
IN 
US 20200201661A1 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2020/0201661 A1 

Chou et al . ( 43 ) Pub . Date : Jun . 25 , 2020 

( 54 ) GUARANTEEING AVAILABILITY OF 
TARGET DATA TO REMOTE INITIATORS 
VIA A HYBRID SOURCE / TARGET CREDIT 
SCHEME 

( 71 ) Applicant : Diamanti , Inc. , San Jose , CA ( US ) 

( 72 ) Inventors : Jeffrey Chou , Palo Alto , CA ( US ) ; 
Gopal Sharma , San Jose , CA ( US ) ; 
Amitava Guha , San Jose , CA ( US ) ; 
Kevin Fong , Las Vegas , NV ( US ) ; 
Jayasenan Sundara Ganesh , 
Cupertino , CA ( US ) 

( 60 ) Provisional application No. 61 / 950,036 , filed on Mar. 
8 , 2014 , provisional application No. 62 / 017,257 , filed 
on Jun . 26 , 2014 . 

Publication Classification 

( 51 ) Int . CI . 
G06F 9/455 ( 2006.01 ) 
H04L 29/08 ( 2006.01 ) 
GO6F 3/06 ( 2006.01 ) 

( 52 ) U.S. Ci . 
CPC GO6F 9/45541 ( 2013.01 ) ; H04L 67/1097 

( 2013.01 ) ; H04L 67/1002 ( 2013.01 ) ; G06F 
370664 ( 2013.01 ) ; G06F 3/061 ( 2013.01 ) ; 

G06F 37067 ( 2013.01 ) 
( 57 ) ABSTRACT 
A device includes a converged input / output controller that 
includes a physical target storage media controller , a physi 
cal network interface controller and a gateway between the 
storage media controller and the network interface control 
ler , wherein gateway provides a direct connection for stor 
age traffic and network traffic between the storage media 
controller and the network interface controller . 

( 21 ) Appl . No .: 16 / 806,999 

( 22 ) Filed : Mar. 2 , 2020 

Related U.S. Application Data 
( 63 ) Continuation of application No. 14 / 640,717 , filed on 

Mar. 6 , 2015 , now abandoned . 

102 102 

Computer System 1 ( C1 ) Computer System 2 ( C2 ) 
1018 

LXC3 VM1 
1104 

LXC2 
1114 

LXC1 
1110 

App5 
App3 App1 

1102 
App4 
1118 

App2 
1108 

App6 
1112 

Operating 
System / 
Hypervisor 
108 

Operating 
System / 
Hypervisor 
108 

112 118 112 118 

S1 S3 S4 S2 S5 56 

Ethernet 
Network 122 



102 102 

Conventional Computing System / Server 

Patent Application Publication 

Hypervisor / OS Stack 

118 

Storage 

1/28 

NIC 

Jun . 25 , 2020 Sheet 1 of 28 

Storage Devices 

122 Network 
Fig . 1 PRIOR ART 

US 2020/0201661 A1 



102 

Computing System 1 

102 

Computing System 1 

108 

Hyperviser / OS Stack 

444444444 
Virtualization Boundary 

44444 

Hyperviser / OS Stack 

Patent Application Publication 

126 

106 

CPU 

110 

110 

110 

110 

Pole 

Pile 

PCte 

118 

112 

Storage Controller 

Storage Controller 

118 

124 : 

104 : 

Local Storage Device's 

Locat Storage Devices 

NIC 

Jun . 25 , 2020 Sheet 2 of 28 

1.22 22 Network 

124 

FIG . 2 

US 2020/0201661 A1 

PRIOR ART 



102 

300 

Computer System 

Patent Application Publication 

Converged lo Controller 

106 

118 
110 

To Network Switch / router 

Network Controller 

108 

308 

304 

PCle 

OS 

Memory 

CPU 

SAS , SATA or NVME 

NVME 

302 

DAS 

Storage Controller 

Jun . 25 , 2020 Sheet 3 of 28 

Storage Devices 

112 

SAN 

iSCSI , FC or 

FCOE 

310 

Fig . 3 

US 2020/0201661 A1 



102 

300 

Computer System 1 

SAS , SATA or NVME 

Converged 10 Controller 

SAN 

108 

Storage Controller 

Patent Application Publication 

404 

PCle 

DAS 

CPU 

OS 

SCSI , FC or 

FCOE 

NVME 

Memory 

Network Controller 

402 

408 

400 

V 

Ethernet Switch 

102 

300 

Jun . 25 , 2020 Sheet 4 of 28 

computer System 2 

Network Controller 

108 

PCle 

CPU 

OS 

NVME 

Memory 

Storage Controller 

DAS 

SAS , SATA or NVME 

Converged 10 Controller 

Fig . 4 

US 2020/0201661 A1 

SAN 

iSCSI , FC or FCOE 



102 

Conventional Computing System 
110 

Patent Application Publication 

PCle 

118 

NIC 

500 

300 

302 

Converged DWS IO Controller 

118 

SAS , SATA or NVME 

Network Controller 

DAS 

Jun . 25 , 2020 Sheet 5 of 28 

Storage Devices 
SAN 

Storage Controller 

iSCSI , FC or FCOE 

112 

Storage Enabled Switch 

US 2020/0201661 A1 

Fig . 5 



102 

102 

Computer System 1 

Computer System2 

110 

110 

PCle 

Patent Application Publication 

300 

PCle 

DAS 

118 

Converged Controller 
302 

NIC 

NIC 

Target Storage 

Ethernet 

500 

Jun . 25 , 2020 Sheet 6 of 28 

302 

Target Storage 
v 

US 2020/0201661 A1 

Fig . 6 



102 

300 

102 

Computer System 1 

ISCSI , FC or FCOE 

Conventional Computing System 

SAN 

Converged 10 Controller 

108 

Storage Controller 

SAS , SATA or 
NVME 

Patent Application Publication 

PCle 

PCle 

DAS 

CPU 

Memory 

NVME 

S 

500 

NIC 

Network Controller 

308 

402 

Converged 10 Controller 

SAS , SATA or NVME 

400 

Network Controller 

DAS 

NVME over Ethernet 

Point to Point 

Ethernet Switch 

102 

iSCSI , FC or FCOE 

300 

Storage Controller 

Jun . 25 , 2020 Sheet 7 of 28 

SAN 

Computer System 2 

700 

Storage Enabled Switch 

310 

Network Controller 

108 

308 

302 

PCle 

NVME 

CPU 
Memory 

S 

Storage Controller 

DAS 
SAS , SATA or NVME 

Converged 10 Controller 

US 2020/0201661 A1 

Fig . 7 

SAN 

310 

iSCSI , FC or FCOE 



PCle ( s ) 110 

807 

837 

800 

VNVMe 802 

VNICS 830 

Patent Application Publication 

V 

V 

V 

PF 806 

PF 836 

CPU 

Read / Write DMA Queues 804 

CPU 

Receive / Transmit DMA Queues 832 

858 

Device Mapping 808 

Classifiers , Flow Mgmt 834 

Cache 858 

812 

810 

ACLS , Rewrite Policy 838 

DRAM 
NVRAM 

DDR3 Ctrl 860 

Compress 

Ctrl Prot . Translation 

Storage - Netwrk Tunnel FCOE , NVMEOE , and / or Point - to Point 828 

Forwarding 840 

Protect 

Data Translation 

Encrypt 

842 

Jun . 25 , 2020 Sheet 8 of 28 

Storage Read / Write Queues 814 

Network / Remote Storage Scheduler , Policer 844 

Storage Metadata Management 822 

818 

850 

Local Network Switch 848 

Data Placement 820 

Rewrite , Tag , CRC 852 

824 

PCle 

SAS ctr ! 

SATA ctrl 

NVME ctrl 

FC ctrl 

FCOE ctrl 

iSCSI ctrl 

MAC 

MAC 

MAC 

MAC 

ctrl 

854 

308 

US 2020/0201661 A1 

VXLAN 

DAS 

SAN 

310 

302 

Fig . 8 



PCIe Gen 3X16 Connector 

Patent Application Publication 

PCIe Switch PLX PEX8724 

10G NIC Intel 

obx 
YOUNCI 

Network 
Xilinx XCKU060-2 

NVDW 

Jun . 25 , 2020 Sheet 9 of 28 

Auria 

1020 

Datapathi 
Xilinx XCK1060-2 

Flasks 

806 

JUCNDE 

US 2020/0201661 A1 

Fig . 9 



LXC1 

LXC2 

LXC3 

1018 

App2 

App3 

App3 

Patent Application Publication 

1000 

User 

Virtual Devices 1012 dev1 , dev2 , dev3 

Block Layer 1014 

PCle Driver for Converged Solution 1002 

Kernel 

Jun . 25 , 2020 Sheet 10 of 28 

Hardware 

NVMe Controller 1004 

Ethernet 120 

Other Hosts 102 

NVMe to SATA Bridge 1008 

SATA connection 1010 

302 

US 2020/0201661 A1 

SSD 

Fig . 10 



102 

102 

Computer System 1 ( C1 ) 

Computer System 2 ( C2 ) 

1018 

LXC2 

LXC3 

VM1 1104 

LXC1 1110 

1018 

1114 

App5 

Patent Application Publication 

App1 1102 

App2 1108 

App3 1112 

App4 1118 

00 App6 

Operating System / Hypervisor 108 

Operating System / Hypervisor 108 

Jun . 25 , 2020 Sheet 11 of 28 

112 

118 

112 

118 

31 

S2 

S3 

S4 

S5 

S6 

Ethernet 

Ethernet 

302 

US 2020/0201661 A1 

Network 122 

Fig . 11 



102 

102 

Computer System 1 ( C1 ) 

Computer System 2 ( C2 ) 

1018 

VM1 

LXC2 

LXC1 

LXC3 

1104 

1114 

1110 

Patent Application Publication 

App5 

App1 1102 

App3 1112 

App4 1118 

App2 1108 

App6 

1 . 1 

Operating System / Hypervisor 108 

Operating System / Hypervisor 108 

Jun . 25 , 2020 Sheet 12 of 28 

112 

118 

112 

118 

S1 
Ot 

S3 

S4 

S2 

S5 

S6 

Ethernet 

US 2020/0201661 A1 

Fig . 12 

Network 122 



Computer System 1 ( C1 ) 

Computer System 2 ( C2 ) 

VM1 

LXC2 

LXC1 

LXC3 

1110 

App1 

Patent Application Publication 

App3 ?? 

App5 

App4 

App2 1108 

App6 

Operating System / Hypervisor 108 

Operating System / Hypervisor 108 

Jun . 25 , 2020 Sheet 13 of 28 

112 

118 

112 

118 

S1 

S2 

S3 

S4 

S5 

S6 

Ethernet 

302 

US 2020/0201661 A1 

Fig . 13 

Network 122 



Computer System 1 ( C1 ) 

Computer System 2 ( C2 ) 

VM1 

LXC2 

LXC3 

LXC1 1110 

App1 

Patent Application Publication 

App3 

App5 09 

App2 1108 

App4 

App6 

Operating System / Hypervisor 108 

Operating System / Hypervisor 108 

Jun . 25 , 2020 Sheet 14 of 28 

Converged 10 Controller ( Storage + Network ) 300 

112 

118 

S1 

S2 

S3 

S4 

S5 

S6 

Ethernet 

302 

US 2020/0201661 A1 

Network 122 

Fig . 14 



Computer System 1 ( C1 ) 

Computer System 2 ( C2 ) 

VM1 

LXC2 

LXC1 

LXC3 

1110 

Patent Application Publication 

App1 

App3 

App5 

App4 

App2 1108 

App6 

1 

I 

Operating System / Hypervisor 108 

Operating System / Hypervisor 108 

Jun . 25 , 2020 Sheet 15 of 28 

Converged 10 Controller ( Storage + Network ) 300 

112 

118 

S1 || S2 

53 | 54 

go S5 

S6 

Ethernet 

302 

US 2020/0201661 A1 

Fig . 15 

Network 122 



302 

Patent Application Publication 

N + 

-M 

SATA Bus 1602 

TU 
SATA Controller 

SATA Device 

NE 

- M 

Fiber Channel 1604 

Jun . 25 , 2020 Sheet 16 of 28 

FC Controller 1610 

FC Device 1612 

N -- > 

M- > 

SCSI / SAS 1608 

MU 
SCSI / SAS Controller 

SCSI / SAS Device 

US 2020/0201661 A1 

Fig . 16 



Converged 10 Controller 300 

1704 

N 

M 

> 

07/11 

Q5 
Š 

Patent Application Publication 

Storage Access Bus 

Storage Device 302 

L 

Q6 ali 

1708 

K 

S 

Q8 2814 

Storage Access Bus 

Storage Device 302 

1702 

Jun . 25 , 2020 Sheet 17 of 28 

01 11.02031194 Storage Access Over Ethernet Ethernet 

US 2020/0201661 A1 

Fig . 17 



Applications 

Application - specific SLA Controllers 

fd1 fd2 

0 

Patent Application Publication 

Global static SLA parameters 

Dynamic Session specific SLA parameters 

Linux 

Userland 

POSIX 

Virtual Functions 
File Session SLA ^ 

fd1 lfd2 

Jun . 25 , 2020 Sheet 18 of 28 

Cache Broker 

SLA Broker 1804 

00001 
10001 

File System client 1802 

Memoryl Network SLAAN 

US 2020/0201661 A1 

Network Driver ( TCP - like reliable delivery layer ) 

Fig . 18 



Cache Brokers 

Patent Application Publication 

Platform 1904 

High - speed Memory 
63 62 

61 62 

Application Container ( s ) 1908 

00000 

€ 24 62 

62 

Tiering Engine 1910 

Flash 

High Performance DFS 1902 

Jun . 25 , 2020 Sheet 19 of 28 

Disk 

Disk 

SSD 

Disk 

Disk 

Fig . 19 

US 2020/0201661 A1 



C1 

C2 

C3 

Patent Application Publication 

[ 001010 
10000 

00000000 
00000000 

Cache Broker 

Cache Broker 

O * 

0000 
NOD0000 

100000 
0:00 

Cache Broker 

FS Client 

FS Client 

FS Client 

2002 
Platform 1904 

DRAM 
*** 

DOVOD 
DODOD 
10000 
00000 

Application Container 

Tiering Engine 

Jun . 25 , 2020 Sheet 20 of 28 

Flash 

High Performance DFS 1902 

Disk 

Disk 

SSD 

Disk 

Disk 

US 2020/0201661 A1 

Fig . 20 



Host N 

Host 1 ( H1 ) 

Host 2 ( H2 ) 

Patent Application Publication 

File or Volume Server 2102 

Jun . 25 , 2020 Sheet 21 of 28 

File 1 or Volume 1 

Fig . 21 

File 2 or Volume 2 

Storage 2104 

US 2020/0201661 A1 



Patent Application Publication Jun . 25 , 2020 Sheet 22 of 28 US 2020/0201661 A1 

80ZZ 

Application 2202 File Systenz Client 2210 

Operating System 
2204 Host Fig . 22 

2200 



Patent Application Publication Jun . 25 , 2020 Sheet 23 of 28 US 2020/0201661 A1 

Fig . 23 

Portions at KOB 3 3ax say320 

2208 
© 

2202 dy 2206 File or Volume Server 2210 
Varsåg 2uezada 

Storage 

OOZZ 



Patent Application Publication Jun . 25 , 2020 Sheet 24 of 28 US 2020/0201661 A1 

Aiamöva utax Fig . 24 

8027 mory 
2212 

wollezijddy ale Storage 

Host 
0122 



Patent Application Publication 

Host 1 

Host 2 

2202 

Application 2202 

Meiny 2208 

2208 

Operating System 2204 

Pperating System 2204 

File System Clie : 36 
2206 

File System Client 2206 

Jun . 25 , 2020 Sheet 25 of 28 

Fig . 25 

US 2020/0201661 A1 



Patent Application Publication Jun . 25 , 2020 Sheet 26 of 28 US 2020/0201661 A1 

Access a physical storage device that responds 
to instructions in a first storage protocol . 

2600 

Translate instructions between the first 
storage protocol and a second storage protocol . 2602 

2604 

Use the second protocol , presenting the physical 
storage device to an operating system , such that 

the storage of the physical storage 
device can be dynamically provisioned , whether the 

physical storage device is local or remote to 
a host computing system that uses the operating system . 

Fig . 26 



Patent Application Publication Jun . 25 , 2020 Sheet 27 of 28 US 2020/0201661 A1 

2700 

Provide a converged storage and networking 
controller , wherein a gateway provides a connection 

for network and storage traffic between a storage 
component and a networking component of the device 
without intervention of the operating system of a host 

computer , 

2702 

Map the at least one application or container to a 
target physical storage device that is controlled by the 
converged storage and networking controller , such that 

the application or container can access the target 
physical storage , without intervention of the operating 
system of the host system to which the target physical 
storage is attached , when the application or container 

is moved to another computing system . 

Fig . 27 



Patent Application Publication Jun . 25 , 2020 Sheet 28 of 28 US 2020/0201661 A1 

2800 

Provide a converged storage and networking 
controller , wherein a gateway provides a 
connection for network and storage traffic 

between a storage component and a networking 
component of the device without intervention of 

the operating system of a host computer . 

2802 

Without intervention of the operating system of a 
host computer , manage at least one quality of 
service ( QoS ) parameter related to a network in 

the data path of which the storage and networking 
controller is deployed , such managing being 

based on at least one of the storage traffic and the 
network traffic that is handled by the converged 

storage and networking controller . 

