

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016373975 B2

(54) Title
Cage nut fastener and methods for tool-less installation of same

(51) International Patent Classification(s)
F16B 37/04 (2006.01) **F16B 41/00** (2006.01)
F16B 13/04 (2006.01)

(21) Application No: **2016373975** (22) Date of Filing: **2016.11.30**

(87) WIPO No: **WO17/105840**

(30) Priority Data

(31) Number **62/267,020** (32) Date **2015.12.14** (33) Country **US**

(43) Publication Date: **2017.06.22**
(44) Accepted Journal Date: **2021.05.20**

(71) Applicant(s)
Chatsworth Products, Inc.

(72) Inventor(s)
Davis, Jared Keith

(74) Agent / Attorney
Griffith Hack, Level 10 161 Collins St, MELBOURNE, VIC, 3000, AU

(56) Related Art
FR 1402979 A
US 2004/0181916 A1
US 2861618 A
US 3025897 A
US 2390752 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/105840 A1

(43) International Publication Date

22 June 2017 (22.06.2017)

WIPO | PCT

(51) International Patent Classification:

F16B 37/04 (2006.01) F16B 41/00 (2006.01)
F16B 13/04 (2006.01)

(74) Agents: WRIGHT, James D. et al.; Tillman Wright, PLLC, P.O. Box 49309, Charlotte, NC 28277 (US).

(21) International Application Number:

PCT/US2016/064135

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

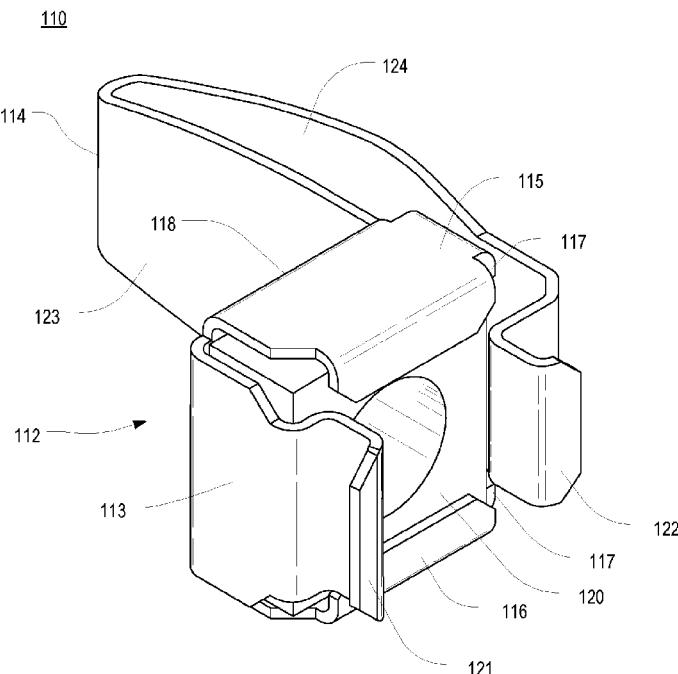
30 November 2016 (30.11.2016)

(25) Filing Language:

English

(26) Publication Language:

English


(30) Priority Data:

62/267,020 14 December 2015 (14.12.2015) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: CAGE NUT FASTENER AND METHODS FOR TOOL-LESS INSTALLATION OF SAME

(57) Abstract: A cage nut fastener, capable of installation against a frame member without the aid of tools, includes a spring cage and a nut retained within a space defined by the spring cage and prevented from rotation therein. The spring cage includes a back wall with a wall aperture therethrough, a cage arm extending in a forward direction from a side of the back wall, and a lever arm disposed at a side of the back wall that is opposite the cage arm. The nut includes a nut aperture therethrough that is generally aligned with the wall aperture of the back wall. The lever arm includes an extension portion that extends in a rearward direction behind the back wall of the spring cage.

FIG. 2A

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, **Published:**
GW, KM, ML, MR, NE, SN, TD, TG).

— *with international search report (Art. 21(3))*

CAGE NUT FASTENER AND METHODS FOR TOOL-LESS INSTALLATION OF SAME

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] For purposes of the United States, the present application is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. § 119(e) to, U.S. provisional patent application serial no. 62/267,020, filed December 14, 2015 and entitled, “CAGE NUT FASTENER AND METHODS FOR TOOL-LESS INSTALLATION OF SAME,” which ‘020 application is incorporated by reference herein in its entirety.

COPYRIGHT STATEMENT

[0002] All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in official governmental records but, otherwise, all other copyright rights whatsoever are reserved.

Technical Field

[0003] The present invention relates generally to fasteners used in connection with electronic equipment racks and cabinets, and, in particular, to cage nut fasteners capable of installation in electronic equipment racks and cabinets without the aid of tools.

Background

[0004] It is to be understood that, if any prior art is referred to herein, such reference does not constitute an admission that the prior art forms a part of the common general knowledge in the art, in Australia or any other country

[0005] A cage nut fastener generally includes a nut disposed within a spring cage. The spring cage helps to ensure that the nut remains in a set orientation during installation. FIG. 1A is an orthogonal view of a conventional cage nut fastener **10** illustrating the state of the art. As shown in FIG. 1A, the spring cage **12** of a conventional cage nut fastener generally includes a pair of cage arms **13,14** that, at least partially, wrap around the nut **20**. Each cage arm **13,14** includes an outwardly-extending tab **21,22** at a distal end thereof. The tabs **21,22**, which are sometimes characterized as “wings,” may be compressed toward one another so that the tabs can be inserted into an aperture (which usually, but not always, has a square shape) of corresponding size. Once positioned through the aperture and released, the

tabs 21,22 spring back to their original, uncompressed position and effectively lock the nut 20 in place behind the aperture. A conventional threaded machine screw 11 or the like may then be installed through the square opening and into the nut 20, as shown in FIG. 1B. Within the field of electronic equipment racks and cabinets, cage nut fasteners are often used in connection with mounting rails and, in particular, to secure electronic equipment and accessories to electronic equipment racks and cabinets.

[0006] Conventional cage nut fasteners, such as that described above in connection with FIGS. 1A and 1B, generally require the use of a separate tool (e.g., a flat head screwdriver or other flat-bladed tool) in order to snap the spring cage 12 into and out from the square opening. To attach a conventional cage nut fastener 10, the outwardly-extending tab 21 of the first cage arm 13 is positioned, by hand, through the aperture and against an edge thereof. From the other side of the aperture, the flat-bladed tool is then used as a lever to force or compress the second cage arm 14 inwardly so that the outwardly-extending tab 22 of the second cage arm 14 can be pulled through the aperture. Once the outwardly-extending tab 22 of the second cage arm 14 has been maneuvered fully through the aperture, the tool is disengaged and the second cage arm 14 is permitted to spring back to an uncompressed position. The outwardly-extending tabs 21,22 of the cage arms 13,14 push outwardly against the sides of the aperture and lock the cage nut fastener 10 against the mounting rail or other equipment component. The nut 20 embedded within the spring cage 12 is thus secured in a position to accommodate a threaded fastener or the like.

[0007] When electronic equipment is mounted in a rack or cabinet, there is often a need to install several cage nut fasteners at various locations within the rack or cabinet. Indeed, in the context of a computer server cabinet, hundreds of such fasteners may be required in order to facilitate installation of necessary equipment and accessories. Notably, when larger quantities of cage nut fasteners are required, the process of installing each fastener with a separate tool can become cumbersome and time-consuming. Furthermore, removal of such fasteners is equally tedious, imposing an equivalently high burden if equipment is being relocated or otherwise uninstalled.

[0008] Accordingly, in order to reduce assembly time as well as relocation costs, a need exists for a cage nut fastener that can be installed more efficiently in electronic equipment racks and cabinets.

SUMMARY

[0009] Some exemplary embodiments of the present disclosure may overcome one or more of the above disadvantages and other disadvantages not described above, but the present disclosure is not required to overcome any particular disadvantage described above, and some exemplary embodiments of the present disclosure may not overcome any of the disadvantages described above.

[0010] Broadly defined, the present disclosure according to one aspect includes a cage nut fastener capable of installation against a frame member without the aid of tools. The cage nut fastener includes a spring cage having at least one cage arm and at least one lever arm and further includes a nut retained within the spring cage by the at least one cage arm. The lever arm extends in a rearward direction away from the spring cage. Application of a force upon the lever arm manipulates the spring cage to a compressed state in order to facilitate clamping installation of the cage nut fastener against the frame member without the aid of tools.

[0011] In a feature of this aspect, the lever arm may include first and second aligned portions that, when squeezed together, maneuver a distal tab of the lever arm. In another feature of this aspect, at least one of the first and second aligned portions may be curved. In still another feature of this aspect, an outermost of the first and second aligned portions may be curved.

[0012] In other features of this aspect, the force may be an inward compression force; the at least one cage arm and the at least one lever arm may be disposed at opposite sides of the spring cage; and/or the at least one lever arm may include a pair of lever arms disposed at opposite sides of the spring cage.

[0013] In another feature of this aspect, the nut may be a floating nut. In another feature of this aspect, the nut may be fixed within the spring cage. In still another feature of this aspect, the nut may be integral with the spring cage.

[0014] In another feature of this aspect, the cage nut fastener may be made, at least in part, from a metal material. In another feature of this aspect, the cage nut fastener may be made, at least in part, from a plastic material. In still another feature of this aspect, the cage nut fastener may be made using an injection molding process.

[0015] In another feature of this aspect, the lever arm may be a separate component attachable to the spring cage.

