
IN
US 20200201661A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0201661 A1

Chou et al . (43) Pub . Date : Jun . 25 , 2020

(54) GUARANTEEING AVAILABILITY OF
TARGET DATA TO REMOTE INITIATORS
VIA A HYBRID SOURCE / TARGET CREDIT
SCHEME

(71) Applicant : Diamanti , Inc. , San Jose , CA (US)

(72) Inventors : Jeffrey Chou , Palo Alto , CA (US) ;
Gopal Sharma , San Jose , CA (US) ;
Amitava Guha , San Jose , CA (US) ;
Kevin Fong , Las Vegas , NV (US) ;
Jayasenan Sundara Ganesh ,
Cupertino , CA (US)

(60) Provisional application No. 61 / 950,036 , filed on Mar.
8 , 2014 , provisional application No. 62 / 017,257 , filed
on Jun . 26 , 2014 .

Publication Classification

(51) Int . CI .
G06F 9/455 (2006.01)
H04L 29/08 (2006.01)
GO6F 3/06 (2006.01)

(52) U.S. Ci .
CPC GO6F 9/45541 (2013.01) ; H04L 67/1097

(2013.01) ; H04L 67/1002 (2013.01) ; G06F
370664 (2013.01) ; G06F 3/061 (2013.01) ;

G06F 37067 (2013.01)
(57) ABSTRACT
A device includes a converged input / output controller that
includes a physical target storage media controller , a physi
cal network interface controller and a gateway between the
storage media controller and the network interface control
ler , wherein gateway provides a direct connection for stor
age traffic and network traffic between the storage media
controller and the network interface controller .

(21) Appl . No .: 16 / 806,999

(22) Filed : Mar. 2 , 2020

Related U.S. Application Data
(63) Continuation of application No. 14 / 640,717 , filed on

Mar. 6 , 2015 , now abandoned .

102 102

Computer System 1 (C1) Computer System 2 (C2)
1018

LXC3 VM1
1104

LXC2
1114

LXC1
1110

App5
App3 App1

1102
App4
1118

App2
1108

App6
1112

Operating
System /
Hypervisor
108

Operating
System /
Hypervisor
108

112 118 112 118

S1 S3 S4 S2 S5 56

Ethernet
Network 122

102 102

Conventional Computing System / Server

Patent Application Publication

Hypervisor / OS Stack

118

Storage

1/28

NIC

Jun . 25 , 2020 Sheet 1 of 28

Storage Devices

122 Network
Fig . 1 PRIOR ART

US 2020/0201661 A1

102

Computing System 1

102

Computing System 1

108

Hyperviser / OS Stack

444444444
Virtualization Boundary

44444

Hyperviser / OS Stack

Patent Application Publication

126

106

CPU

110

110

110

110

Pole

Pile

PCte

118

112

Storage Controller

Storage Controller

118

124 :

104 :

Local Storage Device's

Locat Storage Devices

NIC

Jun . 25 , 2020 Sheet 2 of 28

1.22 22 Network

124

FIG . 2

US 2020/0201661 A1

PRIOR ART

102

300

Computer System

Patent Application Publication

Converged lo Controller

106

118
110

To Network Switch / router

Network Controller

108

308

304

PCle

OS

Memory

CPU

SAS , SATA or NVME

NVME

302

DAS

Storage Controller

Jun . 25 , 2020 Sheet 3 of 28

Storage Devices

112

SAN

iSCSI , FC or

FCOE

310

Fig . 3

US 2020/0201661 A1

102

300

Computer System 1

SAS , SATA or NVME

Converged 10 Controller

SAN

108

Storage Controller

Patent Application Publication

404

PCle

DAS

CPU

OS

SCSI , FC or

FCOE

NVME

Memory

Network Controller

402

408

400

V

Ethernet Switch

102

300

Jun . 25 , 2020 Sheet 4 of 28

computer System 2

Network Controller

108

PCle

CPU

OS

NVME

Memory

Storage Controller

DAS

SAS , SATA or NVME

Converged 10 Controller

Fig . 4

US 2020/0201661 A1

SAN

iSCSI , FC or FCOE

102

Conventional Computing System
110

Patent Application Publication

PCle

118

NIC

500

300

302

Converged DWS IO Controller

118

SAS , SATA or NVME

Network Controller

DAS

Jun . 25 , 2020 Sheet 5 of 28

Storage Devices
SAN

Storage Controller

iSCSI , FC or FCOE

112

Storage Enabled Switch

US 2020/0201661 A1

Fig . 5

102

102

Computer System 1

Computer System2

110

110

PCle

Patent Application Publication

300

PCle

DAS

118

Converged Controller
302

NIC

NIC

Target Storage

Ethernet

500

Jun . 25 , 2020 Sheet 6 of 28

302

Target Storage
v

US 2020/0201661 A1

Fig . 6

102

300

102

Computer System 1

ISCSI , FC or FCOE

Conventional Computing System

SAN

Converged 10 Controller

108

Storage Controller

SAS , SATA or
NVME

Patent Application Publication

PCle

PCle

DAS

CPU

Memory

NVME

S

500

NIC

Network Controller

308

402

Converged 10 Controller

SAS , SATA or NVME

400

Network Controller

DAS

NVME over Ethernet

Point to Point

Ethernet Switch

102

iSCSI , FC or FCOE

300

Storage Controller

Jun . 25 , 2020 Sheet 7 of 28

SAN

Computer System 2

700

Storage Enabled Switch

310

Network Controller

108

308

302

PCle

NVME

CPU
Memory

S

Storage Controller

DAS
SAS , SATA or NVME

Converged 10 Controller

US 2020/0201661 A1

Fig . 7

SAN

310

iSCSI , FC or FCOE

PCle (s) 110

807

837

800

VNVMe 802

VNICS 830

Patent Application Publication

V

V

V

PF 806

PF 836

CPU

Read / Write DMA Queues 804

CPU

Receive / Transmit DMA Queues 832

858

Device Mapping 808

Classifiers , Flow Mgmt 834

Cache 858

812

810

ACLS , Rewrite Policy 838

DRAM
NVRAM

DDR3 Ctrl 860

Compress

Ctrl Prot . Translation

Storage - Netwrk Tunnel FCOE , NVMEOE , and / or Point - to Point 828

Forwarding 840

Protect

Data Translation

Encrypt

842

Jun . 25 , 2020 Sheet 8 of 28

Storage Read / Write Queues 814

Network / Remote Storage Scheduler , Policer 844

Storage Metadata Management 822

818

850

Local Network Switch 848

Data Placement 820

Rewrite , Tag , CRC 852

824

PCle

SAS ctr !

SATA ctrl

NVME ctrl

FC ctrl

FCOE ctrl

iSCSI ctrl

MAC

MAC

MAC

MAC

ctrl

854

308

US 2020/0201661 A1

VXLAN

DAS

SAN

310

302

Fig . 8

PCIe Gen 3X16 Connector

Patent Application Publication

PCIe Switch PLX PEX8724

10G NIC Intel

obx
YOUNCI

Network
Xilinx XCKU060-2

NVDW

Jun . 25 , 2020 Sheet 9 of 28

Auria

1020

Datapathi
Xilinx XCK1060-2

Flasks

806

JUCNDE

US 2020/0201661 A1

Fig . 9

LXC1

LXC2

LXC3

1018

App2

App3

App3

Patent Application Publication

1000

User

Virtual Devices 1012 dev1 , dev2 , dev3

Block Layer 1014

PCle Driver for Converged Solution 1002

Kernel

Jun . 25 , 2020 Sheet 10 of 28

Hardware

NVMe Controller 1004

Ethernet 120

Other Hosts 102

NVMe to SATA Bridge 1008

SATA connection 1010

302

US 2020/0201661 A1

SSD

Fig . 10

102

102

Computer System 1 (C1)

Computer System 2 (C2)

1018

LXC2

LXC3

VM1 1104

LXC1 1110

1018

1114

App5

Patent Application Publication

App1 1102

App2 1108

App3 1112

App4 1118

00 App6

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Jun . 25 , 2020 Sheet 11 of 28

112

118

112

118

31

S2

S3

S4

S5

S6

Ethernet

Ethernet

302

US 2020/0201661 A1

Network 122

Fig . 11

102

102

Computer System 1 (C1)

Computer System 2 (C2)

1018

VM1

LXC2

LXC1

LXC3

1104

1114

1110

Patent Application Publication

App5

App1 1102

App3 1112

App4 1118

App2 1108

App6

1 . 1

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Jun . 25 , 2020 Sheet 12 of 28

112

118

112

118

S1
Ot

S3

S4

S2

S5

S6

Ethernet

US 2020/0201661 A1

Fig . 12

Network 122

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC1

LXC3

1110

App1

Patent Application Publication

App3 ??

App5

App4

App2 1108

App6

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Jun . 25 , 2020 Sheet 13 of 28

112

118

112

118

S1

S2

S3

S4

S5

S6

Ethernet

302

US 2020/0201661 A1

Fig . 13

Network 122

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC3

LXC1 1110

App1

Patent Application Publication

App3

App5 09

App2 1108

App4

App6

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Jun . 25 , 2020 Sheet 14 of 28

Converged 10 Controller (Storage + Network) 300

112

118

S1

S2

S3

S4

S5

S6

Ethernet

302

US 2020/0201661 A1

Network 122

Fig . 14

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC1

LXC3

1110

Patent Application Publication

App1

App3

App5

App4

App2 1108

App6

1

I

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Jun . 25 , 2020 Sheet 15 of 28

Converged 10 Controller (Storage + Network) 300

112

118

S1 || S2

53 | 54

go S5

S6

Ethernet

302

US 2020/0201661 A1

Fig . 15

Network 122

302

Patent Application Publication

N +

-M

SATA Bus 1602

TU
SATA Controller

SATA Device

NE

- M

Fiber Channel 1604

Jun . 25 , 2020 Sheet 16 of 28

FC Controller 1610

FC Device 1612

N -- >

M- >

SCSI / SAS 1608

MU
SCSI / SAS Controller

SCSI / SAS Device

US 2020/0201661 A1

Fig . 16

Converged 10 Controller 300

1704

N

M

>

07/11

Q5
Š

Patent Application Publication

Storage Access Bus

Storage Device 302

L

Q6 ali

1708

K

S

Q8 2814

Storage Access Bus

Storage Device 302

1702

Jun . 25 , 2020 Sheet 17 of 28

01 11.02031194 Storage Access Over Ethernet Ethernet

US 2020/0201661 A1

Fig . 17

Applications

Application - specific SLA Controllers

fd1 fd2

0

Patent Application Publication

Global static SLA parameters

Dynamic Session specific SLA parameters

Linux

Userland

POSIX

Virtual Functions
File Session SLA ^

fd1 lfd2

Jun . 25 , 2020 Sheet 18 of 28

Cache Broker

SLA Broker 1804

00001
10001

File System client 1802

Memoryl Network SLAAN

US 2020/0201661 A1

Network Driver (TCP - like reliable delivery layer)

Fig . 18

Cache Brokers

Patent Application Publication

Platform 1904

High - speed Memory
63 62

61 62

Application Container (s) 1908

00000

€ 24 62

62

Tiering Engine 1910

Flash

High Performance DFS 1902

Jun . 25 , 2020 Sheet 19 of 28

Disk

Disk

SSD

Disk

Disk

Fig . 19

US 2020/0201661 A1

C1

C2

C3

Patent Application Publication

[001010
10000

00000000
00000000

Cache Broker

Cache Broker

O *

0000
NOD0000

100000
0:00

Cache Broker

FS Client

FS Client

FS Client

2002
Platform 1904

DRAM

DOVOD
DODOD
10000
00000

Application Container

Tiering Engine

Jun . 25 , 2020 Sheet 20 of 28

Flash

High Performance DFS 1902

Disk

Disk

SSD

Disk

Disk

US 2020/0201661 A1

Fig . 20

Host N

Host 1 (H1)

Host 2 (H2)

Patent Application Publication

File or Volume Server 2102

Jun . 25 , 2020 Sheet 21 of 28

File 1 or Volume 1

Fig . 21

File 2 or Volume 2

Storage 2104

US 2020/0201661 A1

Patent Application Publication Jun . 25 , 2020 Sheet 22 of 28 US 2020/0201661 A1

80ZZ

Application 2202 File Systenz Client 2210

Operating System
2204 Host Fig . 22

2200

Patent Application Publication Jun . 25 , 2020 Sheet 23 of 28 US 2020/0201661 A1

Fig . 23

Portions at KOB 3 3ax say320

2208
©

2202 dy 2206 File or Volume Server 2210
Varsåg 2uezada

Storage

OOZZ

Patent Application Publication Jun . 25 , 2020 Sheet 24 of 28 US 2020/0201661 A1

Aiamöva utax Fig . 24

8027 mory
2212

wollezijddy ale Storage

Host
0122

Patent Application Publication

Host 1

Host 2

2202

Application 2202

Meiny 2208

2208

Operating System 2204

Pperating System 2204

File System Clie : 36
2206

File System Client 2206

Jun . 25 , 2020 Sheet 25 of 28

Fig . 25

US 2020/0201661 A1

Patent Application Publication Jun . 25 , 2020 Sheet 26 of 28 US 2020/0201661 A1

Access a physical storage device that responds
to instructions in a first storage protocol .

2600

Translate instructions between the first
storage protocol and a second storage protocol . 2602

2604

Use the second protocol , presenting the physical
storage device to an operating system , such that

the storage of the physical storage
device can be dynamically provisioned , whether the

physical storage device is local or remote to
a host computing system that uses the operating system .

Fig . 26

Patent Application Publication Jun . 25 , 2020 Sheet 27 of 28 US 2020/0201661 A1

2700

Provide a converged storage and networking
controller , wherein a gateway provides a connection

for network and storage traffic between a storage
component and a networking component of the device
without intervention of the operating system of a host

computer ,

2702

Map the at least one application or container to a
target physical storage device that is controlled by the
converged storage and networking controller , such that

the application or container can access the target
physical storage , without intervention of the operating
system of the host system to which the target physical
storage is attached , when the application or container

is moved to another computing system .

Fig . 27

Patent Application Publication Jun . 25 , 2020 Sheet 28 of 28 US 2020/0201661 A1

2800

Provide a converged storage and networking
controller , wherein a gateway provides a
connection for network and storage traffic

between a storage component and a networking
component of the device without intervention of

the operating system of a host computer .

2802

Without intervention of the operating system of a
host computer , manage at least one quality of
service (QoS) parameter related to a network in

the data path of which the storage and networking
controller is deployed , such managing being

based on at least one of the storage traffic and the
network traffic that is handled by the converged

storage and networking controller .

Fig . 28

US 2020/0201661 A1 Jun . 25 , 2020
1

GUARANTEEING AVAILABILITY OF
TARGET DATA TO REMOTE INITIATORS
VIA A HYBRID SOURCE / TARGET CREDIT

SCHEME

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. Ser . No.
14 / 640,717 , filed Mar. 6 , 2015 (DWIS - 0004-001) and
entitled “ METHODS AND SYSTEMS FOR CONVERGED
NETWORKING AND STORAGE ” , which is hereby incor
porated by reference in its entirety .
[0002] U.S. Ser . No. 14 / 640,717 claims the benefit of the
following provisional applications , each of which is hereby
incorporated by reference in its entirety : U.S. patent appli
cation 61 / 950,036 , filed Mar. 8 , 2014 (DWIS - 0002 - P01) and
entitled “ METHOD AND APPARATUS FOR APPLICA
TION DRIVEN STORAGE ACCESS ” ; and U.S. patent
application 62 / 017,257 , filed Jun . 26 , 2014 (DWIS - 0003
P01) and entitled " APPARATUS FOR VIRTUALIZED
CLUSTER IO " .

FIELD OF THE INVENTION

[0003] This application relates to the fields of networking
and data storage , and more particularly to the field of
converged networking and data storage devices .