Fig . 28 



US 2020/0201661 A1 Jun . 25 , 2020 
1 

GUARANTEEING AVAILABILITY OF 
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CROSS REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation of U.S. Ser . No. 
14 / 640,717 , filed Mar. 6 , 2015 ( DWIS - 0004-001 ) and 
entitled “ METHODS AND SYSTEMS FOR CONVERGED 
NETWORKING AND STORAGE ” , which is hereby incor 
porated by reference in its entirety . 
[ 0002 ] U.S. Ser . No. 14 / 640,717 claims the benefit of the 
following provisional applications , each of which is hereby 
incorporated by reference in its entirety : U.S. patent appli 
cation 61 / 950,036 , filed Mar. 8 , 2014 ( DWIS - 0002 - P01 ) and 
entitled “ METHOD AND APPARATUS FOR APPLICA 
TION DRIVEN STORAGE ACCESS ” ; and U.S. patent 
application 62 / 017,257 , filed Jun . 26 , 2014 ( DWIS - 0003 
P01 ) and entitled " APPARATUS FOR VIRTUALIZED 
CLUSTER IO " . 

FIELD OF THE INVENTION 

[ 0003 ] This application relates to the fields of networking 
and data storage , and more particularly to the field of 
converged networking and data storage devices . 

BACKGROUND OF THE INVENTION 

small computer system interface ( SCSI ) protocol , the serial 
ATA ( SATA ) protocol , the non - volatile memory express 
( NVMe ) protocol ( a protocol for accessing disk - attached 
storage ( DAS ) , like solid - state drives ( SSDs ) , through the 
PCI Express ( PCIe ) bus 110 of a typical computing system 
102 ) or the like . The PCIe bus 110 may provide an inter 
connection between a CPU 106 ( with processor ( s ) and 
memory ) and various IO cards . The storage stack also may 
include volume managers , etc. Operations within the storage 
software stack may also include data protection , such as 
mirroring or RAID , backup , snapshots , deduplication , com 
pression and encryption . Some of the storage functions may 
be offloaded into a storage controller 112. The software 
network stack includes modules , functions and the like for 
enabling use of various networking protocols , such as Trans 
mission Control Protocol / Internet Protocol ( TCP / IP ) , the 
domain name system protocol ( DNS ) , the address resolution 
protocol ( ARP ) , forwarding protocols , and the like . Some of 
the network functions may be offloaded into a network 
interface controller 118 ( or NIC ) or the network fabric 
switch , such as via an ethernet connection 120 , in turn 
leading to a network ( with various switches , routers and the 
like ) . In virtualized environments , a NIC 118 may be virtu 
alized into several virtual NICs as specified by SR - IOV 
under the PCI Express standard . Although not specified by 
the PCI Express standard and not as common , storage 
controllers can also be virtualized in a similar manner . This 
approach allows virtual entities , such as virtual machines , 
access to their own private resource . 
[ 0006 ] Referring to FIG . 2 , one major problem with hyper 
visors is with the complexity of IO operations . For example , 
in order to deal with an operation involving data across two 
different computers ( computer system 1 and computer sys 
tem 2 in FIG . 2 ) , data must be copied repeatedly , over and 
over , as it moves among the different software stacks 
involved in local storage devices 104 , storage controllers 
112 , the CPUs 106 , network interface controller 118 and the 
hypervisor / operating systems 108 of the computers , result 
ing in large numbers of inefficient data copies for each IO 
operation whenever an activity is undertaken that involves 
moving data from one computer to another , changing the 
configuration of storage , or the like . The route 124 is one of 
many examples of the complex routes that data may take 
from one computer to another , moving up and down the 
software stacks of the two computers . Data that is sought by 
computing system 2 may be initially located in a local 
storage device 104 , such as a disk , of computing system 1 , 
then pulled by a storage controller card 112 ( involving an IO 
operation and copying ) , send over the PCIe bus 110 ( another 
IO operation ) to the CPU 108 where it is handled by a 
hypervisor or other software component of the OS stack 108 
of computing system 1. Next , the data may be delivered 
( another 10 operation ) through the network controller 118 
and over the network 122 ( another set of 10 operations ) to 
computing system 2. The route continues on computing 
system 2 , where data may travel through the network 
controller 118 and to the CPU 106 of computing system 2 
( involve additional IO operations ) , then sent over the PCIe 
bus 110 to the local storage controller 112 for storage , then 
back to the hypervisor / OS stack 108 for actual use . These 
operations may occur across a multiplicity of pairs of 
computing systems , with each exchange involving this kind 
of proliferation of IO operations ( and many other routes are 
possible , each involving significant numbers of operations ) . 

[ 0004 ] The proliferation of scale - out applications has led 
to very significant challenges for enterprises that use such 
applications . Enterprises typically choose between solutions 
like virtual machines ( involving software components like 
hypervisors and premium hardware components ) and so 
called “ bare metal ” solutions ( typically involving use of an 
operating system like LinuxTM and commodity hardware . At 
large scale , virtual machine solutions typically have poor 
input - output ( IO ) performance , inadequate memory , incon 
sistent performance , and high infrastructure cost . Bare metal 
solutions typically have static resource allo tion ( making 
changes in resources difficult and resulting in inefficient use 
of the hardware ) , challenges in planning capacity , inconsis 
tent performance , and operational complexity . In both cases , 
inconsistent performance characterizes the existing solu 
tions . A need exists for solutions that provide high perfor 

in multi - tenant deployments , that can handle 
dynamic resource allocation , and that can use commodity 
hardware with a high degree of utilization . 
[ 0005 ] FIG . 1 depicts the general architecture of a com 
puting system 102 , such as a server , functions and modules 
of which may be involved in certain embodiments disclosed 
herein . Storage functions ( such as access to local storage 
devices on the server 102 , such as media 104 ( e.g. , rotating 
media or flash ) and network functions such as forwarding 
have traditionally been performed separately in either soft 
ware stacks or hardware devices ( e.g. , involving a network 
interface controller 118 or a storage controller 112 , for 
network functions or storage functions , respectively ) . 
Within an operating system stack 108 ( which may include an 
operating system and a hypervisor in some embodiments 
including all the software stacks associated with storage and 
networking functions for the computing system ) , the soft 
ware storage stack typically includes modules enabling use 
of various protocols that can be used in storage , such as the 
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out - of - the box , across the network , and into the box data 
transfer needs to be repeated again . As described , limitations 
of this approach include degradation in raw performance , 
unpredictable performance , impact on other tenants or 
operations , availability and reliability , and inefficient use of 
resources . A need exists for data transfer systems that avoid 
the complexity and performance impacts of the current 
approaches . 
[ 0008 ] As an alternative to hypervisors ( which provide a 
separate operating system for each virtual machine that they 
manage ) , technologies such as LinuxTM containers have 
been developed ( which enable a single operating system to 
manage multiple application containers ) . Also , tools such as 
Dockers have been developed , which provide provisioning 
for packaging applications with libraries . Among many 
other innovations described throughout this disclosure , an 
opportunity exists for leveraging the capabilities of these 
emerging technologies to provide improved methods and 
systems for scaleout applications . 

SUMMARY 

Many such complex data replication and transport activities 
among computing systems are required in scaleout situa 
tions , which are increasingly adopted by enterprises . For 
example , when implementing a scaleout application like 
MongoDBTM , customers must repeatedly run real time que 
ries during rebalancing operations , and perform large scale 
data loading . Such activities involve very large numbers of 
IO operations , which result in poor performance in hyper 
visor solutions . Users of those applications also frequently 
re - shard ( change the shards on which data is deployed ) , 
resulting in big problems for bare metal solutions that have 
static storage resource allocations , as migration of data from 
one location to another also involves many copying and 
transport operations , with large numbers of 10 operations . 
As the amount of data used in scaleout applications grows 
rapidly , and the connectedness among disparate systems 
increases ( such as in cloud deployments involving many 
machines ) , these problems grow exponentially . A need exists 
for storage and networking solutions that reduce the number 
and complexity of IO operations and otherwise improve the 
performance and scaleability of scaleout applications with 
out requiring expensive , premium hardware . 
[ 0007 ] Referring still to FIG . 2 , for many applications and 
use cases , data ( and in turn , storage ) needs to be accessed 
across the network between computing systems 102. Three 
high - level steps of this operation include the transfer of data 
from the storage media of one computing system out of a 
box , movement across the network 122 , and the transfer of 
data into a second box ( second computing system 102 ) to the 
storage media 104 of that second computing system 102 . 
First , out of the box transfer , may involve intervention from 
the storage controller 112 , the storage stack in the OS 108 , 
the network stack in the OS 108 , and the network interface 
controller 118. Many traversals and copying across internal 
busses ( PCIe 110 and memory ) as well as CPU 106 pro 
cessing cycles are spent . This not only degrades perfor 
mance ( creating latency and throughput issues ) of the opera 
tion , but also adversely affects other applications that run on 
the CPU . Second , once the data leaves the box , 102 and 
moves onto the network 122 , it is treated like any other 
network traffic and needs to be forwarded / routed to its 
destination . Policies are executed and decisions are made . In 
environments where a large amount of traffic is moving , 
congestion can occur in the network 122 , causing degrada 
tion in performance as well as problems with availability 
( e.g. , dropped packets , lost connections , and unpredictable 
latencies ) . Networks have mechanisms and algorithms to 
avoid spreading of congestion , such as pause functions , 
backward congestion notification ( BCN ) , explicit conges 
tion notification ( ECN ) , etc. However , these are reactive 
methods ; that is , they detect formation of congestion points 
and push back on the source to reduce congestion , poten 
tially resulting in delays and performance impacts . Third , 
once the data arrives at its “ destination ” computing system 
102 , it needs to be processed , which involves intervention 
from the network interface controller 118 , the network stack 
in the OS 108 , the storage stack in the OS 108 , and the 
storage controller 112. As with out of the box operations 
noted above , many traversals and copying across internal 
busses as well as CPU 106 processing cycles are spent . 
Further , the final destination of the data may well reside in 
still a different box . This can be the result of a need for more 
data protection ( e.g. , mirroring or across - box RAID ) or the 
need for de - duplication . If so , then the entire sequence of 

[ 0009 ] Provided herein are methods and systems that 
include a converged storage and network controller in hard 
ware that combines initiator , target storage functions and 
network functions into a single data and control path , which 
allows a “ cut - through ” path between the network and stor 
age , without requiring intervention by a host CPU . For ease 
of reference , this is referred to variously in this disclosure as 
a converged hardware solution , a converged device , a con 
verged adaptor , a converged IO controller , a “ datawise ” 
controller , or the like throughout this disclosure , and such 
terms should be understood to encompass , except where 
context indicates otherwise , a converged storage and net 
work controller in hardware that combines target storage 
functions and network functions into a single data and 
control path . 
[ 0010 ] Among other benefits , the converged solution will 
increase raw performance of a cluster of computing and / or 
storage resources ; enforce service level agreements ( SLAs ) 
across the cluster and help guarantee predictable perfor 
mance ; provide a multi - tenant environment where a tenant 
will not affect its neighbor ; provide a denser cluster with 
higher utilization of the hardware resulting in smaller data 
center footprint , less power , fewer systems to manage ; 
provide a more scalable cluster ; and pool storage resources 
across the cluster without loss of performance . 
[ 0011 ] The various methods and systems disclosed herein 
provide high - density consolidation of resources required for 
scaleout applications and high performance multi - node 
pooling . These methods and systems provide a number of 
customer benefits , including dynamic cluster - wide resource 
provisioning , the ability to guarantee quality - of - service 
( QoS ) , Security , Isolation etc. on network and storage func 
tions , and the ability to use shared infrastructure for pro 
duction and testing / development . 
[ 0012 ] Also provided herein are methods and systems to 
perform storage functions through the network and to vir 
tualize storage and network devices for high performance 
and deterministic performance in single or multi - tenant 
environments . 
[ 0013 ] Also provided herein are methods and systems for 
virtualization of storage devices , such as those using NVMe 
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and similar protocols , and the translation of those virtual 
devices to different physical devices , such as ones using 
SATA . 
[ 0014 ] The methods and systems disclosed herein also 
include methods and systems for end - to - end congestion 
control involving only the hardware on the host ( as opposed 
to the network fabric ) that includes remote credit manage 
ment and a distributed scheduling algorithm at the box level . 
[ 0015 ] Also provided herein are various methods and 
systems that are enabled by the converged network / storage 
controller , including methods and systems for virtualization 
of a storage cluster or of other elements that enable a cluster , 
such as a storage adaptor , a network adaptor , a container 
( e.g. , a Linux container ) , a Solaris zone or the like . Among 
advantages , one aspect of virtualizing a cluster is that 
containers can become location - independent in the physical 
cluster . Among other advantages , this allows movement of 
containers among machines in a vastly simplified process 
described below . 
[ 0016 ] Provided herein are methods and systems for vir 
tualizing direct - attached storage ( DAS ) , so that the operat 
ing system stack 108 still sees a local , persistent device , even 
if the physical storage is moved and is remotely located ; that 
is , provided herein are methods and systems for virtualiza 
tion of DAS . In embodiments this may include virtualizing 
DAS over a fabric , that is , taking a DAS storage system and 
moving it outside the box and putting it on the network . In 
embodiments this may include carving DAS into arbitrary 
name spaces . In embodiments the virtualized DAS is made 
accessible as if it were actual DAS to the operating system , 
such as being accessible by the OS 108 over a PCIe bus via 
NVMe . Thus , provided herein is the ability to virtualize 
storage ( including DAS ) so that the OS 108 sees it as DAS , 
even if the storage is actually accessed over a network 
protocol such as Ethernet , and the OS 108 is not required to 
do anything different than would be required with local 
physical storage . 
[ 0017 ] Provided herein are methods and systems for pro 
viding DAS across a fabric , including exposing virtualized 
DAS to the OS 108 without requiring any modification of 
the OS 108 . 
[ 0018 ] Also provided herein are methods and systems for 
virtualization of a storage adaptor ( referring to a target 
storage system ) . 
[ 0019 ] Provided herein are methods and systems for com 
bining storage initiation and storage targeting in a single 
hardware system . In embodiments , these may be attached by 
a PCIe bus 110. A single root virtualization function ( SR 
IOV ) may be applied to take any standard device and have 
it act as if it is hundreds of such devices . Embodiments 
disclosed herein include using SR - IOV to give multiple 
virtual instances of a physical storage adaptor . SR - IOV is a 
PCIe standard that virtualizes I / O functions , and while it has 
been used for network interfaces , the methods and systems 
disclosed herein extend it to use for storage devices . Thus , 
provided herein is a virtual target storage system . 
[ 0020 ] Embodiments may include a switch form factor or 
network interface controller , wherein the methods and sys 
tems disclosed herein may include a host agent ( either in 
software or hardware ) . Embodiments may include breaking 
up virtualization between a front end and a back end . 
[ 0021 ] Embodiments may include various points of 
deployment for a converged network and target storage 
controller . While some embodiments locate the converged 

