w0 2010/000077 A1 I 0 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau WIP0)

-

U
(43) International Publication Date :
7 January 2010 (07.01.2010)

(10) International Publication Number

WO 2010/000077 A1

International Patent Classification:
GO5B 19/05 (2006.01)

(51

(21) International Application Number:

PCT/CH2008/000300

(22) International Filing Date:

3 July 2008 (03.07.2008)
English
English

(25)
(26)
1

Filing Language:

Publication Language: 84

Applicant (for all designated States except US): BE-
LIMO HOLDING AG [CH/CH]; Brunnenbachstrasse 1,
CH-8340 Hinwil (CH).

Inventors; and

Inventors/Applicants (for US only): TIEMANN, Dirk
[DE/CH]; Weinhaldenstrasse 30a, Ch-8645 Jona (CH).
GORT, Urs [CH/CH]; Gladbachstrasse 118, CH-8044
Ziirich (CH).

Agent: RENTSCH & PARTNER; Fraumiinsterstrasse 9,
Posttach 2441, CH-8022 Ziirich (CH).

(72)
(73)

74

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: ACTUATOR FOR HVAC SYSTEMS AND METHOD FOR OPERATING THE ACTUATOR

Ts —« - .
Tp S61 S63 S62
Td e ? [
Te +-L, -
»L L 1
:_ J L ‘ {/\/866
i 1
S68° S64 P D
; [S65 W
: 1 P
I_ _ ’_|_
S66
S68 S67] Te
) P |
M 69

(57) Abstract: An actuator for an HVAC system comprises
a stored model definition defining an HVAC control appli-
cation, and an element library including a variety of stored
model elements and controller modules (D, E) having in-
structions for controlling a processor of the actuator. The
controller modules (D, E) include model elements and are
configured to control the sequential order of their execu-
tion. The controller modules (D, E) are further configured
to propagate any external data input (S66', S68') to their
model elements prior to executing their first model ele-
ment, and to propagate any data output (S63, S65, S67,
S69) to external components after executing their last mod-
el element. The controller modules (D, E) are instantiated
in different threads of execution, so that data is inter-
changed asynchronously between instantiated controller
modules (D, E) and neither temporal dependencies nor
change of value links are imposed on components of the
HVAC control application.

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

ACTUATOR FOR HVAC SYSTEMS AND METHOD FOR OPERATING THE ACTUATOR

Field of the Invention

The present invention relates to an actuator for HVAC (Heating, Ventilating, and Air
Conditioning) systems and to a method for operating the actuator. Specifically, the present
invention relates to an HVAC actuator comprising a network interface for connecting the
actuator to a communication network, a bus interface for connecting the actuator to a

sensor/actuator bus, a data store and a processor connected to the data store.

Background of the Invention

In the past, HVAC systems were designed and implemented as complex and typically
proprietary control systems. With the evolution of Internet based technologies, HVAC
systems were increasingly adapted to a more open approach. Particularly, field devices were
provided with processing power and a Java Virtual Machine platform which made it easier
to use control objects on various field devices from different manufacturers. Furthermore, by
implementing web servers on field devices, it became pogsible to access data on the field

devices through conventional web browser via an IP (Internet Protocol) network.

US 7,020,532 discloses a control device for a control system, comprising a field device such
as a sensor or an actuator, and a processor for executing a control algorithm, e.g. for
environmental control in residential, commercial or industrial settings. The control algorithm
maintains the control system at a desired level and/or drives it to that level as a function of
one or more measured values or defined set points. The control device further includes an
interface to an IP network (Intemet Protocol) and a web server which facilitates

configuration, monitoring and/or maintenance of the control system.

US 6,510,352 discloses a control device, e.g. a field device with a sensot/actuator interface,

comprising a Java Virtual Machine for executing Java objects so that the control device

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

provides a control function, e.g. for process control. These process control objects
communicate data values, such as measurements or set points by reference, i.e. only one
object stores the data value itself, while the other objects maintain merely a reference, e.g. a
pointer or address, to the data value. By communicating data values by reference, data is
propagated between control objects to meet realtime requirements of process control

applications.

US 6,832,120 discloses an object-oriented control system comprising network processor and
field controller types of stations implementing Java Virtual Machines which can be
programmed using Java objects for specific control functions. As an explicit key to achieving
the objectives of the distributed object oriented control system, US 6,832,120 teaches a
real-time information syncHronization manager at each station which governs the data flow

between objects in the system.

US 6,788,980 discloses a control device for a control system which may be implemented as
an actuator and comprises a processor configured to run a real time operating system and a
Java Virtual Machine. The control device further comprises a web server that facilitates
configuration and monitoring of the control system, and an application development
environment which produces Java classes for execution in control devices. Operator stations
and similar non-process data producers are kept in sync using a Simple Network Time
Protocol (SNTP); whereas, the controllers requiring higher accuracy are placed on tightly

controlled networks or equipped with an interrupt used to coordinate time updates.

For meeting realtime requirements of typical control applications, the control systems of the
prior art are configured for synchronized data communication. In essence, synchronized data
communication ensures that data values generated and/or output by a data source (data
provider) is transmitted and/or supplied to a data sink (data consumer) within a defined

time window in order to meet the specific realtime requirements of the respective control

10

15

20

WO 2010/000077 PCT/CH2008/000300

application. Thus, implementation of synchronized data flow imposes a temporal and/or
sequential dependence on the components participating in a distributed control application.
More importantly, for a synchronized data flow, it is necessary to implement synchronization

mechanisms which require significant processing power and/or communication bandwidth.

US 6,167,316 discloses a distributed object-oriented building automation system with
asynchronous communication between objects running on different devices. Application
objects which need to be informed about changes of the value of another object's control
attributes use a connection object to establish an asynchronous link between application
objects. The connection object manages the information transfer between the two
application objects. The connection object registers with the source object to receive from
the source object a message containing the value of the control attribute when the change
in its value exceeds a defined value (change of value processing). The connection object in
turn passes the received value of the control attribute to the destination object. Thus, US
6,167,316 implements a messaging mechanism which facilitates timely communication of

significant changes of data values between objects located on different devices.

Summaty of the Invention

It is an object of this invention to provide an actuator for HVAC (Heating, Ventilating, and
Air Conditioning) systems and a method for operating the actuator, which actuator and
method do not have some disadvantages of the prior art. In particular, it is an object of the
present invention to provide an actuator for HVAC systems and a method for operating the
actuator, whereby the actuator enables control applications in HVAC systems without

imposing temporal dependencies on components of the control application that exchange

data.

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

According to the present invention, these objects are achieved particularly through the
features of the independent claims. In addition, further advantageous embodiments follow

from the dependent claims and the description.