[0016] Broadly defined, the present disclosure according to another aspect includes a cage nut fastener capable of installation against a frame member without the aid of tools. The cage nut fastener includes a nut, a cage for retaining the nut and a lever arm. The

lever arm includes an extension portion, extending in a rearward direction away from the nut, and a hooking portion, disposed in front of the nut. The extension portion and the hooking portion are disposed at opposite sides of the cage nut fastener. Application of a force upon the lever arm maneuvers the hooking portion to a compressed state in order to facilitate clamping installation of the cage nut fastener against the frame member without the aid of tools.

[0017] Broadly defined, the present disclosure according to another aspect includes a method of installing a cage nut fastener against a frame member without the aid of tools. The method includes: providing a cage nut fastener having a spring cage and a nut retained within the spring cage by at least one cage arm, wherein the spring cage includes at least one lever arm extending in a rearward direction away from the spring cage; and applying a force upon the lever arm to manipulate the spring cage to a compressed state in order to facilitate clamping installation of the cage nut fastener against the frame member without the aid of tools.

[0018] In a feature of this aspect, the lever arm may include first and second aligned portions. In another feature of this aspect, the method may further include squeezing the first and second aligned portions toward one another. In another feature of this aspect, at least one of the first and second aligned portions may be curved. In still another feature of this aspect, an outermost of the first and second aligned portions may be curved.

[0019] In another feature of this aspect, the method may further include: positioning a distal tab of the at least one cage arm against an edge of an aperture in the frame member; and while the force is being applied, rotating the cage nut fastener such that a distal tab of the at least one lever arm extends through the aperture. In another feature of this aspect, the method may further include releasing the force so that the spring cage returns to an uncompressed state, thereby clamping the cage nut fastener against the frame member.

[0020] In features of this aspect, the force may be an inward compression force; the at least one cage arm and the at least one lever arm may be disposed at opposite sides of the spring cage; and/or the at least one lever arm may include a pair of lever arms disposed at opposite sides of the spring cage.

[0021] Broadly defined, the present disclosure according to another aspect includes a cage nut fastener substantially as shown and described.

[0022] Broadly defined, the present disclosure according to another aspect includes a cage nut fastener capable of installation against a frame member without the aid of tools, substantially as shown and described.

[0023] Broadly defined, the present disclosure according to another aspect includes a method of installing a cage nut fastener against a frame member without the aid of tools, substantially as shown and described.

[0024] Broadly defined, the present disclosure according to another aspect includes cage nut fastener capable of installation against a frame member without the aid of tools. The cage nut fastener includes a spring cage and a nut retained within a space defined by the spring cage and prevented from rotation therein. The spring cage includes a back wall with a wall aperture therethrough, a cage arm extending in a forward direction from a side of the back wall, and a lever arm disposed at a side of the back wall that is opposite the cage arm. The nut includes a nut aperture therethrough that is generally aligned with the wall aperture of the back wall. The lever arm includes an extension portion that extends in a rearward direction behind the back wall of the spring cage. Application of a compression force upon the lever arm, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning of a distal end of each of the cage arm and the lever arm through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member. The cage arm can engage at least a side and a portion of a front of the nut.

[0025] In a feature of this aspect, the lever arm may include outer and inner aligned portions, the outer aligned portion being compressible toward the inner aligned portion. In another feature of this aspect, the outer aligned portion may be arc-shaped so that the outer aligned portion curves away from the inner aligned portion.

[0026] In other features of this aspect, each of the cage arm and the lever arm may include an outwardly-extending tab at the distal end thereof; and/or the cage nut fastener may further include one or more additional cage arms extending in a forward direction from one or more additional sides of the back wall.

[0027] In another feature of this aspect, the nut may be a floating nut.

[0028] In another feature of this aspect, the nut may be prevented from moving within the spring cage.

[0029] In other features of this aspect, the nut and the spring cage may each be part of a unitary body; the spring cage may be made, at least in part, from a metal material; and/or the spring cage may be made, at least in part, from a polymeric material.

[0030] Broadly defined, the present disclosure according to another aspect includes a cage nut fastener capable of installation against a frame member without the aid of tools. The cage nut fastener includes a spring cage a nut retained within a space defined by

the spring cage and prevented from rotation therein. The spring cage includes a back wall with a wall aperture therethrough, a cage arm extending in a forward direction from a side of the back wall, and a pair of lever arms disposed at opposite sides of the back wall. The nut includes a nut aperture therethrough that is generally aligned with the wall aperture of the back wall. Each lever arm includes an extension portion that extends in a rearward direction behind the back wall of the spring cage. Application of a compression force upon at least one of the pair of lever arms, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning of a distal end of each of the pair of lever arms through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member. The cage arm can engage at least a side and a portion of a front of the nut.

[0031] In a feature of this aspect, each lever arm may include outer and inner aligned portions. In another feature of this aspect, each outer aligned portion may be compressible toward the respective inner aligned portion. In another feature of this aspect, compression of either outer aligned portion toward the respective inner aligned portion may manipulate the spring cage to the compressed state. In another feature of this aspect, at least one of the outer aligned portions may be arc-shaped to curve away from the respective inner aligned portion.

[0032] In other features of this aspect, each of the pair of lever arms may include an outwardly-extending tab at the distal end thereof; and/or the cage nut fastener may further include one or more additional cage arms extending in a forward direction from one or more additional sides of the back wall.

[0033] In another feature of this aspect, the nut may be a floating nut.

[0034] In another feature of this aspect, the nut may be prevented from moving within the spring cage.

[0035] In other features of this aspect, the nut and the spring cage may each be part of a unitary body; the spring cage may be made, at least in part, from a metal material; and/or the spring cage may be made, at least in part, from a polymeric material.

[0036] Broadly defined, the present disclosure according to another aspect includes a cage nut fastener capable of installation against a frame member without the aid of tools. The cage nut fastener includes a spring cage and a nut retained within a space defined by the spring cage and prevented from rotation therein. The spring cage that includes a back wall with a wall aperture therethrough, a cage arm extending in a forward direction from a side of the back wall, and a lever arm. The nut includes a nut aperture therethrough that is

generally aligned with the wall aperture of the back wall. The lever arm includes an extension portion, arranged at a first side of the spring cage and extending in a rearward direction behind the back wall of the spring cage, and the lever arm further includes a hooking portion, passing behind the back wall from the first side of the spring cage to a second side of the spring cage, opposite the first side, and having a distal end that terminates in front of the nut. Application of a compression force upon the lever arm, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning each of a distal end of the cage arm and the distal end of the hooking portion of the lever arm through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member. The cage arm can engage at least a side and a portion of a front of the nut.

[0037] In a feature of this aspect, the hooking portion of the lever arm may include an outwardly-extending tab at the distal end thereof. In another feature of this aspect, the cage arm may include an outwardly-extending tab at the distal end thereof that extends in a direction opposite to the direction of the outwardly-extending tab of the hooking portion of the lever arm.

[0038] In other features of this aspect, the lever arm may include an aperture therethrough that is generally aligned with the nut aperture of the nut and the wall aperture of the back wall; the nut may be prevented from moving within the spring cage; the nut and the spring cage may each be part of a unitary body; the spring cage may be made, at least in part, from a metal material; and/or the spring cage may be made, at least in part, from a polymeric material.

[0039] Broadly defined, the present disclosure according to another aspect includes a method of installing a cage nut fastener against a frame member without the aid of tools. The method includes: providing a cage nut fastener having a spring cage and a nut prevented from rotation within the spring cage, the spring cage including a cage arm and a lever arm, the lever arm including at least a portion that extends in a rearward direction behind a back wall of the spring cage; positioning a distal end of the cage arm through an aperture of a frame member so that the distal end rests against a side of the aperture; applying a compression force upon the lever arm, without the aid of tools, to manipulate the spring cage to a compressed state; positioning a distal end of the lever arm through the aperture; and releasing the compression force so that the spring cage returns to an uncompressed state, with distal ends of each of the cage arm and the lever arm pushing against respective opposite sides of the aperture, thereby securing the spring cage and the nut against the frame member.

[0040] In a feature of this aspect, the cage arm and the lever arm may be disposed at opposite sides of the spring cage.

[0041] In another feature of this aspect, each of the cage arm and the lever arm may include an outwardly-extending tab at a distal end thereof. In another feature of this aspect, the outwardly-extending tab of the lever arm may be disposed at a side of the spring cage that is offset from the portion of the lever arm that extends behind the back wall thereof.

[0042] In another feature of this aspect, the lever arm may include outer and inner aligned portions. In another feature of this aspect, the outer aligned portion may be arc-shaped so that the outer aligned portion curves away from the inner aligned portion. In another feature of this aspect, applying a compression force upon the lever arm may include squeezing the outer aligned portion toward the inner aligned portion.

[0043] In another feature of this aspect, positioning the distal end of the lever arm through the aperture may include rotating the spring cage about an axis.

[0044] Broadly defined, the present disclosure according to another aspect includes a method of installing a cage nut fastener against a frame member without the aid of tools. The method includes: providing a cage nut fastener having a spring cage and a nut prevented from rotation within the spring cage, the spring cage including a pair of lever arms arranged at opposite sides thereof, each lever arm extending in a rearward direction behind a back wall of the spring cage; applying a compression force upon at least one of the pair of lever arms, without the aid of tools, to manipulate the spring cage to a compressed state; positioning a distal end of each of the pair of lever arms through an aperture of a frame member; and releasing the compression force so that the spring cage returns to an uncompressed state, with distal ends of each of the pair of lever arms pushing against respective opposite sides of the aperture, thereby securing the spring cage and the nut against the frame member.

[0045] In a feature of this aspect, positioning the distal end of each of the pair of the lever arms through the aperture may include positioning the distal end of a first of the pair of cage arms through the aperture before positioning the distal end of a second of the pair of cage arms through the aperture. In another feature of this aspect, the method may further include positioning the distal end of the first of the pair of lever arms to rest against a side of the aperture. In another feature of this aspect, positioning the distal end of the second of the pair of lever arms through the aperture may include rotating the spring cage about an axis.