device on a host computing system 102 , in other cases the 
disk can be moved to another box ( e.g. , connected by 
Ethernet to a switch that switches among various boxes 
below . While a layer may be needed to virtualize , the storage 
can be separated , so that one can scale storage and comput 
ing resources separately . Also , one can then enable blade 
servers ( i.e. , stateless servers ) . Installations that would have 
formerly involved expensive blade servers and attached to 
storage area networks ( SANs ) can instead attach to the 
switch . In embodiments this comprises a “ rackscale ” archi 
tecture where resources are disaggregated at the rack level . 
[ 0022 ] Methods and systems disclosed herein include 
methods and systems for virtualizing various types of non 
DAS storage as DAS in a converged networking / target 
storage appliance . In embodiments , one may virtualize 
whatever storage is desired as DAS , using various front end 
protocols to the storage systems while exposing storage as 
DAS to the OS stack 108 . 
[ 0023 ] Methods and systems disclosed herein include vir 
tualization of a converged network / storage adaptor . From a 
traffic perspective , one may combine systems into one . 
Combining the storage and network adaptors , and adding in 
virtualization , gives significant advantages . Say there is a 
single host 102 with two PCIe buses 110. To route from the 
PCIe 110 , you can use a system like RDMA to get to another 
machine / host 102. If one were to do this separately , one has 
to configure the storage and the network RDMA system 
separately . One has to join each one and configure them at 
two different places . In the converged scenario , the whole 
step of setting up Qos , seeing that this is RDMA and that 
there is another fabric elsewhere is a zero touch process , 
because with combined storage and networking the two can 
be configured in a single step . That is , once one knows the 
storage , one doesn't need to set up the QoS on the network 
separately . 
[ 0024 ] Method and systems disclosed herein include vir 
tualization and / or indirection of networking and storage 
functions , embodied in the hardware , optionally in a con 
verged network adaptor / storage adaptor appliance . While 
virtualization is a level of indirection , protocol is another 
level of indirection . The methods and systems disclosed 
herein may convert a protocol suitable for use by most 
operating systems to deal with local storage , such as NVMe , 
to another protocol , such as SAS , SATA , or the like . One 
may expose a consistent interface to the OS 108 , such as 
NVMe , and in the back end one may convert to whatever 
storage media is cost - effective . This gives a user a price ! 
performance advantage . If components are cheaper / faster , 
one can connect any one of them . The back end could be 
anything , including NVMe . 
[ 0025 ] Provided herein are methods and systems that 
include a converged data path for network and storage 
functions in an appliance . Alternative embodiments may 
provide a converged data path for network and storage 
functions in a switch . 
[ 0026 ] In embodiments , methods and systems disclosed 
herein include storage / network tunneling , wherein the tun 
neling path between storage systems over a network does 
not involve the operating system of a source or target 
computer . In conventional systems , one had separate storage 
and network paths , so accessing storage remotely , required 
extensive copying to and from memory , I / O buses , etc. 
Merging the two paths means that storage traffic is going 
straight onto the network . The OS 108 of each computer sees 
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only a local disk . Another advantage is simplicity of pro 
gramming . A user does not need to separately program a 
SAN , meaning that the methods disclosed herein include a 
one - step programmable SAN . Rather than requiring discov 
ery and specification of zones , and the like , encryption , 
attachment , detachment and the like may be centrally , and 
programmatically done . 
[ 0027 ] Embodiments disclosed herein may include virtu 
alizing the storage to the OS 108 so that the OS 108 sees 
storage as a local disk . The level of indirection involved in 
the methods and systems disclosed herein allows the con 
verged system to hide not only the location , but the media 
type , of storage media . All the OS sees is that there is a local 
disk , even if the actual storage is located remotely and / or is 
or a different type , such as a SAN . Thus , virtualization of 
storage is provided , where the OS 108 and applications do 
not have to change . One can hide all of the management , 
policies of tiering , polices of backup , policies of protection 
and the like that are normally needed to configure complex 
storage types behind . 
[ 0028 ] Methods and systems are provided for selecting 
where indirection occurs in the virtualization of storage . 
Virtualization of certain functions may occur in hardware 
( e.g. , in an adaptor on a host , in a switch , and in varying 
form factors ( e.g. , FPGA or ASICs ) and in software . Dif 
ferent topologies are available , such as where the methods 
and systems disclosed herein are deployed on a host 
machine , on a top of the rack switch , or in a combination 
thereof . Factors that go into the selection include ease of use . 
Users who want to run stateless servers may prefer a top of 
rack . Ones who don't care about that approach might prefer 
the controller on the host . 
[ 0029 ] Methods and systems disclosed herein include pro 
viding NVMe over Ethernet . These approaches can be the 
basis for the tunneling protocol that is used between devices . 
NVMe is a suitable DAS protocol that is intended conven 
tionally to go to a local PCIe . Embodiments disclosed herein 
may tunnel the NVMe protocol traffic over Ethernet . NVMe 
( non - volatile memory express ) is a protocol that in Linux 
and Windows provides access to PCIe - based Flash Storage . 
This provides high performance by by - passing the software 
stacks used in conventional systems . 
( 0030 ) Embodiments disclosed herein may include pro 
viding an NVMe device that is virtualized and dynamically 
allocated . In embodiments one may piggy back NVMe , but 
carve up and virtualize and dynamically allocate an NVMe 
device . In embodiments there is no footprint in the software . 
The operating system stays the same ( just a small driver that 
sees the converged network / storage card ) . This results in 
virtual storage presented like a direct attached disk , but the 
difference is that now we can pool such devices across the 
network . 
[ 0031 ] Provided herein are methods and systems for pro 
viding the simplicity of direct attached storage ( DAS ) with 
the advantages of sharing like in a storage area network 
( SAN ) . Each converged appliance in various embodiments 
disclosed herein may be a host , and any storage drives may 
be local to a particular host but seen by the other hosts ( as 
in a SAN or other network - accessible storage ) . The drives in 
each box enabled by a network / storage controller of the 
present disclosure behave like a SAN ( that is , are available 
on the network ) , but the management methods are much 
simpler . When a storage administrator sets up a SAN , a 
typical enterprise may have a whole department setting up 

zones for a SAN ( e.g. , a fiber channel switch ) , such as 
setting up “ who sees what . ” That knowledge is pre - loaded 
and a user has to ask the SAN administrator to do the work 
to set it up . There is no programmability in a typical legacy 
SAN architecture . The methods and systems disclosed 
herein provide local units that are on the network , but the 
local units can still access their storage without having to go 
through complex management steps like zone definition , etc. 
These devices can do what a SAN does just by having both 
network and storage awareness . As such , they represent the 
first programmatic SAN . 
[ 0032 ] Methods and systems disclosed herein may include 
persistent , stateful , disaggregated storage enabled by a hard 
ware appliance that provides converged network and storage 
data management . 
[ 0033 ] Methods and systems disclosed herein may also 
include convergence of network and storage data manage 
ment in a single appliance , adapted to support use of 
containers for virtualization . Such methods and systems are 
compatible with the container ecosystem that is emerging , 
but offering certain additional advantages . 
[ 0034 ] Methods and systems are disclosed herein for 
implementing virtualization of NVMe . Regardless how 
many sources to how many destinations , as long as the data 
from the sources is serialized first before going into the hub , 
then the hub distributes to data to the designated destination 
sequentially . If so , then data transport resources such as 
DMA engine can be reduced to only one copy . This may 
include various use scenarios , in one scenario , for NVMe 
virtual functions ( \ Ts ) , if they are all connected to the same 
PCIe bus , then regardless how many \ Ts are configured , the 
data would be coming into this pool of VFs serially , so there 
is only one DMA engine and only one storage block ( for 
control information ) is needed . In another use scenario , for 
a disk storage system with a pool of discrete disks / control 
lers , if the data is originated from the physical bus , i.e. PCIe , 
since the data is serially coming into this pool of disks , then 
regardless how many disks / controllers are in the pool , the 
transport resources such as the DMA engine can be reduced 
to only one instead of one per controller . 
[ 0035 ] In accordance with various exemplary and non 
limiting embodiments , a device comprises a converged 
input / output controller that includes a physical target storage 
media controller , a physical network interface controller ; 
and a gateway between the storage media controller and the 
network interface controller , wherein gateway provides a 
direct connection for storage traffic and network traffic 
between the storage media controller and the network inter 
face controller . 
( 0036 ] In accordance with various exemplary and non 
limiting embodiments , a method of virtualization of a stor 
age device comprises accessing a physical storage device 
that responds to instructions in a first storage protocol , 
translating instructions between the first storage protocol 
and a second storage protocol and using the second protocol , 
presenting the physical storage device to an operating sys 
tem , such that the storage of the physical storage device can 
be dynamically provisioned , whether the physical storage 
device is local or remote to a host computing system that 
uses the operating system . 
[ 0037 ] In accordance with various exemplary and non 
limiting embodiments , a method of facilitating migration of 
at least one of an application and a container comprises 
providing a converged storage and networking controller , 
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wherein a gateway provides a connection for network and 
storage traffic between a storage component and a network 
ing component of the device without intervention of the 
operating system of a host computer and mapping the at least 
one application or container to a target physical storage 
device that is controlled by the converged storage and 
networking controller , such that the application or container 
can access the target physical storage , without intervention 
of the operating system of the host system to which the 
target physical storage is attached , when the application or 
container is moved to another computing system . 
[ 0038 ] In accordance with various exemplary and non 
limiting embodiments , a method of providing quality of 
service ( QoS ) for a network , comprises providing a con 
verged storage and networking controller , wherein a gate 
way provides a connection for network and storage traffic 
between a storage component and a networking component 
of the device without intervention of the operating system , 
a hypervisor , or other software running on the CPU of a host 
computer and , also without intervention of the operating 
system , hypervisor , or other software running on the CPU of 
a host computer , managing at least one quality of service 
( QoS ) parameter related to a network in the data path of 
which the storage and networking controller is deployed , 
such managing being based on at least one of the storage 
traffic and the network traffic that is handled by the con 
verged storage and networking controller . 
[ 0039 ] QoS may be based on various parameters , such as 
one or more of a bandwidth parameter , a network latency 
parameter , an IO performance parameter , a throughput 
parameter , a storage type parameter and a storage latency 
parameter . QoS may be maintained automatically when at 
least one of an application and a container that is serviced by 
storage through the converged storage and network control 
ler is migrated from a host computer to another computer . 
Similarly , QoS may be maintained automatically when at 
least one target storage device that services at least one of an 
application and a container through the converged storage 
and network controller is migrated from a first location to 
another location or multiple locations . For example , storage 
may be scaled , or different storage media types may be 
selected , to meet storage needs as requirements are 
increased . In embodiments , a security feature may be pro 
vided , such as encryption of network traffic data , encryption 
of data in storage , or both . Various storage features may be 
provided as well , such as compression , protection levels 
( e.g. , RAID levels ) , use of different storage media types , 
global de - duplication , and snapshot intervals for achieving 
at least one of a recovery point objective ( RPO ) and a 
recovery time objective ( RTO ) . 

[ 0043 ] FIG . 3 illustrates a converged solution in accor 
dance with an exemplary and non - limiting embodiment . 
[ 0044 ] FIG . 4 illustrates two computing systems enabled 
by a converged solution in accordance with an exemplary 
and non - limiting embodiment . 
[ 0045 ] FIG . 5 illustrates a converged controller in accor 
dance with an exemplary and non - limiting embodiment . 
[ 0046 ] FIG . 6 illustrates a deployment of a converged 
controller in accordance with an exemplary and non - limiting 
embodiment . 
[ 0047 ] FIG . 7 illustrates a plurality of systems in accor 
dance with an exemplary and non - limiting embodiment . 
[ 0048 ] FIG . 8 illustrates a block diagram of a field 
programmable gate array ( FPGA ) in accordance with an 
exemplary and non - limiting embodiment . 
[ 0049 ] FIG . 9 illustrates an architecture of a controller 
card in accordance with an exemplary and non - limiting 
embodiment . 
[ 0050 ] FIG . 10 illustrates a software stack in accordance 
with an exemplary and non - limiting embodiment . 
[ 0051 ] FIGS . 11-15 illustrate the movement of an appli 
cation container across multiple systems in accordance with 
an exemplary and non - limiting embodiment . 
[ 0052 ] FIG . 16 illustrates packet transmission in accor 
dance with an exemplary and non - limiting embodiment . 
[ 0053 ] FIG . 17 illustrates a storage access scheme in 
accordance with an exemplary and non - limiting embodi 
ment . 

[ 0054 ] FIG . 18 illustrates the operation of a file system in 
accordance with an exemplary and non - limiting embodi 
ment . 
[ 0055 ] FIG . 19 illustrates the operation of a distributed file 
server in accordance with an exemplary and non - limiting 
embodiment . 
[ 0056 ] FIG . 20 illustrates a high performance distributed 
file server ( DFS ) in accordance with an exemplary and 
non - limiting embodiment . 
[ 0057 ] FIG . 21 illustrates a system in accordance with an 
exemplary and non - limiting embodiment . 
[ 0058 ] FIG . 22 illustrates a host in accordance with an 
exemplary and non - limiting embodiment . 
[ 0059 ] FIG . 23 illustrates an application accessing a block 
of data in accordance with an exemplary and non - limiting 
embodiment . 
[ 0060 ] FIG . 24 illustrates an application accessing a block 
of data in accordance with an exemplary and non - limiting 
embodiment . 
[ 0061 ] FIG . 25 illustrates a system in accordance with an 
exemplary and non - limiting embodiment . 
[ 0062 ] FIG . 26 illustrates a method according to an exem 
plary and non - limiting embodiment . 
[ 0063 ] FIG . 27 illustrates a method according to an exem 
plary and non - limiting embodiment . 
[ 0064 ] FIG . 28 illustrates a method according to an exem 
plary and non - limiting embodiment . 
[ 0065 ) Skilled artisans will appreciate that elements in the 
figures are illustrated for simplicity and clarity and have not 
necessarily been drawn to scale . For example , the dimen 
sions of some of the elements in the figures may be exag 
gerated relative to other elements to help to improve under 
standing of embodiments of the systems and methods 
disclosed herein . 

BRIEF DESCRIPTION OF THE FIGURES 
[ 0040 ] The accompanying figures where like reference 
numerals refer to identical or functionally similar elements 
throughout the separate views and which together with the 
detailed description below are incorporated in and form part 
of the specification , serve to further illustrate various 
embodiments and to explain various principles and advan 
tages all in accordance with the systems and methods 
disclosed herein . 
[ 0041 ] FIG . 1 illustrates a general architecture in accor 
dance with an exemplary and non - limiting embodiment . 
[ 0042 ] FIG . 2 illustrates a computer system in accordance 
with an exemplary and non - limiting embodiment . 



US 2020/0201661 A1 Jun . 25 , 2020 
6 

DETAILED DESCRIPTION OF THE 
INVENTION 

[ 0066 ] The present disclosure will now be described in 
detail by describing various illustrative , non - limiting 
embodiments thereof with reference to the accompanying 
drawings and exhibits . The disclosure may , however , be 
embodied in many different forms and should not be con 
strued as being limited to the illustrative embodiments set 
forth herein . Rather , the embodiments are provided so that 
this disclosure will be thorough and will fully convey the 
concept of the disclosure to those skilled in the art . The 
claims should be consulted to ascertain the true scope of the 
disclosure . 
[ 0067 ] Before describing in detail embodiments that are in 
accordance with the systems and methods disclosed herein , 
it should be observed that the embodiments reside primarily 
in combinations of method steps and / or system components 
related to converged networking and storage . Accordingly , 
the system components and method steps have been repre 
sented where appropriate by conventional symbols in the 
drawings , showing only those specific details that are per 
tinent to understanding the embodiments of the systems and 
methods disclosed herein so as not to obscure the disclosure 
with details that will be readily apparent to those of ordinary 
skill in the art . 
[ 0068 ] Referring to FIG . 3 , the converged solution 300 
may include three important aspects and may be imple 
mented in a hardware device that includes a combination of 
hardware and software modules and functions . First , a 
cut - through data path 304 may be provided between 
network controller 118 and a storage controller 112 , so that 
access of the storage to and from the network can be direct , 
without requiring any intervention of the OS stack 108 , the 
PCIe bus 110 , or the CPU 106. Second , cut through storage 
stack access , such as to storage devices 302 , may 
vided , such as access of the storage to and from entities on 
the local host , which allows bypassing of complex legacy 
software stacks for storage access , such as SCSI / SAS / SATA 
stacks . Third , end - to - end congestion management and flow 
control of the network may be provided , such as by a 
mechanism to reserve and schedule the transfer of data 
across the network , which guarantees the availability of the 
target's data to remote initiators and minimizes the conges 
tion of the traffic as it flows through intermediate network 
fabric switches . The first and second aspects remove soft 
ware stacks ( hence the CPU 106 and memory ) from the path 
of the data , eliminating redundant or unnecessary movement and processing . End - to - end congestion management and 
flow control delivers a deterministic and reliable transport of 
the data . 
[ 0069 ] As noted above , one benefit of the converged 
solution 300 is that the operating system stack 108 connects 
to the converged solution 300 over a conventional PCIe 110 
or a similar bus , so that the OS stack 108 sees the converged 
solution 300 , and any storage that it controls through the 
cut - through to storage devices 302 , as one or more local , 
persistent devices , even if the physical storage is remotely 
located . Among other things , this comprises the capability 
for virtualization of DAS 308 , which may include virtual 
izing DAS 308 over a fabric , that is , taking a DAS 308 
storage system and moving it outside the computing system 
102 and putting it on the network . The storage controller 112 
of the converged solution 300 may connect to and control 
DAS 308 on the network 122 via various known protocols , 

such as SAS , SATA , or NVMe . In embodiments virtualiza 
tion may include carving DAS 308 into arbitrary name 
spaces . In embodiments the virtualized DAS 308 is made 
accessible as if it were actual , local , physical DAS to the 
operating system , such as being accessible by the OS 108 
over a PCIe bus 110 to the storage controller 112 of the 
converged solution 300 via a standard protocol such as 
NVMe . Again , the OS 108 sees the entire solution 300 as a 
local , physical device , such as DAS . Thus , provided herein 
is the ability to virtualize storage ( including DAS and other 
storage types , such as SAN 310 ) so that the OS 108 sees any 
storage type as DAS , even if the storage is actually accessed 
over a network 122 , and the OS 108 is not required to do 
anything different than would be required with local physi 
cal storage . In the case where the storage devices 302 are 
SAN 310 storage , the storage controller 112 of the con 
verged solution may control the SAN 310 through an 
appropriate protocol used for storage area networks , such as 
the Internet Small Computing System Interface ( iSCSI ) , 
Fibre Channel ( FC ) , or Fibre Channel over Ethernet ( FCOE ) . 
Thus , the converged solution 300 provides a translation for 
the OS stack 108 from any of the other protocols used in 
storage , such as Ethernet , SAS , SATA , NVMe , iSCSI , FC or 
FCoE , among others , to a simple protocol like NVMe that 
makes the disparate storage types and protocols appear as 
local storage accessible over PCIe 110. This translation in 
turns enables virtualization of a storage adaptor ( referring to 
any kind of target storage system ) . Thus , methods and 
systems disclosed herein include methods and systems for 
virtualizing various types of non - DAS storage as DAS in a 
converged networking / target storage appliance 300. In 
embodiments , one may virtualize whatever storage is 
desired as DAS , using various protocols to the storage 
systems while exposing storage as DAS to the OS stack 108 . 
Thus , provided herein are methods and systems for virtual 
ization of storage devices , such as those using NVMe and 
similar protocols , and the translation of those virtual devices 
to different physical devices , such as ones using SATA . 
[ 0070 ] Storage / network tunneling 304 , where the tunnel 
ing path between storage systems over the network 122 does 
not involve the operating system of a source or target 
computer enables a number of benefits . In conventional 
systems , one has separate storage and network paths , so 
accessing storage remotely required extensive copying to 
and from memory , I / O buses , etc. Merging the two paths 
means that storage traffic is going straight onto the network . 
An advantage is simplicity of programming . A user does not 
need to separately program a SAN 310 , meaning that the 
methods disclosed herein enable a one - step programmable 
SAN 310. Rather than requiring discovery and specification 
of zones , and the like , configuration , encryption , attachment , 
detachment and the like may be centrally , and programmati 
cally done . As an example , a typical SAN is composed of 
" initiators , ” “ targets , ” and a switch fabric , which connects 
the initiators and targets . Typically which initiators see 
which targets are defined / controlled by the fabric switches , 
called “ zones . ” Therefore , if an initiator moves or a target 
moves , zones need to be updated . The second control portion 
of a SAN typically lies with the “ targets . ” They can control 
which initiator port can see what logical unit numbers 
( LUNS ) ( storage units exposed by the target ) . This is typi 
cally referred to as LUN masking and LUN mapping . Again , 
if an initiator moves locations , one has to re - program the 
“ Target ” . Consider now that in such an environment if an 