An actuator for HVAC systems comprises a network interface for connecting the actuator to
a communication network, a bus interface for connecting the actuator to a sensor/actuator

bus, a data store and a processor connected to the data store,

According to the present invention, the above-mentioned objects are particularly achieved in
that a model definition defining an HVAC control application is stored in the actuator. For
example, the model definition is loaded via a communication network into a data store of
the actuator. For example, the model definition is defined in a mark-up language, e.g. XML
(extended markup language). For example, the communicatiqn network includes an
Ethernet communication network and is configured for communication according to the
Internet Protocol. Moreover, an element library is stored in the actuator, which element
library includes a variety of model elements and controller modules. The model elements
and controller modules comprise instructions for controlling a processor of the actuator. For
example, the stored model elements and controller modules are defined in Java byte code,
and the processor is a Java processor configured to execute Java byte code (e.g. IMSYS IM
1101). For example, the stored model elements include elements representative of a
controller, a PID controller, a two point controller, a limiter, a timer, a Boolean logic module,
a time period management module, a heating curve module, a filter module, a floating
average calculation module, a flip flop module, an input selector module, a constant value
module, a comparator, a mathematical operation module, a state checking module, an error
catching module and/or an error trigger module. Based on the model definition,
implemented in the actuator is the control application for execution on the processor, by
instantiating from the element library controller modules and associated model elements as

referenced by the model definition, assigning at least one instantiated model element to a

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

device attached to a sensor/actuator bus, and instantiating the controller modules in each
case as a different thread of execution. For example, the sensor/actuator bus includes an
MP-Bus (proprietary sensor/actuator bus by Belimo Automation AG), a BACnet-bus, a
Profibus or another field bus. The control application is executed by the respective controller
modules in each case controlling the sequential order of execution for associated model
elements referenced by the respective controller module, propagating any external data
input (i.e. data input stored by components outside the respective controller module in
peripheral data input buffers of the respective controller module) to its associated model
elements prior to beginning the execution of the model element defined first in the
sequential order, and propagating any data output from its associated model elements to
the outside of the respective controller module after completion of the execution of the
model element defined last in the sequential order, so that data is interchanged

asynchronously between instantiated controller modules.

Thus, the controller module makes it possible to group (nest) hierarchically a variety of
module elements (components) and to define input/output buffers on the peripheral
boundaries of the controller module, such that input/output buffers of inner module
elements can only be accessed through these peripheral input/output buffers. Preferably, a
periodically executed, individual updating/processing interval is assigned to a controller
module. The controller module is configured to control within its interval the sequential
processing of its model elements, whereby any input data is propagated initially (i.e. before
processing of the model elements) from the peripheral input buffers of the controller module
to input buffers of connected model elements. Subsequently, triggered individually
according to a sequential order determined by the controller module, the model elements
compute their output values based on their current data values read from their input
buffers. When processing of a model element is completed, the controller module
propagates the respective model element's data output values to connected model elements

by reading in each case the data value stored in a data output buffer of the (source) module

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

element, and writing it into the data input buffer of connected (sink) module elements. If
the data output buffer of a model element is connected to a peripheral data output buffer
of its controller module, the respective controller module also propagates the current data
value from the model element's data output buffer to the respective peripheral data output
buffer. Different controller modules run in different threads of execution with individual

processing intetvals of different duration (i.e. different periodicity).

By having the controller modules configured to propagate any external data input to all
their respective model elements, before processing of the first model element in their
respective processing sequence, and to propagate any data output from their respective
model elements to components outside the model controller, after completion of all their
respective model elements in their respective processing sequence, and by instantiating the
controller modules as parallel threads of execution, data is exchanged asynchronously
between different controller modules, i.e. between the model elements associated with
different controller modules. This makes it possible to implement and execute control
applications in HVAC systems without temporal dependencies imposed on components of
the control application that exchange data, and coupling application objects for change of
value processing (COV). Consequently, there is neither any need for synchronization
mechanisms nor for inter-object signaling messages. Hence, the asynchronous data transfer
between model elements associated with different model controllers makes it possible to
conserve significant processing power, processing time and communication bandwidth,
which would otherwise be required for synchronization and messaging mechanisms.
Furthermore, the asynchronous data transfer makes it possible to structure and implement
HVAC control applications with loosely coupled components, and hence to distribute flexibly
and efficiently the HVAC control application not only over several logical controller modules
on one processor device, but also over more than one processor device interconnected by a

communication network, e.g. by placing and executing different controller modules on

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

several processor devices such as actuators or other hardware devices which include a

processor.

Preferably, the model elements are in each case configured to read input data from one or
more defined data input buffers associated with the respective model element, and to write
output data to one or more defined data output buffers associated with the respective
model element. The model interpreter is further configured to link, based on linking
information included in the model definition, output buffers of instantiated model elements
to input buffers of instantiated model elements. The controller modules are further
configured to propagate in each case, upon completion of the execution of model elements
referenced by the respective controller module, data values from the model element's output
buffer to a linked input buffer of a model element referenced by the respective controller.
Thus, a model element providing data output writes (stores) its data output in an output
buffer. By interconnecting a first instantiated model element to a second instantiated model
element for transferring data output from the first model element to the second model
element, an output buffer of the first model element is associated with an input buffer of
the second model element. Once processing of a model element is completed, i.e. when the
model element's data output is placed in its data output buffer(s), the respective controlier

module propagates the data values to linked data input buffers.

fn an embodiment, the model definition includes identifiers of model elements and
parameter values applicable in each case to the respective model element, and the model
interpreter is configured to instantiate in each case the model element from the library

based on the identifier and parameter values.

In another embodiment, the actuator comprises a server module configured to transmit to a
web browser via the communication network a graphical representation of the control

application based on the model definition. Preferably, the model definition includes

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

graphical user interface data associated with mode! elements referenced by the model
definition. For example, the graphical user interface data includes position information
and/or size information for positioning and/or sizing the graphical representation of
respective model elements on a display. In an embodiment, the loader is further configured
to store in the actuator at least one HTML (Hypertext Markup Language) version of the
model definition. The server module is further configured to transmit to the web browser for
display in the graphical representation input/output values associated in each case with a
model element referenced by the model definition, to receive from the web browser
parameter values associated in each case with a model element referenced by the model
definition, and to store in the actuator the parameter values assigned to an instantiation of
the respective model element. Thus, current values of model elements, eg. values
representative of a sensor measurement or an actuator setting, can be shown to a user via
the web browser in a graphical representation of the control application. Furthermore, it is
possible for the user to enter parameter settings, e.g. settings for a PID controller, via the
browser in the graphical representation of the control application for automatic update of

corresponding parameter settings in the control application executing in the actuator,

In a further embodiment, at least some of the stored mode! elements are configured to be
operable in different modes, the modes being selectable through setting at run-time of a
state associated with an instantiation of the respective model element. Preferébly, these
model elements are further configured to indicate as an output value the current state or

mode of the respective model element.

Preferably, the network interface is configured to exchange data with other corresponding
actuators via the communication network. By connecting more than one actuator to the
communication network, implemented is a distributed control application for an HVAC
system. The distributed control application runs decentralized on a network of actuators,

each actuator on the communication network runs a part of the distributed control

10

20

WO 2010/000077 PCT/CH2008/000300

application, this part being defined by its respective (sub-) model definition, and controls as

a master the devices (slaves) that are attached to its sensor/actuator bus.

In addition to the actuator and a comesponding method for operating the actuator, the

present invention also relates to a computer program product comprising computer program

code means for controlling one or more processors of an actuator for HVAC systems,

preferably a computer program product comprising a computer-readable medium containing

the computer program code means therein.

Brief Description of the Drawings

The present invention will be explained in more detail, by way of example, with reference to

the drawings in which:

Figure 1:

Figure 2:

Figure 3:

Figure 4:

shows a block diagram illustrating schematically an HVAC system comprising
actuators which are connected to a sensor/actuator bus as well as to a

communication network.

shows a block diagram illustrating schematically an actuator comprising various

functional modules.

shows a block diagram illustrating schematically a possible sequence for
developing and generating a model definition for a complete or partial HVAC

control application.

shows a graphical representation of an example of a model definition, including
a model controller module, a bus controller module and a network controller

module with associated model elements.