[0046] In another feature of this aspect, applying a compression force upon at least one of the pair of lever arms may include applying a compression force upon both lever arms simultaneously.

[0047] In another feature of this aspect, each of the pair of lever arms may include outer and inner aligned portions. In another feature of this aspect, applying a compression force upon at least one of the pair of lever arms may include squeezing the outer aligned portion of at least one of the pair of lever arms toward the respective inner aligned portion. In another feature of this aspect, the outer aligned portion of at least one of the pair of lever arms may be arc-shaped to curve away from the respective inner aligned portion.

[0048] Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0049] Further features, embodiments, and advantages of the present disclosure will become apparent from the following detailed description with reference to the drawings, wherein:

FIG. 1A is an orthogonal view of a conventional cage nut fastener that includes a nut and a spring cage;

FIG. 1B is an orthogonal view of the cage nut fastener of FIG. 1A, shown together with a conventional machine screw;

FIGS. 2A and 2B are isometric front and rear views of a cage nut fastener in accordance with a preferred embodiment of the present disclosure;

FIG. 3 is an isometric view illustrating installation of the cage nut fastener of FIGS. 2A and 2B on a frame member;

FIG. 4 is an isometric view of the cage nut fastener and frame member of FIG. 3, shown after installation is complete;

FIG. 5 is an isometric view of the cage nut fastener of FIGS. 2A and 2B shown in stalled on the frame member of FIG. 3, together with three alternative cage nut fasteners, each in accordance with a preferred embodiment of the present disclosure, shown installed on the same frame member;

FIG. 6 is an isometric view of the first alternative cage nut fastener of FIG. 5;

FIG. 7 is an isometric view of the second alternative cage nut fastener of FIG. 5;

FIG. 8 is an isometric view of the third alternative cage nut fastener of FIG 5; and

FIG. 9 is an isometric view of a fourth alternative cage nut fastener in accordance with a preferred embodiment of the present disclosure.

DETAILED DESCRIPTION

[0050] As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present disclosure has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present disclosure. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present disclosure. As should be understood, any embodiment may incorporate only one or a plurality of the above-disclosed aspects of the disclosure and may further incorporate only one or a plurality of the above-disclosed features. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present disclosure.

[0051] Accordingly, while the present disclosure is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present disclosure, and is made merely for the purposes of providing a full and enabling disclosure of the present disclosure. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present disclosure, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present disclosure be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.

[0052] Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may

be carried out in various different sequences and orders while still falling within the scope of the present disclosure. Accordingly, it is intended that the scope of patent protection afforded the present disclosure is to be defined by the appended claims rather than the description set forth herein.

[0053] Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.

[0054] With regard solely to construction of any claim with respect to the United States, no claim element is to be interpreted under 35 U.S.C. 112(f) unless the explicit phrase “means for” or “step for” is actually used in such claim element, whereupon this statutory provision is intended to and should apply in the interpretation of such claim element. With regard to any method claim including a condition precedent step, such method requires the condition precedent to be met and the step to be performed at least once during performance of the claimed method.

[0055] Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”

[0056] When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers,” “a picnic basket having crackers without cheese,” and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”

[0057] Referring now to the drawings, in which like numerals represent like components throughout the several views, one or more preferred embodiments of the present

disclosure are next described. The following description of one or more preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses.

[0058] FIGS. 2A and 2B are isometric front and rear views of a cage nut fastener **110** in accordance with a preferred embodiment of the present disclosure. The cage nut fastener **110** of FIGS. 2A and 2B includes a nut **120** disposed within a spring cage **112**, which retains the nut **120** in a set orientation. The spring cage **112** includes a back wall **118** and a plurality of cage arms **113,115,116**, extending from the back wall **118**, that retain the nut **120** by wrapping around the sides and at least part of the front thereof. Though the embodiment of FIGS. 2A and 2B depicts three cage arms **113,115,116**, it is contemplated that a cage nut fastener within the scope of the present disclosure can accommodate more or fewer cage arms. Additional flanges **117**, extending from sides of one or more of the cage arms **113,115,116**, may also be provided to wrap around the sides of the nut **120** to provide additional retention. The back wall **118** of the spring cage **112** includes an aperture **119** therethrough that is aligned with the threaded opening in the nut **120** such that the nut **120** and the spring cage **112** are capable of accommodating a fastener **11** extending through both.

[0059] In a contemplated embodiment, the nut **120** is a floating nut that, although retained within the spring cage **112** and prevented from rotating, is not fixed to the spring cage **112** and is thus capable of at least slight movement within the cage **112**. In other contemplated embodiments, the nut **120** is clamped firmly by the cage arms (i.e., fixed), or is part of a unitary structure that includes the cage, and is thus prevented from movement within, or relative to, the spring cage.

[0060] In addition to the plurality of cage arms **113,115,116**, the spring cage **112** further includes a lever arm **114** disposed at a side thereof. Instead of simply cradling the nut **120** (like the cage arm of a conventional cage nut fastener, as in FIGS. 1A and 1B), the lever arm **114** first extends in a rearward direction from the back wall **118**, away from the nut **120**, and then doubles back upon itself to extend in a forward direction, past the side of the cage **112** and around to the front of the nut **120**. In this regard, the lever arm **114** includes inner and outer portions **123,124** that are generally aligned with one another, with the outer portion **124** being deflectable relative to the inner portion **123**. Additionally, in at least some contemplated embodiments, the outer portion **124** of the lever arm **114** is curved away from the inner portion **123** so as to provide additional space (i.e., a larger gap) between the portions **123,124**. As will be explained in greater detail below, the lever arm **114** helps to

facilitate installation of the cage nut fastener **110** on a frame member or other component without the aid of tools.

[0061] As shown in FIGS. 2A and 2B, the lever arm **114** includes an outwardly-extending tab **122** at a distal end thereof. The cage arm **113** that is disposed at a side of the spring cage **112** opposite to that of the lever arm **114** likewise includes an outwardly-extending tab **121**. Together, the outwardly-extending tabs **121,122** operate to facilitate securing of the cage nut fastener **110** to a mounting rail, frame member, or other equipment component.

[0062] FIG. 3 is an isometric view illustrating installation of the cage nut fastener **110** of FIGS. 2A and 2B on a frame member **40**, and FIG. 4 is an isometric view of the cage nut fastener **110** and frame member **40** of FIG. 3, shown after installation is complete. The frame member **40** depicted in FIG. 3 includes a plurality of mounting surfaces **42,43,44,45,46** arranged orthogonally relative to one another. One or more of the mounting surfaces **43,46** include apertures **32,34** sized to accommodate a cage nut fastener in accordance with one or more preferred embodiments of the present disclosure. Though the apertures **32,34** of the frame member **40** are generally square-shaped (with rounded corners), it is contemplated that apertures may have other shapes as well, including apertures with circular or rectangular shapes.

[0063] To fasten the cage nut fastener **110** to the frame member **40** without the aid of tools, a user can grasp and squeeze the lever arm **114** of the fastener **110** to apply a compression force thereon. As shown in FIG. 3, it is contemplated that a user can apply such a force by squeezing the lever arm **114** between the user's index finger **52** and thumb **54**. Application of an inward compression force upon the lever arm **114** (and, particularly, upon the outer portion **124** of the lever arm **114**) compresses the outer portion **124** toward the inner portion **123** and, effectively, manipulates the spring cage **112** to a compressed state. With the outwardly-extending tab **121** of the cage arm **113** seated against an edge of a selected aperture **32a**, the cage nut fastener **110** (in the compressed state) can be rotated around an axis **47** such that the outwardly-extending tab **122** of the lever arm **114** is also positioned through the aperture **32a**. With both tabs **121,122** positioned through the selected aperture **32a** of the frame member **40**, the inward compression force against the lever arm **114** can be released, thereby permitting the spring cage **112** to return to an uncompressed state such that the tabs **121,122** push outwardly against the sides of the aperture **32a**. In this manner, the cage nut fastener **110** becomes clamped or secured against the frame member **40** (as can be seen in FIG. 4).

[0064] The lever arm **114** provides the user with a mechanical advantage during the installation process. In particular, the lever arm **114** provides a user with enhanced leverage in manipulating the spring cage **112**, by hand, in such a way that the tabs **121,122** may be inserted into the selected aperture **32a** of the frame member **40**, thereby eliminating the need for tools during the installation process. It is further contemplated that torque applied to the cage nut fastener **110** (such as by rotating the cage nut fastener **110** into the selected aperture **32a**) further simplifies the installation process—particularly when torque is used in combination with a compression force applied to the lever arm **114**.

[0065] FIG. 5 is an isometric view of the cage nut fastener **110** of FIGS. 2A and 2B installed on the frame member **40** of FIG. 3, together with three alternative cage nut fasteners **210,310,410**, each in accordance with a preferred embodiment of the present disclosure, and shown installed on the same frame member **40**. As shown in FIG. 5, a single frame member **40** is capable of accommodating a plurality of cage nut fasteners **110,210,310,410**, which can be installed and/or arranged in any configuration desired by the user, including installation on different mounting surfaces **43,46** of the same frame member **40**. (It will be appreciated that the cage nut fastener **110** of FIG. 4 is shown installed in a different location on the frame member **40** in FIG. 5.)