be pro 
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application moves from one host to another ( such as due to 
a failover , load re - balancing , or the like ) the zoning and 
LUN masking / mapping needs to be updated . Alternatively , 
one could pre - program the SAN , so that every initiator sees 
every target . However , doing so results in an un - scalable and 
un - secure SAN . In the alternate solution described through 
out this disclosure , such a movement of an application , a 
container , or a storage device does NOT require any SAN 
re - programming , resulting in a zero touch solution . The 
mapping maintained and executed by the converged solution 
300 allows an application or a container , the target storage 
media , or both , to be moved ( including to multiple locations ) 
and scaled independently , without intervention by the OS , a 
hypervisor , or other software running on the host CPU . 
[ 0071 ] The fact that the OS 108 sees storage as a local disk 
allows simplified virtualization of storage . The level of 
indirection involved in the methods and systems disclosed 
herein allows the converged system 300 to hide not only the 
location , but the media type , of storage media . All the OS 
108 sees is that there is a local disk , even if the actual storage 
is located remotely and / or is or a different type , such as a 
SAN 310. Thus , virtualization of storage is provided through 
the converged solution 300 , where the OS 108 and applica 
tions do not have to change . One can hide all of the 
management , policies of tiering , polices of backup , policies 
of protection and the like that are normally needed to 
configure complex storage types behind . 
[ 0072 ] The converged solution 300 enables the simplicity 
of direct attached storage ( DAS ) with the advantages of a 
storage area network ( SAN ) . Each converged appliance 300 
in various embodiments disclosed herein may act as a host , 
and any storage devices 302 may be local to a particular host 
but seen by the other hosts ( as is the case in a SAN 310 or 
other network - accessible storage ) . The drives in each box 
enabled by a network / storage controller of the present 
disclosure behave like a SAN 310 ( e.g. , are available on the 
network ) , but the management methods are much simpler . 
When a storage administrator normally sets up a SAN 310 , 
a typical enterprise may have a whole department setting up 
zones for a SAN 310 ( e.g. , a fiber channel switch ) , such as 
setting up “ who sees what . ” That knowledge must be 
pre - loaded , and a user has to ask the SAN 310 administrator 
to do the work to set it up . There is no programmability in 
a typical legacy SAN 310 architecture . The methods and 
systems disclosed herein provide local units that are on the 
network , but the local units can still access their storage 
without having to go through complex management steps 
like zone definition , etc. These devices can do what a SAN 
does just by having both network and storage awareness . As 
such , they represent the first programmatic SAN . 
[ 0073 ] The solution 300 can be described as a “ Converged 
IO Controller ” that controls both the storage media 302 and 
the network 122. This converged controller 300 is not just a 
simple integration of the storage controller 112 and the 
network controller ( NIC ) 118. The actual functions of the 
storage and network are merged such that storage functions 
are performed as the data traverses to and from the network 
interface . The functions may be provided in a hardware 
solution , such as an FPGA ( one or more ) or ASIC ( one or 
more ) as detailed below . 
[ 0074 ] Referring to FIG . 4 , two or more computing sys 
tems 102 enabled by converged solutions 300 may serve as 
hosts for respective storage targets , where by merging 
storage and network and controlling both interfaces , direct 

access to the storage 302 can be achieved remotely over the 
network 122 without traversing internal busses or CPU / 
software work , such as by a point - to - point path 400 or by an 
Ethernet switch 402 to another computer system 102 that is 
enabled by a converged solution 300. The highest perfor 
mance ( high IOPs and low latency ) can be achieved . Further , 
storage resources 302 can now be pooled across the cluster . 
In FIG . 4 , this is conceptually illustrated by the dotted oval 
404 . 

[ 0075 ] In embodiments , the converged solution 300 may 
be included on a host computing system 102 , with the 
various components of a conventional computing system as 
depicted in FIG . 1 , together with the converged IO controller 
300 as described in connection with FIG . 3. Referring to 
FIG . 5 , in alternative embodiments , the converged controller 
300 may be disposed in a switch , such as a top of the rack 
switch , thus enabling a storage enabled switch 500. The 
switch may reside on the network 122 and be accessed by a 
network controller 118 , such as of a conventional computing 
system 102 . 
[ 0076 ] Referring to FIG . 6 , systems may be deployed in 
which a converged controller 300 is disposed both on one or 
more host computing systems 102 and on a storage enabled 
switch 500 , which may be connected to systems 102 that are 
enabled by converged solutions 300 and to non - enabled 
systems 102. As noted above , target storage 302 for the 
converged controller ( s ) 300 on the host computing system 
102 and on the storage enabled switch 500 can be visible to 
each other across the network , such as being treated as a 
unified resource , such as to virtualization solutions . In sum , 
intelligence , including handling converged network and 
storage traffic on the same device , can be located in a host 
system , in a switch , or both in various alternative embodi 
ments of the present disclosure . 
[ 0077 ] Embodiments disclosed herein may thus include a 
switch form factor or a network interface controller , or both 
which may include a host agent ( either in software or 
hardware ) . These varying deployments allow breaking up 
virtualization capabilities , such as on a host and / or on a 
switch and / or between a front end and a back end . While a 
layer may be needed to virtualize certain functions , the 
storage can be separated , so that one can scale storage and 
computing resources separately . Also , one can then enable 
blade servers ( i.e. , stateless servers ) . Installations that would 
have formerly involved expensive blade servers and 
attached storage area networks ( SANS ) can instead attach to 
the storage enabled switch 500. In embodiments this com 
prises a “ rackscale ” architecture , where resources are dis 
aggregated at the rack level . 
[ 0078 ] Methods and systems are provided for selecting 
where indirection occurs in the virtualization of storage . 
Virtualization of certain functions may occur in hardware 
( e.g. , in a converged adaptor 300 on a host 102 , in a storage 
enabled switch 500 , in varying hardware form factors ( e.g. , 
FPGAs or ASICs ) and in software . Different topologies are 
available , such as where the methods and systems disclosed 
herein are deployed on a host machine 102 , on a top of the 
rack switch 500 , or in a combination thereof . Factors that go 
into the selection of where virtualization should occur 
include ease of use . Users who want to run stateless servers 
may prefer a top of rack storage enabled switch 500. Ones 
who don't care about that approach might prefer the con 
verged controller 300 on the host 102 . 
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[ 0079 ] FIG . 7 shows a more detailed view of a set of 
systems that are enabled with converged controllers 300 , 
including two computer systems 102 ( computer system 1 
and computer system 2 ) , as well as a storage enabled switch 
500. Storage devices 302 , such as DAS 308 and SAN 310 
may be controlled by the converged controller 300 or the 
storage enabled switch 500. DAS 308 may be controlled in 
either case using SAS , SATA or NVMe protocols . SAN 310 
may be controlled in either case using iSCSI , FC or FCOE . 
Connections among hosts 102 that have storage controllers 
300 may be over a point - to - point path 400 , over an Ethernet 
switch 402 , or through a storage enabled switch 500 , which 
also may provide a connection to a conventional computing 
system . As noted above , the multiple systems with intelli 
gent converged controllers 300 can each serve as hosts and 
as storage target locations that the other hosts see , thereby 
providing the option to be treated as a single cluster of 
storage for purposes of an operating system 108 of a 
computing system 102 . 
[ 0080 ] Method and systems disclosed herein include vir 
tualization and / or indirection of networking and storage 
functions , embodied in the hardware converged controller 
300 , optionally in a converged network adaptor / storage 
adaptor appliance 300. While virtualization is a level of 
indirection , protocol is another level of indirection . The 
methods and systems disclosed herein may convert a pro 
tocol suitable for use by most operating systems to deal with 
local storage , such as NVMe , to another protocol , such as 
SAS , SATA , or the like . One may expose a consistent 
interface to the OS 108 , such as NVMe , and on the other side 
of the converged controller 300 one may convert to whatever 
storage media 302 is cost - effective . This gives a user a 
price / performance advantage . If components are cheaper / 
faster , one can connect any one of them . The side of the 
converged controller 300 could face any kind of storage , 
including NVMe . Furthermore the storage media type may 
be any of the following including , but not limited , to HDD , 
SSD ( based on SLC , MLC , or TLC Flash ) , RAM etc or a 
combination thereof . 
[ 0081 ] In embodiments , a converged controller may be 
adapted to virtualize NVMe virtual functions , and to provide 
access to remote storage devices 302 , such as ones con 
nected to a storage - enabled switch 500 , via NVMe over an 
Ethernet switch 402. Thus , the converged solution 300 
enables the use of NVMe over Ethernet 700 , or NVMeoE . 
Thus , methods and systems disclosed herein include pro 
viding NVMe over Ethernet . These approaches can be the 
basis for the tunneling protocol that is used between devices , 
such as the host computing system 102 enabled by a 
converged controller 300 and / or a storage enabled switch 
500. NVMe is a suitable DAS protocol that is intended 
conventionally to go to a local PCIe 110. Embodiments 
disclosed herein may tunnel the NVMe protocol traffic over 
Ethernet . NVMe ( non - volatile memory express ) is a proto 
col that in Linux and Windows provides access to PCIe 
based Flash . This provides high performance via by - passing 
the software stacks used in conventional systems , while 
avoiding the need to translate from NVMe ( as used by the 
OS stack 108 ) and the traffic tunneled over Ethernet to other 
devices . 
[ 0082 ] FIG . 8 is a block diagram of an FPGA 800 , which 
may reside on an IO controller card and enable an embodi 
ment of a converged solution 300. Note that while a single 
FPGA 800 is depicted , the various functional blocks could 

be organized into multiple FPGAs , into one or more cus 
tomer Application Specific Integrated Circuits ( ASICs ) , or 
the like . For example , various networking blocks and vari 
ous storage blocks could be handled in separate ( but inter 
connected ) FPGAs or ASICs . References throughout this 
disclosure to an FPGA 800 should be understood , except 
where context indicates otherwise , to encompass these other 
forms of hardware that can enable the functional capabilities 
reflected in FIG . 8 and similar functions . Also , certain 
functional groups , such as for networking functions and / or 
storage functions , could be embodied in merchant silicon . 
[ 0083 ] The embodiment of the FPGA 800 of FIG . 8 has 
four main interfaces . First , there is PCIe interface , such as to 
the PCIe bus 110 of a host computer 102. Thus , the card is 
a PCIe end point . Second , there is a DRAM / NVRAM 
interface . For example , a DDR interface may be provided to 
external DRAM or NVRAM , used by the embedded CPUs , 
meta - data and data structures , and packet / data buffering . 
Third , there is a storage interface to media , such as DAS 308 
and SAN 310. Storage interfaces can include ones for SAS , 
SATA , NVMe , iSCSI , FC and / or FC0E , and could in 
embodiments be any interface to rotating media , flash , or 
other persistent form of storage , either local or over a 
cut - through to a network - enabled storage like SAN 310 . 
Fourth , a network interface is provided , such as Ethernet to 
a network fabric . The storage interfaces and the network 
interfaces can be used , in part , to enable NVMe over 
Ethernet . 
[ 0084 ] The internal functions of the FPGA 800 may 
include a number of enabling features for the converged 
solution 300 and other aspects of the present disclosure 
noted throughout . A set of virtual endpoints ( VNVMe ) 802 
may be provided for the host . Analogous to the SR - IOV 
protocol that is used for the network interface , this presents 
virtual storage targets to the host . In this embodiment of the 
FPGA 800 , NVMe has benefits of low software overhead , 
which in turn provides high performance . A virtual NVMe 
device 802 can be dynamically allocated / de - allocated / 
moved and resized . As with SR - IOV , there is one physical 
function ( PF ) 806 that interfaces with a PCIe driver 110 ( see 
below ) , and multiple virtual functions 807 ( VF ) in which 
each appears as an NVMe device . 
[ 0085 ] Also provided in the FPGA 800 functions are one 
or more read and write direct memory access ( DMA ) queues 
804 , referred to in some cases herein as a DMA engine 804 . 
These may include interrupt queues , doorbells , and other 
standard functions to perform DMA to and from the host 
computing system 102 . 
[ 0086 ] A device mapping facility 808 on the FPGA 800 
may determine the location of the virtual NVMe devices 
802. The location options would be local ( ie attached to 
one of the storage media interfaces 824 shown ) , or remote 
on another host 102 of a storage controller 300. Access to a 
remote VNVMe device requires going through a tunnel 828 
to the network 122 . 
[ 0087 ] A NVMe virtualization facility 810 may translate 
NVMe protocol instructions and operations to the corre 
sponding protocol and operations of the backend storage 
media 302 , such as SAS or SATA ( in the case of use of 
NVMe on the backend storage medium 302 , no translation 
may be needed ) where DAS 308 is used , or such as iSCSI , 
FC or FCoE in the case where SAN 310 storage is used in 
the backend . References to the backend here refer to the 
other side of the converged controller 300 from the host 102 . 
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[ 0088 ] A data transformation function 812 may format the 
data as it is stored onto the storage media 302. These 
operations could include re - writes , transformation , compres 
sion , protection ( such as RAID ) , encryption and other func 
tions that involve changing the format of the data in any way 
as necessary to allow it to be handled by the applicable type 
of target storage medium 308. In some embodiments , stor 
age medium 308 may be remote . 
[ 0089 ] In embodiments , storage read and write queues 814 
may include data structures or buffering for staging data 
during a transfer . In embodiments , temporary memory , such 
as DRAM of NVRAM ( which may be located off the FPGA 
800 ) may be used for temporary storage of data . 
[ 0090 ] A local storage scheduler and shaper 818 may 
prioritize and control access to the storage media 302. Any 
applicable SLA policies for local storage may be enforced in 
the scheduler and shaper 818 , which may include strict 
priorities , weighted round robin scheduling , IOP shapers , 
and policers , which may apply on a per queue , per initiator , 
per target , or per c - group basis , and the like . 
[ 0091 ] A data placement facility 820 may implement an 
algorithm that determines how the data is laid out on the 
storage media 302. That may involve various placement 
schemes known to those of skill in the art , such as striping 
across the media , localizing to a single device 302 , using a 
subset of the devices 302 , or localizing to particular blocks 
on a device 302 . 
[ 0092 ] A storage metadata management facility 822 may 
include data structures for data placement , block and object 
i - nodes , compression , deduplication , and protection . Meta 
data may be stored either in off - FPGA 800 NVRAM / DRAM 
or in the storage media 302 . 
[ 0093 ] A plurality of control blocks 824 may provide the 
interface to the storage media . These may include SAS , 
SATA , NVMe , PCIe , iSCSI , FC and / or FC0E , among other 
possible control blocks , in each case as needed for the 
appropriate type of target storage media 302 . 
[ 0094 ] A storage network tunnel 828 of the FPGA 800 
may provide the tunneling / cut - through capabilities 
described throughout this disclosure in connection with the 
converged solution 300. Among other things , the tunnel 828 
provides the gateway between storage traffic and network 
traffic . It includes encapsulation / de - encapsulation or the 
storage traffic , rewrite and formatting of the data , and 
end - to - end coordination of the transfer of data . The coordi 
nation may be between FPGAs 800 across nodes within a 
host computing system 102 or in more than one computing 
system 102 , such as for the point - to - point path 400 described 
in connection with FIG . 4. Various functions , such as 
sequence numbers , packet loss , time - outs , and retransmis 
sions may be performed . Tunneling may occur over Ether 
net , including by FCoE or NVMeoE . 
[ 0095 ] A virtual network interface card facility 830 may 
include a plurality of SR - IOV endpoints to the host 102 , 
presented as virtual network interface cards . One physical 
function ( PF ) 836 may interfaces with a PCIe driver 110 ( see 
software description below ) , and multiple virtual functions 
( VF ) 837 , in which each appear as a network interface card 
( NIC ) 118 . 
[ 0096 ] A set of receive / transmit DMA queues 832 may 
include interrupt queues , doorbells , and other standard func 
tions to perform DMA to and from the host 102 . 