10

20

WO 2010/000077 PCT/CH2008/000300
10

Figure 5: shows a timing diagram illustrating an example of sequential processing of

model elements associated with a controller module.

Figure 6. shows a timing diagram illustrating an example of parallel processing of

controller modules executing in separate threads.

Figure 7. shows a timing diagram illustrating an example of a sequence of steps for

operating the actuator to execute an HVAC control application.

Figure 8: shows a block diagram illustrating schematically a possible sequence for

handling error states occurring in an HVAC control application.

Figure 9: shows a bleck diagram illustrating an example of a nested element

(compound).

Detailed Description of the Preferred Embodiments

In Figure 1, reference numeral 1 refers to a Heating, Ventilating, and Air Conditioning
(HVAC) system comprising one or more actuators 10, 10’ interconnected via a
communication network 2, such as an 1P network over Ethernet. Preferably, the actuators 10,
10" include a motor and are configured to drive valves and/or dampers for fluid pipes, e.g.
to control the flow of air or water in the HVAC system 1 by adjusting the settings of
dampers or valves, respectively. Depending on the embodiment, the communication network
2 is connected to the world wide web and is accessible to remote computers 5, e.g. fixed
personal computers 51 (PC) via fixed telecommunication networks, and/or mobile
computers such as laptop or notebook computers 52, personal digital assistants (PDA) or
mobile radio phones 53, via mobile radio networksﬂ‘such as GSM-networks (Global System for
Mobile Communications), UMTS-networks (Universal Mobile Telephone System) and/or

wireless local area networks (WLAN).

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
11

As is illustrated in Figure 1, the actuators 10, 10" each comprise a processor 11, 11" and a
data store 12, 12’ connected to the processor 11, 11", Preferably, the processor 11, 11" is a
Java processor configured to execute directly Java byte code, e.qg. Java processor IMSYS IM

1101 by Imsys Technologies AB.

The actuators 10, 10" are each connected to a sensor/actuator bus 3, e.g. an MP-Bus by
Belimo Automation AG, a BACnet bus or a Profibus. The actuators 10, 10" are configured as
masters for controlling (slave) devices 4 attached to the sensor/actuator bus 3, e.g. sensors

41, 41", actuators 42, 42', or other field devices 43, 43'.

As is illustrated in Figure 2, the actuator 10 comprises a network interface 20 for connecting
the actuator 10 to the communication network 2, and a bus interface 30 for connecting the
actuator 10 to the sensor/actuator bus 3. Furthermore, the actuator 10 comprises various
functional modules including a software loader 10.1, a model loader 102, a model
interpreter 17, a parameterisation module 103, a monitoring and logging module 104, an

alert and error handling module 105, and a web server module 19.

The software loader 101 is configured to download firmware via the communication
network 2 and install the firmware in the actuator 10. Moreover, the software loader 101 is
configured to download and store various model elements in the element library 16 of data
store 12. Each model element is a functional block and comprises instructions, e.g. Java byte
code, for controlling the processor 11. Typically, a model element includes one or more data
input buffers (some model elements, e.g. a constant value element, may be implemented
without a data input buffer), a functional component, possibly (input) parameters
associated with the functional component, and one or more data output buffers (some
model elements, e.g. an error trigger module, may be implemented without a data output
buffer). The model elements are configured to read the current data input values stored in

their input buffer(s), to compute from the data input value(s) one or more data output

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
12

values using the functional component and parameters associated with the functional
component, and to write the data output value(s) to the output data buffer(s). Model

elements can be developed and provided as open source modules,

The model elements are grouped into control elements, 1/0 elements (input/output), and
general purpose elements. For example, the model elements in the group of control
elements include various controllers, e.g. a PID controller or a two point controller, a limiter
for generating and limiting an data output value to a defined range of a data input value, a
timer, a Boolean logic module, e.g. a Boolean AND, OR and/or NOT, a time period
management module, e.g. for setting a time period such as a part of the day (day,/night,
AM/PM), a vacation period or a season (winter, spring, summer, fall), a heating curve
module, a filter module, a floating average calculation module, a flip flop module, an input
selector module for selecting the value of the data output based on defined criteria from
various data Inputs, a constant value module, a comparator for comparing data input
values, a mathematical operation module for executing mathematical operations such as
addition, subtraction, multiplication, division, summation, calculation of average, or
determination of minimum or maximum values, and/or a state checking module for
checking the current state of nested model elements. For example, the model elements in
the group of /0 elements include elements representative of devices 4 on the
sensor/actuator bus 3, e.g. sensors, actuators, and connectivity elements for connecting
more than one sensor or actuator to the sensor/actuator bus 3, or actuators 10, 10'
connected to the communication network 2. For example, the model elements in the group
of general purpose elements include an error catching module and/or an error trigger
module for connecting the HVAC control application to the alert and error handling module

105.

The element library 16 further comprises nested mode! elements (compounds) and controller

modules, particularly model controller modules, bus controller modules, and network

10

15

20

WO 2010/000077 PCT/CH2008/000300
13

controller modules. The controller modules and compounds are configured to include various
selected model elements which are interconnected (linked). Table 1 illustrates the
hierarchical relationship of controller modules, nested model elements (compounds), and
model elements. Figure 9 illustrates an example of a nested element 90 (compound)
comprising two interconnected inner nested elements 901, 902. The inner nested elements
901, 902 each comprise several interconnected model elements. As illustrated in Figure 9,
inner elements are only linked to other inner elements at the same hierarchical level and/or
to data input/output buffers of the surrounding, higher level element. Depending on the
specific application, the controller modules include model elements and/or nested model
elements (compounds); and a nested model element (compound) includes model elements
and/or nested model elements. Typically, the model controller module 401 is associated
with interconnected (linked) control elements, whereas the bus controller module 402 and
the network controller module 403 are associated with 1/0 elements. The bus controller
module 402 and the network controller module 403 encapsulate all interactions with the
underlying sensor/actuator bus 3 and communication network 2, respectively. Specifically,
the bus controller module 402 and the network controller module 403 encapsulate
retrieving sensor data from and setting actuator values on devices attached to the

sensor/actuator bus 3 and communication network 2, respectively.