BACKGROUND OF THE INVENTION

small computer system interface (SCSI) protocol , the serial
ATA (SATA) protocol , the non - volatile memory express
(NVMe) protocol (a protocol for accessing disk - attached
storage (DAS) , like solid - state drives (SSDs) , through the
PCI Express (PCIe) bus 110 of a typical computing system
102) or the like . The PCIe bus 110 may provide an inter
connection between a CPU 106 (with processor (s) and
memory) and various IO cards . The storage stack also may
include volume managers , etc. Operations within the storage
software stack may also include data protection , such as
mirroring or RAID , backup , snapshots , deduplication , com
pression and encryption . Some of the storage functions may
be offloaded into a storage controller 112. The software
network stack includes modules , functions and the like for
enabling use of various networking protocols , such as Trans
mission Control Protocol / Internet Protocol (TCP / IP) , the
domain name system protocol (DNS) , the address resolution
protocol (ARP) , forwarding protocols , and the like . Some of
the network functions may be offloaded into a network
interface controller 118 (or NIC) or the network fabric
switch , such as via an ethernet connection 120 , in turn
leading to a network (with various switches , routers and the
like) . In virtualized environments , a NIC 118 may be virtu
alized into several virtual NICs as specified by SR - IOV
under the PCI Express standard . Although not specified by
the PCI Express standard and not as common , storage
controllers can also be virtualized in a similar manner . This
approach allows virtual entities , such as virtual machines ,
access to their own private resource .
[0006] Referring to FIG . 2 , one major problem with hyper
visors is with the complexity of IO operations . For example ,
in order to deal with an operation involving data across two
different computers (computer system 1 and computer sys
tem 2 in FIG . 2) , data must be copied repeatedly , over and
over , as it moves among the different software stacks
involved in local storage devices 104 , storage controllers
112 , the CPUs 106 , network interface controller 118 and the
hypervisor / operating systems 108 of the computers , result
ing in large numbers of inefficient data copies for each IO
operation whenever an activity is undertaken that involves
moving data from one computer to another , changing the
configuration of storage , or the like . The route 124 is one of
many examples of the complex routes that data may take
from one computer to another , moving up and down the
software stacks of the two computers . Data that is sought by
computing system 2 may be initially located in a local
storage device 104 , such as a disk , of computing system 1 ,
then pulled by a storage controller card 112 (involving an IO
operation and copying) , send over the PCIe bus 110 (another
IO operation) to the CPU 108 where it is handled by a
hypervisor or other software component of the OS stack 108
of computing system 1. Next , the data may be delivered
(another 10 operation) through the network controller 118
and over the network 122 (another set of 10 operations) to
computing system 2. The route continues on computing
system 2 , where data may travel through the network
controller 118 and to the CPU 106 of computing system 2
(involve additional IO operations) , then sent over the PCIe
bus 110 to the local storage controller 112 for storage , then
back to the hypervisor / OS stack 108 for actual use . These
operations may occur across a multiplicity of pairs of
computing systems , with each exchange involving this kind
of proliferation of IO operations (and many other routes are
possible , each involving significant numbers of operations) .

[0004] The proliferation of scale - out applications has led
to very significant challenges for enterprises that use such
applications . Enterprises typically choose between solutions
like virtual machines (involving software components like
hypervisors and premium hardware components) and so
called “ bare metal ” solutions (typically involving use of an
operating system like LinuxTM and commodity hardware . At
large scale , virtual machine solutions typically have poor
input - output (IO) performance , inadequate memory , incon
sistent performance , and high infrastructure cost . Bare metal
solutions typically have static resource allo tion (making
changes in resources difficult and resulting in inefficient use
of the hardware) , challenges in planning capacity , inconsis
tent performance , and operational complexity . In both cases ,
inconsistent performance characterizes the existing solu
tions . A need exists for solutions that provide high perfor

in multi - tenant deployments , that can handle
dynamic resource allocation , and that can use commodity
hardware with a high degree of utilization .
[0005] FIG . 1 depicts the general architecture of a com
puting system 102 , such as a server , functions and modules
of which may be involved in certain embodiments disclosed
herein . Storage functions (such as access to local storage
devices on the server 102 , such as media 104 (e.g. , rotating
media or flash) and network functions such as forwarding
have traditionally been performed separately in either soft
ware stacks or hardware devices (e.g. , involving a network
interface controller 118 or a storage controller 112 , for
network functions or storage functions , respectively) .
Within an operating system stack 108 (which may include an
operating system and a hypervisor in some embodiments
including all the software stacks associated with storage and
networking functions for the computing system) , the soft
ware storage stack typically includes modules enabling use
of various protocols that can be used in storage , such as the

mance

US 2020/0201661 A1 Jun . 25 , 2020
2

out - of - the box , across the network , and into the box data
transfer needs to be repeated again . As described , limitations
of this approach include degradation in raw performance ,
unpredictable performance , impact on other tenants or
operations , availability and reliability , and inefficient use of
resources . A need exists for data transfer systems that avoid
the complexity and performance impacts of the current
approaches .
[0008] As an alternative to hypervisors (which provide a
separate operating system for each virtual machine that they
manage) , technologies such as LinuxTM containers have
been developed (which enable a single operating system to
manage multiple application containers) . Also , tools such as
Dockers have been developed , which provide provisioning
for packaging applications with libraries . Among many
other innovations described throughout this disclosure , an
opportunity exists for leveraging the capabilities of these
emerging technologies to provide improved methods and
systems for scaleout applications .

SUMMARY

Many such complex data replication and transport activities
among computing systems are required in scaleout situa
tions , which are increasingly adopted by enterprises . For
example , when implementing a scaleout application like
MongoDBTM , customers must repeatedly run real time que
ries during rebalancing operations , and perform large scale
data loading . Such activities involve very large numbers of
IO operations , which result in poor performance in hyper
visor solutions . Users of those applications also frequently
re - shard (change the shards on which data is deployed) ,
resulting in big problems for bare metal solutions that have
static storage resource allocations , as migration of data from
one location to another also involves many copying and
transport operations , with large numbers of 10 operations .
As the amount of data used in scaleout applications grows
rapidly , and the connectedness among disparate systems
increases (such as in cloud deployments involving many
machines) , these problems grow exponentially . A need exists
for storage and networking solutions that reduce the number
and complexity of IO operations and otherwise improve the
performance and scaleability of scaleout applications with
out requiring expensive , premium hardware .
[0007] Referring still to FIG . 2 , for many applications and
use cases , data (and in turn , storage) needs to be accessed
across the network between computing systems 102. Three
high - level steps of this operation include the transfer of data
from the storage media of one computing system out of a
box , movement across the network 122 , and the transfer of
data into a second box (second computing system 102) to the
storage media 104 of that second computing system 102 .
First , out of the box transfer , may involve intervention from
the storage controller 112 , the storage stack in the OS 108 ,
the network stack in the OS 108 , and the network interface
controller 118. Many traversals and copying across internal
busses (PCIe 110 and memory) as well as CPU 106 pro
cessing cycles are spent . This not only degrades perfor
mance (creating latency and throughput issues) of the opera
tion , but also adversely affects other applications that run on
the CPU . Second , once the data leaves the box , 102 and
moves onto the network 122 , it is treated like any other
network traffic and needs to be forwarded / routed to its
destination . Policies are executed and decisions are made . In
environments where a large amount of traffic is moving ,
congestion can occur in the network 122 , causing degrada
tion in performance as well as problems with availability
(e.g. , dropped packets , lost connections , and unpredictable
latencies) . Networks have mechanisms and algorithms to
avoid spreading of congestion , such as pause functions ,
backward congestion notification (BCN) , explicit conges
tion notification (ECN) , etc. However , these are reactive
methods ; that is , they detect formation of congestion points
and push back on the source to reduce congestion , poten
tially resulting in delays and performance impacts . Third ,
once the data arrives at its “ destination ” computing system
102 , it needs to be processed , which involves intervention
from the network interface controller 118 , the network stack
in the OS 108 , the storage stack in the OS 108 , and the
storage controller 112. As with out of the box operations
noted above , many traversals and copying across internal
busses as well as CPU 106 processing cycles are spent .
Further , the final destination of the data may well reside in
still a different box . This can be the result of a need for more
data protection (e.g. , mirroring or across - box RAID) or the
need for de - duplication . If so , then the entire sequence of

[0009] Provided herein are methods and systems that
include a converged storage and network controller in hard
ware that combines initiator , target storage functions and
network functions into a single data and control path , which
allows a “ cut - through ” path between the network and stor
age , without requiring intervention by a host CPU . For ease
of reference , this is referred to variously in this disclosure as
a converged hardware solution , a converged device , a con
verged adaptor , a converged IO controller , a “ datawise ”
controller , or the like throughout this disclosure , and such
terms should be understood to encompass , except where
context indicates otherwise , a converged storage and net
work controller in hardware that combines target storage
functions and network functions into a single data and
control path .
[0010] Among other benefits , the converged solution will
increase raw performance of a cluster of computing and / or
storage resources ; enforce service level agreements (SLAs)
across the cluster and help guarantee predictable perfor
mance ; provide a multi - tenant environment where a tenant
will not affect its neighbor ; provide a denser cluster with
higher utilization of the hardware resulting in smaller data
center footprint , less power , fewer systems to manage ;
provide a more scalable cluster ; and pool storage resources
across the cluster without loss of performance .
[0011] The various methods and systems disclosed herein
provide high - density consolidation of resources required for
scaleout applications and high performance multi - node
pooling . These methods and systems provide a number of
customer benefits , including dynamic cluster - wide resource
provisioning , the ability to guarantee quality - of - service
(QoS) , Security , Isolation etc. on network and storage func
tions , and the ability to use shared infrastructure for pro
duction and testing / development .
[0012] Also provided herein are methods and systems to
perform storage functions through the network and to vir
tualize storage and network devices for high performance
and deterministic performance in single or multi - tenant
environments .
[0013] Also provided herein are methods and systems for
virtualization of storage devices , such as those using NVMe

US 2020/0201661 A1 Jun . 25 , 2020
3

and similar protocols , and the translation of those virtual
devices to different physical devices , such as ones using
SATA .
[0014] The methods and systems disclosed herein also
include methods and systems for end - to - end congestion
control involving only the hardware on the host (as opposed
to the network fabric) that includes remote credit manage
ment and a distributed scheduling algorithm at the box level .
[0015] Also provided herein are various methods and
systems that are enabled by the converged network / storage
controller , including methods and systems for virtualization
of a storage cluster or of other elements that enable a cluster ,
such as a storage adaptor , a network adaptor , a container
(e.g. , a Linux container) , a Solaris zone or the like . Among
advantages , one aspect of virtualizing a cluster is that
containers can become location - independent in the physical
cluster . Among other advantages , this allows movement of
containers among machines in a vastly simplified process
described below .
[0016] Provided herein are methods and systems for vir
tualizing direct - attached storage (DAS) , so that the operat
ing system stack 108 still sees a local , persistent device , even
if the physical storage is moved and is remotely located ; that
is , provided herein are methods and systems for virtualiza
tion of DAS . In embodiments this may include virtualizing
DAS over a fabric , that is , taking a DAS storage system and
moving it outside the box and putting it on the network . In
embodiments this may include carving DAS into arbitrary
name spaces . In embodiments the virtualized DAS is made
accessible as if it were actual DAS to the operating system ,
such as being accessible by the OS 108 over a PCIe bus via
NVMe . Thus , provided herein is the ability to virtualize
storage (including DAS) so that the OS 108 sees it as DAS ,
even if the storage is actually accessed over a network
protocol such as Ethernet , and the OS 108 is not required to
do anything different than would be required with local
physical storage .
[0017] Provided herein are methods and systems for pro
viding DAS across a fabric , including exposing virtualized
DAS to the OS 108 without requiring any modification of
the OS 108 .
[0018] Also provided herein are methods and systems for
virtualization of a storage adaptor (referring to a target
storage system) .
[0019] Provided herein are methods and systems for com
bining storage initiation and storage targeting in a single
hardware system . In embodiments , these may be attached by
a PCIe bus 110. A single root virtualization function (SR
IOV) may be applied to take any standard device and have
it act as if it is hundreds of such devices . Embodiments
disclosed herein include using SR - IOV to give multiple
virtual instances of a physical storage adaptor . SR - IOV is a
PCIe standard that virtualizes I / O functions , and while it has
been used for network interfaces , the methods and systems
disclosed herein extend it to use for storage devices . Thus ,
provided herein is a virtual target storage system .
[0020] Embodiments may include a switch form factor or
network interface controller , wherein the methods and sys
tems disclosed herein may include a host agent (either in
software or hardware) . Embodiments may include breaking
up virtualization between a front end and a back end .
[0021] Embodiments may include various points of
deployment for a converged network and target storage
controller . While some embodiments locate the converged

device on a host computing system 102 , in other cases the
disk can be moved to another box (e.g. , connected by
Ethernet to a switch that switches among various boxes
below . While a layer may be needed to virtualize , the storage
can be separated , so that one can scale storage and comput
ing resources separately . Also , one can then enable blade
servers (i.e. , stateless servers) . Installations that would have
formerly involved expensive blade servers and attached to
storage area networks (SANs) can instead attach to the
switch . In embodiments this comprises a “ rackscale ” archi
tecture where resources are disaggregated at the rack level .
[0022] Methods and systems disclosed herein include
methods and systems for virtualizing various types of non
DAS storage as DAS in a converged networking / target
storage appliance . In embodiments , one may virtualize
whatever storage is desired as DAS , using various front end
protocols to the storage systems while exposing storage as
DAS to the OS stack 108 .
[0023] Methods and systems disclosed herein include vir
tualization of a converged network / storage adaptor . From a
traffic perspective , one may combine systems into one .
Combining the storage and network adaptors , and adding in
virtualization , gives significant advantages . Say there is a
single host 102 with two PCIe buses 110. To route from the
PCIe 110 , you can use a system like RDMA to get to another
machine / host 102. If one were to do this separately , one has
to configure the storage and the network RDMA system
separately . One has to join each one and configure them at
two different places . In the converged scenario , the whole
step of setting up Qos , seeing that this is RDMA and that
there is another fabric elsewhere is a zero touch process ,
because with combined storage and networking the two can
be configured in a single step . That is , once one knows the
storage , one doesn't need to set up the QoS on the network
separately .
[0024] Method and systems disclosed herein include vir
tualization and / or indirection of networking and storage
functions , embodied in the hardware , optionally in a con
verged network adaptor / storage adaptor appliance . While
virtualization is a level of indirection , protocol is another
level of indirection . The methods and systems disclosed
herein may convert a protocol suitable for use by most
operating systems to deal with local storage , such as NVMe ,
to another protocol , such as SAS , SATA , or the like . One
may expose a consistent interface to the OS 108 , such as
NVMe , and in the back end one may convert to whatever
storage media is cost - effective . This gives a user a price !
performance advantage . If components are cheaper / faster ,
one can connect any one of them . The back end could be
anything , including NVMe .
[0025] Provided herein are methods and systems that
include a converged data path for network and storage
functions in an appliance . Alternative embodiments may
provide a converged data path for network and storage
functions in a switch .
[0026] In embodiments , methods and systems disclosed
herein include storage / network tunneling , wherein the tun
neling path between storage systems over a network does
not involve the operating system of a source or target
computer . In conventional systems , one had separate storage
and network paths , so accessing storage remotely , required
extensive copying to and from memory , I / O buses , etc.
Merging the two paths means that storage traffic is going
straight onto the network . The OS 108 of each computer sees