[ 0097 ] A classifier and flow management facility 834 may 
perform standard network traffic classification , typically to 
IEEE standard 802.1Q class of service ( COS ) mappings or 
other priority levels . 
[ 0098 ] An access control and rewrite facility 838 may 
handle access control lists ( ACLs ) and rewrite policies , 
including access control lists typically operating on Ethernet 
tuples ( MAC SA / DA , IP SA / DA , TCP ports , etc. ) to reclas 
sify or rewrite packets . 
[ 0099 ] A forwarding function 840 may determines desti 
nation of the packet , such as through layer 2 ( L2 ) or layer 3 
( L3 ) mechanisms . 
[ 0100 ] A set of network receive and transmit queues 842 
may handle data structures or buffering to the network 
interface . Off - FPGA 800 DRAM may be used for packet 
data . 
[ 0101 ] A network / remote storage scheduler and policer 
844 may provide priorities and control access to the network 
interface . SLA policies for remote storage and network 
traffic may be enforced here , which may include strict 
priorities , weighted round robin , IOP and bandwidth 
shapers , and policers on a per queue , per initiator , per target , 
per c - group , or per network flow basis , and the like . 
[ 0102 ] A local network switch 848 may forward packets 
between queues in the FPGA , so that traffic does not need to 
exit the FPGA 800 to the network fabric 122 if the desti 
nation is local to the FPGA 800 or the host 102 . 
[ 0103 ] An end - to - end congestion control / credit facility 
850 may prevent network congestion . This is accomplished 
with two algorithms . First there may be an end - to - end 
reservation / credit mechanism with a remote FPGA 800. This 
may be analogous to a SCSI transfer ready function , where 
the remote FPGA 800 permits the storage transfer if it can 
immediately accept the data . Similarly , the local FPGA 800 
allocates credits to remote FPGAs 800 as they request a 
transfer . SLA policies for remote storage may also be 
enforced here . Second there may be a distributed scheduling 
algorithm , such as an iterative round - robin algorithm , such 
as the iSLIP algorithm for input - queues proposed in the 
publication “ The iSLIP Scheduling Algorithm for Input 
Queues Switches ” , by Nick McKeown , IEEE / ACM 
TRANSACTIONS ON NETWORKING , VOL . 7 , NO . 2 , 
APRIL 1999. The algorithm may be performed cluster wide 
using the intermediate network fabric as the crossbar . 
[ 0104 ] A rewrite , tag , and CRC facility 852 may encap 
sulate / de - encapulate the packet with the appropriate tags and 
CRC protection . 
[ 0105 ] A set of interfaces 854 , such as MAC interfaces , 
may provide an interface to Ethernet . 
[ 0106 ] A set of embedded CPU and cache complexes 858 
may implement a process control plan , exception handling , 
and other communication to and from the local host and 
network remote FPGAs 800 . 
[ 0107 ] A memory controller 860 , such as a DDR control 
ler , may act as a controller for the external DRAM / NVRAM . 
[ 0108 ] As a result of the integration of functions provided 
by the converged solution 300 , as embodied in one example 
by the FPGA 800 , provided herein are methods and systems 
for combining storage initiation and storage targeting in a 
single hardware system . In embodiments , these may be 
attached by a PCIe bus 110. A single root virtualization 
function ( SR - IOV ) or the like may be applied to take any 
standard device ( e.g. , any storage media 302 device ) and 
have it act as if it is hundreds of such devices . Embodiments 
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disclosed herein include using a protocol like SR - IOV to 
give multiple virtual instances of a physical storage adaptor . 
SR - IOV is a PCIe standard that virtualizes I / O functions , 
and while it has been used for network interfaces , the 
methods and systems disclosed herein extend it to use for 
storage devices . Thus , provided herein is a virtualized target 
storage system . In embodiments the virtual target storage 
system may handle disparate media as if the media are a disk 
or disks , such as DAS 310 . 
[ 0109 ] Enabled by embodiments like the FPGA 800 , 
embodiments of the methods and systems disclosed herein 
may also include providing an NVMe device that is virtu 
alized and dynamically allocated . In embodiments one may 
piggyback the normal NVMe protocol , but carve up , virtu 
alize and dynamically allocate the NVMe device . In embodi 
ments there is no footprint in the software . The operating 
system 108 stays the same or nearly the same ( possibly 
having a small driver that sees the converged network / 
storage card 300 ) . This results in virtual storage that looks 
like a direct attached disk , but the difference is that now we 
can pool such storage devices 302 across the network 122 . 
[ 0110 ] Methods and systems are disclosed herein for 
implementing virtualization of NVMe . Regardless how 
many sources are related to how many destinations , as long 
as the data from the sources is serialized first before going 
into the hub , then the hub distributes to data to the desig 
nated destination sequentially , If so , then data transport 
resources such as the DMA queues 804 , 832 can be reduced 
to only one copy . This may include various use scenarios . In 
one scenario , for NVMe virtual functions ( VFs ) , if they are 
all connected to the same PCIe bus 110 , then regardless how 
many VFs 807 are configured , the data would be coining into 
this pool of VFs 807 serially , so there is only one DMA 
engine 804 , and only one storage block ( for control infor 
mation ) is needed , 
[ 0111 ] In another use scenario , for a disk storage system 
with a pool of discrete disks / controllers , if the data is 
originated from the physical bus , i , e . PCIe 110 , since the 
data is serially coming into this pool of disks , then regardless 
how many disks / controllers are in the pool , the transport 
resources such as the DMA engine 804 can be reduced to 
only one instead of one per controller . 
[ 0112 ] Methods and systems disclosed herein may also 
include virtualization of a converged network / storage adap 
tor 300. From a traffic perspective , one may combine sys 
tems into one . Combining the storage and network adaptors , 
and adding in virtualization , gives significant advantages . 
Say there is a single host 102 with two PCIe buses 110. To 
route from the PCIe 110 , you can use a system like remote 
direct memory access ( RDMA ) to get to another machine / 
host 102. If one were to do this separately , one has to 
configure the storage and the network RDMA systems 
separately . One has to join each one and configure them at 
two different places . In the converged solution 300 , the 
whole step of setting up Qos , seeing that this is RDMA and 
that there is another fabric elsewhere is a zero touch process , 
because with combined storage and networking the two can 
be configured in a single step . That is , once one knows the 
storage , one doesn't need to set up the QoS on the network 
separately . Thus , single - step configuration of network and 
storage for RDMA solutions is enabled by the converged 
solution 300 . 
[ 0113 ] Referring again to FIG . 4 , remote access is enabled 
by the FPGA 800 or similar hardware as described in 

connection with FIG . 8. The virtualization boundary is 
indicated in FIG . 4 by the dotted line 408. To the left of this 
line , virtual storage devices ( e.g. , NVMe 802 ) and virtual 
network interfaces 830 are presented to the operating system 
108. The operating system cannot tell these are virtual 
devices . To the right of the virtualization boundary 408 are 
physical storage devices 302 ( e.g. , using SATA or other 
protocols noted above ) and physical network interfaces . 
Storage virtualization functions are implemented by the 
VNVMe 802 and the NVMe virtualization facility 810 of 
FIG . 8. Network virtualization functions are implemented by 
the VNIC facility 830. Location of the physical storage 
media is also hidden from the operating system 108. Effec 
tively , the physical disks 302 across servers can be pooled 
and accessed remotely . The operating system 108 issues a 
read or write transaction to the storage media 302 ( it is a 
virtual device , but the operation system 108 sees it as a 
physical device ) . If the physical storage media 302 happens 
to be remote , the read / write transaction is mapped to the 
proper physical location , encapsulated , and tunneled 
through Ethernet . This process may be implemented by the 
device mapping facility 808 , the NVMe virtualization facil 
ity 810 , the data transformation facility 812 and the storage 
network tunnel 828 of FIG . 8. The target server ( second 
computing system ) un - tunnels the storage read / write and 
directly accesses its local storage media 302. If the trans 
action is a write , the data is written to the media 302. If the 
transaction is a read , the data is prepared , mapped to the 
origin server , encapsulated , and tunneled through Ethernet . 
The transaction completion arrives at the origin operating 
system 102. In a conventional system , these steps would 
require software intervention in order to process the storage 
request , data formatting , and network access . As shown , all 
of these complex software steps are avoided . 
[ 0114 ] Referring to FIG . 9 , a simplified block diagram is 
provided of an architecture of a controller card 902 , as one 
embodiment of a converged solution 300 as described 
throughout this disclosure . The controller card 902 may be , 
for example , a standard , full - height , half - length PCIe card , 
such as a Gen3 x16 card . However , a non - standard card size 
is acceptable , preferably sized so that it can fit into various 
types of targeted chassis . The PCIe form factor limits the 
stack up and layers used on the PCB . 
[ 0115 ] The controller card 902 may be used as an add - on 
card on a commodity chassis , such as a 2RU , 4 node chassis . 
Each node of the chassis ( called a sled ) is typically 1RU and 
6.76 " wide . The motherboard typically may provide a PCIe 
Gen3 x16 connector near the back . A riser card may be used 
to allow the Controller card 902 to be installed on top of the 
motherboard ; thus , the clearance between the card and the 
motherboard may be limited to roughly on slot width . 
[ 0116 ] In embodiments , the maximum power supplied by 
the PCIe connector is 75 W. The controller card 902 may 
consume about 60 W or less . 
[ 0117 ] The chassis may provide good airflow , but the card 
should expect a 10C rise in ambient temperature , because in 
this example the air will be warmed by dual Xeon processors 
and 16 DIMMs . The maximum ambient temperature for 
most servers is 35C , so the air temperature at the controller 
card 902 will likely be 45C or higher in some situations . 
Custom heat sinks and baffles may be considered as part of 
the thermal solution . 
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[ 0118 ] There are two FPGAs in the embodiment of the 
controller card 902 depicted in FIG . 9 , a datapath FPGA , or 
datapath chip 904 , and a networking FPGA , or networking 
chip 908 . 
[ 0119 ] The datapath chip 904 provides connectivity to the 
host computer 102 over the PCIe connector 110. From the 
host processor's point of view , the controller card 902 looks 
like multiple NVMe devices . The datapath chip 904 bridges 
NVMe to standard SATA / SAS protocol and in this embodi 
ment controls up to six external disk drives over SATA / SAS 
links . Note that SATA supports up to 6.0 Gbps , while SAS 
supports up to 12.0 Gbps . 
[ 0120 ] The networking chip 908 switches the two 10G 
Ethernet ports of the NIC device 118 and the eCPU 1018 to 
two external 10G Ethernet ports . It also contains a large 
number of data structures for used in virtualization . 
[ 0121 ] The motherboard of the host 102 typically provides 
a PCIe Gen3 x16 interface that can be divided into two 
separate PCIe Gen3 x8 busses in the Intel chipset . One of the 
PCIe Gen3 x8 bus 110 is connected to the Intel NIC device 
118. The second PCIe Gen3 x8 bus 110 is connected to a 
PLX PCIe switch chip 1010. The downstream ports of the 
switch chip 1010 are configured as two PCIe Gen3 x8 busses 
110. One of the busses 110 is connected to the eCPU while 
the second is connected to the datapath chip 904 . 
[ 0122 ] The datapath chip 904 uses external memory for 
data storage . A single x72 DDR3 channel 1012 should 
provide sufficient bandwidth for most situations . The net 
working chip 908 also uses external memory for data 
storage , and a single x72 DDR3 channel is likely to be 
sufficient for most situations . In addition , the data structures 
require the use of non - volatile memory , such as one that 
provides high performance and sufficient density , such as 
Non - volatile DIMM ( NVDIMM , which typically has a 
built - in power switching circuit and super - capacitors as 
energy storage elements for data retention . 
[ 0123 ] The eCPU 1018 communicates with the network 
ing 908 using two sets of interfaces . It has a PCIe Gen2x4 
interface for NVMe - like communication . The eCPU 1018 
also has two 10G Ethernet interfaces that connect to the 
networking chip 908 , such as through its L2 switch . 
[ 0124 ] An AXI bus 1020 ( a bus specification of the ARM 
chipset ) will be used throughout the internal design of the 
two chips 904 , 908. To allow seamless communication 
between the datapath chip 904 and the networking chip 908 , 
the AXI bus 1020 is used for chip - to - chip connection . The 
Xilinx AuroraTM protocol , a serial interface , may be used as 
the physical layer . 
( 0125 ] The key requirements for FPGA configuration are 
that ( 1 ) The datapath chip 904 must be ready before PCIe 
configuration started ( QSPI Flash memory ( serial flash 
memory with quad SPI bus interface ) may be fast enough ) 
and ( 2 ) the chips are preferably field upgradeable . The Flash 
memory for configuration is preferably large enough to store 
at least 3 copies of the configuration bitstream . The bit 
stream refers to the configuration memory pattern used by 
XilinxTM FPGAs . The bitstream is typically stored in non 
volatile memory and is used to configure the FPGA during 
initial power - on . The eCPU 1018 may be provided with a 
facility to read and write the configuration Flash memories . 
New bitstreams may reside with the processor of the host 
102. Security and authentication may be handled by the 
eCPU 1018 before attempting to upgrade the Flash memo 
ries . 

[ 0126 ] In a networking subsystem , the Controller card 902 
may handle all network traffic between the host processor 
and the outside world . The Networking chip 908 may 
intercept all network traffics from the NIC 118 and exter 
nally . 
[ 0127 ] The Intel NIC 118 in this embodiment connects 
two 10GigE , XFI interfaces 1022 to the Networking chip 
908. The embedded processor will do the same . The Net 
working chip 908 will perform an L2 switching function and 
route Ethernet traffic out to the two external 10GigE ports . 
Similarly , incoming 10GigE traffic will be directly to either 
the NIC 118 , the eCPU 1018 , or internal logic of the 
Networking chip 908 . 
[ 0128 ] The controller card 902 may use SFP + optical 
connectors for the two external 10G Ethernet ports . In other 
embodiments , the card may support 10GBASE - T using an 
external PHY and RJ45 connectors ; but a separate card may 
be needed , or a custom paddle card arrangement may be 
needed to allow switching between SFP + and RJ45 . 
[ 0129 ] All the management of the external port and optics , 
including the operation of the LEDs , may be controlled by 
the Networking chip 908. Thus , signals such as PRST , 
12C / MDIO , etc may be connected to the Networking chip 
908 instead of the NIC 118 . 
[ 0130 ] In a storage subsystem , the Datapath chip 904 may 
drive the mini - SAS HD connectors directly . In embodiments 
such as depicted in FIG . 10 , the signals may be designed to 
operate at 12 Gbps to support the latest SAS standard . 
[ 0131 ] To provide efficient use of board space , two x4 
mini - SAS HD connectors may be used . All eight sets of 
signals may be connected to the Datapath chip 904 , even 
though only six sets of signals might be used at any one time . 
[ 0132 ] On the chassis , high - speed copper cables may be 
used to connect the mini - SAS HD connectors to the moth 
erboard . The placement of the mini - SAS HD connectors 
may take into account the various chassis ' physical space 
and routing of the cables . 
[ 0133 ] The power to the controller card 902 may be 
supplied by the PCIe x16 connector . No external power 
connection needs to be used . Per PCIe specification , the 
PCIe x16 connector may supply only up to 25 W of power 
after power up . The controller card 902 may be designed 
such that it draws less than 25 W until after PCIe configu 
ration . Thus , a number of interfaces and components may 
need to be held in reset after initial power up . The connector 
may supply up to 75 W of power after configuration , which 
may be arranged such that the 75 W is split between the 3.3V 
and 12V rails . 
[ 0134 ] FIG . 10 shows a software stack 1000 , which 
includes a driver 1002 to interface to the converged solution 
300 , such as one enabled by the FPGA 800. The NVMe 
controller 1004 is the set of functions of the hardware ( e.g. , 
FPGA 800 ) that serves the function of an NVMe controller 
and allocates virtual devices 1012 to the host . In FIG . 10 , 
dev1 , dev2 , dev3 are examples of virtual devices 1012 
which are dynamically allocated to containers 1018 LXC1 , 
LXC2 , and LXC3 , respectively . The NVMe to SATA bridge 
1008 is the part of the hardware sub - system ( e.g. , FPGA 
800 ) that converts and maps virtual devices 1012 ( devl , 
dev2 , dev3 ) to storage devices 302 ( e.g. , SSDs in the figure ) . 
The connection 1010 is the part of the hardware system that 
provides a SATA connection ( among other possible connec 
tion options noted above ) . The Ethernet link 120 , which can 
expose virtual devices 1012 ( i.e dev1 , dev2 , dev3 ) to other 
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host ( s ) 102 connected via the Ethernet link 120 using a 
storage tunneling protocol . The PCI - E ( NVMe driver ) 1002 
may program and drive the hardware subsystem for the 
storage side . This driver 1002 may run on the host as part of 
the operating system ( e.g. , Linux OS in this example ) . The 
block layer 1014 may be a conventional SCSI sub - system of 
the Linux operating system , which may interface with the 
converged solution PCIe driver 1002 to expose virtual 
storage devices 1012. The containers 1018 ( LXC1 , LXC2 , 
LXC3 ) may request and dynamically be allocated virtual 
storage devices 1012 ( dev1 , dev2 and dev3 , respectively ) . 
[ 0135 ] FIGS . 11 through 15 show an example of the 
movement of an application container 1018 ( e.g. , a Linux 
container ) across multiple systems 102 , first in the absence 
of a converged solution 300 and then in the presence of such 
a converged solution 300. FIG . 11 shows an example of two 
conventional computer systems 102 with conventional stor 
age controllers 112 and network controllers 118 hosting 
virtualized software in an OS / Hypervisor stack 108. Com 
puter System 1 ( C1 ) has a configuration similar to the one 
shown in FIG . 1 with CPU , memory and conventional 
storage controller 112 and network controller 118. The 
system runs an operating system 108 , such as LinuxTM , 
Microsoft WindowsTM , etc , and / or hypervisor software , such 
as Xen , VMware , etc. to provide support for multiple 
applications natively or over virtualized environments , such 
as via virtual machines or containers . In this computer 
system 102 , application Appl 1102 is running inside a 
virtual machine VM1 1104. Applications App2 1108 and 
App3 1112 are running within virtualized containers LXC1 
1110 and LXC2 1114 respectively . In addition to these , 
application App4 1118 is running natively over the Operat 
ing System 108. Although typically , a practical scenario 
might have only virtual machines or containers or native 
applications ( not all three ) , here it is depicted in a combined 
fashion deliberately to cover all cases of virtualized envi 
ronments . Computer System 2 ( C2 ) 102 has similar con 
figuration supporting App5 and App6 in a container and 
natively , respectively . Each of these applications access their 
storage devices 302 independent of each other , namely App1 
uses 51 , App2 uses S2 , etc. These storage devices 302 
( designated S1 - S6 ) are not limited to being independent 
physical entities . They could be logically carved out of one 
or more physical storage elements as deemed necessary . As 
one can see , ( represented by the arrow from each storage 
device 302 to an application ) , the data flow between the 
storage 302 and the application 1102 , 1108 , 1112 , 1118 
passes through the storage controller 112 and the operating 
system / hypervisor stack 108 before it reaches the applica 
tion , entailing the challenges described in connection with 
FIG . 1 . 
[ 0136 ] Referring to FIG . 12 , when an application or a 
container is moved from C1 to C2 , its corresponding storage 
device needs to be moved too . The movement could be 
needed due to the fact that C1 might be running out of 
resources ( such as CPU , memory , etc. ) to support the 
existing applications ( App1 - App ) over a period of time , 
such as because of behavioral changes within these appli 
cations . 
[ 0137 ] Typically , it is easier to accomplish the movement 
within a reasonable amount of time as long as the application 
states and the storage are reasonable in terms of size . 
Typically storage - intense applications may use large 
amounts ( e.g. , multiple terabytes ) of storage , in which case , 