Controller module

Nested model element (compound)

Nested model element

Model element
(compound)

Model element

Model element

Table 1

The controller modules and compounds are configured to control the sequential order of

execution of their associated model elements and/or nested model elements, and to control

15

20

25

WO 2010/000077 PCT/CH2008/000300
14

data propagation between linked model elements and/or nested model elements. The
processing sequence is determined by the order in which the model elements are arranged
(linked), the types of model elements, and/or some priority setting. A compound (nested
model element) is processed by taking into consideration the sequential order and nesting
levels of its elements, all inner elements are processed and the data output values
propagated along their connections, For example, in Figure 9, for processing (updating) the
nested model element 90, the inner model elements of the nested model element 901 are
processed first, then the output of nested model element 901 is propagated to the nested
model element 902, and, subsequently, the inner model elements of the nested model
element 902 are processed. It is also possible for the user to specify for nested elements, the
order in which nested elements are updated. Specifically, the controller modules are
configured to propagate, at start-up, the current data input values from their peripheral data
input buffers to respective linked data input buffers of their associated model elements. The
controller modules are further configured, to subsequently trigger execution of their model
elements based on a defined processing sequence, and, upon completion of a model
element's (or compound’s) execution, to propagate the output data from the completed
model element's data output buffer(s) to data buffers linked to the completed model
element's data output buffer(s). The output data is thereby propagated by the controller
modules to linked data input buffers of other model elements included in the controller
module, as well as to peripheral data output buffers associated with the controller module,
Figure 5 illustrates an example of the sequential processing of model elements A, B and C,
associated with a controller module or compound (e.g. controller module D of Figure 6). In
this example, model element B is executing in step S51. In steps S52 and S52', model
element B propagates its data output to the data input buffers of model elements C and A,
respectively. In step S53, the next model element to'be executed, in this exemplary sequence
model element C, reads the current data value in its input buffer and performs its function
based thereon. In step S54, model element C propagates its data output to the data input

buffers of model element A (the data output buffers of model elements B and C are linked

15

20

25

WO 2010/000077 PCT/CH2008/000300
15

to different data input buffers of model element A). In step S55, model element A
commences execution using the current data input value written in its data input buffer by

mode! element C.

The controller modules are further configured to propagate, upon completion of all their
associated mode] elements' execution, the data values of all their peripheral data output
buffers to respective linked peripheral data input buffers of other controller modules. The
controller modules are configured to run as independent processes without any pre-defined
mutual synchronization with other controller modules. Each controller module has assigned
an individual processing interval; however, there is no pre-scheduled point in time for
processing. Rather, the controller modules are configured to run independently from each
other, i.e. each controller module is configured to run as a different thread. Consequently,
data is exchanged asynchronously between linked components of the system. Particularly,
asynchronous data transfer is achieved between control elements associated with a model
controller module and 1/0 elements associated with a bus controller module or a network

controller module.

Figure 6 illustrates an example of parallel processing of controller modules D and E, as well
as the asynchronous data transfer between the controller modules D and E. In step S61 and
562, controller modules C and D are executing in parallel as independent threads. Upon
completion of step S61 by controller module D, output data is propagated in step S63 from
the controller module D's peripheral data output buffers to respective linked peripheral data
input buffers of controller module E. However, because controller module E has at the start
of step 562 already propagated internally the data input of its peripheral data input buffers
to its respective model elements, the current data.input provided by model controller D in
step S63 will not be considered until the next processing interval of controller module E in
step S66. Only later, at the start of step S66, in step S66', controller module E will read the

data from its data input buffers as current input data. Accordingly, controller module D will

10

15

20

WO 2010/000077 PCT/CH2008/000300
16

not consider output data propagated in step S65, at completion of step S62, from the
controller module E's peripheral data output buffers to respective linked peripheral data
input buffers of controller module D, because controller module D has already propagated
internally the data input of its peripheral data input buffers to its respective model elements
at the start of step S64. Only later, at the start of step S68, in step S68', controller module D
will read the data from its data input buffers as current input data. Correspondingly, output
data propagated in steps S67 and S69 will not be propagated internally by controller
module E during execution of step S66, or by controller module D during execution of step
568, respectively. One skilled in the art will understand, that altermnative propagation
strategies may enable data input propagation to model elements that have not yet started

executing in the current processing interval of a controller module.

The bus controller module is further configured to map associated 1/0 elements onto the
devices 4 on the sensor/actuator bus 3, as well as to control and handle the bus interface

30 and data communication via the sensor/actuator bus 3.

The network controller module is further configured to map associated /0 elements, e.g. an
actuator element, onto devices connected to the communication network 2, e.g. actuator
10", as well as to control and handle the network interface 20 and data communication via

the communication network 2.

The model loader 102 is configured to download a model definition 15 via the
communication network 2, and install it in the actuator 10. The model definition 15 defines
in a mark-up language, e.g. XML, an HVAC control application or a part of an HVAC control
application for controlling the HVAC system 1.

WO 2010/000077 PCT/CH2008/000300
17

<?xml version="1.0"?>

<?xml-stylesheet href="bd.xsl" type="text/xs|" ?>

<System type="system.BDSystem" id="0">

<Controller type="system.MpController" id="2000">

<element type="mp.MpActuator" id="2010">

<property name="BusAddress" value="1"/>

</element>

<element type="mp.MpBusAnaloglnput" id="2030">

<property name="BusAddress” value="1"/>

<property name="MeasureRange" value="PassiveLowOhm" />
</element>

<l- connect MpBusAnaloglnput to the PTSensor1 (2040) -
<connection source_id="2030" source_pin="0" target_id="2040" target_pin="0"
description="Current water temperature" />

<l- connect the actuator to the mpcontroller->

<connection source_id="2010" source_pin="0" target_id="2000"
target_pin="7" description="current position" />

</Controller>

<Controller type="system.ModelController" id="3000">

<element type="model.elements.SysTimeElement" id="3010" />
<element type="model.elements.CurveController" id="3030">
<property name="0" value="-14.0, 65.0, 20.0, 30.0" />

<property name="1" value="-14.0, 50.0, 20.0, 20.0" />
</element>

<element type="model.elements.Pid" id="3040">

<property name="pFactor" value="0.8"/>

<property name="iFactor" value="0.1"/>

<property name="dFactor" value="0.0"/>

<property name="lowerLimit" value="0.0"/> <I- 0% ->

<property name="upperLimit" value="100.0"/> <l- 100% —>
<property name="sampleRate" value="1000"/> <I- ms ->
</element>

<I- connect the model controller to the PID element ->

<connection source_id="3000" source_pin="0" target_id="3040"
target_pin="1" description="Current Water temperature (IS)" />
<l- connect the CurveController element to the PID element —>
<connection source_id="3030" source_pin="0" target_id="3040"
target_pin="2" description="Requested Water temperature (TARGET)" />
</Controller>

<I- connect the mpcontroller to the modelcontroller (set position) ->
<connection source_id="3000" source_pin="0" target_id="2000" target_pin="3"
description="set position" />

</System>

Table 2

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
18

Table 2 shows an example of an XML model definition relating to a heat curve control
application, as illustrated in Figure 4. The heat curve control application includes a timer
control element 401a, an outside temperature sensor element 402a, a heating curve control
element 401b, a PID controller element 401c, a flow temperature sensor element 402b, and

a valve actuator element 402c.

Figure 4 shows a graphical representation 400 of an example of a model definition 105. As
illustrated in Figure 4, the model definition comprises one or more model controller modules
401, a bus controller module 402 and optionally a network controller module 403. These
controller modules are associated with (i.e. include) various interconnected model elements
4011, 4021, Typically, the model controller module 401 includes control elements, whereas
the bus controller module 402 and the network controller module 403 include /0
elements. Depending on the specific application, the model definition 15 and/or the
controller modules may also make reference to nested model elements, comprising more

than one linked, i.e. interconnected, model element.

The model definition 15 not only references various model elements 4011, 4021 (or nested
model elements), but also includes parameter values associated with the respective model
elements as well as linking information specifying links between the model elements. A link
between model elements 4011 assigns a data output buffer o of a model element 401a,
401b, 407c providing output data, to an input buffer i of a model element 401b, 401c
using the data. For example, in Figure 4, the data output buffer o of model element 401a,
e.g. a timer control element, is linked to a data input buffer i of model elemeht 401b, e.g. a
heating curve control element; and the data output buffer o of model element 401b is

linked to a data input buffer i of model element 401c, e.g. a PID controller element.