US 2020/0201661 A1 Jun . 25 , 2020
4

only a local disk . Another advantage is simplicity of pro
gramming . A user does not need to separately program a
SAN , meaning that the methods disclosed herein include a
one - step programmable SAN . Rather than requiring discov
ery and specification of zones , and the like , encryption ,
attachment , detachment and the like may be centrally , and
programmatically done .
[0027] Embodiments disclosed herein may include virtu
alizing the storage to the OS 108 so that the OS 108 sees
storage as a local disk . The level of indirection involved in
the methods and systems disclosed herein allows the con
verged system to hide not only the location , but the media
type , of storage media . All the OS sees is that there is a local
disk , even if the actual storage is located remotely and / or is
or a different type , such as a SAN . Thus , virtualization of
storage is provided , where the OS 108 and applications do
not have to change . One can hide all of the management ,
policies of tiering , polices of backup , policies of protection
and the like that are normally needed to configure complex
storage types behind .
[0028] Methods and systems are provided for selecting
where indirection occurs in the virtualization of storage .
Virtualization of certain functions may occur in hardware
(e.g. , in an adaptor on a host , in a switch , and in varying
form factors (e.g. , FPGA or ASICs) and in software . Dif
ferent topologies are available , such as where the methods
and systems disclosed herein are deployed on a host
machine , on a top of the rack switch , or in a combination
thereof . Factors that go into the selection include ease of use .
Users who want to run stateless servers may prefer a top of
rack . Ones who don't care about that approach might prefer
the controller on the host .
[0029] Methods and systems disclosed herein include pro
viding NVMe over Ethernet . These approaches can be the
basis for the tunneling protocol that is used between devices .
NVMe is a suitable DAS protocol that is intended conven
tionally to go to a local PCIe . Embodiments disclosed herein
may tunnel the NVMe protocol traffic over Ethernet . NVMe
(non - volatile memory express) is a protocol that in Linux
and Windows provides access to PCIe - based Flash Storage .
This provides high performance by by - passing the software
stacks used in conventional systems .
(0030) Embodiments disclosed herein may include pro
viding an NVMe device that is virtualized and dynamically
allocated . In embodiments one may piggy back NVMe , but
carve up and virtualize and dynamically allocate an NVMe
device . In embodiments there is no footprint in the software .
The operating system stays the same (just a small driver that
sees the converged network / storage card) . This results in
virtual storage presented like a direct attached disk , but the
difference is that now we can pool such devices across the
network .
[0031] Provided herein are methods and systems for pro
viding the simplicity of direct attached storage (DAS) with
the advantages of sharing like in a storage area network
(SAN) . Each converged appliance in various embodiments
disclosed herein may be a host , and any storage drives may
be local to a particular host but seen by the other hosts (as
in a SAN or other network - accessible storage) . The drives in
each box enabled by a network / storage controller of the
present disclosure behave like a SAN (that is , are available
on the network) , but the management methods are much
simpler . When a storage administrator sets up a SAN , a
typical enterprise may have a whole department setting up

zones for a SAN (e.g. , a fiber channel switch) , such as
setting up “ who sees what . ” That knowledge is pre - loaded
and a user has to ask the SAN administrator to do the work
to set it up . There is no programmability in a typical legacy
SAN architecture . The methods and systems disclosed
herein provide local units that are on the network , but the
local units can still access their storage without having to go
through complex management steps like zone definition , etc.
These devices can do what a SAN does just by having both
network and storage awareness . As such , they represent the
first programmatic SAN .
[0032] Methods and systems disclosed herein may include
persistent , stateful , disaggregated storage enabled by a hard
ware appliance that provides converged network and storage
data management .
[0033] Methods and systems disclosed herein may also
include convergence of network and storage data manage
ment in a single appliance , adapted to support use of
containers for virtualization . Such methods and systems are
compatible with the container ecosystem that is emerging ,
but offering certain additional advantages .
[0034] Methods and systems are disclosed herein for
implementing virtualization of NVMe . Regardless how
many sources to how many destinations , as long as the data
from the sources is serialized first before going into the hub ,
then the hub distributes to data to the designated destination
sequentially . If so , then data transport resources such as
DMA engine can be reduced to only one copy . This may
include various use scenarios , in one scenario , for NVMe
virtual functions (\ Ts) , if they are all connected to the same
PCIe bus , then regardless how many \ Ts are configured , the
data would be coming into this pool of VFs serially , so there
is only one DMA engine and only one storage block (for
control information) is needed . In another use scenario , for
a disk storage system with a pool of discrete disks / control
lers , if the data is originated from the physical bus , i.e. PCIe ,
since the data is serially coming into this pool of disks , then
regardless how many disks / controllers are in the pool , the
transport resources such as the DMA engine can be reduced
to only one instead of one per controller .
[0035] In accordance with various exemplary and non
limiting embodiments , a device comprises a converged
input / output controller that includes a physical target storage
media controller , a physical network interface controller ;
and a gateway between the storage media controller and the
network interface controller , wherein gateway provides a
direct connection for storage traffic and network traffic
between the storage media controller and the network inter
face controller .
(0036] In accordance with various exemplary and non
limiting embodiments , a method of virtualization of a stor
age device comprises accessing a physical storage device
that responds to instructions in a first storage protocol ,
translating instructions between the first storage protocol
and a second storage protocol and using the second protocol ,
presenting the physical storage device to an operating sys
tem , such that the storage of the physical storage device can
be dynamically provisioned , whether the physical storage
device is local or remote to a host computing system that
uses the operating system .
[0037] In accordance with various exemplary and non
limiting embodiments , a method of facilitating migration of
at least one of an application and a container comprises
providing a converged storage and networking controller ,

US 2020/0201661 A1 Jun . 25 , 2020
5

wherein a gateway provides a connection for network and
storage traffic between a storage component and a network
ing component of the device without intervention of the
operating system of a host computer and mapping the at least
one application or container to a target physical storage
device that is controlled by the converged storage and
networking controller , such that the application or container
can access the target physical storage , without intervention
of the operating system of the host system to which the
target physical storage is attached , when the application or
container is moved to another computing system .
[0038] In accordance with various exemplary and non
limiting embodiments , a method of providing quality of
service (QoS) for a network , comprises providing a con
verged storage and networking controller , wherein a gate
way provides a connection for network and storage traffic
between a storage component and a networking component
of the device without intervention of the operating system ,
a hypervisor , or other software running on the CPU of a host
computer and , also without intervention of the operating
system , hypervisor , or other software running on the CPU of
a host computer , managing at least one quality of service
(QoS) parameter related to a network in the data path of
which the storage and networking controller is deployed ,
such managing being based on at least one of the storage
traffic and the network traffic that is handled by the con
verged storage and networking controller .
[0039] QoS may be based on various parameters , such as
one or more of a bandwidth parameter , a network latency
parameter , an IO performance parameter , a throughput
parameter , a storage type parameter and a storage latency
parameter . QoS may be maintained automatically when at
least one of an application and a container that is serviced by
storage through the converged storage and network control
ler is migrated from a host computer to another computer .
Similarly , QoS may be maintained automatically when at
least one target storage device that services at least one of an
application and a container through the converged storage
and network controller is migrated from a first location to
another location or multiple locations . For example , storage
may be scaled , or different storage media types may be
selected , to meet storage needs as requirements are
increased . In embodiments , a security feature may be pro
vided , such as encryption of network traffic data , encryption
of data in storage , or both . Various storage features may be
provided as well , such as compression , protection levels
(e.g. , RAID levels) , use of different storage media types ,
global de - duplication , and snapshot intervals for achieving
at least one of a recovery point objective (RPO) and a
recovery time objective (RTO) .

[0043] FIG . 3 illustrates a converged solution in accor
dance with an exemplary and non - limiting embodiment .
[0044] FIG . 4 illustrates two computing systems enabled
by a converged solution in accordance with an exemplary
and non - limiting embodiment .
[0045] FIG . 5 illustrates a converged controller in accor
dance with an exemplary and non - limiting embodiment .
[0046] FIG . 6 illustrates a deployment of a converged
controller in accordance with an exemplary and non - limiting
embodiment .
[0047] FIG . 7 illustrates a plurality of systems in accor
dance with an exemplary and non - limiting embodiment .
[0048] FIG . 8 illustrates a block diagram of a field
programmable gate array (FPGA) in accordance with an
exemplary and non - limiting embodiment .
[0049] FIG . 9 illustrates an architecture of a controller
card in accordance with an exemplary and non - limiting
embodiment .
[0050] FIG . 10 illustrates a software stack in accordance
with an exemplary and non - limiting embodiment .
[0051] FIGS . 11-15 illustrate the movement of an appli
cation container across multiple systems in accordance with
an exemplary and non - limiting embodiment .
[0052] FIG . 16 illustrates packet transmission in accor
dance with an exemplary and non - limiting embodiment .
[0053] FIG . 17 illustrates a storage access scheme in
accordance with an exemplary and non - limiting embodi
ment .

[0054] FIG . 18 illustrates the operation of a file system in
accordance with an exemplary and non - limiting embodi
ment .
[0055] FIG . 19 illustrates the operation of a distributed file
server in accordance with an exemplary and non - limiting
embodiment .
[0056] FIG . 20 illustrates a high performance distributed
file server (DFS) in accordance with an exemplary and
non - limiting embodiment .
[0057] FIG . 21 illustrates a system in accordance with an
exemplary and non - limiting embodiment .
[0058] FIG . 22 illustrates a host in accordance with an
exemplary and non - limiting embodiment .
[0059] FIG . 23 illustrates an application accessing a block
of data in accordance with an exemplary and non - limiting
embodiment .
[0060] FIG . 24 illustrates an application accessing a block
of data in accordance with an exemplary and non - limiting
embodiment .
[0061] FIG . 25 illustrates a system in accordance with an
exemplary and non - limiting embodiment .
[0062] FIG . 26 illustrates a method according to an exem
plary and non - limiting embodiment .
[0063] FIG . 27 illustrates a method according to an exem
plary and non - limiting embodiment .
[0064] FIG . 28 illustrates a method according to an exem
plary and non - limiting embodiment .
[0065) Skilled artisans will appreciate that elements in the
figures are illustrated for simplicity and clarity and have not
necessarily been drawn to scale . For example , the dimen
sions of some of the elements in the figures may be exag
gerated relative to other elements to help to improve under
standing of embodiments of the systems and methods
disclosed herein .

BRIEF DESCRIPTION OF THE FIGURES
[0040] The accompanying figures where like reference
numerals refer to identical or functionally similar elements
throughout the separate views and which together with the
detailed description below are incorporated in and form part
of the specification , serve to further illustrate various
embodiments and to explain various principles and advan
tages all in accordance with the systems and methods
disclosed herein .
[0041] FIG . 1 illustrates a general architecture in accor
dance with an exemplary and non - limiting embodiment .
[0042] FIG . 2 illustrates a computer system in accordance
with an exemplary and non - limiting embodiment .

US 2020/0201661 A1 Jun . 25 , 2020
6

DETAILED DESCRIPTION OF THE
INVENTION

[0066] The present disclosure will now be described in
detail by describing various illustrative , non - limiting
embodiments thereof with reference to the accompanying
drawings and exhibits . The disclosure may , however , be
embodied in many different forms and should not be con
strued as being limited to the illustrative embodiments set
forth herein . Rather , the embodiments are provided so that
this disclosure will be thorough and will fully convey the
concept of the disclosure to those skilled in the art . The
claims should be consulted to ascertain the true scope of the
disclosure .
[0067] Before describing in detail embodiments that are in
accordance with the systems and methods disclosed herein ,
it should be observed that the embodiments reside primarily
in combinations of method steps and / or system components
related to converged networking and storage . Accordingly ,
the system components and method steps have been repre
sented where appropriate by conventional symbols in the
drawings , showing only those specific details that are per
tinent to understanding the embodiments of the systems and
methods disclosed herein so as not to obscure the disclosure
with details that will be readily apparent to those of ordinary
skill in the art .
[0068] Referring to FIG . 3 , the converged solution 300
may include three important aspects and may be imple
mented in a hardware device that includes a combination of
hardware and software modules and functions . First , a
cut - through data path 304 may be provided between
network controller 118 and a storage controller 112 , so that
access of the storage to and from the network can be direct ,
without requiring any intervention of the OS stack 108 , the
PCIe bus 110 , or the CPU 106. Second , cut through storage
stack access , such as to storage devices 302 , may
vided , such as access of the storage to and from entities on
the local host , which allows bypassing of complex legacy
software stacks for storage access , such as SCSI / SAS / SATA
stacks . Third , end - to - end congestion management and flow
control of the network may be provided , such as by a
mechanism to reserve and schedule the transfer of data
across the network , which guarantees the availability of the
target's data to remote initiators and minimizes the conges
tion of the traffic as it flows through intermediate network
fabric switches . The first and second aspects remove soft
ware stacks (hence the CPU 106 and memory) from the path
of the data , eliminating redundant or unnecessary movement and processing . End - to - end congestion management and
flow control delivers a deterministic and reliable transport of
the data .
[0069] As noted above , one benefit of the converged
solution 300 is that the operating system stack 108 connects
to the converged solution 300 over a conventional PCIe 110
or a similar bus , so that the OS stack 108 sees the converged
solution 300 , and any storage that it controls through the
cut - through to storage devices 302 , as one or more local ,
persistent devices , even if the physical storage is remotely
located . Among other things , this comprises the capability
for virtualization of DAS 308 , which may include virtual
izing DAS 308 over a fabric , that is , taking a DAS 308
storage system and moving it outside the computing system
102 and putting it on the network . The storage controller 112
of the converged solution 300 may connect to and control
DAS 308 on the network 122 via various known protocols ,

such as SAS , SATA , or NVMe . In embodiments virtualiza
tion may include carving DAS 308 into arbitrary name
spaces . In embodiments the virtualized DAS 308 is made
accessible as if it were actual , local , physical DAS to the
operating system , such as being accessible by the OS 108
over a PCIe bus 110 to the storage controller 112 of the
converged solution 300 via a standard protocol such as
NVMe . Again , the OS 108 sees the entire solution 300 as a
local , physical device , such as DAS . Thus , provided herein
is the ability to virtualize storage (including DAS and other
storage types , such as SAN 310) so that the OS 108 sees any
storage type as DAS , even if the storage is actually accessed
over a network 122 , and the OS 108 is not required to do
anything different than would be required with local physi
cal storage . In the case where the storage devices 302 are
SAN 310 storage , the storage controller 112 of the con
verged solution may control the SAN 310 through an
appropriate protocol used for storage area networks , such as
the Internet Small Computing System Interface (iSCSI) ,
Fibre Channel (FC) , or Fibre Channel over Ethernet (FCOE) .
Thus , the converged solution 300 provides a translation for
the OS stack 108 from any of the other protocols used in
storage , such as Ethernet , SAS , SATA , NVMe , iSCSI , FC or
FCoE , among others , to a simple protocol like NVMe that
makes the disparate storage types and protocols appear as
local storage accessible over PCIe 110. This translation in
turns enables virtualization of a storage adaptor (referring to
any kind of target storage system) . Thus , methods and
systems disclosed herein include methods and systems for
virtualizing various types of non - DAS storage as DAS in a
converged networking / target storage appliance 300. In
embodiments , one may virtualize whatever storage is
desired as DAS , using various protocols to the storage
systems while exposing storage as DAS to the OS stack 108 .
Thus , provided herein are methods and systems for virtual
ization of storage devices , such as those using NVMe and
similar protocols , and the translation of those virtual devices
to different physical devices , such as ones using SATA .
[0070] Storage / network tunneling 304 , where the tunnel
ing path between storage systems over the network 122 does
not involve the operating system of a source or target
computer enables a number of benefits . In conventional
systems , one has separate storage and network paths , so
accessing storage remotely required extensive copying to
and from memory , I / O buses , etc. Merging the two paths
means that storage traffic is going straight onto the network .
An advantage is simplicity of programming . A user does not
need to separately program a SAN 310 , meaning that the
methods disclosed herein enable a one - step programmable
SAN 310. Rather than requiring discovery and specification
of zones , and the like , configuration , encryption , attachment ,
detachment and the like may be centrally , and programmati
cally done . As an example , a typical SAN is composed of
" initiators , ” “ targets , ” and a switch fabric , which connects
the initiators and targets . Typically which initiators see
which targets are defined / controlled by the fabric switches ,
called “ zones . ” Therefore , if an initiator moves or a target
moves , zones need to be updated . The second control portion
of a SAN typically lies with the “ targets . ” They can control
which initiator port can see what logical unit numbers
(LUNS) (storage units exposed by the target) . This is typi
cally referred to as LUN masking and LUN mapping . Again ,
if an initiator moves locations , one has to re - program the
“ Target ” . Consider now that in such an environment if an