[0066] FIG. 6 is an isometric view of the first alternative cage nut fastener **210** of FIG. 5. The cage nut fastener **210** of FIG. 6 is somewhat similar in operation to the cage nut fastener **110** discussed above in connection with FIGS. 2-4. The cage nut fastener **210** of FIGS. 2A and 2B includes a nut **220** disposed within a spring cage **212**, which retains the nut **220** in a set orientation. The spring cage **212** includes a back wall **218** and one or more cage arms **213** extending from the back wall **218** that retain the nut **120** by wrapping around the sides and at least a portion of the front thereof. Additional flanges **217**, extending from the back wall **218** or from sides of the one or more cage arms **213**, may also be provided around the sides of the nut **120** to provide additional retention. The one or more cage arms **213** may each have an outwardly-extending tab **221** at a distal end thereof. The back wall **218** of the spring cage **212** includes an aperture (not illustrated) therethrough that is aligned with the threaded opening in the nut **220** such that the nut **220** and the spring cage **212** are capable of accommodating a fastener extending through both.

[0067] In addition to the one or more cage arms **213**, the spring cage **212** further includes a lever arm **214** disposed at a side thereof that provides a mechanical advantage to facilitate installation of the fastener without the aid of tools. The lever arm **214** first extends in a rearward direction from the back wall **218**, away from the nut **220**, and then doubles back

upon itself to extend in a forward direction toward the back wall **218**. Unlike the cage nut fastener **110** of FIGS. 2-4, the lever arm **214** then extends from one side of the spring cage **212** to the other, behind the back wall **218** thereof, and then around the opposite side of the nut **220**, before terminating in an outwardly-extending tab **222** at a distal end. In this regard, the portion of the lever arm **214** that extends away from the nut **220** is disposed at the same side of the spring cage **212** as at least one of the one or more cage arms **213** (i.e., at a fixed end of the spring cage **212**), which is also the side of the spring cage **212** that is opposite of, or offset from, the outwardly-extending tab **222**. This configuration of the lever arm **214** results in the outwardly-extending tabs **221,222** of the spring cage **212** extending in opposite directions from one another (as depicted in FIG. 6).

[0068] Furthermore, because the lever arm **214** extends rearwardly behind the back wall **218** of the spring cage **212** and passes behind it, the lever arm **214** includes an aperture **225** that is aligned with the aperture through the back wall **218** of the spring cage **212**. In this regard, the lever arm **214** (and, in particular, the portion of the lever arm **214** that passes behind the back wall **218**) is likewise capable of accommodating a fastener extending through the nut **220** and the back wall **218** of the spring cage **212**. Additionally, to avoid interference with such a fastener, the lever arm **214** can include a curved surface **227** along the rearwardly-extending portion thereof, adjacent to where a fastener would pass through the aperture **225**.

[0069] The cage nut fastener **210** of FIG. 6 can be installed against a frame member **40** in a manner similar to that of the cage nut fastener **110** of FIGS. 2-4, without the aid of tools. With reference to FIGS. 5 and 6, the outwardly-extending tab **221** of the fixed end of the spring cage **212** can be seated against an edge of a selected aperture **32b** of the frame member **40**, and the spring cage **212** can be compressed by application of an inward compression force against the lever arm **214**. With the spring cage **212** in a compressed state, the cage nut fastener **210** can be rotated so that the outwardly-extending tab **222** of the lever arm **214** is also positioned through the aperture **32b**. With both tabs **221,222** positioned through the selected aperture **32b** of the frame member **40**, the inward compression force against the lever arm **214** can be released, thereby permitting the spring cage **212** to return to an uncompressed state such that the tabs **221,222** push outwardly against the sides of the aperture **32b**. In this manner, the cage nut fastener **210** becomes clamped or secured against the frame member **40** (as can be seen in FIG. 5).

[0070] As with the cage nut fastener **110** discussed above in connection with FIGS. 2-4, the lever arm **214** of the cage nut fastener **210** provides the user with a mechanical

advantage during the installation process. In particular, the lever arm **214** provides a user with enhanced leverage in manipulating the spring cage **212**, by hand, in such a way that the tabs **221,222** may be inserted into the selected aperture **32b** of the frame member **40**, thereby eliminating the need for tools during the installation process. It is further contemplated that torque applied to the cage nut fastener **210** (such as by rotating the cage nut fastener **210** into the selected aperture **32b**) further simplifies the installation process—particularly when torque is used in combination with a compression force applied to the lever arm **214**.

[0071] FIG. 7 is an isometric view of the second alternative cage nut fastener **310** of FIG. 5. The cage nut fastener **310** of FIG. 7 is somewhat similar in form and in operation to the cage nut fastener **110** discussed above in connection with FIGS. 2-4, but with a pair of lever arms **313,314** (instead of a single lever arm) disposed at opposite sides of a spring cage **312**. The cage nut fastener **310** of FIG. 7 includes a nut **320** disposed within the spring cage **312**, which retains the nut **320** in a set orientation. The spring cage **312** includes a back wall **318** and a plurality of cage arms **315,316**, extending from the back wall **318**, that retain the nut **320** by wrapping around the sides and at least part of the front thereof. Though the embodiment of FIG. 7 depicts two cage arms **315,316**, it is contemplated that a cage nut fastener within the scope of the present disclosure can accommodate more or fewer cage arms. Additional flanges **317**, extending from sides of one or more of the cage arms **315,316**, may also be provided to wrap around the sides of the nut **320** to provide additional retention. The back wall **318** of the spring cage **312** includes an aperture (not illustrated) therethrough that is aligned with the threaded opening in the nut **320** such that the nut **320** and the spring cage **312** are capable of accommodating a fastener extending through both.

[0072] In a contemplated embodiment, the nut **320** is a floating nut that, although retained within the spring cage **312** and prevented from rotating, is not fixed to the spring cage **312** and is thus capable of at least slight movement within the cage **312**. In other contemplated embodiments, the nut **320** is clamped firmly by the cage arms (i.e., fixed), or is part of a unitary structure that includes the cage, and is thus prevented from movement within, or relative to, the spring cage.

[0073] Each lever arm **313,314** has an inner portion **333,335** fixed to, and extending in a rearward direction from, the back wall **318** of the spring cage **312**, and an outer portion **334,336** that doubles back on the respective inner portion **333,335** and extends around a respective side of the nut **320** to a front thereof. In this regard, the inner and outer portions of each lever arm **313,314** are generally aligned with one another, with each outer portion **334,336** being deflectable relative to the respective inner portion **333,335**.

Additionally, in at least some contemplated embodiments, the outer portion **334,336** of each lever arm **313,314** is curved away from the respective inner portion **333,335** so as to provide additional space (i.e., a larger gap) between the portions. Each lever arm **313,314** further includes an outwardly-extending tab **321,322** at a distal end thereof. The outwardly-extending tabs **321,322** extend in opposite directions from one another and, together, operate to facilitate securement of the cage nut fastener **310** to a mounting rail, frame member, or other equipment component without the aid of tools.

[0074] The cage nut fastener **310** of FIG. 7 can be installed against a frame member **40** in a manner similar to that of the cage nut fastener **110** of FIGS. 2-4, without the aid of tools. It is contemplated that a user can apply an inward compression force upon the lever arms **313,314** (and, particularly, upon the outer portions **334,336** of the lever arms **313,314**). Application of an inward compression force upon the lever arms **313,314** compresses the outer portions **334,336** toward the respective inner portions **333,335** and, effectively, manipulates the spring cage **312** to a compressed state. In this compressed state, and with reference to FIGS. 5 and 7, the outwardly-extending tabs **321,322** of the lever arms **313,314** can be positioned through a selected aperture **32c** of the frame member **40**. Then, the inward compression force against the lever arms **313,314** can be released, thereby permitting the spring cage **312** to return to an uncompressed state such that the tabs **321,322** push outwardly against the sides of the aperture **32c**. In this manner, the cage nut fastener **310** becomes clamped or secured against the frame member **40** (as can be seen in FIG. 5).

[0075] In another contemplated method of installation, the cage nut fastener **310** (in the compressed state) can be rotated into the clamped position against the frame member **40**. In accordance with this contemplated method, one of the two outwardly-extending tabs **321,322** is seated against an edge of a selected aperture **32c**, and the cage nut fastener **310** is then rotated around an axis so that the other of the two outwardly-extending tab is also positioned through the aperture **32c**. With both tabs **321,322** positioned through the selected aperture **32c** of the frame member **40**, the inward compression force against the lever arms **313,314** can be released, thereby permitting the spring cage **312** to return to an uncompressed state such that the tabs **321,322** push outwardly against the sides of the aperture **32c**. In this manner, the cage nut fastener **310** thereby becomes effectively clamped or secured against the frame member **40** (as can be seen in FIG. 5).

[0076] As with the cage nut fastener **110** discussed above in connection with FIGS. 2-4, the lever arms **313,314** of the cage nut fastener **310** provide the user with a mechanical advantage during the installation process. In particular, the lever arms **313,314**

provide a user with enhanced leverage in manipulating the spring cage 312, by hand, in such a way that the tabs 321,322 may be inserted into the selected aperture 32c of the frame member 40, thereby eliminating the need for tools during the installation process. It is further contemplated that torque applied to the cage nut fastener 310 (such as by rotating the cage nut fastener 310 into the selected aperture 32c) further simplifies the installation process—particularly when torque is used in combination with a compression force applied to the lever arms 313,314.

[0077] FIG. 8 is an isometric view of the third alternative cage nut fastener 410 of FIG 5; and FIG. 9 is an isometric view of a fourth alternative cage nut fastener 510 in accordance with a preferred embodiment of the present disclosure. The cage nut fasteners 410,510 of FIGS. 8 and 9 are somewhat similar in form and in operation to the cage nut fastener 110 discussed above in connection with FIGS. 2-4, but with modified lever arms 414,514 that may provide an enhanced mechanical advantage during the installation process. In particular, the lever arm 414 of the cage nut fastener 410 shown in FIG. 8 is longer than that of the cage nut fastener of FIGS. 2-4, and the lever arm 514 of the cage nut fastener 510 of FIG. 9 has an outer portion 524 with even greater curvature than that of the cage nut fastener 110 of FIGS. 2-4. Increased length and/or enhanced curvature for the lever arm may assist, for example, in enabling a user to grasp a lever arm and/or apply greater compressive force to the lever arm.