it may not be practical to move the storage 302 within an 
acceptable amount of time . In that case , storage may con 
tinue to stay where it was and software - level shunting / 
tunneling would be undertaken to access the storage 
remotely , as shown in FIG . 13 . 
[ 0138 ] As shown in FIG . 13 , App2 1108 , after its move 
ment to computer system C2 , continues to access its original 
storage S2 located on computer system C1 by traversing 
through Operating Systems or Hypervisors 108 of both the 
systems C1 and C2 . This is because the mapping of storage 
access through the network controllers 118 to that storage 
controller 112 and its attached storage devices 302 is done 
by the Operating System or Hypervisor software stack 108 
running within the main CPU . 
[ 0139 ] As shown in FIG . 13 after its movement to C2 , 
App2 1108 continues to access its original storage S2 
located in C1 by traversing through Operating Systems or 
Hypervisors 108 of both the systems C1 and C2 . This is 
because , the mapping of storage access through the network 
controllers 118 from C2 to C1 and over to that storage 
controller 112 of C1 is done by the Operating System or 
Hypervisor software 108 running within the main CPU of 
each computer system . 
[ 0140 ] Consider a similar scenario when a converged 
controller 300 is applied as shown in the FIG . 14. As one can 
see , the scenario is almost identical to FIG . 11 , except the 
Converged IO Controller 300 replaces the separate storage 
controller 112 and network controller 118. In this case , when 
App2 1108 along with its container LXC1 is moved to C2 
( as shown in FIG . 15 ) , the storage S2 is not moved , and the 
access is optimized by avoiding the traversal through any 
software ( Operating System , Hypervisor 108 or any other ) 
running in main CPU present in computing system C1 . 
[ 0141 ] Thus , provided herein is a novel way of bypassing 
the main CPU where a storage device is located , which in 
turn ( a ) allows one to reduce latency and bandwidth signifi 
cantly in accessing a storage across multiple computer 
systems and ( b ) vastly simplifies and improves situations in 
which an application needs to be moved away from a 
machine on which its storage is located . 
[ 0142 ] Ethernet networks behave on a best effort basis and 
hence lossy in nature as well as bursty . Any packet could be 
lost forever or buffered and delivered in bursty and delayed 
manner along with other packets . Whereas , typical storage 
centric applications are sensitive to losses and bursts , it is 
important that when storage traffic is sent over Ethernet 
networks . 
[ 0143 ] Conventional storage accesses over their buses / 
networks involve reliable and predictable methods . For 
example , Fibre Channel networks employ credit based flow 
control to limit number of accesses made by end systems . 
And the number of credits given to an end system is based 
on whether the storage device has enough command buffers 
to receive and fulfill storage requests in predictable amount 
of time fulfilling required latency and bandwidth needs . The 
figure below shows some credit schemes adopted by differ 
ent types of buses such as SATA , Fibre Channel ( FC ) , SCSI , 
SAS , etc. 
[ 0144 ] Referring to FIG . 16 , Ethernet networks behave on 
a best effort basis and hence tend to be lossy in nature , as 
well as bursty . Any packet could be lost forever or buffered 
and delivered in a delayed manner , in a congestion - inducing 
burst , along with many other packets . Typical storage 
centric applications are sensitive to losses and bursts , so it is 
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important when storage traffic is sent over buses and Eth 
ernet networks , that those involve reliable and predictable 
methods for maintaining integrity . For example , Fibre Chan 
nel networks conventionally employ credit - based flow con 
trol to limit the number of accesses made by end systems at 
any one time . The number of credits given to an end system 
can be based on whether the storage device 302 has enough 
command buffers to receive and fulfill storage requests in a 
predictable amount of time that satisfies required latency and 
bandwidth requirements . FIG . 16 shows some of the credit 
schemes adopted by different types of buses such as a SATA 
bus 1602 , Fibre Channel ( FC ) 1604 , and SCSI / SAS con 
nection 1608 , among other types of such schemes . 
[ 0145 ] As one can see , for example , an FC controller 1610 
may have its own buffering up to a limit of ‘ N ’ storage 
commands before sending them to an FC - based storage 
device 1612 , but the FC device 1612 might have a different 
buffer limit , say “ M’in this example , which could be greater 
than , equal to , or less than ‘ N ’ . A typical credit - based 
scheme uses target level ( in this example , one of the storage 
devices 302 , such as the FC Device 1602 , is the target ) 
aggregate credits , information about which is propagated to 
various sources ( in this example , the controller , such as the 
FC Controller 1610 , is the source ) which are trying to access 
the target 302. For example , if two sources are accessing a 
target that has a queue depth of ' N , ' then sum of the credits 
given to the sources would not exceed ‘ N , ' so that at any 
given time the target will not receive more than ' N ' com 
mands . The distribution of credits among the sources may be 
arbitrary , or it may be based on various types of policies 
( e.g. , priorities based on cost / pricing , SLAs , or the like ) . 
When the queue is serviced , by fulfilling the command 
requests , credits may be replenished at the sources as 
appropriate . By adhering to this kind of credit - based storage 
access , losses that would result from queues at the target 
being overwhelmed can be avoided . 
[ 0146 ] Typical storage accesses over Ethernet , such as 
FCOE , iSCSI , and the like , may extend the target - oriented , 
credit - based command fulfillment to transfers over Ethernet 
links . In such cases , they may be target device - oriented , 
rather than being source - oriented . Provided herein are new 
credit based schemes that can instead be based on which or 
what kind of source should get how many credits . For 
example , the converged solution 300 described above , 
which directly interfaces the network to the storage , may 
employ a multiplexer to map a source - oriented , credit - based 
scheduling scheme to a target device oriented credit based 
scheme , as shown in FIG . 17 . 
[ 0147 ] As shown in FIG . 17 , four sources are located over 
Ethernet and there are two target storage devices 302 . 
Typical target - oriented , credit - based schemes would expose 
two queues ( one per target ) , or two connections per source 
to each of the targets . Instead , as shown in FIG . 17 , the 
queues ( Q1 , Q2 , Q3 , Q4 ) 1702 are on a per - source basis , and 
they mapped / multiplexed to two target - oriented queues ( Q5 , 
( 6 ) 1704 across the multiplexor ( S ) 1708. By employing 
this type of source - oriented , credit - based scheme , one may 
guarantee access bandwidth and predictable access latency , 
independent of the number of target storage devices 302. As 
an example , one type of multiplexing is to make sure queue 
size ‘ P ' of Q1 does not exceed ‘ L + M’of Q5 and Q6 , so that 
Q1 is not overwhelmed by its source . 
[ 0148 ] In embodiments , methods and systems to provide 
access to blocks of data from a storage device 302 is 

described . In particular , a novel approach to allowing an 
application to access its data , fulfilling a specific set of 
access requirements is described . 
[ 0149 ] [ 000149 ] As used herein , the term “ application 
driven data storage ” ( ADS ) encompasses storage that pro 
vides transparency to any application in terms of how the 
application's data is stored , accessed , transferred , cached 
and delivered to the application . ADS may allow applica 
tions to control these individual phases to address the 
specific needs of the particular application . As an example , 
an application might be comprised of multiple instances of 
itself , as well as multiple processes spread across multiple 
Linux nodes across the network . These processes might 
access multiple files in shared or exclusive manners among 
them . Based on how the application wants to handle these 
files , these processes may want to access different portions 
of the files more frequently , may need quick accesses or use 
once and throw away . Based on these criteria , it might want 
to prefetch and / or retain specific portions of a file in different 
tiers of cache and / or storage for immediate access on per 
session or per file basis as it wishes . These application 
specific requirements cannot be fulfilled in a generic manner 
such as disk striping of entire file system , prefetching of 
read - ahead sequential blocks , reserving physical memory in 
the server or LRU or FIFO based caching of file contents . 
[ 0150 ] Application - driven data storage I / O is not simply 
applicable to the storage entities alone . It impacts the entire 
storage stack in several ways . First , it impacts the storage 
I / O stack in the computing node where the application is 
running comprising the Linux paging system , buffering , 
underlying File system client , TCP / IP stack , classification , 
QoS treatment and packet queuing provided by the network 
ing hardware and software . Second , it impacts the network 
ing infrastructure that interconnects the application node and 
its storage , comprising Ethernet segments , optimal path 
selections , buffering in switches , classification and QoS 
treatment of latency - sensitive storage traffic as well as 
implosion issues related to storage I / O . Also , it impacts the 
storage infrastructure which stores and maintains the data in 
terms of files comprising the underlying file layout , redun 
dancy , access time , tiering between various types of storage 
as well as remote repositories . 
[ 0151 ] Methods and systems disclosed herein include ones 
relating to the elements affecting a typical application within 
an application node and how a converged solution 300 may 
change the status quo to address certain critical requirements 
of applications . 
[ 0152 ] Conventional Linux stacks may consist of simple 
building blocks , such generic memory allocation , process 
scheduling , file access , memory mapping , page caching , etc. 
Although these are essential for an application to run on 
Linux , this is not optimal for certain categories of applica 
tions that are input / output ( IO ) intensive , such as NoSQL . 
NoSQL applications are very IO intensive , and it is harder 
to predict their data access in a generic manner . If applica 
tions have to be deployed in a utility - computing environ 
ment , it is not ideal for Linux to provide generic minimal 
implementations of these building blocks . It is preferred for 
these building blocks to be highly flexible and have appli 
cation - relevant features that can be controllable from the 
application ( s ) . 
[ 0153 ] Although every application has its own specific 
requirements , in an exemplary embodiment , the NoSQL 
class of applications has the following requirements which , 
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when addressed by the Linux stack , could greatly improve 
the performance of NoSQL applications and other IO inten 
sive applications . The requirements are first , the use of file 
level priority . The Linux file system should provide access 
level priority between different files at a minimum . For 
example , an application process ( consisting of multiple 
threads ) accessing two different files with one file given 
higher priority over the other ( such as one database / table / 
index over the other ) . This would enable the precious 
storage I / O resources be preferentially utilized based on the 
data being accessed . One would argue that this could be 
indirectly addressed by running one thread / process be run at 
a higher or lower priority , but those process level priorities 
are not communicated over to file system or storage com 
ponents . Process or thread level priorities are meant only for 
utilizing CPU resources . Moreover , it is possible that same 
thread might be accessing these two files and hence will be 
utilizing the storage resources at two different levels based 
on what data ( file ) being accessed . Second , there may be a 
requirement for access level preferences . A Linux file system 
may provide various preferences ( primarily SLA ) during a 
session of a file ( opened file ) , such as priority between file 
sessions , the amount of buffering of blocks , the retention / life 
time preferences for various blocks , alerts for resource 
thresholds and contentions , and performance statistics . As an 
example , when a NoSQL application such as MongoDB or 
Cassandra would have two or more threads for writes and 
reads , where if writes may have to be given preference over 
reads , a file session for write may have to be given prefer 
ence over a file session for read for the same file . This 
capability enables two sessions of the same file to have two 
different priorities . 
[ 0154 ] Many of the NoSQL applications store different 
types of data into the same file ; for example , MongoDB 
stores user collections as well as ( b - tree ) index collections in 
the same set of database files . MongoDB may want to keep 
the index pages ( btree and collections ) in memory in pref 
erence over user collection pages . When these files are 
opened , MongoDB may want to influence the Linux , File 
and storage systems to treat the pages according to Mon 
goDB policies as opposed to treating these pages in a generic 
FIFO or LRU basis agnostic of the application's require 
ments . 

[ 0155 ] Resource alerts and performance statistics enable 
an NoSQL database to understand the behavior of the 
underlying File and storage system and could service its 
database queries accordingly or trigger actions to be carried 
out such as sharding of the database or reducing / increasing 
of File I / O preference for other jobs running in the same host 
uch as backup , sharding , number read / write queries ser 

viced , etc. ) . For example , performance stats about min , max 
and average number of IOPs and latencies as well as top ten 
candidate pages thrashed in and out of host memory in a 
given period of time would enable an application to fine tune 
itself dynamically adjusting the parameters noted above . 
( 0156 ] A requirement may also exist for caching and 
tiering preferences . A Linux file system may need to have a dynamically configurable caching policy while applications 
are accessing their files . Currently , Linux file systems typi 
cally pre - fetch contiguous blocks of a file , hoping that 
applications are reading the file in a sequential manner like 
a stream . Although it is true for many legacy applications 
like web servers and video streamers , emerging NoSQL 
applications do not follow sequential reads strictly . These 