be pro

US 2020/0201661 A1 Jun . 25 , 2020
7

application moves from one host to another (such as due to
a failover , load re - balancing , or the like) the zoning and
LUN masking / mapping needs to be updated . Alternatively ,
one could pre - program the SAN , so that every initiator sees
every target . However , doing so results in an un - scalable and
un - secure SAN . In the alternate solution described through
out this disclosure , such a movement of an application , a
container , or a storage device does NOT require any SAN
re - programming , resulting in a zero touch solution . The
mapping maintained and executed by the converged solution
300 allows an application or a container , the target storage
media , or both , to be moved (including to multiple locations)
and scaled independently , without intervention by the OS , a
hypervisor , or other software running on the host CPU .
[0071] The fact that the OS 108 sees storage as a local disk
allows simplified virtualization of storage . The level of
indirection involved in the methods and systems disclosed
herein allows the converged system 300 to hide not only the
location , but the media type , of storage media . All the OS
108 sees is that there is a local disk , even if the actual storage
is located remotely and / or is or a different type , such as a
SAN 310. Thus , virtualization of storage is provided through
the converged solution 300 , where the OS 108 and applica
tions do not have to change . One can hide all of the
management , policies of tiering , polices of backup , policies
of protection and the like that are normally needed to
configure complex storage types behind .
[0072] The converged solution 300 enables the simplicity
of direct attached storage (DAS) with the advantages of a
storage area network (SAN) . Each converged appliance 300
in various embodiments disclosed herein may act as a host ,
and any storage devices 302 may be local to a particular host
but seen by the other hosts (as is the case in a SAN 310 or
other network - accessible storage) . The drives in each box
enabled by a network / storage controller of the present
disclosure behave like a SAN 310 (e.g. , are available on the
network) , but the management methods are much simpler .
When a storage administrator normally sets up a SAN 310 ,
a typical enterprise may have a whole department setting up
zones for a SAN 310 (e.g. , a fiber channel switch) , such as
setting up “ who sees what . ” That knowledge must be
pre - loaded , and a user has to ask the SAN 310 administrator
to do the work to set it up . There is no programmability in
a typical legacy SAN 310 architecture . The methods and
systems disclosed herein provide local units that are on the
network , but the local units can still access their storage
without having to go through complex management steps
like zone definition , etc. These devices can do what a SAN
does just by having both network and storage awareness . As
such , they represent the first programmatic SAN .
[0073] The solution 300 can be described as a “ Converged
IO Controller ” that controls both the storage media 302 and
the network 122. This converged controller 300 is not just a
simple integration of the storage controller 112 and the
network controller (NIC) 118. The actual functions of the
storage and network are merged such that storage functions
are performed as the data traverses to and from the network
interface . The functions may be provided in a hardware
solution , such as an FPGA (one or more) or ASIC (one or
more) as detailed below .
[0074] Referring to FIG . 4 , two or more computing sys
tems 102 enabled by converged solutions 300 may serve as
hosts for respective storage targets , where by merging
storage and network and controlling both interfaces , direct

access to the storage 302 can be achieved remotely over the
network 122 without traversing internal busses or CPU /
software work , such as by a point - to - point path 400 or by an
Ethernet switch 402 to another computer system 102 that is
enabled by a converged solution 300. The highest perfor
mance (high IOPs and low latency) can be achieved . Further ,
storage resources 302 can now be pooled across the cluster .
In FIG . 4 , this is conceptually illustrated by the dotted oval
404 .

[0075] In embodiments , the converged solution 300 may
be included on a host computing system 102 , with the
various components of a conventional computing system as
depicted in FIG . 1 , together with the converged IO controller
300 as described in connection with FIG . 3. Referring to
FIG . 5 , in alternative embodiments , the converged controller
300 may be disposed in a switch , such as a top of the rack
switch , thus enabling a storage enabled switch 500. The
switch may reside on the network 122 and be accessed by a
network controller 118 , such as of a conventional computing
system 102 .
[0076] Referring to FIG . 6 , systems may be deployed in
which a converged controller 300 is disposed both on one or
more host computing systems 102 and on a storage enabled
switch 500 , which may be connected to systems 102 that are
enabled by converged solutions 300 and to non - enabled
systems 102. As noted above , target storage 302 for the
converged controller (s) 300 on the host computing system
102 and on the storage enabled switch 500 can be visible to
each other across the network , such as being treated as a
unified resource , such as to virtualization solutions . In sum ,
intelligence , including handling converged network and
storage traffic on the same device , can be located in a host
system , in a switch , or both in various alternative embodi
ments of the present disclosure .
[0077] Embodiments disclosed herein may thus include a
switch form factor or a network interface controller , or both
which may include a host agent (either in software or
hardware) . These varying deployments allow breaking up
virtualization capabilities , such as on a host and / or on a
switch and / or between a front end and a back end . While a
layer may be needed to virtualize certain functions , the
storage can be separated , so that one can scale storage and
computing resources separately . Also , one can then enable
blade servers (i.e. , stateless servers) . Installations that would
have formerly involved expensive blade servers and
attached storage area networks (SANS) can instead attach to
the storage enabled switch 500. In embodiments this com
prises a “ rackscale ” architecture , where resources are dis
aggregated at the rack level .
[0078] Methods and systems are provided for selecting
where indirection occurs in the virtualization of storage .
Virtualization of certain functions may occur in hardware
(e.g. , in a converged adaptor 300 on a host 102 , in a storage
enabled switch 500 , in varying hardware form factors (e.g. ,
FPGAs or ASICs) and in software . Different topologies are
available , such as where the methods and systems disclosed
herein are deployed on a host machine 102 , on a top of the
rack switch 500 , or in a combination thereof . Factors that go
into the selection of where virtualization should occur
include ease of use . Users who want to run stateless servers
may prefer a top of rack storage enabled switch 500. Ones
who don't care about that approach might prefer the con
verged controller 300 on the host 102 .

US 2020/0201661 A1 Jun . 25 , 2020
8

[0079] FIG . 7 shows a more detailed view of a set of
systems that are enabled with converged controllers 300 ,
including two computer systems 102 (computer system 1
and computer system 2) , as well as a storage enabled switch
500. Storage devices 302 , such as DAS 308 and SAN 310
may be controlled by the converged controller 300 or the
storage enabled switch 500. DAS 308 may be controlled in
either case using SAS , SATA or NVMe protocols . SAN 310
may be controlled in either case using iSCSI , FC or FCOE .
Connections among hosts 102 that have storage controllers
300 may be over a point - to - point path 400 , over an Ethernet
switch 402 , or through a storage enabled switch 500 , which
also may provide a connection to a conventional computing
system . As noted above , the multiple systems with intelli
gent converged controllers 300 can each serve as hosts and
as storage target locations that the other hosts see , thereby
providing the option to be treated as a single cluster of
storage for purposes of an operating system 108 of a
computing system 102 .
[0080] Method and systems disclosed herein include vir
tualization and / or indirection of networking and storage
functions , embodied in the hardware converged controller
300 , optionally in a converged network adaptor / storage
adaptor appliance 300. While virtualization is a level of
indirection , protocol is another level of indirection . The
methods and systems disclosed herein may convert a pro
tocol suitable for use by most operating systems to deal with
local storage , such as NVMe , to another protocol , such as
SAS , SATA , or the like . One may expose a consistent
interface to the OS 108 , such as NVMe , and on the other side
of the converged controller 300 one may convert to whatever
storage media 302 is cost - effective . This gives a user a
price / performance advantage . If components are cheaper /
faster , one can connect any one of them . The side of the
converged controller 300 could face any kind of storage ,
including NVMe . Furthermore the storage media type may
be any of the following including , but not limited , to HDD ,
SSD (based on SLC , MLC , or TLC Flash) , RAM etc or a
combination thereof .
[0081] In embodiments , a converged controller may be
adapted to virtualize NVMe virtual functions , and to provide
access to remote storage devices 302 , such as ones con
nected to a storage - enabled switch 500 , via NVMe over an
Ethernet switch 402. Thus , the converged solution 300
enables the use of NVMe over Ethernet 700 , or NVMeoE .
Thus , methods and systems disclosed herein include pro
viding NVMe over Ethernet . These approaches can be the
basis for the tunneling protocol that is used between devices ,
such as the host computing system 102 enabled by a
converged controller 300 and / or a storage enabled switch
500. NVMe is a suitable DAS protocol that is intended
conventionally to go to a local PCIe 110. Embodiments
disclosed herein may tunnel the NVMe protocol traffic over
Ethernet . NVMe (non - volatile memory express) is a proto
col that in Linux and Windows provides access to PCIe
based Flash . This provides high performance via by - passing
the software stacks used in conventional systems , while
avoiding the need to translate from NVMe (as used by the
OS stack 108) and the traffic tunneled over Ethernet to other
devices .
[0082] FIG . 8 is a block diagram of an FPGA 800 , which
may reside on an IO controller card and enable an embodi
ment of a converged solution 300. Note that while a single
FPGA 800 is depicted , the various functional blocks could

be organized into multiple FPGAs , into one or more cus
tomer Application Specific Integrated Circuits (ASICs) , or
the like . For example , various networking blocks and vari
ous storage blocks could be handled in separate (but inter
connected) FPGAs or ASICs . References throughout this
disclosure to an FPGA 800 should be understood , except
where context indicates otherwise , to encompass these other
forms of hardware that can enable the functional capabilities
reflected in FIG . 8 and similar functions . Also , certain
functional groups , such as for networking functions and / or
storage functions , could be embodied in merchant silicon .
[0083] The embodiment of the FPGA 800 of FIG . 8 has
four main interfaces . First , there is PCIe interface , such as to
the PCIe bus 110 of a host computer 102. Thus , the card is
a PCIe end point . Second , there is a DRAM / NVRAM
interface . For example , a DDR interface may be provided to
external DRAM or NVRAM , used by the embedded CPUs ,
meta - data and data structures , and packet / data buffering .
Third , there is a storage interface to media , such as DAS 308
and SAN 310. Storage interfaces can include ones for SAS ,
SATA , NVMe , iSCSI , FC and / or FC0E , and could in
embodiments be any interface to rotating media , flash , or
other persistent form of storage , either local or over a
cut - through to a network - enabled storage like SAN 310 .
Fourth , a network interface is provided , such as Ethernet to
a network fabric . The storage interfaces and the network
interfaces can be used , in part , to enable NVMe over
Ethernet .
[0084] The internal functions of the FPGA 800 may
include a number of enabling features for the converged
solution 300 and other aspects of the present disclosure
noted throughout . A set of virtual endpoints (VNVMe) 802
may be provided for the host . Analogous to the SR - IOV
protocol that is used for the network interface , this presents
virtual storage targets to the host . In this embodiment of the
FPGA 800 , NVMe has benefits of low software overhead ,
which in turn provides high performance . A virtual NVMe
device 802 can be dynamically allocated / de - allocated /
moved and resized . As with SR - IOV , there is one physical
function (PF) 806 that interfaces with a PCIe driver 110 (see
below) , and multiple virtual functions 807 (VF) in which
each appears as an NVMe device .
[0085] Also provided in the FPGA 800 functions are one
or more read and write direct memory access (DMA) queues
804 , referred to in some cases herein as a DMA engine 804 .
These may include interrupt queues , doorbells , and other
standard functions to perform DMA to and from the host
computing system 102 .
[0086] A device mapping facility 808 on the FPGA 800
may determine the location of the virtual NVMe devices
802. The location options would be local (ie attached to
one of the storage media interfaces 824 shown) , or remote
on another host 102 of a storage controller 300. Access to a
remote VNVMe device requires going through a tunnel 828
to the network 122 .
[0087] A NVMe virtualization facility 810 may translate
NVMe protocol instructions and operations to the corre
sponding protocol and operations of the backend storage
media 302 , such as SAS or SATA (in the case of use of
NVMe on the backend storage medium 302 , no translation
may be needed) where DAS 308 is used , or such as iSCSI ,
FC or FCoE in the case where SAN 310 storage is used in
the backend . References to the backend here refer to the
other side of the converged controller 300 from the host 102 .

US 2020/0201661 A1 Jun . 25 , 2020
9

[0088] A data transformation function 812 may format the
data as it is stored onto the storage media 302. These
operations could include re - writes , transformation , compres
sion , protection (such as RAID) , encryption and other func
tions that involve changing the format of the data in any way
as necessary to allow it to be handled by the applicable type
of target storage medium 308. In some embodiments , stor
age medium 308 may be remote .
[0089] In embodiments , storage read and write queues 814
may include data structures or buffering for staging data
during a transfer . In embodiments , temporary memory , such
as DRAM of NVRAM (which may be located off the FPGA
800) may be used for temporary storage of data .
[0090] A local storage scheduler and shaper 818 may
prioritize and control access to the storage media 302. Any
applicable SLA policies for local storage may be enforced in
the scheduler and shaper 818 , which may include strict
priorities , weighted round robin scheduling , IOP shapers ,
and policers , which may apply on a per queue , per initiator ,
per target , or per c - group basis , and the like .
[0091] A data placement facility 820 may implement an
algorithm that determines how the data is laid out on the
storage media 302. That may involve various placement
schemes known to those of skill in the art , such as striping
across the media , localizing to a single device 302 , using a
subset of the devices 302 , or localizing to particular blocks
on a device 302 .
[0092] A storage metadata management facility 822 may
include data structures for data placement , block and object
i - nodes , compression , deduplication , and protection . Meta
data may be stored either in off - FPGA 800 NVRAM / DRAM
or in the storage media 302 .
[0093] A plurality of control blocks 824 may provide the
interface to the storage media . These may include SAS ,
SATA , NVMe , PCIe , iSCSI , FC and / or FC0E , among other
possible control blocks , in each case as needed for the
appropriate type of target storage media 302 .
[0094] A storage network tunnel 828 of the FPGA 800
may provide the tunneling / cut - through capabilities
described throughout this disclosure in connection with the
converged solution 300. Among other things , the tunnel 828
provides the gateway between storage traffic and network
traffic . It includes encapsulation / de - encapsulation or the
storage traffic , rewrite and formatting of the data , and
end - to - end coordination of the transfer of data . The coordi
nation may be between FPGAs 800 across nodes within a
host computing system 102 or in more than one computing
system 102 , such as for the point - to - point path 400 described
in connection with FIG . 4. Various functions , such as
sequence numbers , packet loss , time - outs , and retransmis
sions may be performed . Tunneling may occur over Ether
net , including by FCoE or NVMeoE .
[0095] A virtual network interface card facility 830 may
include a plurality of SR - IOV endpoints to the host 102 ,
presented as virtual network interface cards . One physical
function (PF) 836 may interfaces with a PCIe driver 110 (see
software description below) , and multiple virtual functions
(VF) 837 , in which each appear as a network interface card
(NIC) 118 .
[0096] A set of receive / transmit DMA queues 832 may
include interrupt queues , doorbells , and other standard func
tions to perform DMA to and from the host 102 .