[0078] It is contemplated that a cage nut fastener in accordance with one or more preferred embodiments of the present disclosure can be manufactured from any of a wide range of different materials. In one contemplated embodiment, the cage nut fastener, or at least portions thereof, is made from a sheet metal. In another contemplated embodiment, the cage nut fastener, or at least portions thereof, is made from a polymeric material. Furthermore, it is contemplated that a cage nut fastener in accordance with one or more preferred embodiments of the present disclosure can be made via an injection molding process.

[0079] Though the foregoing discussion and the accompanying drawings discuss installation of one or more cage nut fasteners to a conventional frame member, it is contemplated that a cage nut fastener in accordance with one or more preferred embodiments of the present disclosure can be installed on any of a wide range of different structures, including panels, rails, equipment, and the like.

[0080] It is contemplated that the parameters of the cage nut fastener can vary while remaining within the scope of the present disclosure. For example, it is contemplated

that the size, shape and/or length of the lever arm can be varied across different embodiments. Additionally, it is contemplated that the size and/or shape of the nut and the cage for retaining the nut can vary to accommodate different types of threaded fasteners. It is also contemplated that the cage and/or the lever arm can be made from multiple parts that are assembled together to form a functioning cage nut fastener in accordance with one or more preferred embodiments of the present disclosure. Still further, it is contemplated that multiple cage nut fasteners in accordance with one or more preferred embodiments of the present disclosure can be joined together, either permanently or with the ability to be separated. In this latter respect, a multiple cage nut fastener structure can include two or more cage nuts joined together in a single assembly that can be installed against a structure having apertures corresponding with each cage nut.

[0081] Based on the foregoing information, it will be readily understood by those persons skilled in the art that the present disclosure is susceptible of broad utility and application. Many embodiments and adaptations of the present disclosure other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present disclosure and the foregoing descriptions thereof, without departing from the substance or scope of the present disclosure.

[0082] Accordingly, while the present disclosure has been described herein in detail in relation to one or more preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present disclosure and is made merely for the purpose of providing a full and enabling disclosure of the disclosure. The foregoing disclosure is not intended to be construed to limit the present disclosure or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements; the present disclosure being limited only by the claims appended hereto and the equivalents thereof.

[0083] Any discussion of the background art throughout this specification should in no way be considered as an admission that such background art is prior art, nor that such background art is widely known or forms part of the common general knowledge in the field in Australia or worldwide.

[0084] In the claims which follow and in the preceding description, except where the context requires otherwise due to express language or necessary implication, the word “comprise” and variations such as “comprises” or “comprising” are used in an inclusive

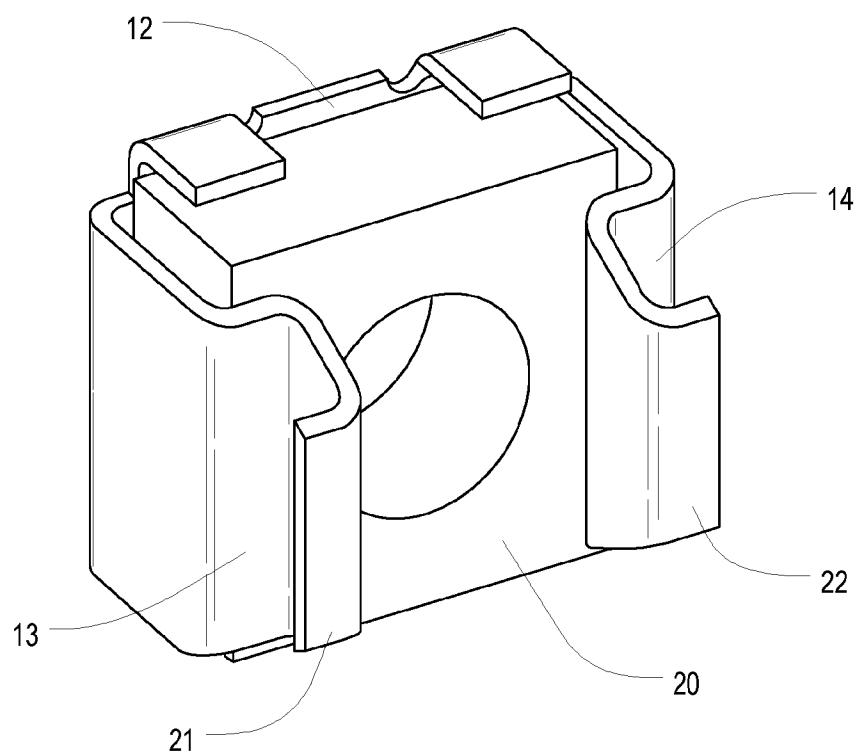
sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features of the disclosure or its embodiments as disclosed herein.

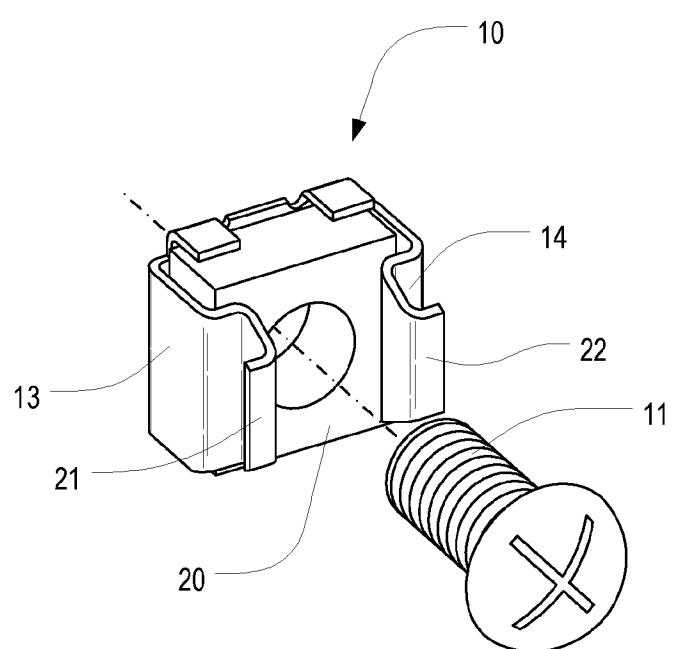
[0085] In the claims which follow and in the preceding description of the disclosure, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the disclosure.

CLAIMS

1. A cage nut fastener capable of installation against a frame member without the aid of tools, the cage nut fastener comprising:
 - a spring cage that includes:
 - a back wall with a wall aperture therethrough;
 - a cage arm extending in a forward direction from a side of the back wall; and
 - a lever arm disposed at a side of the back wall that is opposite the cage arm; and
 - a nut retained within a space defined by the spring cage, and prevented from rotation therein, the nut including a nut aperture therethrough that is generally aligned with the wall aperture of the back wall;
 - wherein the lever arm includes an extension portion that extends in a rearward direction behind the back wall of the spring cage;
 - wherein application of a compression force upon the lever arm, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning of a distal end of each of the cage arm and the lever arm through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member; and
 - wherein the cage arm engages at least a side and a portion of a front of the nut
2. The cage nut fastener of Claim 1, wherein the lever arm includes outer and inner aligned portions, the outer aligned portion being compressible toward the inner aligned portion.
3. The cage nut fastener of Claim 2, wherein the outer aligned portion is arc-shaped so that the outer aligned portion curves away from the inner aligned portion.
4. The cage nut fastener of any one of Claims 1-3, wherein each of the cage arm and the lever arm includes an outwardly-extending tab at the distal end thereof.