applications read blocks randomly . As an example , Mon 
goDB stores the document keys in index tables in b - tree , laid 
out flat on a portion of a file , which , when a key is searched , 
accesses the blocks randomly until it locates the key . More 
over , these files are not dedicated to such b - tree based index 
tables alone . These files are shared among various types of 
tables ( collections ) such as user documents and system 
index files . Because of this , a Linux file system cannot 
predict what portions of the file need to be cached , read 
ahead , swapped out for efficient memory usage , etc. 
[ 0157 ] In embodiments of the methods and systems 
described herein , there is a common thread across various 
applications in their requirements for storage . In particular , 
latency and IOPs for specific types of data at specific times 
and places of need are very impactful on performance of 
these applications . 
[ 0158 ] For example , to address the host level requirements 
listed above , disclosed herein are methods and systems for 
a well fine - tuned file - system client that enables applications 
to completely influence and control the storing , retrieving , 
retaining and tiering of data according to preference within 
the host and elsewhere . 
[ 0159 ] As shown in FIG . 18 , a File System ( FS ) client 
1802 keeps separate buffer pools for separate sessions of a 
file ( fd1 and fd2 ) . It also pre - allocates and maintains aggre 
gate memory pools for each application or set of processes . 
The SLA - Broker 1804 may be exercised by the application 
either internally within the process / thread where the file I / O 
is carried out or externally from another set of processes , to 
influence the FS Client 1802 to provide appropriate storage 
1/0 SLAs dynamically . Controlling the SLA from an exter 
nal process enables a legacy application with no knowledge 
of these newer storage control features immediately without 
modifying the application itself . 
[ 0160 ] Methods and systems disclosed herein may provide 
extensive tiering services for data retrieval across network 
and hosts . As one can see in FIG . 19 below , a High 
Performance Distributed File Server ( DFS ) 1902 enables 
application to run in the Platform 1904 in a containerized 
form to determine and execute what portions of files should 
reside in which media ( DRAM , NVRAM , SSD or HDDs ) in 
cached form storage form dynamically . These application 
containers 1908 can determine other storage policies such as 
whether a file has to be striped , mirrored , raided and disaster 
recovered ( DR’ed ) as well . 
[ 0161 ] The methods and systems disclosed herein also 
provide extensive caching service , wherein an application 
container in the High Performance DFS 1902 can proac 
tively retrieve specific pages of a file from local storage 
and / or remote locations and push these pages to specific 
places for fast retrieval later when needed . For instance , the 
methods and systems may local memory and SSD usages of 
the hosts running the application and proactively push pages 
of an application's interest into any of these hosts ' local 
memory / SSD . The methods and systems may use the local 
tiers of memory , SSD and HDD provisioned for this purpose 
in the DFS platform 1904 for very low latency retrieval by 
the application at a later time of its need . 
[ 0162 ] The use of extending the cache across hosts of the 
applications is immense . For example , in MongoDB when 
the working set temporarily grows beyond its local host's 
memory , thrashing happens , and it significantly reduces the 
query handling performance . This is because when a needed 
file data page is discarded in order to bring in a new page to 
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satisfy a query and subsequently , if the original page has to 
be brought back , the system has to reread the page afresh 
from the disk subsystem , thereby incurring huge latency in 
completing a query . Application - driven storage access helps 
these kinds of scenarios by keeping a cache of the discarded 
page elsewhere in the network ( in another application host's 
memory / SSD or in local tiers of storage of the High Per 
formance DFS system 1902 ) temporarily until MongoDB 
requires the page again and thereby significantly reducing 
the latency in completing the query . 
[ 0163 ] Referring to FIG . 20 , High Performance DFS 1902 
takes advantage of DRAM and SSD resources across the 
application hosts in a single , unified RAM and SSD - based 
tier / cache 2002 , in order to cache and serve the application 
data as necessary and as influenced and controlled by the 
application . 
[ 0164 ] A system comprising of a set of hosts ( H1 through 
HN ) , a file or block server 2102 and a storage subsystem 
2104 is disclosed herein as shown in the FIG . 21. A host 
H1 - HN is typically a computer running an application that 
needs access to data permanently or temporarily stored in 
storage . The file or volume server 2102 may be a data 
organizer and a data server , typically running a hardware 
comprising a central processing unit ( CPU ) , memory and 
special hardware to connect to external devices such as 
networking and storage devices . The file or volume server 
2102 organizes user data in terms of multiple fixed or 
variable number of bytes called blocks . It stores these blocks 
of data in an internal or external storage . A random , but 
logically related , sequence of blocks is organized into a file 
or a volume . One or more Hosts H1 - HN can access these 
files or volumes through an application programming inter 
face ( API ) or any other protocol . A file or volume server can 
serve one or more files and volumes to one or more hosts . 
It is to be noted that a host and a file or volume server can 
be in two different physical entities connected directly or 
through a network or they could be logically located 
together in a single physical computer . 
[ 0165 ) Storage 2104 may be a collection of entities 
capable of retaining a piece of data temporarily or perma 
nently . This is typically comprised of static or dynamic 
random access memory ( RAM ) , solid state storage ( SSD ) , 
hard disk drive ( HDD ) or a combination of all of these . 
Storage could be an independent physical entity connected 
to a File or volume server 2102 through a link or a network . 
It could also be integrated with file or volume server 2102 
in a single physical entity . Hence , hosts H1 - HN , file or 
volume server 2102 and storage 2104 could be physically 
collocated in a single hardware entity . 
[ 0166 ] A host is typically comprised of multiple logical 
entities as shown in FIG . 22. An application 2202 typically 
runs in a host and would access its data elements through an 
API provided by its local operating system 2204 or any other 
entity in place of it . The operating system 2204 typically has 
a standard API interface to interface to a file system through 
their file system client 2206. A file system client 2206 is a 
software entity running within the host to interface with a 
file or volume server 2210 either located remotely or locally . 
It would provide the data elements needed by application 
2202 , which are present in a single or multiple files or 
volumes , by retrieving them from file or volume server 2210 
and keeping them in the host's memory 2208 until the 
application completes its processing of the elements of data . 
In a typical application scenario , a specific piece of data 

would be read and / or modified multiple number of times as 
required . It is also typical that an entire file or volume , 
consisting of multiple data elements , is potentially much 
larger than the size of local memory 2208 in certain types of 
applications . This makes operating system 2204 and file 
system client 2206 more complicated in its implementation 
in order to decide what blocks of data to be retained in or 
evicted from memory 2208 based on the prediction that the 
application 2202 may or may not access them in future . So 
far , the existing implementations execute some generic and 
application - independent methods , such as first - in - first - out 
( FIFO ) or least - recently - used ( LRU ) , to retain or evict the 
blocks of data in memory in order to bring in new blocks of 
data from file or volume server 2210. Moreover , when a 
memory occupied by a block of data is to be reclaimed for 
storing another block of data , the original data is simply 
erased without the consideration for its future use . Normally , 
the disk subsystem in is very slow and incurs high latency 
when a block of data is read from it and transferred by file 
or volume server 2210 to file system client 2206 to memory 
2208. So , when the original block of data is erased , the 
application might have to wait longer if it tries to access the 
original data in near future . The main problem with this kind 
of implementation is that none of the modules in the path of 
data access , namely operating system 2204 , file system 
client 2206 , memory 2208 , block server 2210 and storage 
have any knowledge of what , when and how often a block 
of data is going be accessed by application 2202 . 
[ 0167 ] An example scenario depicting an application 2202 
accessing a block of data from storage 2212 is shown in FIG . 
23. The numbered circles are to show the steps involved in 
the process of accessing a block of data . These steps are 
explained below . First , application 2202 uses API of file or 
Operating System 2204 to access a block of data operating 
system 2204 invokes an equivalent API for file system client 
2206 to access the same . Second , file system client 2206 
tries to find if the data exists in its local memory buffers 
dedicated for this purpose . If found , steps ( 3 ) through ( 7 ) 
below are skipped . Third , sends a command to retrieve the 
data from block server 2210. Fourth , block server 2210 
sends a read command to storage 2212 to read the block of 
data from the storage . Fifth , storage 2212 returns the block 
of data to block server 2210 after reading it from the storage . 
Sixth , block server 2210 returns the block of data to file 
system client 2206. Seventh , file system client 2206 saves 
the data in a memory buffer in memory 2208 for any future 
access . Eighth , file system client 2206 returns the requested 
data to the application 2202 . 
[ 0168 ] In the methods and systems disclosed herein , in 
order to address performance requirements related to data 
access by most newer class of applications in the area of 
NoSQL and BigData , it is proposed that the components in 
the data block access comprising operating system 2204 , file 
system client 2206 , memory 2208 , block server 2210 and 
storage 2212 be controlled by any application 2202. Namely , 
we propose the following . First , enable operating system 
2204 to provide additional API to allow applications to 
control file system client 2206. Second , enhance file system 
client 2206 to support the following : ( a ) allow application 
2202 to create a dedicated pool of memory in memory 2208 
for a particular file or volume , in the sense , a file or volume 
will have a dedicated pool of memory buffers to hold data 
specific to it which are not shared or removed for the 
purposes of other files or volumes ; ( b ) allow application 
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before the cache ( in RAM ) is warmed and thereby incur a 
period of lower application performance . 
[ 0172 ] Provided herein is a system and method with a 
processor and a file server with an application specific 
module to control the storage access according to the 
application's needs . 
[ 0173 ] Also provided herein is a system and method with 
a processor and a data ( constituting blocks of fixed size 
bytes , similar or different objects with variable number of 
bytes ) storage enabling an application specific module to 
control the storage access according to the application's 
needs . 
[ 0174 ] Also provided herein is a system and method which 
retrieves a stale file or storage data block , previously main 
tained for the purposes of an application's use , from a host's 
memory and / or its temporary or permanent storage element 
and stores it in another host's memory or and / or its tempo 
rary or permanent storage element , for the purposes of use 
by the application at a later time . 
[ 0175 ] Also provided herein is a system and method which 
retrieves any file or storage data block , previously main 
tained for the purposes of an application's use , from a host's 
memory and / or its temporary or permanent storage element 
and stores it in another host's memory or and / or its tempo 
rary or permanent storage element , for the purposes of use 
by the application at a later time . 
[ 0176 ] Also provided herein is a system and method which 
utilizes memory and / or its temporary or permanent storage 
element of a host to store any file or storage data block which 
would be subsequently accessed by an application running 
in another host for the purposes of reducing latency of data 
access . 

2202 to create a dedicated pool of memory in memory 2208 
for a particular session with a file or volume such that two 
independent sessions with a file or volume will have inde 
pendent memory buffers to hold their data . As an example , 
a critically important file session may have large number of 
memory buffers in memory 2208 , so that the session can 
take advantage of more data being present for quicker and 
frequent access , whereas a second session with the same file 
may be assigned with very few buffers and hence it might 
have to incur more delay and reuse of its buffers to access 
various parts of the file ; ( c ) allow application 2202 to create 
an extended pool of buffers beyond memory 2208 across 
other hosts or block server 2210 for quicker access . This 
enables blocks of data be kept in memory 2208 of other 
hosts as well as any memory 2402 present in the file or block 
server 2210 ; ( d ) allow application 2202 to make any block 
of data to be more persistent in memory 2208 relative to 
other blocks of data for a file , volume or a session . This 
allows an application to pick and choose a block of data to 
be always available for immediate access and not let oper 
ating system 2204 or file system client 2206 to evict it based 
on their own eviction policies ; and ( e ) allow application 
2202 to make any block of data to be less persistent in 
memory memory 2208 relative to other blocks of data for a 
file , volume or a session . This allows an application to let 
know operating system 2204 and file system client 2206 to 
evict and reuse the buffer of the data block as and when they 
choose to . This helps in retaining other normal blocks of data 
for longer period of time . Third , enable block server 2210 to 
host application specific modules in terms of application 
container 2400 as shown in the FIG . 24 with the following 
capabilities : ( a ) enable application container 2400 to fetch 
blocks of data of interest to application 2202 ahead of time 
and store them in local memory 2402 for later quick access 
and avoid the latency penalty associated with storage 2212 
and ( b ) enable storing of evicted pages from memory 2208 
of hosts in local memory 2402 for any later access by 
application 2202 . 
[ 0169 ] The application driven feature of ( 2 ) ( c ) above 
needs further explanation . There are two scenarios . The first 
one involves block of data being retrieved from the memory 
of block server 2210. The other scenario involves retrieving 
the same from another host . Assuming the exact same block 
data has been read from storage 2212 by two hosts ( H1 ) and 
( H2 ) , the methods and systems disclosed herein provide a 
system such as depicted in FIG . 25. When a block of data is 
noticed to be present in another host ( H2 ) , it is directly 
retrieved from it by file system client 2206 instead asking 
block server 2210 to retrieve it from storage 2212 , which 
will be slower and incurs high latency . 
[ 0170 ] In embodiments , if file system client 2206 decides 
to evict a block of data from ( D1 ) because of storing a more 
important block of data in its place , file system client 2206 
could send the evicted block of data to file system client 
2206 ' to be stored in memory 2208 ' on its behalf . 
[ 0171 ] It should be noted that the abovementioned tech 
niques can be applied to achieving fast failover in case of 
failure ( s ) of Hosts . Furthermore the caching techniques 
described above ; especially pertaining to RAM can use used 
to achieve failover with a warm cache . FIG . 25 shows an 
example of a fast failover system with a warm cache . The 
end result is that during a failure of a node , the end 
application on a new node will not undergo a time period 

[ 0177 ] File or storage data blocks , previously maintained 
for the purposes of an application's use , from a host's 
memory and / or its temporary or permanent storage element , 
may be stored in another host's memory or and / or its 
temporary or permanent storage element , for the purposes of 
use by the application at a later time . 
[ 0178 ] The mechanism of transferring a file or storage data 
block , previously maintained for the purposes of an appli 
cation's use , from a host’s memory and / or its temporary or 
permanent storage element to another host over a network . 
[ 0179 ] In accordance with various exemplary and non 
limiting embodiments , there is disclosed a device compris 
ing a converged input / output controller that includes a 
physical target storage media controller , a physical network 
interface controller and a gateway between the storage 
media controller and the network interface controller , 
wherein gateway provides a direct connection for storage 
traffic and network traffic between the storage media con 
troller and the network interface controller . 
[ 0180 ] In accordance with some embodiments , the device 
may further comprise a virtual storage interface that presents 
storage media controlled by the storage media controller as 
locally attached storage , regardless of the location of the 
storage media . In accordance with yet other embodiments , 
the device may further comprise a virtual storage interface 
that presents storage media controlled by the storage media 
controller as locally attached storage , regardless of the type 
of the storage media . In accordance with yet other embodi 
ments , the device may further comprise a virtual storage 
interface that facilitates dynamic provisioning of the storage 
media , wherein the physical storage may be either local or 
remote . 
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[ 0181 ] In accordance with yet other embodiments , the 
device may further comprise a virtual network interface that 
facilitates dynamic provisioning of the storage media , 
wherein the physical storage may be either local or remote . 
In accordance with yet other embodiments , the device may 
be adapted to be installed as a controller card on a host 
computing system , in particular , wherein the gateway oper 
ates without intervention by the operating system of the host 
computing system . 
[ 0182 ] In accordance with yet other embodiments , the 
device may include at least one field programmable gate 
array providing at least one of the storage functions and the 
network functions of the device . In accordance with yet 
other embodiments , the device may be configured as a 
network - deployed switch . In accordance with yet other 
embodiments , the device may further comprise a functional 
component of the device for translating storage media 
instructions between a first protocol and at least one other 
protocol . 
[ 0183 ] With reference to FIG . 26 , there is illustrated an 
exemplary and non - limiting method of virtualization of a 
storage device . First , at step 2600 there is accessed a 
physical storage device that responds to instructions in a first 
storage protocol . Next , at step 2602 , there are translated 
instructions between the first storage protocol and a second 
storage protocol . Lastly , at step 2604 , using the second 
protocol , the physical storage device is presented to an 
operating system , such that the storage of the physical 
storage device can be dynamically provisioned , whether the 
physical storage device is local or remote to a host comput 
ing system that uses the operating system . 
[ 0184 ] In accordance with various embodiments , the first 
protocol is at least one of a SATA protocol , an NVMe 
protocol , a SAS protocol , an iSCSI protocol , a fiber channel 
protocol and a fiber channel over Ethernet protocol . In other 
embodiments , the second protocol is an NVMe protocol . 
[ 0185 ] In some embodiments , the method may further 
comprise providing an interface between an operating sys 
tem and a device that performs the translation of instructions 
between the first and second storage protocols and / or pro 
viding an NVMe over Ethernet connection between the 
device that performs the translation of instructions and a 
remote , network - deployed storage device . 
[ 0186 ] With reference to FIG . 27 , there is illustrated an 
exemplary and non - limiting method of facilitating migration 
of at least one of an application and a container . First , at step 
2700 , there is provided a converged storage and networking 
controller , wherein a gateway provides a connection for 
network and storage traffic between a storage component 
and a networking component of the device without inter 
vention of the operating system of a host computer . Next , at 
step 2702 , the at least one application or container is mapped 
to a target physical storage device that is controlled by the 
converged storage and networking controller , such that the 
application or container can access the target physical stor 
age , without intervention of the operating system of the host 
system to which the target physical storage is attached , when 
the application or container is moved to another computing 
system . 
[ 0187 ] In accordance with various embodiments , the 
migration is of a Linux container or a scaleout application . 
[ 0188 ] In accordance with yet other embodiments , the 
target physical storage is a network - deployed storage device 
that uses at least one of an iSCSI protocol , a fiber channel 