[0097] A classifier and flow management facility 834 may
perform standard network traffic classification , typically to
IEEE standard 802.1Q class of service (COS) mappings or
other priority levels .
[0098] An access control and rewrite facility 838 may
handle access control lists (ACLs) and rewrite policies ,
including access control lists typically operating on Ethernet
tuples (MAC SA / DA , IP SA / DA , TCP ports , etc.) to reclas
sify or rewrite packets .
[0099] A forwarding function 840 may determines desti
nation of the packet , such as through layer 2 (L2) or layer 3
(L3) mechanisms .
[0100] A set of network receive and transmit queues 842
may handle data structures or buffering to the network
interface . Off - FPGA 800 DRAM may be used for packet
data .
[0101] A network / remote storage scheduler and policer
844 may provide priorities and control access to the network
interface . SLA policies for remote storage and network
traffic may be enforced here , which may include strict
priorities , weighted round robin , IOP and bandwidth
shapers , and policers on a per queue , per initiator , per target ,
per c - group , or per network flow basis , and the like .
[0102] A local network switch 848 may forward packets
between queues in the FPGA , so that traffic does not need to
exit the FPGA 800 to the network fabric 122 if the desti
nation is local to the FPGA 800 or the host 102 .
[0103] An end - to - end congestion control / credit facility
850 may prevent network congestion . This is accomplished
with two algorithms . First there may be an end - to - end
reservation / credit mechanism with a remote FPGA 800. This
may be analogous to a SCSI transfer ready function , where
the remote FPGA 800 permits the storage transfer if it can
immediately accept the data . Similarly , the local FPGA 800
allocates credits to remote FPGAs 800 as they request a
transfer . SLA policies for remote storage may also be
enforced here . Second there may be a distributed scheduling
algorithm , such as an iterative round - robin algorithm , such
as the iSLIP algorithm for input - queues proposed in the
publication “ The iSLIP Scheduling Algorithm for Input
Queues Switches ” , by Nick McKeown , IEEE / ACM
TRANSACTIONS ON NETWORKING , VOL . 7 , NO . 2 ,
APRIL 1999. The algorithm may be performed cluster wide
using the intermediate network fabric as the crossbar .
[0104] A rewrite , tag , and CRC facility 852 may encap
sulate / de - encapulate the packet with the appropriate tags and
CRC protection .
[0105] A set of interfaces 854 , such as MAC interfaces ,
may provide an interface to Ethernet .
[0106] A set of embedded CPU and cache complexes 858
may implement a process control plan , exception handling ,
and other communication to and from the local host and
network remote FPGAs 800 .
[0107] A memory controller 860 , such as a DDR control
ler , may act as a controller for the external DRAM / NVRAM .
[0108] As a result of the integration of functions provided
by the converged solution 300 , as embodied in one example
by the FPGA 800 , provided herein are methods and systems
for combining storage initiation and storage targeting in a
single hardware system . In embodiments , these may be
attached by a PCIe bus 110. A single root virtualization
function (SR - IOV) or the like may be applied to take any
standard device (e.g. , any storage media 302 device) and
have it act as if it is hundreds of such devices . Embodiments

US 2020/0201661 A1 Jun . 25 , 2020
10

disclosed herein include using a protocol like SR - IOV to
give multiple virtual instances of a physical storage adaptor .
SR - IOV is a PCIe standard that virtualizes I / O functions ,
and while it has been used for network interfaces , the
methods and systems disclosed herein extend it to use for
storage devices . Thus , provided herein is a virtualized target
storage system . In embodiments the virtual target storage
system may handle disparate media as if the media are a disk
or disks , such as DAS 310 .
[0109] Enabled by embodiments like the FPGA 800 ,
embodiments of the methods and systems disclosed herein
may also include providing an NVMe device that is virtu
alized and dynamically allocated . In embodiments one may
piggyback the normal NVMe protocol , but carve up , virtu
alize and dynamically allocate the NVMe device . In embodi
ments there is no footprint in the software . The operating
system 108 stays the same or nearly the same (possibly
having a small driver that sees the converged network /
storage card 300) . This results in virtual storage that looks
like a direct attached disk , but the difference is that now we
can pool such storage devices 302 across the network 122 .
[0110] Methods and systems are disclosed herein for
implementing virtualization of NVMe . Regardless how
many sources are related to how many destinations , as long
as the data from the sources is serialized first before going
into the hub , then the hub distributes to data to the desig
nated destination sequentially , If so , then data transport
resources such as the DMA queues 804 , 832 can be reduced
to only one copy . This may include various use scenarios . In
one scenario , for NVMe virtual functions (VFs) , if they are
all connected to the same PCIe bus 110 , then regardless how
many VFs 807 are configured , the data would be coining into
this pool of VFs 807 serially , so there is only one DMA
engine 804 , and only one storage block (for control infor
mation) is needed ,
[0111] In another use scenario , for a disk storage system
with a pool of discrete disks / controllers , if the data is
originated from the physical bus , i , e . PCIe 110 , since the
data is serially coming into this pool of disks , then regardless
how many disks / controllers are in the pool , the transport
resources such as the DMA engine 804 can be reduced to
only one instead of one per controller .
[0112] Methods and systems disclosed herein may also
include virtualization of a converged network / storage adap
tor 300. From a traffic perspective , one may combine sys
tems into one . Combining the storage and network adaptors ,
and adding in virtualization , gives significant advantages .
Say there is a single host 102 with two PCIe buses 110. To
route from the PCIe 110 , you can use a system like remote
direct memory access (RDMA) to get to another machine /
host 102. If one were to do this separately , one has to
configure the storage and the network RDMA systems
separately . One has to join each one and configure them at
two different places . In the converged solution 300 , the
whole step of setting up Qos , seeing that this is RDMA and
that there is another fabric elsewhere is a zero touch process ,
because with combined storage and networking the two can
be configured in a single step . That is , once one knows the
storage , one doesn't need to set up the QoS on the network
separately . Thus , single - step configuration of network and
storage for RDMA solutions is enabled by the converged
solution 300 .
[0113] Referring again to FIG . 4 , remote access is enabled
by the FPGA 800 or similar hardware as described in

connection with FIG . 8. The virtualization boundary is
indicated in FIG . 4 by the dotted line 408. To the left of this
line , virtual storage devices (e.g. , NVMe 802) and virtual
network interfaces 830 are presented to the operating system
108. The operating system cannot tell these are virtual
devices . To the right of the virtualization boundary 408 are
physical storage devices 302 (e.g. , using SATA or other
protocols noted above) and physical network interfaces .
Storage virtualization functions are implemented by the
VNVMe 802 and the NVMe virtualization facility 810 of
FIG . 8. Network virtualization functions are implemented by
the VNIC facility 830. Location of the physical storage
media is also hidden from the operating system 108. Effec
tively , the physical disks 302 across servers can be pooled
and accessed remotely . The operating system 108 issues a
read or write transaction to the storage media 302 (it is a
virtual device , but the operation system 108 sees it as a
physical device) . If the physical storage media 302 happens
to be remote , the read / write transaction is mapped to the
proper physical location , encapsulated , and tunneled
through Ethernet . This process may be implemented by the
device mapping facility 808 , the NVMe virtualization facil
ity 810 , the data transformation facility 812 and the storage
network tunnel 828 of FIG . 8. The target server (second
computing system) un - tunnels the storage read / write and
directly accesses its local storage media 302. If the trans
action is a write , the data is written to the media 302. If the
transaction is a read , the data is prepared , mapped to the
origin server , encapsulated , and tunneled through Ethernet .
The transaction completion arrives at the origin operating
system 102. In a conventional system , these steps would
require software intervention in order to process the storage
request , data formatting , and network access . As shown , all
of these complex software steps are avoided .
[0114] Referring to FIG . 9 , a simplified block diagram is
provided of an architecture of a controller card 902 , as one
embodiment of a converged solution 300 as described
throughout this disclosure . The controller card 902 may be ,
for example , a standard , full - height , half - length PCIe card ,
such as a Gen3 x16 card . However , a non - standard card size
is acceptable , preferably sized so that it can fit into various
types of targeted chassis . The PCIe form factor limits the
stack up and layers used on the PCB .
[0115] The controller card 902 may be used as an add - on
card on a commodity chassis , such as a 2RU , 4 node chassis .
Each node of the chassis (called a sled) is typically 1RU and
6.76 " wide . The motherboard typically may provide a PCIe
Gen3 x16 connector near the back . A riser card may be used
to allow the Controller card 902 to be installed on top of the
motherboard ; thus , the clearance between the card and the
motherboard may be limited to roughly on slot width .
[0116] In embodiments , the maximum power supplied by
the PCIe connector is 75 W. The controller card 902 may
consume about 60 W or less .
[0117] The chassis may provide good airflow , but the card
should expect a 10C rise in ambient temperature , because in
this example the air will be warmed by dual Xeon processors
and 16 DIMMs . The maximum ambient temperature for
most servers is 35C , so the air temperature at the controller
card 902 will likely be 45C or higher in some situations .
Custom heat sinks and baffles may be considered as part of
the thermal solution .

US 2020/0201661 A1 Jun . 25 , 2020
11

[0118] There are two FPGAs in the embodiment of the
controller card 902 depicted in FIG . 9 , a datapath FPGA , or
datapath chip 904 , and a networking FPGA , or networking
chip 908 .
[0119] The datapath chip 904 provides connectivity to the
host computer 102 over the PCIe connector 110. From the
host processor's point of view , the controller card 902 looks
like multiple NVMe devices . The datapath chip 904 bridges
NVMe to standard SATA / SAS protocol and in this embodi
ment controls up to six external disk drives over SATA / SAS
links . Note that SATA supports up to 6.0 Gbps , while SAS
supports up to 12.0 Gbps .
[0120] The networking chip 908 switches the two 10G
Ethernet ports of the NIC device 118 and the eCPU 1018 to
two external 10G Ethernet ports . It also contains a large
number of data structures for used in virtualization .
[0121] The motherboard of the host 102 typically provides
a PCIe Gen3 x16 interface that can be divided into two
separate PCIe Gen3 x8 busses in the Intel chipset . One of the
PCIe Gen3 x8 bus 110 is connected to the Intel NIC device
118. The second PCIe Gen3 x8 bus 110 is connected to a
PLX PCIe switch chip 1010. The downstream ports of the
switch chip 1010 are configured as two PCIe Gen3 x8 busses
110. One of the busses 110 is connected to the eCPU while
the second is connected to the datapath chip 904 .
[0122] The datapath chip 904 uses external memory for
data storage . A single x72 DDR3 channel 1012 should
provide sufficient bandwidth for most situations . The net
working chip 908 also uses external memory for data
storage , and a single x72 DDR3 channel is likely to be
sufficient for most situations . In addition , the data structures
require the use of non - volatile memory , such as one that
provides high performance and sufficient density , such as
Non - volatile DIMM (NVDIMM , which typically has a
built - in power switching circuit and super - capacitors as
energy storage elements for data retention .
[0123] The eCPU 1018 communicates with the network
ing 908 using two sets of interfaces . It has a PCIe Gen2x4
interface for NVMe - like communication . The eCPU 1018
also has two 10G Ethernet interfaces that connect to the
networking chip 908 , such as through its L2 switch .
[0124] An AXI bus 1020 (a bus specification of the ARM
chipset) will be used throughout the internal design of the
two chips 904 , 908. To allow seamless communication
between the datapath chip 904 and the networking chip 908 ,
the AXI bus 1020 is used for chip - to - chip connection . The
Xilinx AuroraTM protocol , a serial interface , may be used as
the physical layer .
(0125] The key requirements for FPGA configuration are
that (1) The datapath chip 904 must be ready before PCIe
configuration started (QSPI Flash memory (serial flash
memory with quad SPI bus interface) may be fast enough)
and (2) the chips are preferably field upgradeable . The Flash
memory for configuration is preferably large enough to store
at least 3 copies of the configuration bitstream . The bit
stream refers to the configuration memory pattern used by
XilinxTM FPGAs . The bitstream is typically stored in non
volatile memory and is used to configure the FPGA during
initial power - on . The eCPU 1018 may be provided with a
facility to read and write the configuration Flash memories .
New bitstreams may reside with the processor of the host
102. Security and authentication may be handled by the
eCPU 1018 before attempting to upgrade the Flash memo
ries .

[0126] In a networking subsystem , the Controller card 902
may handle all network traffic between the host processor
and the outside world . The Networking chip 908 may
intercept all network traffics from the NIC 118 and exter
nally .
[0127] The Intel NIC 118 in this embodiment connects
two 10GigE , XFI interfaces 1022 to the Networking chip
908. The embedded processor will do the same . The Net
working chip 908 will perform an L2 switching function and
route Ethernet traffic out to the two external 10GigE ports .
Similarly , incoming 10GigE traffic will be directly to either
the NIC 118 , the eCPU 1018 , or internal logic of the
Networking chip 908 .
[0128] The controller card 902 may use SFP + optical
connectors for the two external 10G Ethernet ports . In other
embodiments , the card may support 10GBASE - T using an
external PHY and RJ45 connectors ; but a separate card may
be needed , or a custom paddle card arrangement may be
needed to allow switching between SFP + and RJ45 .
[0129] All the management of the external port and optics ,
including the operation of the LEDs , may be controlled by
the Networking chip 908. Thus , signals such as PRST ,
12C / MDIO , etc may be connected to the Networking chip
908 instead of the NIC 118 .
[0130] In a storage subsystem , the Datapath chip 904 may
drive the mini - SAS HD connectors directly . In embodiments
such as depicted in FIG . 10 , the signals may be designed to
operate at 12 Gbps to support the latest SAS standard .
[0131] To provide efficient use of board space , two x4
mini - SAS HD connectors may be used . All eight sets of
signals may be connected to the Datapath chip 904 , even
though only six sets of signals might be used at any one time .
[0132] On the chassis , high - speed copper cables may be
used to connect the mini - SAS HD connectors to the moth
erboard . The placement of the mini - SAS HD connectors
may take into account the various chassis ' physical space
and routing of the cables .
[0133] The power to the controller card 902 may be
supplied by the PCIe x16 connector . No external power
connection needs to be used . Per PCIe specification , the
PCIe x16 connector may supply only up to 25 W of power
after power up . The controller card 902 may be designed
such that it draws less than 25 W until after PCIe configu
ration . Thus , a number of interfaces and components may
need to be held in reset after initial power up . The connector
may supply up to 75 W of power after configuration , which
may be arranged such that the 75 W is split between the 3.3V
and 12V rails .
[0134] FIG . 10 shows a software stack 1000 , which
includes a driver 1002 to interface to the converged solution
300 , such as one enabled by the FPGA 800. The NVMe
controller 1004 is the set of functions of the hardware (e.g. ,
FPGA 800) that serves the function of an NVMe controller
and allocates virtual devices 1012 to the host . In FIG . 10 ,
dev1 , dev2 , dev3 are examples of virtual devices 1012
which are dynamically allocated to containers 1018 LXC1 ,
LXC2 , and LXC3 , respectively . The NVMe to SATA bridge
1008 is the part of the hardware sub - system (e.g. , FPGA
800) that converts and maps virtual devices 1012 (devl ,
dev2 , dev3) to storage devices 302 (e.g. , SSDs in the figure) .
The connection 1010 is the part of the hardware system that
provides a SATA connection (among other possible connec
tion options noted above) . The Ethernet link 120 , which can
expose virtual devices 1012 (i.e dev1 , dev2 , dev3) to other