As can be seen in Figure 4, model elements associated with different controller modules are

not linked directly, i.e. a data output buffer o of a model element is not linked directly to a

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
19

data input buffer i of a model element located in another controller module. Links between
model elements located in different controller modules are defined through peripheral data
input/output buffers associated with the respective controller modules. For example, in
Figure 4, the output buffers o of model elements 402a, e.g. an outside temperature sensor
element, and 402b, e.g. a flow temperature sensor element, are linked respectively to input
buffers i of model element 401b (heating curve), or model element 401c (PID controller),
via a respective peripheral data output buffer oo of the bus controller module 402 and a
respective peripheral data input buffer ii of the model controller module 401.
Correspondingly, in Figure 4, the data output buffer o of model element 401c is linked to a
data input buffer i of model element 402, e.g. a valve actuator, via a respective peripheral
data output buffer oo of the model controlier module 401 and a respective peripheral data

input buffer ii of the bus controller module 402.

In Figure 4, reference numeral 4031 refers to model element of netwark controller module
403, which model element 4031 is representative of an optional actuator that is accessible
to actuator 10 only through communication network 2. Accordingly, Figure 4 illustrates an
optional link from a data output buffer o of model element 401c (PID controller) to a data
input buffer i of model element 4031 via a respective peripheral data output buffer oo of
the model controller module 401 to a respective peripheral data input buffer ii of network

controller module 403.

The model interpreter 17 is configured to implement the HVAC control application as
defined by the model definition 15 for execution on the processor 11. The model interpreter
17 instantiates model elements from the element library 16 as referenced by the loaded
model definition 15, using parameters as specified. with the model definition 15. The HVAC
control application comprises at least one model controller module, a bus controller module

and an optional network controlier module.

10

15

20

WO 2010/000077 PCT/CH2008/000300
20

Thus, as illustrated in Figure 2, once the model interpreter 17 has implemented the HVAC
control application, the actuator 10 includes one or more instantiated model controller(s)
18, an instantiated bus controller 300, and an instantiated network controller 200. The
model controller 18 includes various instantiations of control elements (and/or nested
model elements) interconnected to implement a {conirol) part of the HVAC control
application, e.g. corresponding to model controller module 401 illustrated in Figure 4. The
bus controller 300 comprises instantiations of /0 elements representative of devices 4 on
the sensor/actuator bus 3, e.g. corresponding to bus controller module 402 illustrated in
Figure 4. The network controller 200 comprises optionally instantiations of 1/0 elements
representative of devices on the communication network 2, e.g. corresponding to network

controller module 403 illustrated in Figure 4.

The runtime system 100 is configured to handle and route data traffic between the network
controller 200, the bus controller 300, and the HVAC control application as defined by the

model definition 15 and implemented by the model interpreter 17.

The parameterisation module 103 is configured to receive from a remote computer 5 via the
communication network 2 parameters for the HVAC control application defined by the
model definition 15, and to store these parameters in the data store 12. The
parameterisation module 103 is further configured to transmit to a remote computer 5 via
the communication network 2 current values of parameters of the HVAC control application

(e.g. for display on the remote computer 5).

The monitoring and logging module 104 is configured to provide to the remote computers 5
via the communication network 2 current data values provided and stored by the HVAC as

well as by the alerting and error handling module 105.

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
21

The web server module 19 is configured to provide web access, e.g. to web browsers running
on the remote computers 5, for accessing the model loader 102, the parameterisation
module 103, the monitor and logging module 104, the alerting and error handling module

105, and possibly the software loader 107 via the communication network 2.

Thus, using a conventional web browser, a user of a remote computer 5 is enabled to not
only monitor in a graphical representation current data values relating to sensor readings,
actuator settings, and/or operative and eror states of the HVAC control application
running on or more actuators 10, 10", but also to reset and adjust dynamically parameter

settings for HVAC control application at runtime.

The present approach makes it possible to adapt an HVAC system flexibly to specific and
possibly changing application requirements. If more than one branch of a sensor/actuator
bus 3 is needed for the HVAC system, the HVAC confrol application is decentralized and
distributed efficiently over more than one actuator 10, 10", If the HVAC application is
divided into several subsystems to run distributed over several actuators 10, 10', each
subsystem is defined by its own model definition as part of the whole model. For efficiency
and robustness, the sub-models are designed preferably as independent, loosely coupled
processes. If an HVAC system requires just one sensot/actuator bus 3, the complete HVAC
control application is centralized and runs on one actuator 10 which acts as single system

controller and master of the devices 4 attached to the sensor/actuator bus 3.

Figure 3 gives an overview of the steps and tools involved in developing and generating a
model definition 15. In a first step S21, a user of computer 5, e.g. a systems engineer, uses
the model development tool 501 for designing and generating a model definition 150 of an
HVAC control application or a part of an HVAC control application as illustrated in Figure 4,
for example. The model development tool 501 comprises a graphical editor, which makes it

possible for a user to select controller modules, basic model elements as well as nested

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
22

model elements, defined, e.g. in a mark-up language such as XML, and stored in a basic
element library 502 or a nested element library 503, respectively. Using the graphical
editor, model elements are associated with a selected controller module, as shown in the
exemplary graphical representation 400. Selected controller modules and model elements
are interconnected by defining in the graphical editor links (linking information) between
the controller modules and model elements. Individual processing intervals are assigned to
selected controller modules by the user. Moreover, module specific parameters are entered

and assigned to model elements.

In step 522, a model generator of the model development tool 501 generates from the user

input the model definition 150, e.g. in a mark-up language such as XML,

In step 523, using the model commissioning and deployment tool 504, the model definition
150 is mapped, e.g. by a user of computer 5, to the actual hardware configuration of the
sensor/actuator bus 3, i.e. to the actuator 10 and the specific devices 4 attached to the bus,
Depending on the embodiment, the model commissioning and deployment tool 504
supports dynamic detection and/or manual entry of addressing information. The model
definition 150 is loaded from the model commissioning and deployment tool 504 into the
actuator 10 via the model loader 102 (as indicated by reference numeral 15 in Figure 2).
The model commissioning and deployment tool 504 is further configured to load firmware,
model elements for the element library 16, and/or a HTML representation of the model
definition into the actuator 10 via the software loader 101. For each of its model elements,
the model definition includes GUI data indicative of the respective model element's size and
position in a graphical representation 400 of the model definition 15/150 of the HVAC
control application. The model commissioning-and deployment tool 504 is further
configured to provide to a user of computer 5 access to the current model definition 15

stored in the actuator 10, and, particularly, to make it possible for the user to alter the

10

15

20

WO 2010/000077 PCT/CH2008/000300
23

model definition 15 at runtime, e.g. by adding or deleting model elements from the current

mode] definition 15.

In step 524, for purposes of monitoring, parameterization and/or reverse engineering, a user
of computer 5 uses a web browser, such as Internet Explorer by Microsoft Inc., Mozilla
Firefox by the Mozilla Foundation, or Safari by Apple Inc, to upload and display a graphical
representation 400 of the model definition 15 representative of the HVAC control
application implemented and running on the actuator 10, including current values of
system states, alarm and alert notifications, system and device parameter settings, and/or

data values, such as temperature or air quality values.

