer write object responsive to a container write command,
a value reader object responsive to a value reader command, a value writer object
responsive to a value writer command, a read lock object responsive to a read lock

command, or a write lock object responsive to a write lock command.

13. The apparatus of claim 11, compriéing a media application reader to read a name-

value pair from said virtual file using said application program interface software library.

14. The apparatus of claim 11, comprising a media application writer to write a name-

value pair to said virtual file using said application program interface software library.

15. The apparatus of claim 11, comprising a media file manager to manage said virtual

file.

16. A method, comprising:

receiving an application program interface command corresponding to a software

object (806) from a software library (808); and
accessing a virtual file with media information for multiple media streams stored

using a hierarchy of name-value pairs with said software object.

17. The method of claim 16, comprising writing media information to said virtual file

with a first software object from said software library.

18. The method of claim 16, comprising reading media information from said virtual

file with a second software object from said software library.

34

WO 2007/149167 PCT/US2007/011771

19. The method of claim 16, comprising creating said viitual file with a third software

object from said software library.

20. The method of claim 16, comprising creating said name-value pair with a fourth

software object from said software library.

35

PCT/US2007/011771

WO 2007/149167

1/8

Q

| 'Oid

801
0Ll wajshs-gng
Aejdsiqg Buissanoid
EIpSIN

901 83inegd
Buissaoold eipay

W0} —

u-zol
301n0g

eIpapy

€—C¥0l—

¢c0l
80IN0g

elpaj

—|-y0l—

}-c0!
90IN0g

eIps

PCT/US2007/011771

WO 2007/149167

2/8

¢ Old

81.¢ (sjuonoauuc)

UO(EDIUNWILLOY

9ic
(s)sa1r0Q JndinO

12 (s)aaineq ndu|

Zlz 9brio)g
9]genowusy-UoN

olc
abeI0)S s|qeACWSY

g0z Jsabeuepy
9|l elpsiN

cozun
Buissaooid

Q902 B90Z
MY HYW

902 ucnea||ddy elpay

801 waisAs-qng
Buissao0id eipap

¥0¢
flowsiy

weisfs

PCT/US2007/011771

WO 2007/149167

3/8

€ 'Old

b0t
s1ed sn[eA-oUIRT

Jo Ayorerary v Sursn afiy jenina o[3uis
B Ul Sweans eipawt apdnmus sy 21038

4

20t
UOLIRULIOJUI BIPAW
JO sureans eipaw odnjnuwt 9413031

ERARS)

o
=
]

WO 2007/149167 PCT/US2007/011771

4/8
|
=
Q
<
-
o
©
3 S ~
£z £ '
L3 5 ©
o |
= J) I..I.
L
[0}
l._...
L /)

402 <

PCT/US2007/011771

WO 2007/149167

5/8

¢ 'Old

0Ls
abed

eleg

0 :906 Widaq ajget

——80G—

—e

08
.abed do|

n

ﬂ 205

PCT/US2007/011771

WO 2007/149167

6/8

9 'OId

. TNl AdL
19 o
abed eleq m 4 .vam —* Tel AdL
_ —e 2zl ndL
d TLIAdL L 1909 uideq s|qe]
1-¥19
abed eleq « 1219 . 0] AdL j«—8091— ”omwmwo.r
cc 0L9 Z09

PCT/US2007/011771

WO 2007/149167

7/8

L 'Ol

. [-NIAdL _
Ti-NIAdL
z8LL o .
abed eleQ AINMNE —* felndL| _
I . 2l AdL = TelndL
. LIAdL ZlndL
-8l
obedeleq (€ bOLL—T folAdLfe—CLL— NIAdL ¢ :$0. yideq aiqeL
_ : (4174
‘ .8_ AL * :afeq doj
00Z - e —
z0LL L-0L2 20.

PCT/US2007/011771

8/8

WO 2007/149167

(=

8 'Old

P i = e s —— e nn e = - W — - ——— —~ — — — i~ f_— — - —— o v 7= A i m — man ——

808 Aeign 1dv

|

|

|

[

|

| b-908 €-008 Z-908 1-908

" 199(q0 e 108lq0 199[q0 1sla0

“ alld a4 |4 a4

i ;ﬁ A A A

|

|

| U I S S
v A 4 y A 4

08 IdY

d-208
uoneoijddy
woisny

¢-c08
uoneoijddy
wojsny

}-¢08
uonealddy
wojsn)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/011771

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 17/00(2006.01)i, GO6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F 9/00, GOGF 12/00, GO6F 15/00, GO6F 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility Models and applications for Utility Models since 1975
Japanese Utility Models and appkications for Utility Models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) & keyword : "application program interface", "software", "virtual"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 6,983,467 B2 (ENGSTROM, G. ERIC; EISLER, CRAIG G.) 3 January 2006 1,11, 16
See column 6, line 12 - column 17, line 35

Y US 6,738,875 B1 (WANG, LANDY) 18 May 2004 1,11, 16
See column 6, line 16 - column 9, line 11

A US 6,128,713 A (EISLER, CRAIG G.; ENGSTROM, G. ERIC) 3 October 2000 1-20
See the whole document

A US 5,815,703 A (COPELAND, BRUCE W.; SHUVAL, JONATHAN 1.) 29 September 1998 1,11, 16
See the whole document

A US 2003/0172196 A1 (HEJLSBERG, ANDERS et al.) 11 September 2003 1-20
See the whole document

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
06 NOVEMBER 2007 (06.11.2007) 06 NOVEMBER 2007 (06.11.2007)
Name and mailing address of the ISA/KR Authorized officer ‘

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, PARK, Jae Hun
Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5736
Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/011771
Patent document Publication Patent family Publication
cited in search report date member(s) date
us06983467 03.01.2006 US2005034136A1 10.02.2005
US2005034136AA 10.02.2005
US6983467BB 03.01.2006
US06738875 18.05.2004 US2004199742A1 07.10.2004
US2004199742AA 07.10.2004
US6738875B1 18.05.2004
US6738875BA 18.05.2004
US7065617BB 20.06.2006
us06128713 03.10.2000 DE69B802836C0 17.01.2002
DEEO9B02836T12 22.08.2002
EPO1023661A1 02.08.2000
EPO1023661B1 05.12.2001
EP1023661A1 02.08.2000
EP1023661B1 05.12.2001
JP16500605 08.01.2004
JP2004500605T2 08.01.2004
uS6128713A 03.10.2000
W09915963A1 01.04.1999
US05815703 29.09. 1998 USh815703A 29.09. 1998
US2003/172196A1 11.09.2003 US2003172196AA 11.09.2003
US7165239BB 16.01.2007

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report