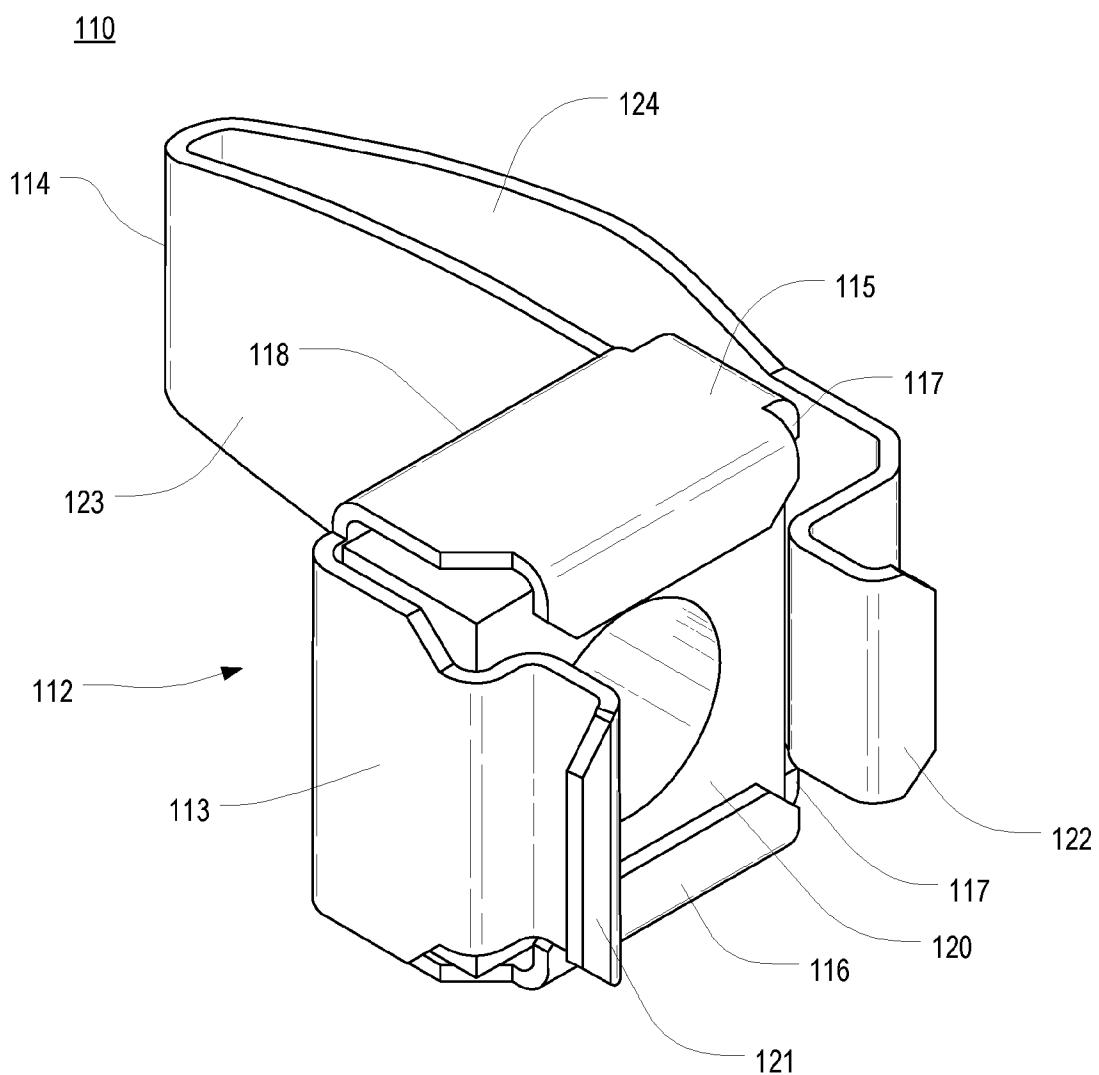
5. The cage nut fastener of any one of Claims 1-4, further comprising one or more additional cage arms extending in a forward direction from one or more additional sides of the back wall.
6. The cage nut fastener of any one of Claims 1-5, wherein the nut is a floating nut.
7. The cage nut fastener of any one of Claims 1-5, wherein the nut is prevented from moving within the spring cage.
8. A cage nut fastener capable of installation against a frame member without the aid of tools, the cage nut fastener comprising:
 - a spring cage that includes:
 - a back wall with a wall aperture therethrough;
 - a cage arm extending in a forward direction from a side of the back wall; and
 - a pair of lever arms disposed at opposite sides of the back wall; and
 - a nut retained within a space defined by the spring cage, and prevented from rotation therein, the nut including a nut aperture therethrough that is generally aligned with the wall aperture of the back wall;
 - wherein each lever arm includes an extension portion that extends in a rearward direction behind the back wall of the spring cage;
 - wherein application of a compression force upon at least one of the pair of lever arms, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning of a distal end of each of the pair of lever arms through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member; and
 - wherein the cage arm engages at least a side and a portion of a front of the nut.
9. The cage nut fastener of Claim 8, wherein each lever arm includes outer and inner aligned portions.
10. The cage nut fastener of Claim 9, wherein each outer aligned portion is compressible toward the respective inner aligned portion.


11. The cage nut fastener of Claim 9 or 10, wherein compression of either outer aligned portion toward the respective inner aligned portion manipulates the spring cage to the compressed state.
12. The cage nut fastener of any one of Claims 9-11, wherein at least one of the outer aligned portions is arc-shaped to curve away from the respective inner aligned portion.
13. The cage nut fastener of any one of Claims 8-12, wherein each of the pair of lever arms includes an outwardly-extending tab at the distal end thereof.
14. The cage nut fastener of any one of Claims 8-13, further comprising one or more additional cage arms extending in a forward direction from one or more additional sides of the back wall.
15. The cage nut fastener of any one of Claims 8-14, wherein the nut is a floating nut.
16. The cage nut fastener of any one of Claims 8-14, wherein the nut is prevented from moving within the spring cage.
17. A cage nut fastener capable of installation against a frame member without the aid of tools, the cage nut fastener comprising:
 - a spring cage that includes:
 - a back wall with a wall aperture therethrough;
 - a cage arm extending in a forward direction from a side of the back wall; and
 - a lever arm; and
 - a nut retained within a space defined by the spring cage, and prevented from rotation therein, the nut including a nut aperture therethrough that is generally aligned with the wall aperture of the back wall;
 - wherein the lever arm includes an extension portion, arranged at a first side of the spring cage and extending in a rearward direction behind the back wall of the spring cage, and a hooking portion, passing behind the back wall from the first side of

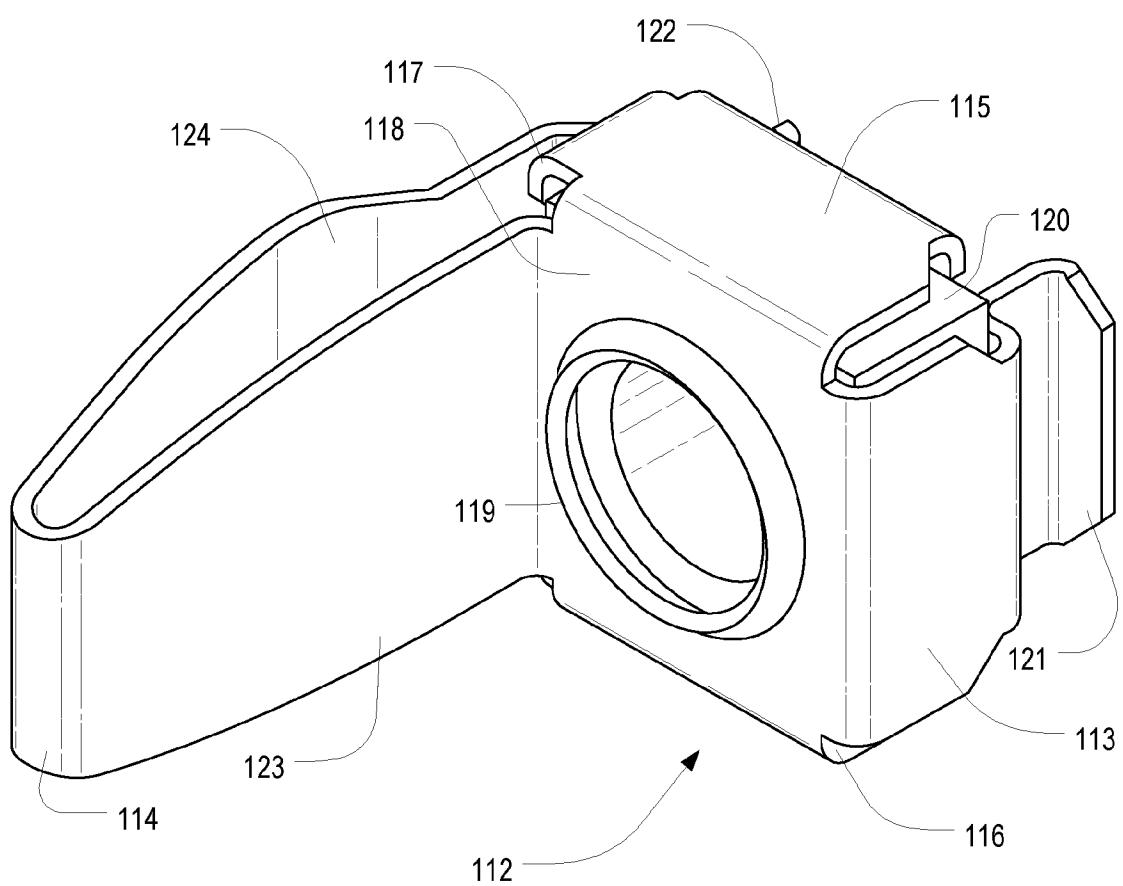

the spring cage to a second side of the spring cage, opposite the first side, and having a distal end that terminates in front of the nut;