US 2020/0201661 A1 Jun . 25 , 2020
12

host (s) 102 connected via the Ethernet link 120 using a
storage tunneling protocol . The PCI - E (NVMe driver) 1002
may program and drive the hardware subsystem for the
storage side . This driver 1002 may run on the host as part of
the operating system (e.g. , Linux OS in this example) . The
block layer 1014 may be a conventional SCSI sub - system of
the Linux operating system , which may interface with the
converged solution PCIe driver 1002 to expose virtual
storage devices 1012. The containers 1018 (LXC1 , LXC2 ,
LXC3) may request and dynamically be allocated virtual
storage devices 1012 (dev1 , dev2 and dev3 , respectively) .
[0135] FIGS . 11 through 15 show an example of the
movement of an application container 1018 (e.g. , a Linux
container) across multiple systems 102 , first in the absence
of a converged solution 300 and then in the presence of such
a converged solution 300. FIG . 11 shows an example of two
conventional computer systems 102 with conventional stor
age controllers 112 and network controllers 118 hosting
virtualized software in an OS / Hypervisor stack 108. Com
puter System 1 (C1) has a configuration similar to the one
shown in FIG . 1 with CPU , memory and conventional
storage controller 112 and network controller 118. The
system runs an operating system 108 , such as LinuxTM ,
Microsoft WindowsTM , etc , and / or hypervisor software , such
as Xen , VMware , etc. to provide support for multiple
applications natively or over virtualized environments , such
as via virtual machines or containers . In this computer
system 102 , application Appl 1102 is running inside a
virtual machine VM1 1104. Applications App2 1108 and
App3 1112 are running within virtualized containers LXC1
1110 and LXC2 1114 respectively . In addition to these ,
application App4 1118 is running natively over the Operat
ing System 108. Although typically , a practical scenario
might have only virtual machines or containers or native
applications (not all three) , here it is depicted in a combined
fashion deliberately to cover all cases of virtualized envi
ronments . Computer System 2 (C2) 102 has similar con
figuration supporting App5 and App6 in a container and
natively , respectively . Each of these applications access their
storage devices 302 independent of each other , namely App1
uses 51 , App2 uses S2 , etc. These storage devices 302
(designated S1 - S6) are not limited to being independent
physical entities . They could be logically carved out of one
or more physical storage elements as deemed necessary . As
one can see , (represented by the arrow from each storage
device 302 to an application) , the data flow between the
storage 302 and the application 1102 , 1108 , 1112 , 1118
passes through the storage controller 112 and the operating
system / hypervisor stack 108 before it reaches the applica
tion , entailing the challenges described in connection with
FIG . 1 .
[0136] Referring to FIG . 12 , when an application or a
container is moved from C1 to C2 , its corresponding storage
device needs to be moved too . The movement could be
needed due to the fact that C1 might be running out of
resources (such as CPU , memory , etc.) to support the
existing applications (App1 - App) over a period of time ,
such as because of behavioral changes within these appli
cations .
[0137] Typically , it is easier to accomplish the movement
within a reasonable amount of time as long as the application
states and the storage are reasonable in terms of size .
Typically storage - intense applications may use large
amounts (e.g. , multiple terabytes) of storage , in which case ,

it may not be practical to move the storage 302 within an
acceptable amount of time . In that case , storage may con
tinue to stay where it was and software - level shunting /
tunneling would be undertaken to access the storage
remotely , as shown in FIG . 13 .
[0138] As shown in FIG . 13 , App2 1108 , after its move
ment to computer system C2 , continues to access its original
storage S2 located on computer system C1 by traversing
through Operating Systems or Hypervisors 108 of both the
systems C1 and C2 . This is because the mapping of storage
access through the network controllers 118 to that storage
controller 112 and its attached storage devices 302 is done
by the Operating System or Hypervisor software stack 108
running within the main CPU .
[0139] As shown in FIG . 13 after its movement to C2 ,
App2 1108 continues to access its original storage S2
located in C1 by traversing through Operating Systems or
Hypervisors 108 of both the systems C1 and C2 . This is
because , the mapping of storage access through the network
controllers 118 from C2 to C1 and over to that storage
controller 112 of C1 is done by the Operating System or
Hypervisor software 108 running within the main CPU of
each computer system .
[0140] Consider a similar scenario when a converged
controller 300 is applied as shown in the FIG . 14. As one can
see , the scenario is almost identical to FIG . 11 , except the
Converged IO Controller 300 replaces the separate storage
controller 112 and network controller 118. In this case , when
App2 1108 along with its container LXC1 is moved to C2
(as shown in FIG . 15) , the storage S2 is not moved , and the
access is optimized by avoiding the traversal through any
software (Operating System , Hypervisor 108 or any other)
running in main CPU present in computing system C1 .
[0141] Thus , provided herein is a novel way of bypassing
the main CPU where a storage device is located , which in
turn (a) allows one to reduce latency and bandwidth signifi
cantly in accessing a storage across multiple computer
systems and (b) vastly simplifies and improves situations in
which an application needs to be moved away from a
machine on which its storage is located .
[0142] Ethernet networks behave on a best effort basis and
hence lossy in nature as well as bursty . Any packet could be
lost forever or buffered and delivered in bursty and delayed
manner along with other packets . Whereas , typical storage
centric applications are sensitive to losses and bursts , it is
important that when storage traffic is sent over Ethernet
networks .
[0143] Conventional storage accesses over their buses /
networks involve reliable and predictable methods . For
example , Fibre Channel networks employ credit based flow
control to limit number of accesses made by end systems .
And the number of credits given to an end system is based
on whether the storage device has enough command buffers
to receive and fulfill storage requests in predictable amount
of time fulfilling required latency and bandwidth needs . The
figure below shows some credit schemes adopted by differ
ent types of buses such as SATA , Fibre Channel (FC) , SCSI ,
SAS , etc.
[0144] Referring to FIG . 16 , Ethernet networks behave on
a best effort basis and hence tend to be lossy in nature , as
well as bursty . Any packet could be lost forever or buffered
and delivered in a delayed manner , in a congestion - inducing
burst , along with many other packets . Typical storage
centric applications are sensitive to losses and bursts , so it is

US 2020/0201661 A1 Jun . 25 , 2020
13

important when storage traffic is sent over buses and Eth
ernet networks , that those involve reliable and predictable
methods for maintaining integrity . For example , Fibre Chan
nel networks conventionally employ credit - based flow con
trol to limit the number of accesses made by end systems at
any one time . The number of credits given to an end system
can be based on whether the storage device 302 has enough
command buffers to receive and fulfill storage requests in a
predictable amount of time that satisfies required latency and
bandwidth requirements . FIG . 16 shows some of the credit
schemes adopted by different types of buses such as a SATA
bus 1602 , Fibre Channel (FC) 1604 , and SCSI / SAS con
nection 1608 , among other types of such schemes .
[0145] As one can see , for example , an FC controller 1610
may have its own buffering up to a limit of ‘ N ’ storage
commands before sending them to an FC - based storage
device 1612 , but the FC device 1612 might have a different
buffer limit , say “ M’in this example , which could be greater
than , equal to , or less than ‘ N ’ . A typical credit - based
scheme uses target level (in this example , one of the storage
devices 302 , such as the FC Device 1602 , is the target)
aggregate credits , information about which is propagated to
various sources (in this example , the controller , such as the
FC Controller 1610 , is the source) which are trying to access
the target 302. For example , if two sources are accessing a
target that has a queue depth of ' N , ' then sum of the credits
given to the sources would not exceed ‘ N , ' so that at any
given time the target will not receive more than ' N ' com
mands . The distribution of credits among the sources may be
arbitrary , or it may be based on various types of policies
(e.g. , priorities based on cost / pricing , SLAs , or the like) .
When the queue is serviced , by fulfilling the command
requests , credits may be replenished at the sources as
appropriate . By adhering to this kind of credit - based storage
access , losses that would result from queues at the target
being overwhelmed can be avoided .
[0146] Typical storage accesses over Ethernet , such as
FCOE , iSCSI , and the like , may extend the target - oriented ,
credit - based command fulfillment to transfers over Ethernet
links . In such cases , they may be target device - oriented ,
rather than being source - oriented . Provided herein are new
credit based schemes that can instead be based on which or
what kind of source should get how many credits . For
example , the converged solution 300 described above ,
which directly interfaces the network to the storage , may
employ a multiplexer to map a source - oriented , credit - based
scheduling scheme to a target device oriented credit based
scheme , as shown in FIG . 17 .
[0147] As shown in FIG . 17 , four sources are located over
Ethernet and there are two target storage devices 302 .
Typical target - oriented , credit - based schemes would expose
two queues (one per target) , or two connections per source
to each of the targets . Instead , as shown in FIG . 17 , the
queues (Q1 , Q2 , Q3 , Q4) 1702 are on a per - source basis , and
they mapped / multiplexed to two target - oriented queues (Q5 ,
(6) 1704 across the multiplexor (S) 1708. By employing
this type of source - oriented , credit - based scheme , one may
guarantee access bandwidth and predictable access latency ,
independent of the number of target storage devices 302. As
an example , one type of multiplexing is to make sure queue
size ‘ P ' of Q1 does not exceed ‘ L + M’of Q5 and Q6 , so that
Q1 is not overwhelmed by its source .
[0148] In embodiments , methods and systems to provide
access to blocks of data from a storage device 302 is

described . In particular , a novel approach to allowing an
application to access its data , fulfilling a specific set of
access requirements is described .
[0149] [000149] As used herein , the term “ application
driven data storage ” (ADS) encompasses storage that pro
vides transparency to any application in terms of how the
application's data is stored , accessed , transferred , cached
and delivered to the application . ADS may allow applica
tions to control these individual phases to address the
specific needs of the particular application . As an example ,
an application might be comprised of multiple instances of
itself , as well as multiple processes spread across multiple
Linux nodes across the network . These processes might
access multiple files in shared or exclusive manners among
them . Based on how the application wants to handle these
files , these processes may want to access different portions
of the files more frequently , may need quick accesses or use
once and throw away . Based on these criteria , it might want
to prefetch and / or retain specific portions of a file in different
tiers of cache and / or storage for immediate access on per
session or per file basis as it wishes . These application
specific requirements cannot be fulfilled in a generic manner
such as disk striping of entire file system , prefetching of
read - ahead sequential blocks , reserving physical memory in
the server or LRU or FIFO based caching of file contents .
[0150] Application - driven data storage I / O is not simply
applicable to the storage entities alone . It impacts the entire
storage stack in several ways . First , it impacts the storage
I / O stack in the computing node where the application is
running comprising the Linux paging system , buffering ,
underlying File system client , TCP / IP stack , classification ,
QoS treatment and packet queuing provided by the network
ing hardware and software . Second , it impacts the network
ing infrastructure that interconnects the application node and
its storage , comprising Ethernet segments , optimal path
selections , buffering in switches , classification and QoS
treatment of latency - sensitive storage traffic as well as
implosion issues related to storage I / O . Also , it impacts the
storage infrastructure which stores and maintains the data in
terms of files comprising the underlying file layout , redun
dancy , access time , tiering between various types of storage
as well as remote repositories .
[0151] Methods and systems disclosed herein include ones
relating to the elements affecting a typical application within
an application node and how a converged solution 300 may
change the status quo to address certain critical requirements
of applications .
[0152] Conventional Linux stacks may consist of simple
building blocks , such generic memory allocation , process
scheduling , file access , memory mapping , page caching , etc.
Although these are essential for an application to run on
Linux , this is not optimal for certain categories of applica
tions that are input / output (IO) intensive , such as NoSQL .
NoSQL applications are very IO intensive , and it is harder
to predict their data access in a generic manner . If applica
tions have to be deployed in a utility - computing environ
ment , it is not ideal for Linux to provide generic minimal
implementations of these building blocks . It is preferred for
these building blocks to be highly flexible and have appli
cation - relevant features that can be controllable from the
application (s) .
[0153] Although every application has its own specific
requirements , in an exemplary embodiment , the NoSQL
class of applications has the following requirements which ,

US 2020/0201661 A1 Jun . 25 , 2020
14

when addressed by the Linux stack , could greatly improve
the performance of NoSQL applications and other IO inten
sive applications . The requirements are first , the use of file
level priority . The Linux file system should provide access
level priority between different files at a minimum . For
example , an application process (consisting of multiple
threads) accessing two different files with one file given
higher priority over the other (such as one database / table /
index over the other) . This would enable the precious
storage I / O resources be preferentially utilized based on the
data being accessed . One would argue that this could be
indirectly addressed by running one thread / process be run at
a higher or lower priority , but those process level priorities
are not communicated over to file system or storage com
ponents . Process or thread level priorities are meant only for
utilizing CPU resources . Moreover , it is possible that same
thread might be accessing these two files and hence will be
utilizing the storage resources at two different levels based
on what data (file) being accessed . Second , there may be a
requirement for access level preferences . A Linux file system
may provide various preferences (primarily SLA) during a
session of a file (opened file) , such as priority between file
sessions , the amount of buffering of blocks , the retention / life
time preferences for various blocks , alerts for resource
thresholds and contentions , and performance statistics . As an
example , when a NoSQL application such as MongoDB or
Cassandra would have two or more threads for writes and
reads , where if writes may have to be given preference over
reads , a file session for write may have to be given prefer
ence over a file session for read for the same file . This
capability enables two sessions of the same file to have two
different priorities .
[0154] Many of the NoSQL applications store different
types of data into the same file ; for example , MongoDB
stores user collections as well as (b - tree) index collections in
the same set of database files . MongoDB may want to keep
the index pages (btree and collections) in memory in pref
erence over user collection pages . When these files are
opened , MongoDB may want to influence the Linux , File
and storage systems to treat the pages according to Mon
goDB policies as opposed to treating these pages in a generic
FIFO or LRU basis agnostic of the application's require
ments .

[0155] Resource alerts and performance statistics enable
an NoSQL database to understand the behavior of the
underlying File and storage system and could service its
database queries accordingly or trigger actions to be carried
out such as sharding of the database or reducing / increasing
of File I / O preference for other jobs running in the same host
uch as backup , sharding , number read / write queries ser

viced , etc.) . For example , performance stats about min , max
and average number of IOPs and latencies as well as top ten
candidate pages thrashed in and out of host memory in a
given period of time would enable an application to fine tune
itself dynamically adjusting the parameters noted above .
(0156] A requirement may also exist for caching and
tiering preferences . A Linux file system may need to have a dynamically configurable caching policy while applications
are accessing their files . Currently , Linux file systems typi
cally pre - fetch contiguous blocks of a file , hoping that
applications are reading the file in a sequential manner like
a stream . Although it is true for many legacy applications
like web servers and video streamers , emerging NoSQL
applications do not follow sequential reads strictly . These

applications read blocks randomly . As an example , Mon
goDB stores the document keys in index tables in b - tree , laid
out flat on a portion of a file , which , when a key is searched ,
accesses the blocks randomly until it locates the key . More
over , these files are not dedicated to such b - tree based index
tables alone . These files are shared among various types of
tables (collections) such as user documents and system
index files . Because of this , a Linux file system cannot
predict what portions of the file need to be cached , read
ahead , swapped out for efficient memory usage , etc.
[0157] In embodiments of the methods and systems
described herein , there is a common thread across various
applications in their requirements for storage . In particular ,
latency and IOPs for specific types of data at specific times
and places of need are very impactful on performance of
these applications .
[0158] For example , to address the host level requirements
listed above , disclosed herein are methods and systems for
a well fine - tuned file - system client that enables applications
to completely influence and control the storing , retrieving ,
retaining and tiering of data according to preference within
the host and elsewhere .
[0159] As shown in FIG . 18 , a File System (FS) client
1802 keeps separate buffer pools for separate sessions of a
file (fd1 and fd2) . It also pre - allocates and maintains aggre
gate memory pools for each application or set of processes .
The SLA - Broker 1804 may be exercised by the application
either internally within the process / thread where the file I / O
is carried out or externally from another set of processes , to
influence the FS Client 1802 to provide appropriate storage
1/0 SLAs dynamically . Controlling the SLA from an exter
nal process enables a legacy application with no knowledge
of these newer storage control features immediately without
modifying the application itself .
[0160] Methods and systems disclosed herein may provide
extensive tiering services for data retrieval across network
and hosts . As one can see in FIG . 19 below , a High
Performance Distributed File Server (DFS) 1902 enables
application to run in the Platform 1904 in a containerized
form to determine and execute what portions of files should
reside in which media (DRAM , NVRAM , SSD or HDDs) in
cached form storage form dynamically . These application
containers 1908 can determine other storage policies such as
whether a file has to be striped , mirrored , raided and disaster
recovered (DR’ed) as well .
[0161] The methods and systems disclosed herein also
provide extensive caching service , wherein an application
container in the High Performance DFS 1902 can proac
tively retrieve specific pages of a file from local storage
and / or remote locations and push these pages to specific
places for fast retrieval later when needed . For instance , the
methods and systems may local memory and SSD usages of
the hosts running the application and proactively push pages
of an application's interest into any of these hosts ' local
memory / SSD . The methods and systems may use the local
tiers of memory , SSD and HDD provisioned for this purpose
in the DFS platform 1904 for very low latency retrieval by
the application at a later time of its need .
[0162] The use of extending the cache across hosts of the
applications is immense . For example , in MongoDB when
the working set temporarily grows beyond its local host's
memory , thrashing happens , and it significantly reduces the
query handling performance . This is because when a needed
file data page is discarded in order to bring in a new page to