Figure 7 illustrates a poésible sequence of steps for operating the actuator 10 upon
downloading and configuration (commissioning and depioyment) of the model definition
15, and, in step S71, starting execution of the HVAC control application as defined by the

model definition 15.

In step S72, the mode! interpreter 17 implements and generates the HVAC control
application, by instantiating model elements from the element library 16 as identified by
the mode! definition. The model elements are instantiated using element specific parameter
values specified respectively in the model definitions 15 and/or by the parameterisation
module 103. Specifically, the controller modules are instantiated to run as independent,
parallel processes in separate threads on processor 11. For connecting model elements as
specified by the linking information, established are associations between data input buffers
and data output buffers of model elements as well as the peripheral data input buffers and

data output buffers of the controller modules.

In step 573, execution of the HVAC control application starts, and execution of instantiated

(model, bus and optional network) controllers as parallel processes is initiated.

10

20

WO 2010/000077 PCT/CH2008/000300
24

In step 5731, for managing their own respective processing intervals Td, Te, each of the
instantiated controllers takes a time stamp at starting time Ts of a onetime execution
(model update), as illustrated in Figure 5 for the example of onetime computation of

controller module D in step S61.

In step S732, each of the instantiated controllers propagates the current data values of its
peripheral data input buffers to the data input buffers of the respective linked model

elements.

In step 5733, each of the instantiated controllers starts the sequential processing of its
instantiated and interconnected model elements, i.e. the controllers each perform a onetime
computation of their state machine, whereby the state transitions are executed by the
individual model elements, as illustrated in Figure 5 for the sequential processing of model

elements B, C, and A, for example.

In step 57331, the model element to be processed reads the current data input from its

associated input buffer(s), if applicable.

In step 57332, the respective model element calculates its output value(s) based on the
input data read from the input buffer(s), and writes the output into its respective output

buffer(s).

In step S7333, the respective controller module propagates the data from the element's
output buffer(s) to the input buffers of linked model elements and/or to its peripheral data
output buffers. One skilled in the art will understand, that a feedback of a data value to a
model element already processed in the currenf'processing interval, will no longer be
processed for that model element in the current processing interval, but only in a

subsequent processing interval.

10

20

WO 2010/000077 PCT/CH2008/000300
25

In step S7334, the controller checks whether all model elements have been processed. If
there are further model elements to be processed, processing continues in step 7331 by
triggering processing of the next model element; otherwise, processing continues in step
S734. The next model element to be processed is determined, for example, based on a
processing sequence stored for the respective controller, e.g. a table identifying the

instantiated model elements in sequential order of processing.

In step $734, once all the respective controller's model elements have been processed and
their data output values have been propagated to the controller's peripheral output buffers,
the respective controller module D propagates the data values of the controller's peripheral
output buffers to linked peripheral input buffers of the other controllers, as illustrated in

Figure 6 for steps S63, S65, S67, and 569, for example.

In step 5735, for managing the processing interval Td, Te, the respective controller D takes a
time stamp at completion time Tc of the one-time execution (model update), as illustrated in
Figure 5 for the example of the onetime computation of controller module D in step S61.
The actual processing time Tp is determined based on the starting time stamp Ts and the

completion time stamp Tc.

In step S736, the respective controller D waits until a new processing interval Td begins, or
starts a new processing interval Td immediately, if the actual processing time Tp exceeds the
duration of the controller's interval Td. For a new interval Td, processing continues in step
S731 by processing another onetime computation of the controller's instantiated and

interconnected model elements.

The error handling module 105 provides for centralized error handling and is configured to
process error events, and managé error scenarios for all parts of the HVAC application. The

error handling module 105 is implemented as a separate layer, apart from the control logic.

15

20

25

WO 2010/000077 PCT/CH2008/000300
26

Error scenarios describe error states (conditions) and respective system reactions. As
llustrated schematically in Figure 8, an error scenario 1050 is defined by one or more error
filters 1051 and associated error actions 1052, An error filter 1051 defines criteria on error
events 82, 83, e.g. severity level, for one or more associated error actions 1052 to be
performed. Errors may be caused and detected in various components of the system. For
example, if a temperature sensor does not provide a temperature value, higher level system
components may detect this error state. Alternatively, the sensor may have some built-in
functionality for polling its operational state. Moreover, the systems engineer may define
specific states to be erroneous, e.g. the value provided by sensor not being within a defined
range. Thus, error triggering mechanisms may be implemented at different hierarchical

levels in different system components.

For example, in Figure 8, the 1,70 element 4020 of the bus controller module 402 includes
an error triggering module 4021 which is configured to detect an error state in |/0 element
4020. Upon detection of an error state, in step S82, the error triggering module 4021
generates and indicates to the error handling module 105 an error event 82.
Correspondingly, the 1/0 element 4030 of the network controller module 403 includes an
error triggering module 4031 which is configured to detect an error state in /0 element

4030 and trigger an error event 83, in step S83.

The error handling module 105 applies its error filters 1051 to determine any action 1052
to be performed in response to the error event 82, 83. Accordingly, in step S81, the error
handling module 105 triggers one or more actions 1052. For example, in step S84 the

respective error is recorded in error log 84.

In step S85, the error handling module 105 triggers an error catcher module 4012 in the
model controller module 401. The etror catcher module 4012 is configured to set its data

output buffer o to a defined value, e.g. one, when it is triggered by the error handling

10

15

20

25

WO 2010/000077 PCT/CH2008/000300
27

module 105. In this way, the error is signalled to any model (control) element 4013 that has
a data input buffer i linked to the error catcher module 4012. For example, model element
4013 is a multi-mode model element configured to be operable in different modes,
depending on a state selected for the respective model element at run-time. Thus, by linking
the data output buffer o of the error catcher module 4012 to the data input buffer i of the
multi-mode model element 4013, the model element 4013 operates in a regular mode or
an error mode, depending on error states detected in an |/0 element 4020, 4030 and
managed by the error handling module 105. In each state of a multi-mode model element,
the multi-mode element is represented as a different combination of model elements, nested
model elements and their interconnections. Only one state, i.e. one mode, can be active for a
multi-mode model element at any given point in time. The state or mode of a multi-mode
model element is selected through setting of an input value. The current state or mode of a

multi-mode model element is indicated through a respective output value.

In step 586, the error handling module 105 triggers an electronic messaging module 86.
The electronic messaging module 86 is configured to generate and transmit via
communication network 2 an electronic message to one or more defined addresses.
Depending on the embodiment, the electronic message is an e-mail message, an SMS

message (Short Messaging Setrvices) or another data message.

The proposed actuator 10, 10" provides a platform for implementing decentralized and
distributed control for HVAC systems. It is possible to change dynamically the HVAC
application by loading new model definitions. Components of the HVAC system, particularly
the actuators 10, 10" and the controller modules, are loosely coupled and interconnected for
asynchronous data transfer. As HVAC a'pplications\..operate in an environment that changes
gradually, reaction times of the system can be relatively slow. Consequently, there is no real
need to impose temporal dependencies on components of 'the control application that

exchange data.

WO 2010/000077 PCT/CH2008/000300
28

[t should be noted that, in the description, the computer program code, including
instructions for controlling a Java processor, has been associated with specific functional
modules and the sequence of the steps has been presented in a specific order, one skilled in
the art will understand, however, that the computer program code may be structured
differently and that the order of at least some of the steps could be altered, without

deviating from the scope of the invention.