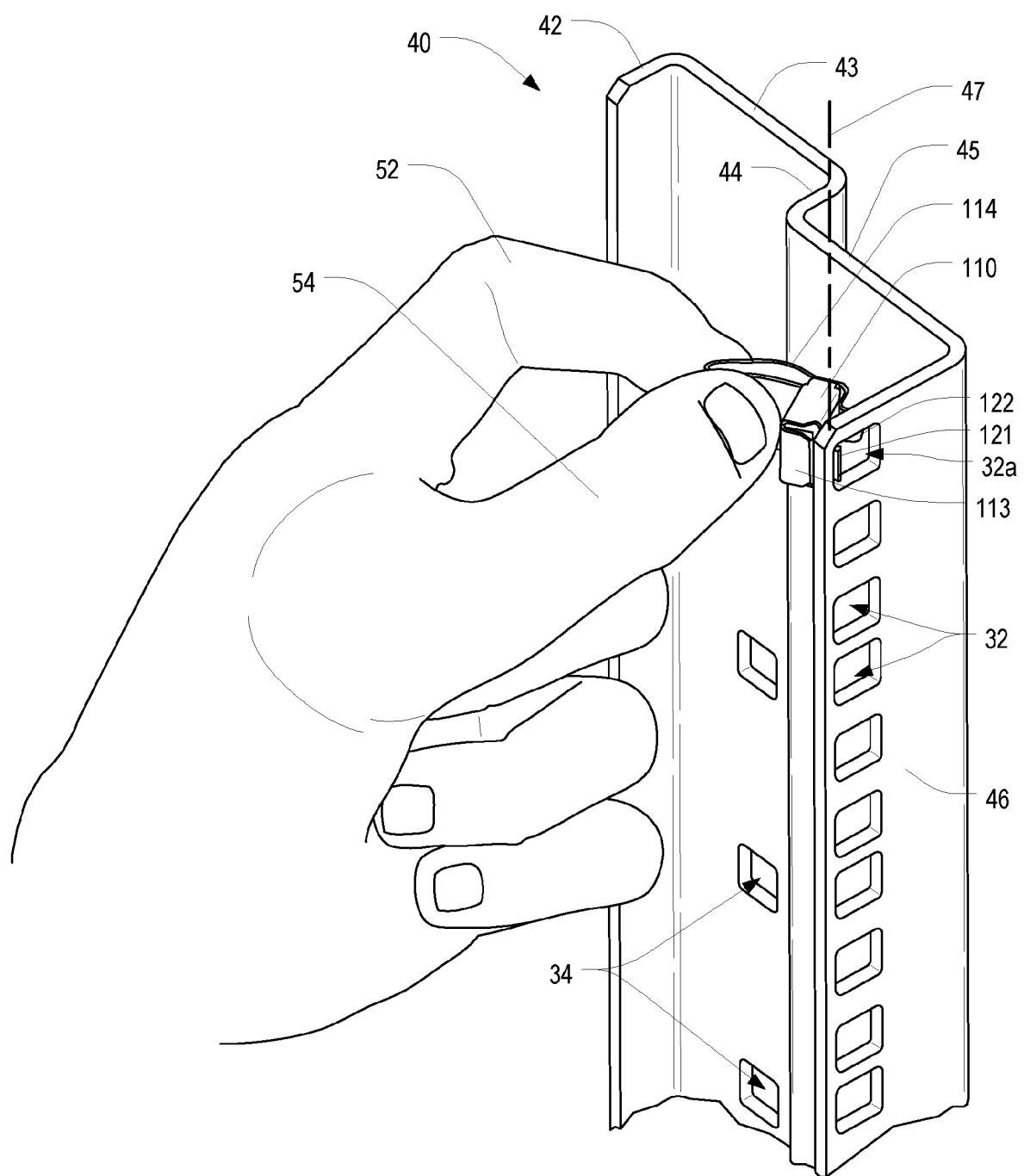
wherein application of a compression force upon the lever arm, without the aid of tools, manipulates the spring cage to a compressed state that facilitates positioning each of a distal end of the cage arm and the distal end of the hooking portion of the lever arm through an aperture of a frame member so that, upon release of the compression force, the spring cage and the nut are secured against the frame member; And

wherein the cage arm engages at least a side and a portion of a front of the nut.


18. The cage nut fastener of Claim 17, wherein the hooking portion of the lever arm includes an outwardly-extending tab at the distal end thereof.
19. The cage nut fastener of Claim 18, wherein the cage arm includes an outwardly-extending tab at the distal end thereof that extends in a direction opposite to the direction of the outwardly-extending tab of the hooking portion of the lever arm.
20. The cage nut fastener of any one of Claims 17-19, wherein the lever arm includes an aperture therethrough that is generally aligned with the nut aperture of the nut and the wall aperture of the back wall.