US 2020/0201661 A1 Jun . 25 , 2020
15

satisfy a query and subsequently , if the original page has to
be brought back , the system has to reread the page afresh
from the disk subsystem , thereby incurring huge latency in
completing a query . Application - driven storage access helps
these kinds of scenarios by keeping a cache of the discarded
page elsewhere in the network (in another application host's
memory / SSD or in local tiers of storage of the High Per
formance DFS system 1902) temporarily until MongoDB
requires the page again and thereby significantly reducing
the latency in completing the query .
[0163] Referring to FIG . 20 , High Performance DFS 1902
takes advantage of DRAM and SSD resources across the
application hosts in a single , unified RAM and SSD - based
tier / cache 2002 , in order to cache and serve the application
data as necessary and as influenced and controlled by the
application .
[0164] A system comprising of a set of hosts (H1 through
HN) , a file or block server 2102 and a storage subsystem
2104 is disclosed herein as shown in the FIG . 21. A host
H1 - HN is typically a computer running an application that
needs access to data permanently or temporarily stored in
storage . The file or volume server 2102 may be a data
organizer and a data server , typically running a hardware
comprising a central processing unit (CPU) , memory and
special hardware to connect to external devices such as
networking and storage devices . The file or volume server
2102 organizes user data in terms of multiple fixed or
variable number of bytes called blocks . It stores these blocks
of data in an internal or external storage . A random , but
logically related , sequence of blocks is organized into a file
or a volume . One or more Hosts H1 - HN can access these
files or volumes through an application programming inter
face (API) or any other protocol . A file or volume server can
serve one or more files and volumes to one or more hosts .
It is to be noted that a host and a file or volume server can
be in two different physical entities connected directly or
through a network or they could be logically located
together in a single physical computer .
[0165) Storage 2104 may be a collection of entities
capable of retaining a piece of data temporarily or perma
nently . This is typically comprised of static or dynamic
random access memory (RAM) , solid state storage (SSD) ,
hard disk drive (HDD) or a combination of all of these .
Storage could be an independent physical entity connected
to a File or volume server 2102 through a link or a network .
It could also be integrated with file or volume server 2102
in a single physical entity . Hence , hosts H1 - HN , file or
volume server 2102 and storage 2104 could be physically
collocated in a single hardware entity .
[0166] A host is typically comprised of multiple logical
entities as shown in FIG . 22. An application 2202 typically
runs in a host and would access its data elements through an
API provided by its local operating system 2204 or any other
entity in place of it . The operating system 2204 typically has
a standard API interface to interface to a file system through
their file system client 2206. A file system client 2206 is a
software entity running within the host to interface with a
file or volume server 2210 either located remotely or locally .
It would provide the data elements needed by application
2202 , which are present in a single or multiple files or
volumes , by retrieving them from file or volume server 2210
and keeping them in the host's memory 2208 until the
application completes its processing of the elements of data .
In a typical application scenario , a specific piece of data

would be read and / or modified multiple number of times as
required . It is also typical that an entire file or volume ,
consisting of multiple data elements , is potentially much
larger than the size of local memory 2208 in certain types of
applications . This makes operating system 2204 and file
system client 2206 more complicated in its implementation
in order to decide what blocks of data to be retained in or
evicted from memory 2208 based on the prediction that the
application 2202 may or may not access them in future . So
far , the existing implementations execute some generic and
application - independent methods , such as first - in - first - out
(FIFO) or least - recently - used (LRU) , to retain or evict the
blocks of data in memory in order to bring in new blocks of
data from file or volume server 2210. Moreover , when a
memory occupied by a block of data is to be reclaimed for
storing another block of data , the original data is simply
erased without the consideration for its future use . Normally ,
the disk subsystem in is very slow and incurs high latency
when a block of data is read from it and transferred by file
or volume server 2210 to file system client 2206 to memory
2208. So , when the original block of data is erased , the
application might have to wait longer if it tries to access the
original data in near future . The main problem with this kind
of implementation is that none of the modules in the path of
data access , namely operating system 2204 , file system
client 2206 , memory 2208 , block server 2210 and storage
have any knowledge of what , when and how often a block
of data is going be accessed by application 2202 .
[0167] An example scenario depicting an application 2202
accessing a block of data from storage 2212 is shown in FIG .
23. The numbered circles are to show the steps involved in
the process of accessing a block of data . These steps are
explained below . First , application 2202 uses API of file or
Operating System 2204 to access a block of data operating
system 2204 invokes an equivalent API for file system client
2206 to access the same . Second , file system client 2206
tries to find if the data exists in its local memory buffers
dedicated for this purpose . If found , steps (3) through (7)
below are skipped . Third , sends a command to retrieve the
data from block server 2210. Fourth , block server 2210
sends a read command to storage 2212 to read the block of
data from the storage . Fifth , storage 2212 returns the block
of data to block server 2210 after reading it from the storage .
Sixth , block server 2210 returns the block of data to file
system client 2206. Seventh , file system client 2206 saves
the data in a memory buffer in memory 2208 for any future
access . Eighth , file system client 2206 returns the requested
data to the application 2202 .
[0168] In the methods and systems disclosed herein , in
order to address performance requirements related to data
access by most newer class of applications in the area of
NoSQL and BigData , it is proposed that the components in
the data block access comprising operating system 2204 , file
system client 2206 , memory 2208 , block server 2210 and
storage 2212 be controlled by any application 2202. Namely ,
we propose the following . First , enable operating system
2204 to provide additional API to allow applications to
control file system client 2206. Second , enhance file system
client 2206 to support the following : (a) allow application
2202 to create a dedicated pool of memory in memory 2208
for a particular file or volume , in the sense , a file or volume
will have a dedicated pool of memory buffers to hold data
specific to it which are not shared or removed for the
purposes of other files or volumes ; (b) allow application

US 2020/0201661 A1 Jun . 25 , 2020
16

before the cache (in RAM) is warmed and thereby incur a
period of lower application performance .
[0172] Provided herein is a system and method with a
processor and a file server with an application specific
module to control the storage access according to the
application's needs .
[0173] Also provided herein is a system and method with
a processor and a data (constituting blocks of fixed size
bytes , similar or different objects with variable number of
bytes) storage enabling an application specific module to
control the storage access according to the application's
needs .
[0174] Also provided herein is a system and method which
retrieves a stale file or storage data block , previously main
tained for the purposes of an application's use , from a host's
memory and / or its temporary or permanent storage element
and stores it in another host's memory or and / or its tempo
rary or permanent storage element , for the purposes of use
by the application at a later time .
[0175] Also provided herein is a system and method which
retrieves any file or storage data block , previously main
tained for the purposes of an application's use , from a host's
memory and / or its temporary or permanent storage element
and stores it in another host's memory or and / or its tempo
rary or permanent storage element , for the purposes of use
by the application at a later time .
[0176] Also provided herein is a system and method which
utilizes memory and / or its temporary or permanent storage
element of a host to store any file or storage data block which
would be subsequently accessed by an application running
in another host for the purposes of reducing latency of data
access .

2202 to create a dedicated pool of memory in memory 2208
for a particular session with a file or volume such that two
independent sessions with a file or volume will have inde
pendent memory buffers to hold their data . As an example ,
a critically important file session may have large number of
memory buffers in memory 2208 , so that the session can
take advantage of more data being present for quicker and
frequent access , whereas a second session with the same file
may be assigned with very few buffers and hence it might
have to incur more delay and reuse of its buffers to access
various parts of the file ; (c) allow application 2202 to create
an extended pool of buffers beyond memory 2208 across
other hosts or block server 2210 for quicker access . This
enables blocks of data be kept in memory 2208 of other
hosts as well as any memory 2402 present in the file or block
server 2210 ; (d) allow application 2202 to make any block
of data to be more persistent in memory 2208 relative to
other blocks of data for a file , volume or a session . This
allows an application to pick and choose a block of data to
be always available for immediate access and not let oper
ating system 2204 or file system client 2206 to evict it based
on their own eviction policies ; and (e) allow application
2202 to make any block of data to be less persistent in
memory memory 2208 relative to other blocks of data for a
file , volume or a session . This allows an application to let
know operating system 2204 and file system client 2206 to
evict and reuse the buffer of the data block as and when they
choose to . This helps in retaining other normal blocks of data
for longer period of time . Third , enable block server 2210 to
host application specific modules in terms of application
container 2400 as shown in the FIG . 24 with the following
capabilities : (a) enable application container 2400 to fetch
blocks of data of interest to application 2202 ahead of time
and store them in local memory 2402 for later quick access
and avoid the latency penalty associated with storage 2212
and (b) enable storing of evicted pages from memory 2208
of hosts in local memory 2402 for any later access by
application 2202 .
[0169] The application driven feature of (2) (c) above
needs further explanation . There are two scenarios . The first
one involves block of data being retrieved from the memory
of block server 2210. The other scenario involves retrieving
the same from another host . Assuming the exact same block
data has been read from storage 2212 by two hosts (H1) and
(H2) , the methods and systems disclosed herein provide a
system such as depicted in FIG . 25. When a block of data is
noticed to be present in another host (H2) , it is directly
retrieved from it by file system client 2206 instead asking
block server 2210 to retrieve it from storage 2212 , which
will be slower and incurs high latency .
[0170] In embodiments , if file system client 2206 decides
to evict a block of data from (D1) because of storing a more
important block of data in its place , file system client 2206
could send the evicted block of data to file system client
2206 ' to be stored in memory 2208 ' on its behalf .
[0171] It should be noted that the abovementioned tech
niques can be applied to achieving fast failover in case of
failure (s) of Hosts . Furthermore the caching techniques
described above ; especially pertaining to RAM can use used
to achieve failover with a warm cache . FIG . 25 shows an
example of a fast failover system with a warm cache . The
end result is that during a failure of a node , the end
application on a new node will not undergo a time period

[0177] File or storage data blocks , previously maintained
for the purposes of an application's use , from a host's
memory and / or its temporary or permanent storage element ,
may be stored in another host's memory or and / or its
temporary or permanent storage element , for the purposes of
use by the application at a later time .
[0178] The mechanism of transferring a file or storage data
block , previously maintained for the purposes of an appli
cation's use , from a host’s memory and / or its temporary or
permanent storage element to another host over a network .
[0179] In accordance with various exemplary and non
limiting embodiments , there is disclosed a device compris
ing a converged input / output controller that includes a
physical target storage media controller , a physical network
interface controller and a gateway between the storage
media controller and the network interface controller ,
wherein gateway provides a direct connection for storage
traffic and network traffic between the storage media con
troller and the network interface controller .
[0180] In accordance with some embodiments , the device
may further comprise a virtual storage interface that presents
storage media controlled by the storage media controller as
locally attached storage , regardless of the location of the
storage media . In accordance with yet other embodiments ,
the device may further comprise a virtual storage interface
that presents storage media controlled by the storage media
controller as locally attached storage , regardless of the type
of the storage media . In accordance with yet other embodi
ments , the device may further comprise a virtual storage
interface that facilitates dynamic provisioning of the storage
media , wherein the physical storage may be either local or
remote .

US 2020/0201661 A1 Jun . 25 , 2020
17

[0181] In accordance with yet other embodiments , the
device may further comprise a virtual network interface that
facilitates dynamic provisioning of the storage media ,
wherein the physical storage may be either local or remote .
In accordance with yet other embodiments , the device may
be adapted to be installed as a controller card on a host
computing system , in particular , wherein the gateway oper
ates without intervention by the operating system of the host
computing system .
[0182] In accordance with yet other embodiments , the
device may include at least one field programmable gate
array providing at least one of the storage functions and the
network functions of the device . In accordance with yet
other embodiments , the device may be configured as a
network - deployed switch . In accordance with yet other
embodiments , the device may further comprise a functional
component of the device for translating storage media
instructions between a first protocol and at least one other
protocol .
[0183] With reference to FIG . 26 , there is illustrated an
exemplary and non - limiting method of virtualization of a
storage device . First , at step 2600 there is accessed a
physical storage device that responds to instructions in a first
storage protocol . Next , at step 2602 , there are translated
instructions between the first storage protocol and a second
storage protocol . Lastly , at step 2604 , using the second
protocol , the physical storage device is presented to an
operating system , such that the storage of the physical
storage device can be dynamically provisioned , whether the
physical storage device is local or remote to a host comput
ing system that uses the operating system .
[0184] In accordance with various embodiments , the first
protocol is at least one of a SATA protocol , an NVMe
protocol , a SAS protocol , an iSCSI protocol , a fiber channel
protocol and a fiber channel over Ethernet protocol . In other
embodiments , the second protocol is an NVMe protocol .
[0185] In some embodiments , the method may further
comprise providing an interface between an operating sys
tem and a device that performs the translation of instructions
between the first and second storage protocols and / or pro
viding an NVMe over Ethernet connection between the
device that performs the translation of instructions and a
remote , network - deployed storage device .
[0186] With reference to FIG . 27 , there is illustrated an
exemplary and non - limiting method of facilitating migration
of at least one of an application and a container . First , at step
2700 , there is provided a converged storage and networking
controller , wherein a gateway provides a connection for
network and storage traffic between a storage component
and a networking component of the device without inter
vention of the operating system of a host computer . Next , at
step 2702 , the at least one application or container is mapped
to a target physical storage device that is controlled by the
converged storage and networking controller , such that the
application or container can access the target physical stor
age , without intervention of the operating system of the host
system to which the target physical storage is attached , when
the application or container is moved to another computing
system .
[0187] In accordance with various embodiments , the
migration is of a Linux container or a scaleout application .
[0188] In accordance with yet other embodiments , the
target physical storage is a network - deployed storage device
that uses at least one of an iSCSI protocol , a fiber channel

protocol and a fiber channel over Ethernet protocol . In yet
other embodiments , the target physical storage is a disk
attached storage device that uses at least one of a SAS
protocol , a SATA protocol and an NVMe protocol .
[0189] With reference to FIG . 28 , there is illustrated an
exemplary and non - limiting method of of providing quality
of service (QoS) for a network . First , at step 2800 , there is
provided a converged storage and networking controller ,
wherein a gateway provides a connection for network and
storage traffic between a storage component and a network
ing component of the device without intervention of the
operating system of a host computer . Next , at step 2802 ,
without intervention of the operating system of a host
computer , there is managed at least one quality of service
(QoS) parameter related to a network in the data path of
which the storage and networking controller is deployed ,
such managing being based on at least one of the storage
traffic and the network traffic that is handled by the con
verged storage and networking controller .
[0190] While only a few embodiments of the present
disclosure have been shown and described , it will be obvious
to those skilled in the art that many changes and modifica
tions may be made thereunto without departing from the
spirit and scope of the present disclosure as described in the
following claims . All patent applications and patents , both
foreign and domestic , and all other publications referenced
herein are incorporated herein in their entireties to the full
extent permitted by law .
[0191] The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software , program codes , and / or instructions on a
processor . The present disclosure may be implemented as a
method on the machine , as a system or apparatus as part of
or in relation to the machine , or as a computer program
product embodied in a computer readable medium executing
on one or more of the machines . In embodiments , the
processor may be part of a server , cloud server , client ,
network infrastructure , mobile computing platform , station
ary computing platform , or other computing platform . A
processor may be any kind of computational or processing
device capable of executing program instructions , codes ,
binary instructions and the like . The processor may be or
may include a signal processor , digital processor , embedded
processor , microprocessor or any variant such as a co
processor (math co - processor , graphic co - processor , com
munication co - processor and the like) and the like that may
directly or indirectly facilitate execution of program code or
program instructions stored thereon . In addition , the proces
sor may enable execution of multiple programs , threads , and
codes . The threads may be executed simultaneously to
enhance the performance of the processor and to facilitate
simultaneous operations of the application . By way of
implementation , methods , program codes , program instruc
tions and the like described herein may be implemented in
one or more thread . The thread may spawn other threads that
may have assigned priorities associated with them ; the
processor may execute these threads based on priority or any
other order based on instructions provided in the program
code . The processor , or any machine utilizing one , may
include non - transitory memory that stores methods , codes ,
instructions and programs as described herein and else
where . The processor may access a non - transitory storage
medium through an interface that may store methods , codes ,
and instructions as described herein and elsewhere . The