10

20

WO 2010/000077

PCT/CH2008/000300
29

Claims

1.

An actuator (10) for HVAC systems (1), the actuator (10) comptising a network
interface (20) for connecting the actuator (10) to a communication network (2), a bus
interface (30) for connecting the actuator (10) to a sensot/actuator bus (3), a data
store (12), and a processor (11) connected to the data store (12); wherein the

actuator (10) further comprises:

a loader (102) configured to receive via the communication network (2) and store in

the data store a model definition (15) defining an HVAC control application;

an element library (16) including a variety of stored model elements (4011, 4021)
comprising instructions for controlling the processor (11), and controller modules
(401, 402, 403) configured in each case to control the sequential order of execution
for associated model elements (4011, 4021) referenced by the respective controller
module (401, 402, 403), to propagate external data input to its associated model
elements (4011, 4021) prior to beginning the execution of the model element
defined first in the sequentiél order, and to propagate data output from its associated
model elements (4011, 4021) to the outside of the respective controller module (401,
402, 403) at completion of the execution of the model element defined last in the

sequential order; and

a model interpreter (17) configured to implement based on the model definition (15)
the control application for execution on the processor (11), by instantiating controller
modules (D, E) and their associated model elements (A, B, C) as referenced by the
model definition (15), assigning at least one’instantiated model element to a device

(4) attached to the sensor/actuator bus (3), and instantiating the controller modules

10

15

20

25

WO 2010/000077

PCT/CH2008/000300
30

(D, E) in each case as a different thread of execution, so that data is interchanged

asynchronously between instantiated controller modules (D, E).

The actuator (10) of claim 1, wherein the model elements (4011, 4021) are in each
case configured to read input data from one or more defined data input buffers (i)
associated with the respective model element, and to write output data to one or
more defined data output buffers (o) associated with the respective model element;
the model interpreter (17) is further configured to link, based on linking information
included in the model definition (15), output buffers of instantiated model elements
(A, B, C) to input buffers of instantiated model elements (A, B, C); and the controller
modules (401, 402, 403) are configured to propagate in each case, upon completion
of the execution of 4model elements (4011, 4021) referenced by the respective
controller module, data values from the model element's output buffer (o) to a linked

input buffer (i) of a model element referenced by the respective controller.

The actuator (10) of one of claims 1 or 2, wherein the model definition (15) includes
identifiers of model elements (4011, 4021) and parameter values applicable in each
case to the respective model element; the model interpreter (17) is configured to
instantiate in each case the model element from the element library (16) based on
the identifier and parameter values; and the controller modules are configured to
execute in individual processing intervals assigned in each case to the respective

controller module.

The actuator (10) of one of claims 1 to 3, wherein the model definition (15) includes
graphical user interface data associated with model elements (4011, 4021)
referenced by the model definition (15), the graphical user interface data including at
least position information for positioning on a display a graphical representation

(400) of the respective model element.

10

15

20

25

WO 2010/000077 PCT/CH2008/000300

31

The actuator (10) of one of claims 1 to 4, wherein at least some of the stored model
elements are configured to be operable in different modes, the modes being
selectable through setting at run-time of a state associated with an instantiation of

the respective mode! element.

The actuator (10) of one of claims 1 to 5, further comprising a server module (19)
configured to transmit to a web browser a graphical representation (400) of the
control application via the communication network (2) based on the model definition
(15), to transmit to the web browser for display in the graphical representation (400)
input/output values associated in each case with a model element referenced by the
model definition (15), to receive from the web browser parameter values associated in
each case with a mode! element referenced by the model definition (15), and to store
in the actuator (10) the parameter values assigned to an instantiation of the

respective model element (A, B, C).

The actuator (10) of one of claims 1 to 6, wherein the stored model elements (4011,
4021) include elements representative of at least one of controller, PID controller, two
point controller, limiter, timer, Boolean logic module, time period management
module, heating curve module, filter module, floating average calculation module, flip
flop module, input selector module, constant value module, comparator, mathematical

operation module, state checking module, error catching module, and error trigger

module.

The actuator (10) of one of claims 1 to 7, wherein the network interface (20) is
configured for communication according to the Internet Protocol over an Ethernet
communication network; the sensor/actuator bus (3) includes one of MP-Bus and
BACnet-bus; the model definition (15) is defined in a mark-up language; the stored

model elements (4011, 4021) are defined in Java byte code; the processor (11) is a

10

15

20

WO 2010/000077

32

Java processor configured to execute Java byte code; and the loader (102) is further
configured to store in the actuator (10) at least one HTML version of the model

definition (15).

A method for operating an actuator (10) of an HVAC system (1), the method

comprising:

storing in the actuator (10) a model definition (15) defining an HVAC control

application;

storing in the actuator (10) an element library (16) which includes a variety of model
elements (4011, 4021) and controller modules (401, 402, 403), the model elements
(4011, 4021) and controller modules (401, 402, 403) comprising instructions for

controlling a processor (11) of the actuator (10);

implementing in the actuator (10), based on the model definition (15), the control
application for execution on the processor (11), by instantiating from the element
library (16) controller modules (D, E) and associated model elements (A, B, C) as
referenced by the model definition (15), assigning at least one instantiated model
element (A, B, C) to a device (4) attached to a sensor/actuator bus (3), and
instantiating the controller modules (D, E) in each case as a different thread of

execution; and

executing the control application by the respective controller modules (D, E) in each
case controlling the sequential order of execution for associated model elements (A, B,
C) referenced by the respective controller rﬁédule (D, E), propagating external data
input to its associated model elements (A, B, C) prior to beginning the execution of

the model element defined first in the sequential order, and propagating data output

PCT/CH2008/000300

15

20

WO 2010/000077 PCT/CH2008/000300

10.

it

12.

33

from its associated model elements (A, B, C) to the outside of the respective controller
module (D, E) at completion of the execution of the model element defined last in the
sequential order, so that data is interchanged asynchronously between instantiated

controller modules (D, E).

The method of claim 9, wherein the model elements (A, B, C) read input data from
one or more defined data input buffers associated with the respective model element
(A, B, C), and write output data to one or more defined data output buffers associated
with the respective model element (A, B, C); output buffers of model elements (A, B,
C) are linked to input buffers of model elements (A, B, C), based on linking
information included in the model definition (15); and, upon completion of the
execution of model elements (A, B, C) referenced by a respective controller module (D,
E), data values are propagated in each case from the model element's output buffer
to a linked input buffer of a model element (A, B, C) referenced by the respective

controller (D, E).

The method of one of claims 9 or 10, wherein the model elements (A, B, C) are
instantiated from the element library (16) in each case based on an identifier and
respective parameter values included in the model definition (15); and instantiated
controller modules execute in individual processing intervals assigned in each case to

the respective controller module.

The method of one of claims 9 to 11, wherein the model definition (15) includes
graphical user interface data associated with model elements (4011, 4021)
referenced by the model definition (15), and a graphical representation (400) of a
respective model element is positioned on a display based on position information

included in the graphical user interface data.

10

15

20

WO 2010/000077 PCT/CH2008/000300

13.

14.

15.

34

The method of one of claims 9 to 12, wherein selected at runtime is a state
associated with an instantiation of a model element (A, B, C), the state setting the

respective model element (A, B, C) to operate in one of at least two different modes.