protocol and a fiber channel over Ethernet protocol . In yet 
other embodiments , the target physical storage is a disk 
attached storage device that uses at least one of a SAS 
protocol , a SATA protocol and an NVMe protocol . 
[ 0189 ] With reference to FIG . 28 , there is illustrated an 
exemplary and non - limiting method of of providing quality 
of service ( QoS ) for a network . First , at step 2800 , there is 
provided a converged storage and networking controller , 
wherein a gateway provides a connection for network and 
storage traffic between a storage component and a network 
ing component of the device without intervention of the 
operating system of a host computer . Next , at step 2802 , 
without intervention of the operating system of a host 
computer , there is managed at least one quality of service 
( QoS ) parameter related to a network in the data path of 
which the storage and networking controller is deployed , 
such managing being based on at least one of the storage 
traffic and the network traffic that is handled by the con 
verged storage and networking controller . 
[ 0190 ] While only a few embodiments of the present 
disclosure have been shown and described , it will be obvious 
to those skilled in the art that many changes and modifica 
tions may be made thereunto without departing from the 
spirit and scope of the present disclosure as described in the 
following claims . All patent applications and patents , both 
foreign and domestic , and all other publications referenced 
herein are incorporated herein in their entireties to the full 
extent permitted by law . 
[ 0191 ] The methods and systems described herein may be 
deployed in part or in whole through a machine that executes 
computer software , program codes , and / or instructions on a 
processor . The present disclosure may be implemented as a 
method on the machine , as a system or apparatus as part of 
or in relation to the machine , or as a computer program 
product embodied in a computer readable medium executing 
on one or more of the machines . In embodiments , the 
processor may be part of a server , cloud server , client , 
network infrastructure , mobile computing platform , station 
ary computing platform , or other computing platform . A 
processor may be any kind of computational or processing 
device capable of executing program instructions , codes , 
binary instructions and the like . The processor may be or 
may include a signal processor , digital processor , embedded 
processor , microprocessor or any variant such as a co 
processor ( math co - processor , graphic co - processor , com 
munication co - processor and the like ) and the like that may 
directly or indirectly facilitate execution of program code or 
program instructions stored thereon . In addition , the proces 
sor may enable execution of multiple programs , threads , and 
codes . The threads may be executed simultaneously to 
enhance the performance of the processor and to facilitate 
simultaneous operations of the application . By way of 
implementation , methods , program codes , program instruc 
tions and the like described herein may be implemented in 
one or more thread . The thread may spawn other threads that 
may have assigned priorities associated with them ; the 
processor may execute these threads based on priority or any 
other order based on instructions provided in the program 
code . The processor , or any machine utilizing one , may 
include non - transitory memory that stores methods , codes , 
instructions and programs as described herein and else 
where . The processor may access a non - transitory storage 
medium through an interface that may store methods , codes , 
and instructions as described herein and elsewhere . The 
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storage medium associated with the processor for storing 
methods , programs , codes , program instructions or other 
type of instructions capable of being executed by the com 
puting or processing device may include but may not be 
limited to one or more of a CD - ROM , DVD , memory , hard 
disk , flash drive , RAM , ROM , cache and the like . 
[ 0192 ] A processor may include one or more cores that 
may enhance speed and performance of a multiprocessor . In 
embodiments , the process may be a dual core processor , 
quad core processors , other chip - level multiprocessor and 
the like that combine two or more independent cores ( called 
a die ) . 
[ 0193 ] The methods and systems described herein may be 
deployed in part or in whole through a machine that executes 
computer software on a server , client , firewall , gateway , hub , 
router , or other such computer and / or networking hardware . 
The software program may be associated with a server that 
may include a file server , print server , domain server , 
internet server , intranet server , cloud server , and other vari 
ants such as secondary server , host server , distributed server 
and the like . The server may include one or more of 
memories , processors , computer readable media , storage 
media , ports ( physical and virtual ) , communication devices , 
and interfaces capable of accessing other servers , clients , 
machines , and devices through a wired or a wireless 
medium , and the like . The methods , programs , or codes as 
described herein and elsewhere may be executed by the 
server . In addition , other devices required for execution of 
methods as described in this application may be considered 
as a part of the infrastructure associated with the server . 
[ 0194 ] [ 000194 ] The server may provide an interface to 
other devices including , without limitation , clients , other 
servers , printers , database servers , print servers , file servers , 
communication servers , distributed servers , social networks , 
and the like . Additionally , this coupling and / or connection 
may facilitate remote execution of program across the 
network . The networking of some or all of these devices may 
facilitate parallel processing of a program or method at one 
or more location without deviating from the scope of the 
disclosure . In addition , any of the devices attached to the 
server through an interface may include at least one storage 
medium capable of storing methods , programs , code and / or 
instructions . A central repository may provide program 
instructions to be executed on different devices . In this 
implementation , the remote repository may act as a storage 
medium for program code , instructions , and programs . 
[ 0195 ] [ 000195 ] The software program may be associated 
with a client that may include a file client , print client , 
domain client , internet client , intranet client and other vari 
ants such as secondary client , host client , distributed client 
and the like . The client may include one or more of memo 
ries , processors , computer readable media , storage media , 
ports ( physical and virtual ) , communication devices , and 
interfaces capable of accessing other clients , servers , 
machines , and devices through a wired or a wireless 
medium , and the like . The methods , programs , or codes as 
described herein and elsewhere may be executed by the 
client . In addition , other devices required for execution of 
methods as described in this application may be considered 
as a part of the infrastructure associated with the client . 
[ 0196 ] The client may provide an interface to other 
devices including , without limitation , servers , other clients , 
printers , database servers , print servers , file servers , com 
munication servers , distributed servers and the like . Addi 

tionally , this coupling and / or connection may facilitate 
remote execution of program across the network . The net 
working of some or all of these devices may facilitate 
parallel processing of a program or method at one or more 
location without deviating from the scope of the disclosure . 
In addition , any of the devices attached to the client through 
an interface may include at least one storage medium 
capable of storing methods , programs , applications , code 
and / or instructions . A central repository may provide pro 
gram instructions to be executed on different devices . In this 
implementation , the remote repository may act as a storage 
medium for program code , instructions , and programs . 
[ 0197 ] The methods and systems described herein may be 
deployed in part or in whole through network infrastruc 
tures . The network infrastructure may include elements such 
as computing devices , servers , routers , hubs , firewalls , cli 
ents , personal computers , communication devices , routing 
devices and other active and passive devices , modules 
and / or components as known in the art . The computing 
and / or non - computing device ( s ) associated with the network 
infrastructure may include , apart from other components , a 
storage medium such as flash memory , buffer , stack , RAM , 
ROM and the like . The processes , methods , program codes , 
instructions described herein and elsewhere may be 
executed by one or more of the network infrastructural 
elements . The methods and systems described herein may be 
adapted for use with any kind of private , community , or 
hybrid cloud computing network or cloud computing envi 
ronment , including those which involve features of software 
as a service ( SaaS ) , platform as a service ( PaaS ) , and / or 
infrastructure as a service ( IaaS ) . 
[ 0198 ] The methods , program codes , and instructions 
described herein and elsewhere may be implemented on a 
cellular network has sender - controlled contact media con 
tent item multiple cells . The cellular network may either be 
frequency division multiple access ( FDMA ) network or 
code division multiple access ( CDMA ) network . The cellu 
lar network may include mobile devices , cell sites , base 
stations , repeaters , antennas , towers , and the like . The cell 
network may be a GSM , GPRS , 3G , EVDO , mesh , or other 
networks types . 
[ 0199 ] The methods , program codes , and instructions 
described herein and elsewhere may be implemented on or 
through mobile devices . The mobile devices may include 
navigation devices , cell phones , mobile phones , mobile 
personal digital assistants , laptops , palmtops , netbooks , pag 
ers , electronic books readers , music players and the like . 
These devices may include , apart from other components , a 
storage medium such as a flash memory , buffer , RAM , ROM 
and one or more computing devices . The computing devices 
associated with mobile devices may be enabled to execute 
program codes , methods , and instructions stored thereon . 
Alternatively , the mobile devices may be configured to 
execute instructions in collaboration with other devices . The 
mobile devices may communicate with base stations inter 
faced with servers and configured to execute program codes . 
The mobile devices may communicate on a peer - to - peer 
network , mesh network , or other communications network . 
The program code may be stored on the storage medium 
associated with the server and executed by a computing 
device embedded within the server . The base station may 
include a computing device and a storage medium . The 
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storage device may store program codes and instructions 
executed by the computing devices associated with the base 
station . 
[ 0200 ] The computer software , program codes , and / or 
instructions may be stored and / or accessed on machine 
readable media that may include : computer components , 
devices , and recording media that retain digital data used for 
computing for some interval of time ; semiconductor storage 
known as random access memory ( RAM ) ; mass storage 
typically for more permanent storage , such as optical discs , 
forms of magnetic storage like hard disks , tapes , drums , 
cards and other types ; processor registers , cache memory , 
volatile memory , non - volatile memory ; optical storage such 
as CD , DVD ; removable media such as flash memory ( e.g. 
USB sticks or keys ) , floppy disks , magnetic tape , paper tape , 
punch cards , standalone RAM disks , Zip drives , removable 
mass storage , off - line , and the like ; other computer memory 
such as dynamic memory , static memory , read / write storage , 
mutable storage , read only , random access , sequential 
access , location addressable , file addressable , content 
addressable , network attached storage , storage area network , 
bar codes , magnetic ink , and the like . 
[ 0201 ] The methods and systems described herein may 
transform physical and / or or intangible items from one state 
to another . The methods and systems described herein may 
also transform data representing physical and / or intangible 
items from one state to another . 
[ 0202 ] The elements described and depicted herein , 
including in flow charts and block diagrams throughout the 
figures , imply logical boundaries between the elements . 
However , according to software or hardware engineering 
practices , the depicted elements and the functions thereof 
may be implemented on machines through computer execut 
able media has sender - controlled contact media content item 
a processor capable of executing program instructions stored 
thereon as a monolithic software structure , as standalone 
software modules , or as modules that employ external 
routines , code , services , and so forth , or any combination of 
these , and all such implementations may be within the scope 
of the present disclosure . Examples of such machines may 
include , but may not be limited to , personal digital assis 
tants , laptops , personal computers , mobile phones , other 
handheld computing devices , medical equipment , wired or 
wireless communication devices , transducers , chips , calcu 
lators , satellites , tablet PCs , electronic books , gadgets , elec 
tronic devices , devices has sender - controlled contact media 
content item artificial intelligence , computing devices , net 
working equipment , servers , routers and the like . Further 
more , the elements depicted in the flow chart and block 
diagrams or any other logical component may be imple 
mented on a machine capable of executing program instruc 
tions . Thus , while the foregoing drawings and descriptions 
set forth functional aspects of the disclosed systems , no 
particular arrangement of software for implementing these 
functional aspects should be inferred from these descriptions 
unless explicitly stated or otherwise clear from the context . 
Similarly , it will be appreciated that the various steps 
identified and described above may be varied , and that the 
order of steps may be adapted to particular applications of 
the techniques disclosed herein . All such variations and 
modifications are intended to fall within the scope of this 
disclosure . As such , the depiction and / or description of an 
order for various steps should not be understood to require 
a particular order of execution for those steps , unless 

required by a particular application , or explicitly stated or 
otherwise clear from the context . 
[ 0203 ] The methods and / or processes described above , 
and steps associated therewith , may be realized in hardware , 
software or any combination of hardware and software 
suitable for a particular application . The hardware may 
include a general - purpose computer and / or dedicated com 
puting device or specific computing device or particular 
aspect or component of a specific computing device . The 
processes may be realized in one or more microprocessors , 
microcontrollers , embedded microcontrollers , program 
mable digital signal processors or other programmable 
device , along with internal and / or external memory . The 
processes may also , or instead , be embodied in an applica 
tion specific integrated circuit , a programmable gate array , 
programmable array logic , or any other device or combina 
tion of devices that may be configured to process electronic 
signals . It will further be appreciated that one or more of the 
processes may be realized as a computer executable code 
capable of being executed on a machine - readable medium . 
[ 0204 ] The computer executable code may be created 
using a structured programming language such as C , an 
object oriented programming language such as C ++ , or any 
other high - level or low - level programming language ( in 
cluding assembly languages , hardware description lan 
guages , and database programming languages and technolo 
gies ) that may be stored , compiled or interpreted to run on 
one of the above devices , as well as heterogeneous combi 
nations of processors , processor architectures , or combina 
tions of different hardware and software , or any other 
machine capable of executing program instructions . 
[ 0205 ] Thus , in one aspect , methods described above and 
combinations thereof may be embodied in computer execut 
able code that , when executing on one or more computing 
devices , performs the steps thereof . In another aspect , the 
methods may be embodied in systems that perform the steps 
thereof , and may be distributed across devices in a number 
of ways , or all of the functionality may be integrated into a 
dedicated , standalone device or other hardware . In another 
aspect , the means for performing the steps associated with 
the processes described above may include any of the 
hardware and / or software described above . All such permu 
tations and combinations are intended to fall within the 
scope of the present disclosure . 
[ 0206 ] While the disclosure has been disclosed in connec 
tion with the preferred embodiments shown and described in 
detail , various modifications and improvements thereon will 
become readily apparent to those skilled in the art . Accord 
ingly , the spirit and scope of the present disclosure is not to 
be limited by the foregoing examples , but is to be under 
stood in the broadest sense allowable by law . 
[ 0207 ] The use of the terms “ a ” and “ an ” and “ the ” and 
similar referents in the context of describing the disclosure 
( especially in the context of the following claims ) is to be 
construed to cover both the singular and the plural , unless 
otherwise indicated herein or clearly contradicted by con 
text . The terms " comprising , ” “ haa sender - controlled con 
tact media content item , ” “ including , ” and “ containing ” are 
to be construed as open - ended terms ( i.e. , meaning “ includ 
ing , but not limited to , " ) unless otherwise noted . Recitation 
of ranges of values herein are merely intended to serve as a 
shorthand method of referring individually to each separate 
value falling within the range , unless otherwise indicated 
herein , and each separate value is incorporated into the 
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7. The controller of claim 3 , wherein each of the plurality 
of target - oriented queues are sized according to a size of a 
command buffer of a connected target . 

8. The controller of claim 1 , wherein credits are allocated 
to the source in response a data transfer request from the 
source . 

specification as if it were individually recited herein . All 
methods described herein can be performed in any suitable 
order unless otherwise indicated herein or otherwise clearly 
contradicted by context . The use of any and all examples , or 
exemplary language ( e.g. , " such as " ) provided herein , is 
intended merely to better illuminate the disclosure and does 
not pose a limitation on the scope of the disclosure unless 
otherwise claimed . No language in the specification should 
be construed as indicating any non - claimed element as 
essential to the practice of the disclosure . 
[ 0208 ] While the foregoing written description enables 
one of ordinary skill to make and use what is considered 
presently to be the best mode thereof , those of ordinary skill 
will understand and appreciate the existence of variations , 
combinations , and equivalents of the specific embodiment , 
method , and examples herein . The disclosure should there 
fore not be limited by the above described embodiment , 
method , and examples , but by all embodiments and methods 
within the scope and spirit of the disclosure . 
[ 0209 ] All documents referenced herein are hereby incor 
porated by reference . 
What is claimed is : 
1. A converged controller for interfacing a set of sources 

and a set of targets with credit - based flow control , the 
controller comprising : 

a plurality of source - oriented queues , each source - ori 
ented queue connected to a different source of the set of 
sources ; 

a plurality of target - oriented queues , each target - oriented 
queue connected to a different target of the set of targets 
and configured with a number of target access credits ; 
and 

a multiplexer for selectively coupling a source - oriented 
queue of the plurality of source - oriented queues to at 
least one target - oriented queue of the plurality of target 
oriented queues , wherein the coupling enables a num 
ber of data accesses between a source connected to the 
source - oriented queue and a subset of the set of targets 
connected to the at least one target - oriented queue 
according to the credit - based flow control ; 

wherein the credit - based flow control limits the number of 
data accesses according to a number of credits allocated 
to the source connected to the source - oriented queue ; 
and 

wherein the number of credits is computed from the 
number of target access credits of the at least one 
target - oriented queue . 

2. The controller of claim 1 , wherein the number of credits 
allocated to the source connected to the source - oriented 
queue is less than or equal to a depth of the source - oriented 
queue . 

3. The controller of claim 2 , wherein the depth of each of 
the plurality of source - oriented queues is less than or equal 
to a total depth of all the plurality of target - oriented queues . 

4. The controller of claim 3 , wherein at least one of the set 
of targets is a direct connected data storage . 

5. The controller of claim 3 , wherein at least one of the set 
of sources is an ethernet device . 

6. The controller of claim 1 , wherein the number of credits 
allocated to the source connected to the source - oriented 
queue is based at least in part on a size of command buffers 
of the subset of targets . 

9. The controller of claim 1 , further comprising a physical 
storage media controller , a physical network interface con 
troller and a direct connection therebetween for performing 
data accesses between the source connected to the source 
oriented queue and the subset of targets connected to the at 
least one target - oriented queue . 

10. A method for source - oriented credit - based scheduling 
of data flow : 

providing a set of target access credits to a plurality of 
target - oriented queues for accessing target resources ; 

mapping with a multiplexer a source - oriented queue of a 
plurality of source - oriented queues to a portion of the 
plurality of target - oriented queues ; 

providing a set of source access credits for the source 
oriented queue of the plurality of source - oriented 
queues responsive to a request from at least one of a 
plurality of source resources connected to the plurality 
of source - oriented queues to access the target 
resources ; and 

limiting a maximum number of source access credits for 
the source - oriented queue of the plurality of source 
oriented queues based on a total count of target access 
credits provided to the portion of the plurality of 
target - oriented queues . 

11. The method of claim 10 , wherein providing the set of 
target access credits further comprises limiting the set of 
target access credits to a size that is less than or equal to a 
total depth of the plurality of target - oriented queues . 

12. The method of claim 10 , wherein at least one of the 
target resources is a direct connected data storage . 

13. The method of claim 10 , wherein at least one of the 
plurality of source resources is an ethernet device . 

14. The method of claim 10 , wherein limiting the maxi 
mum number of source access credits further comprises 
sizing a depth of the source - oriented queue to the maximum 
number of source access credits . 

15. A storage control system comprising : 
a plurality of source - oriented queues that each provide 

access credits to network - remote sources requesting 
access to storage resources controlled by a physical 
storage controller portion of a converged network 
storage controller , wherein each of the network - remote 
sources is a distinct instance of the converged network 
storage controller ; 

a plurality of target - oriented queues , wherein each target 
oriented queue controls access to a local , physical 
storage resource by limiting a count of target access 
credits permitted for each local physical storage 
resource ; and 

a multiplexer for mapping the plurality of source - oriented 
queues to the plurality of target - oriented queues , 
wherein a maximum number of access credits permit 
ted for each of the plurality of source - oriented queues 
is limited by the multiplexer to no more than a total 
number of target access credits available from the 
plurality of target - oriented queues with which each 

queue of the plurality of source - oriented queues 
is multiplexed . 
source 
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16. The system of claim 15 , wherein access bandwidth 
and access latency are guaranteed independent of a number 
of a local , physical storage resources . 

17. The system of claim 15 , wherein access bandwidth 
and access latency are guaranteed independent of a number 
of converged network - storage controllers . 

18. A method of guaranteeing predictable access latency 
in a network - distributed storage system , comprising : 
multiplexing a plurality of source - oriented queues to a 

plurality of target - oriented queues ; and 
limiting a maximum size of each of the plurality of 

source - oriented queues to no more than a combined 
size of the plurality of target - oriented queues with 
which the plurality of source - oriented queues are mul 
tiplexed . 

19. The method of claim 18 , further comprising allocating 
credits to a source coupled to a multiplexed source - oriented 
queue in response a data transfer request from the source . 

20. The method of claim 18 , further comprising limiting 
a count of credits allocated to a source coupled to at least one 
of the plurality of source - oriented queues to the maximum 
size of each of the plurality of source - oriented queues for a 
credit - based flow control of data transfer . 