US 2020/0201661 A1 Jun . 25 , 2020
18

storage medium associated with the processor for storing
methods , programs , codes , program instructions or other
type of instructions capable of being executed by the com
puting or processing device may include but may not be
limited to one or more of a CD - ROM , DVD , memory , hard
disk , flash drive , RAM , ROM , cache and the like .
[0192] A processor may include one or more cores that
may enhance speed and performance of a multiprocessor . In
embodiments , the process may be a dual core processor ,
quad core processors , other chip - level multiprocessor and
the like that combine two or more independent cores (called
a die) .
[0193] The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software on a server , client , firewall , gateway , hub ,
router , or other such computer and / or networking hardware .
The software program may be associated with a server that
may include a file server , print server , domain server ,
internet server , intranet server , cloud server , and other vari
ants such as secondary server , host server , distributed server
and the like . The server may include one or more of
memories , processors , computer readable media , storage
media , ports (physical and virtual) , communication devices ,
and interfaces capable of accessing other servers , clients ,
machines , and devices through a wired or a wireless
medium , and the like . The methods , programs , or codes as
described herein and elsewhere may be executed by the
server . In addition , other devices required for execution of
methods as described in this application may be considered
as a part of the infrastructure associated with the server .
[0194] [000194] The server may provide an interface to
other devices including , without limitation , clients , other
servers , printers , database servers , print servers , file servers ,
communication servers , distributed servers , social networks ,
and the like . Additionally , this coupling and / or connection
may facilitate remote execution of program across the
network . The networking of some or all of these devices may
facilitate parallel processing of a program or method at one
or more location without deviating from the scope of the
disclosure . In addition , any of the devices attached to the
server through an interface may include at least one storage
medium capable of storing methods , programs , code and / or
instructions . A central repository may provide program
instructions to be executed on different devices . In this
implementation , the remote repository may act as a storage
medium for program code , instructions , and programs .
[0195] [000195] The software program may be associated
with a client that may include a file client , print client ,
domain client , internet client , intranet client and other vari
ants such as secondary client , host client , distributed client
and the like . The client may include one or more of memo
ries , processors , computer readable media , storage media ,
ports (physical and virtual) , communication devices , and
interfaces capable of accessing other clients , servers ,
machines , and devices through a wired or a wireless
medium , and the like . The methods , programs , or codes as
described herein and elsewhere may be executed by the
client . In addition , other devices required for execution of
methods as described in this application may be considered
as a part of the infrastructure associated with the client .
[0196] The client may provide an interface to other
devices including , without limitation , servers , other clients ,
printers , database servers , print servers , file servers , com
munication servers , distributed servers and the like . Addi

tionally , this coupling and / or connection may facilitate
remote execution of program across the network . The net
working of some or all of these devices may facilitate
parallel processing of a program or method at one or more
location without deviating from the scope of the disclosure .
In addition , any of the devices attached to the client through
an interface may include at least one storage medium
capable of storing methods , programs , applications , code
and / or instructions . A central repository may provide pro
gram instructions to be executed on different devices . In this
implementation , the remote repository may act as a storage
medium for program code , instructions , and programs .
[0197] The methods and systems described herein may be
deployed in part or in whole through network infrastruc
tures . The network infrastructure may include elements such
as computing devices , servers , routers , hubs , firewalls , cli
ents , personal computers , communication devices , routing
devices and other active and passive devices , modules
and / or components as known in the art . The computing
and / or non - computing device (s) associated with the network
infrastructure may include , apart from other components , a
storage medium such as flash memory , buffer , stack , RAM ,
ROM and the like . The processes , methods , program codes ,
instructions described herein and elsewhere may be
executed by one or more of the network infrastructural
elements . The methods and systems described herein may be
adapted for use with any kind of private , community , or
hybrid cloud computing network or cloud computing envi
ronment , including those which involve features of software
as a service (SaaS) , platform as a service (PaaS) , and / or
infrastructure as a service (IaaS) .
[0198] The methods , program codes , and instructions
described herein and elsewhere may be implemented on a
cellular network has sender - controlled contact media con
tent item multiple cells . The cellular network may either be
frequency division multiple access (FDMA) network or
code division multiple access (CDMA) network . The cellu
lar network may include mobile devices , cell sites , base
stations , repeaters , antennas , towers , and the like . The cell
network may be a GSM , GPRS , 3G , EVDO , mesh , or other
networks types .
[0199] The methods , program codes , and instructions
described herein and elsewhere may be implemented on or
through mobile devices . The mobile devices may include
navigation devices , cell phones , mobile phones , mobile
personal digital assistants , laptops , palmtops , netbooks , pag
ers , electronic books readers , music players and the like .
These devices may include , apart from other components , a
storage medium such as a flash memory , buffer , RAM , ROM
and one or more computing devices . The computing devices
associated with mobile devices may be enabled to execute
program codes , methods , and instructions stored thereon .
Alternatively , the mobile devices may be configured to
execute instructions in collaboration with other devices . The
mobile devices may communicate with base stations inter
faced with servers and configured to execute program codes .
The mobile devices may communicate on a peer - to - peer
network , mesh network , or other communications network .
The program code may be stored on the storage medium
associated with the server and executed by a computing
device embedded within the server . The base station may
include a computing device and a storage medium . The

US 2020/0201661 A1 Jun . 25 , 2020
19

storage device may store program codes and instructions
executed by the computing devices associated with the base
station .
[0200] The computer software , program codes , and / or
instructions may be stored and / or accessed on machine
readable media that may include : computer components ,
devices , and recording media that retain digital data used for
computing for some interval of time ; semiconductor storage
known as random access memory (RAM) ; mass storage
typically for more permanent storage , such as optical discs ,
forms of magnetic storage like hard disks , tapes , drums ,
cards and other types ; processor registers , cache memory ,
volatile memory , non - volatile memory ; optical storage such
as CD , DVD ; removable media such as flash memory (e.g.
USB sticks or keys) , floppy disks , magnetic tape , paper tape ,
punch cards , standalone RAM disks , Zip drives , removable
mass storage , off - line , and the like ; other computer memory
such as dynamic memory , static memory , read / write storage ,
mutable storage , read only , random access , sequential
access , location addressable , file addressable , content
addressable , network attached storage , storage area network ,
bar codes , magnetic ink , and the like .
[0201] The methods and systems described herein may
transform physical and / or or intangible items from one state
to another . The methods and systems described herein may
also transform data representing physical and / or intangible
items from one state to another .
[0202] The elements described and depicted herein ,
including in flow charts and block diagrams throughout the
figures , imply logical boundaries between the elements .
However , according to software or hardware engineering
practices , the depicted elements and the functions thereof
may be implemented on machines through computer execut
able media has sender - controlled contact media content item
a processor capable of executing program instructions stored
thereon as a monolithic software structure , as standalone
software modules , or as modules that employ external
routines , code , services , and so forth , or any combination of
these , and all such implementations may be within the scope
of the present disclosure . Examples of such machines may
include , but may not be limited to , personal digital assis
tants , laptops , personal computers , mobile phones , other
handheld computing devices , medical equipment , wired or
wireless communication devices , transducers , chips , calcu
lators , satellites , tablet PCs , electronic books , gadgets , elec
tronic devices , devices has sender - controlled contact media
content item artificial intelligence , computing devices , net
working equipment , servers , routers and the like . Further
more , the elements depicted in the flow chart and block
diagrams or any other logical component may be imple
mented on a machine capable of executing program instruc
tions . Thus , while the foregoing drawings and descriptions
set forth functional aspects of the disclosed systems , no
particular arrangement of software for implementing these
functional aspects should be inferred from these descriptions
unless explicitly stated or otherwise clear from the context .
Similarly , it will be appreciated that the various steps
identified and described above may be varied , and that the
order of steps may be adapted to particular applications of
the techniques disclosed herein . All such variations and
modifications are intended to fall within the scope of this
disclosure . As such , the depiction and / or description of an
order for various steps should not be understood to require
a particular order of execution for those steps , unless

required by a particular application , or explicitly stated or
otherwise clear from the context .
[0203] The methods and / or processes described above ,
and steps associated therewith , may be realized in hardware ,
software or any combination of hardware and software
suitable for a particular application . The hardware may
include a general - purpose computer and / or dedicated com
puting device or specific computing device or particular
aspect or component of a specific computing device . The
processes may be realized in one or more microprocessors ,
microcontrollers , embedded microcontrollers , program
mable digital signal processors or other programmable
device , along with internal and / or external memory . The
processes may also , or instead , be embodied in an applica
tion specific integrated circuit , a programmable gate array ,
programmable array logic , or any other device or combina
tion of devices that may be configured to process electronic
signals . It will further be appreciated that one or more of the
processes may be realized as a computer executable code
capable of being executed on a machine - readable medium .
[0204] The computer executable code may be created
using a structured programming language such as C , an
object oriented programming language such as C ++ , or any
other high - level or low - level programming language (in
cluding assembly languages , hardware description lan
guages , and database programming languages and technolo
gies) that may be stored , compiled or interpreted to run on
one of the above devices , as well as heterogeneous combi
nations of processors , processor architectures , or combina
tions of different hardware and software , or any other
machine capable of executing program instructions .
[0205] Thus , in one aspect , methods described above and
combinations thereof may be embodied in computer execut
able code that , when executing on one or more computing
devices , performs the steps thereof . In another aspect , the
methods may be embodied in systems that perform the steps
thereof , and may be distributed across devices in a number
of ways , or all of the functionality may be integrated into a
dedicated , standalone device or other hardware . In another
aspect , the means for performing the steps associated with
the processes described above may include any of the
hardware and / or software described above . All such permu
tations and combinations are intended to fall within the
scope of the present disclosure .
[0206] While the disclosure has been disclosed in connec
tion with the preferred embodiments shown and described in
detail , various modifications and improvements thereon will
become readily apparent to those skilled in the art . Accord
ingly , the spirit and scope of the present disclosure is not to
be limited by the foregoing examples , but is to be under
stood in the broadest sense allowable by law .
[0207] The use of the terms “ a ” and “ an ” and “ the ” and
similar referents in the context of describing the disclosure
(especially in the context of the following claims) is to be
construed to cover both the singular and the plural , unless
otherwise indicated herein or clearly contradicted by con
text . The terms " comprising , ” “ haa sender - controlled con
tact media content item , ” “ including , ” and “ containing ” are
to be construed as open - ended terms (i.e. , meaning “ includ
ing , but not limited to , ") unless otherwise noted . Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range , unless otherwise indicated
herein , and each separate value is incorporated into the

US 2020/0201661 A1 Jun . 25 , 2020
20

7. The controller of claim 3 , wherein each of the plurality
of target - oriented queues are sized according to a size of a
command buffer of a connected target .

8. The controller of claim 1 , wherein credits are allocated
to the source in response a data transfer request from the
source .

specification as if it were individually recited herein . All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context . The use of any and all examples , or
exemplary language (e.g. , " such as ") provided herein , is
intended merely to better illuminate the disclosure and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed . No language in the specification should
be construed as indicating any non - claimed element as
essential to the practice of the disclosure .
[0208] While the foregoing written description enables
one of ordinary skill to make and use what is considered
presently to be the best mode thereof , those of ordinary skill
will understand and appreciate the existence of variations ,
combinations , and equivalents of the specific embodiment ,
method , and examples herein . The disclosure should there
fore not be limited by the above described embodiment ,
method , and examples , but by all embodiments and methods
within the scope and spirit of the disclosure .
[0209] All documents referenced herein are hereby incor
porated by reference .
What is claimed is :
1. A converged controller for interfacing a set of sources

and a set of targets with credit - based flow control , the
controller comprising :

a plurality of source - oriented queues , each source - ori
ented queue connected to a different source of the set of
sources ;

a plurality of target - oriented queues , each target - oriented
queue connected to a different target of the set of targets
and configured with a number of target access credits ;
and

a multiplexer for selectively coupling a source - oriented
queue of the plurality of source - oriented queues to at
least one target - oriented queue of the plurality of target
oriented queues , wherein the coupling enables a num
ber of data accesses between a source connected to the
source - oriented queue and a subset of the set of targets
connected to the at least one target - oriented queue
according to the credit - based flow control ;

wherein the credit - based flow control limits the number of
data accesses according to a number of credits allocated
to the source connected to the source - oriented queue ;
and

wherein the number of credits is computed from the
number of target access credits of the at least one
target - oriented queue .

2. The controller of claim 1 , wherein the number of credits
allocated to the source connected to the source - oriented
queue is less than or equal to a depth of the source - oriented
queue .

3. The controller of claim 2 , wherein the depth of each of
the plurality of source - oriented queues is less than or equal
to a total depth of all the plurality of target - oriented queues .

4. The controller of claim 3 , wherein at least one of the set
of targets is a direct connected data storage .

5. The controller of claim 3 , wherein at least one of the set
of sources is an ethernet device .

6. The controller of claim 1 , wherein the number of credits
allocated to the source connected to the source - oriented
queue is based at least in part on a size of command buffers
of the subset of targets .

9. The controller of claim 1 , further comprising a physical
storage media controller , a physical network interface con
troller and a direct connection therebetween for performing
data accesses between the source connected to the source
oriented queue and the subset of targets connected to the at
least one target - oriented queue .

10. A method for source - oriented credit - based scheduling
of data flow :

providing a set of target access credits to a plurality of
target - oriented queues for accessing target resources ;

mapping with a multiplexer a source - oriented queue of a
plurality of source - oriented queues to a portion of the
plurality of target - oriented queues ;

providing a set of source access credits for the source
oriented queue of the plurality of source - oriented
queues responsive to a request from at least one of a
plurality of source resources connected to the plurality
of source - oriented queues to access the target
resources ; and

limiting a maximum number of source access credits for
the source - oriented queue of the plurality of source
oriented queues based on a total count of target access
credits provided to the portion of the plurality of
target - oriented queues .

11. The method of claim 10 , wherein providing the set of
target access credits further comprises limiting the set of
target access credits to a size that is less than or equal to a
total depth of the plurality of target - oriented queues .

12. The method of claim 10 , wherein at least one of the
target resources is a direct connected data storage .

13. The method of claim 10 , wherein at least one of the
plurality of source resources is an ethernet device .

14. The method of claim 10 , wherein limiting the maxi
mum number of source access credits further comprises
sizing a depth of the source - oriented queue to the maximum
number of source access credits .

15. A storage control system comprising :
a plurality of source - oriented queues that each provide

access credits to network - remote sources requesting
access to storage resources controlled by a physical
storage controller portion of a converged network
storage controller , wherein each of the network - remote
sources is a distinct instance of the converged network
storage controller ;

a plurality of target - oriented queues , wherein each target
oriented queue controls access to a local , physical
storage resource by limiting a count of target access
credits permitted for each local physical storage
resource ; and

a multiplexer for mapping the plurality of source - oriented
queues to the plurality of target - oriented queues ,
wherein a maximum number of access credits permit
ted for each of the plurality of source - oriented queues
is limited by the multiplexer to no more than a total
number of target access credits available from the
plurality of target - oriented queues with which each

queue of the plurality of source - oriented queues
is multiplexed .
source

US 2020/0201661 A1 Jun . 25 , 2020
21

16. The system of claim 15 , wherein access bandwidth
and access latency are guaranteed independent of a number
of a local , physical storage resources .

17. The system of claim 15 , wherein access bandwidth
and access latency are guaranteed independent of a number
of converged network - storage controllers .

18. A method of guaranteeing predictable access latency
in a network - distributed storage system , comprising :
multiplexing a plurality of source - oriented queues to a

plurality of target - oriented queues ; and
limiting a maximum size of each of the plurality of

source - oriented queues to no more than a combined
size of the plurality of target - oriented queues with
which the plurality of source - oriented queues are mul
tiplexed .

19. The method of claim 18 , further comprising allocating
credits to a source coupled to a multiplexed source - oriented
queue in response a data transfer request from the source .

20. The method of claim 18 , further comprising limiting
a count of credits allocated to a source coupled to at least one
of the plurality of source - oriented queues to the maximum
size of each of the plurality of source - oriented queues for a
credit - based flow control of data transfer .