The method of one of claims 9 to 13, wherein, based on the model definition (15), a
graphical representation (400) of the control application is transmitted from the
actuator (10) via the communication network (2) to a web browser; input/data
output values, associated in each case with a model element (4011, 4021) referenced
by the model definition (15), are transmitted from the actuator (10) to the web
browser for display in the graphical representation (400); parameter values,
associated in each case with a model element (4011, 4021) referenced by the model
definition (15), are received in the actuator (10) from the web browser; and the
parameter values are stored in the actuator (10) assigned to an instantiation of the

respective model element (A, B, C).

A computer program product comprising computer program code means for
controlling a processor (11) of an actuator (10) of an HVAC system (1) such that the
actuator (10)

receives via a communication network (2) a model definition (15) defining an HVAC

control application;
stores the model definition (15) in a data store (12) of the actuator (10);

implements based on the model definition (15) the control application for execution
on the processor (11) of the actuator (10), by instantiating from a stored element
library (16) controller modules (D, E) and associated model elements (A, B, C) as

referenced by the model definition (15), assigning at least one instantiated model

10

15

WO 2010/000077 PCT/CH2008/000300

16.

35

element (A, B, C) to a device (4) attached to a sensor/actuator bus (3), and
instantiating the controller modules (D, E) in each case as a different thread of

execution, and

executes the control application by controlling the sequential order of execution for
associated model elements (A, B, C) referenced by the respective controller module (D,
E), by propagating external data input for the respective controller module (D, E) to its
associated model elements (A, B, C) prior to beginning the execution of the model
element defined first in the sequential order, and by propagating data output from
the associated model elements (A, B, C) to the outside of the respective controller
module (D, E) at completion of the execution of the model element defined last in the
sequential order, so that data is interchanged asynchronously between instantiated

controller modules (D, E).

The computer program product of claim 15, comprising a computerreadable medium

containing the computer program code means therein.

PCT/CH2008/000300

WO 2010/000077

1/9

52

“
el S i s ittt
-

43

Fig. 1

WO 2010/000077 PCT/CH2008/000300

2/9

103 105

101 16 100 17 18 15 102 \ 104\

\ \ i A \ \ \ \
— — R s
Model Model 13’ _03>
Interpreter Definition .°5> 23S
: : sl=|=
Model |zl 2 2
S|t Controller(s) S é § S
S|l € 8| Jd|| ® &
SlleL(? o228 T
o (| W — Runtime S el sl s
© System s g 21 g
£ sl 5|
n Bus Network allS(&
|l Controller Controller = || <
Bus Network Web

; Interface / Interface Server \

/ / / \ \

/ [I \ \
300 30 20 /‘ 200 19

10

WO 2010/000077 PCT/CH2008/000300
502 503
caoaf et
Basic Nested :
Flement Element |;
Library Library !
x '\ §21 S23
N 504 E

I

4 \ 4 : ;- ———————————— 7[L ------ 73

Model o Model :

Development : : Commissioning and :

Tool oy DeploymentTool |

e L - :

/ . .

501 : :

1 ~ \ !

+] Model > l

2 ! Definition| | Actuator ;

R !

S22 \‘ -

S24 /\/L 10
Monitoring
Tool
\
505

PCT/CH2008/000300

WO 2010/000077

4/9

4031

F

1
O 1
S ro---- |
< /“JF l I
! | |
1
1 “ ,
| |
I 1
I ! —
l |
| \"\w
| <
|
!
I
|
1
|
|
i)
] M
1 i Q
I 1 <
I
— | ©
O i \—\
o " \% 1 m
_ T !
(@) | ! !
I ! !
| R 1]
_ (—_ O
! ()
./--:..----::.//L <
N
o
4

Fig. 4

PCT/CH2008/000300

WO 2010/000077

5/9

[
»

e - —

| S

S61

Fig. 5

WO 2010/000077 PCT/CH2008/000300

6/9
DL —, E LT —,
Ts — L ,
1. s61 63
Td ol | T E> 562
Tc , U
T 1} ses
ses ! | | s64 g? L
. s S65 W
o ;é S66
S68 S67) Te
\/K
w0 [

WO 2010/000077

719

A

PCT/CH2008/000300

WO 2010/000077

8/9

PCT/CH2008/000300

[~
1051
S81

~
1052

4030
\\\ S83 83
4031 1 [E> '/ R
/r
403 //ﬁOZO S82
4021 4 T R
//// 82// S84
402 £>
84)
4012 UA\385
v
4013 | g6~ [T
S86
/‘ //
401
105

Fig. 8

WO 2010/000077 PCT/CH2008/000300

9/9

901
/
/
> >
>> > D
> D>
> > >
> DD
, \
/ \
90 902

Fig. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/CH2008/000300

CLASSIFICATION O

N> G65B10

SUBJECT MATTER
05

According to International Patent Classification (IPC) or to both national classification and IPC

B, FIELDS SEARCHED

GO5B GOGF

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

EPO-Internai

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

cited in the application
column 1, Tines 11-23,38-53

column 4, Tines 24-37,52-56

ET AL) 26 December 2000 (2000-12-26)

column 3, line 36 - column 4, 1ine 9

iy

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2001/025294 Al (STRIPF WOLFGANG [DE] ET 1,5,7-9,
AL) 27 September 2001 (2001-09-27) 13
paragraphs [0003], [0005], [0010] -
[0025]; claims 1-11; figures 1-4
Y : 2-4.6,
10-12,
14-16
Y US 6 167 316 A (GLOUDEMAN JEFFREY J [US] 1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
"A* document defining the general state of the art which is not
considered 1o be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claime:

e

"ne

0

Ll

DY

e

g

later document published after the international filing date
or priority date and not in conflict with the application but
fited to understand the principle or theory underlying the
nvention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
Invoive an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
:’n%r‘ns, such combination being obvious to a person skilled
n the art.

document member of the same patent family

Date of the actual completion of the international search

11 February 2009

Date of malling of the intemational search report

24/02/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL -~ 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Hristov, Stefan

Form PCT/ISA/210 {second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/CH2008/000300

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

US 6 832 120 B1 (FRANK GERALD L [US] ET
AL) 14 December 2004 (2004-12-14)

cited in the application

paragraphs [0008], [0018], [00811,
[0084] - [0092], [0097], [0098],
[0101], 1[0103]

US 6 510 352 Bl (BADAVAS PAUL C [US] ET
AL) 21 January 2003 (2003-01-21)

the whole document

US 5 862 052 A (NIXON MARK [UST ET AL)
19 January 1999 (1999-01-19)

the whole document

US 2002/038301 A1 (ARIDOR YARIV [ILT ET
AL) 28 March 2002 (2002-03-28)

the whole document

US 5 912 814 A (FLOOD MARK A [US])

15 June 1999 (1999-06-15)

the whole document

1-16

1-16

1-16

1-16

1-16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/CH2008/000300
US 2001025294 Al 27-09-2001 US | 2001037489 Al 01-11-2001
UsS 6167316 A 26-12-2000 NONE
US 6832120 Bl 14-12-2004 NONE
US 6510352 B1 21-01-2003 NONE
US 5862052 A 19-01-1999 NONE
US 2002038301 Al 28-03-2002 NONE
US 5912814 A 156-06-1999 US 6411857 Bl 25-06-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