10**FIG. 1A***prior art*




FIG. 1B

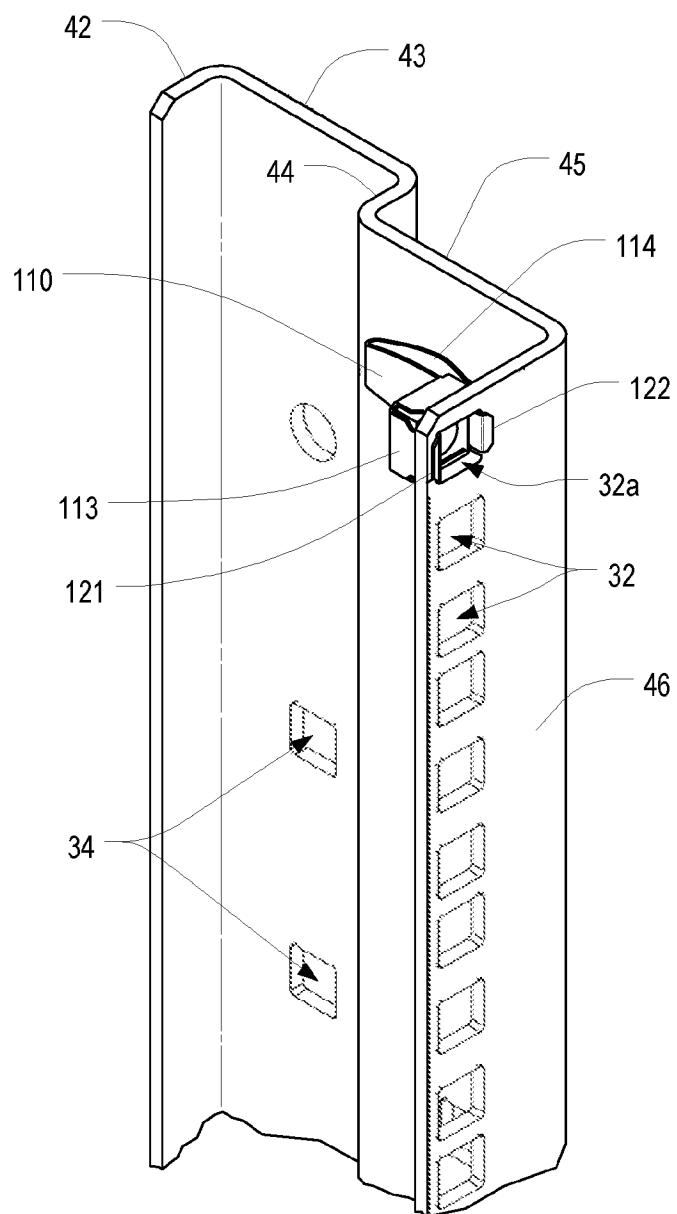

prior art

FIG. 2A

110**FIG. 2B**

FIG. 3

40**FIG. 4**

40

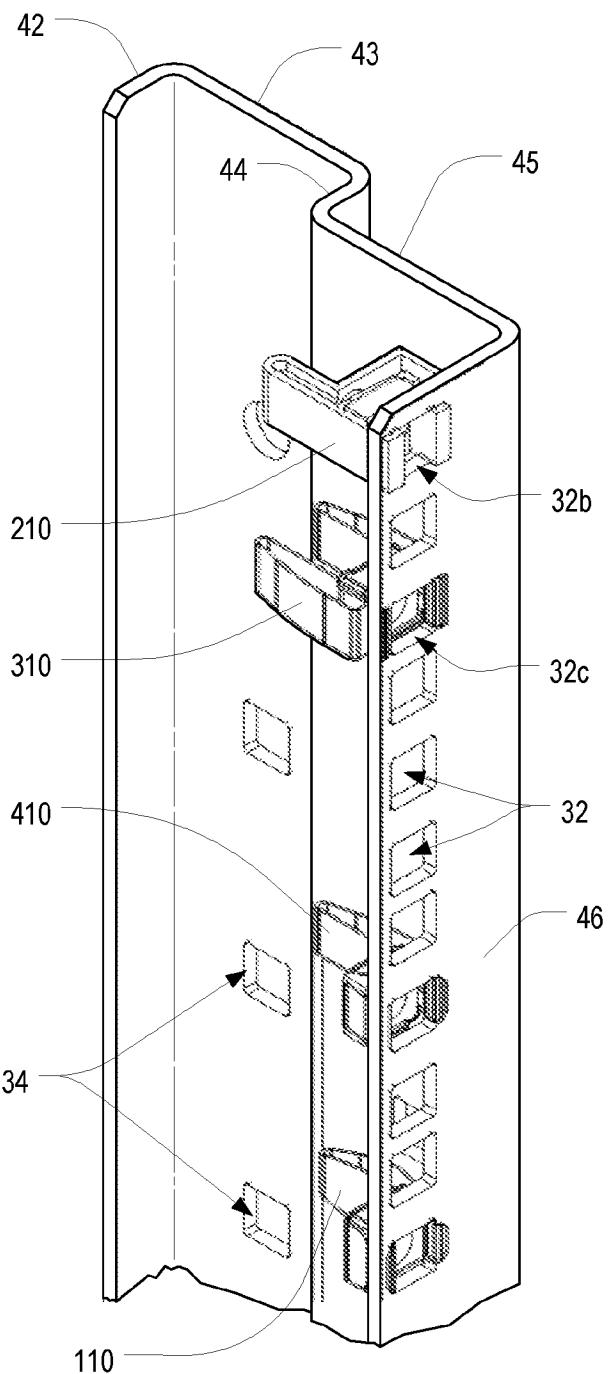


FIG. 5

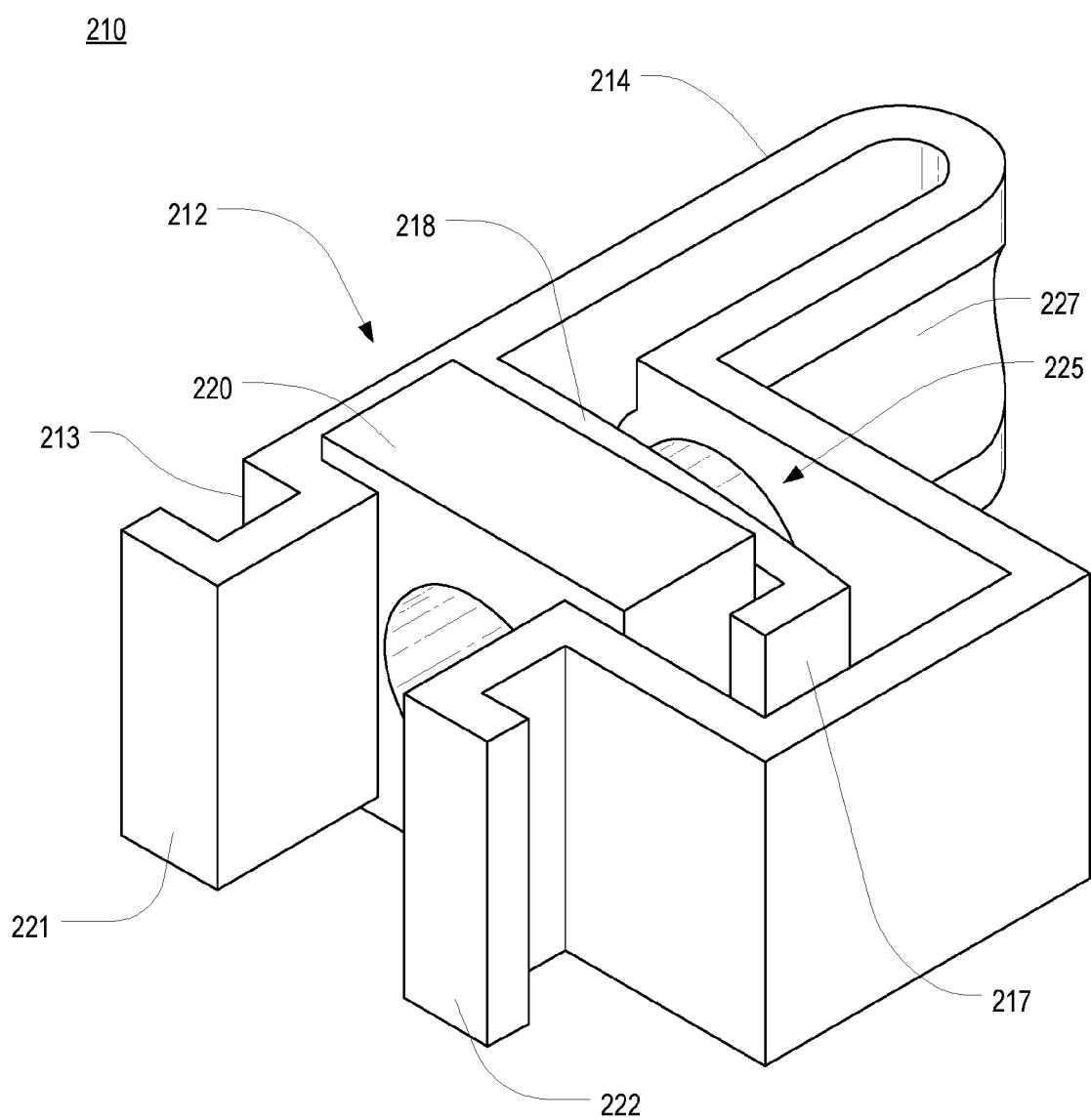


FIG. 6

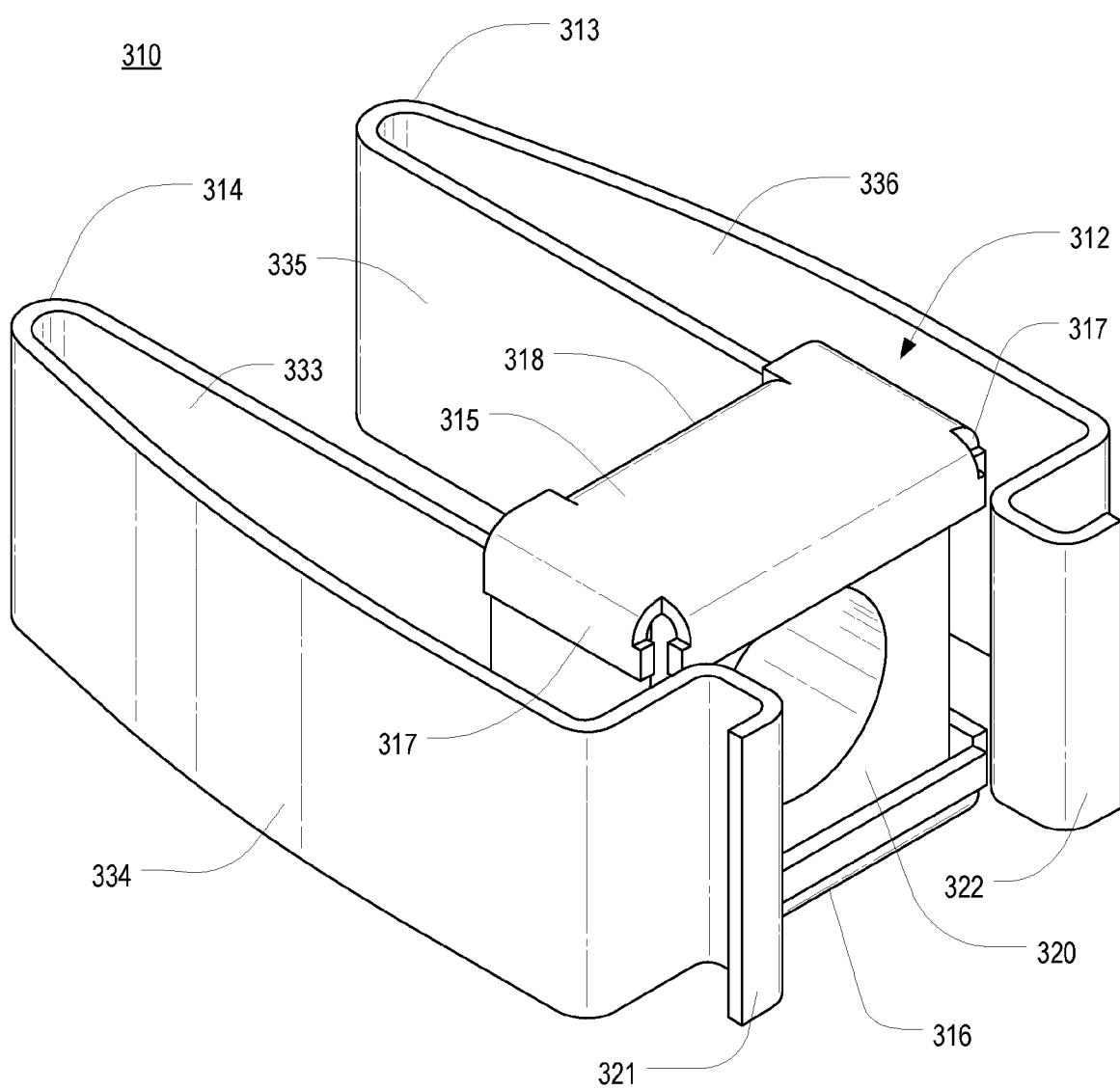
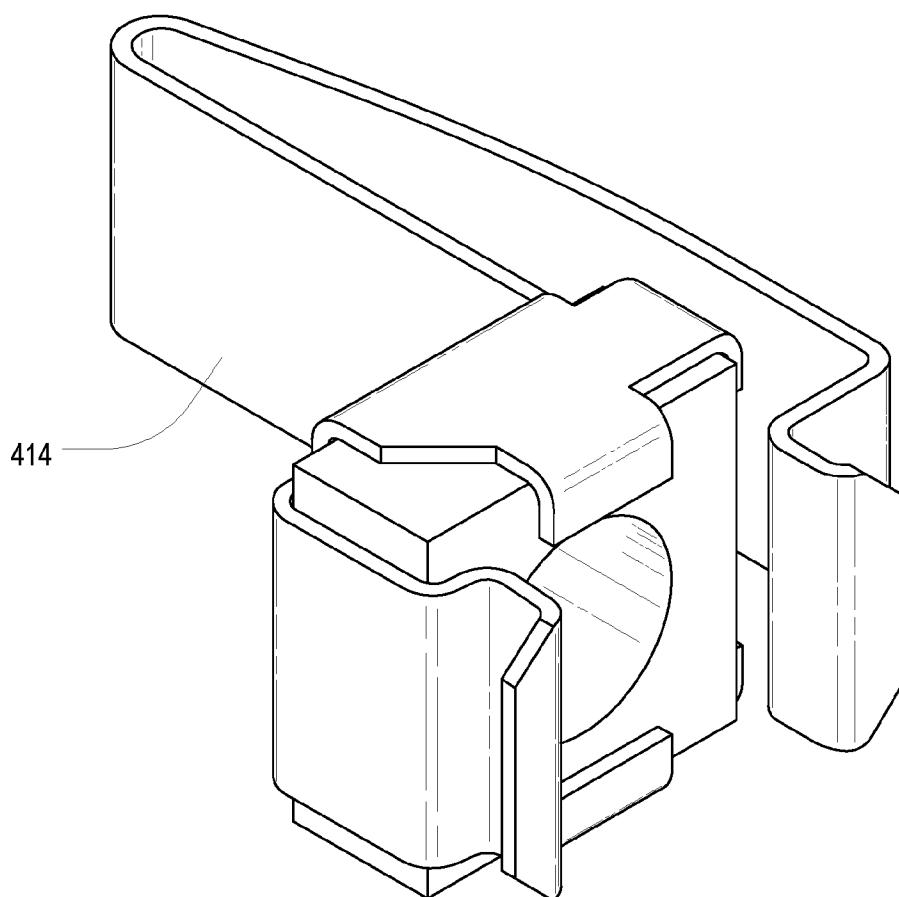
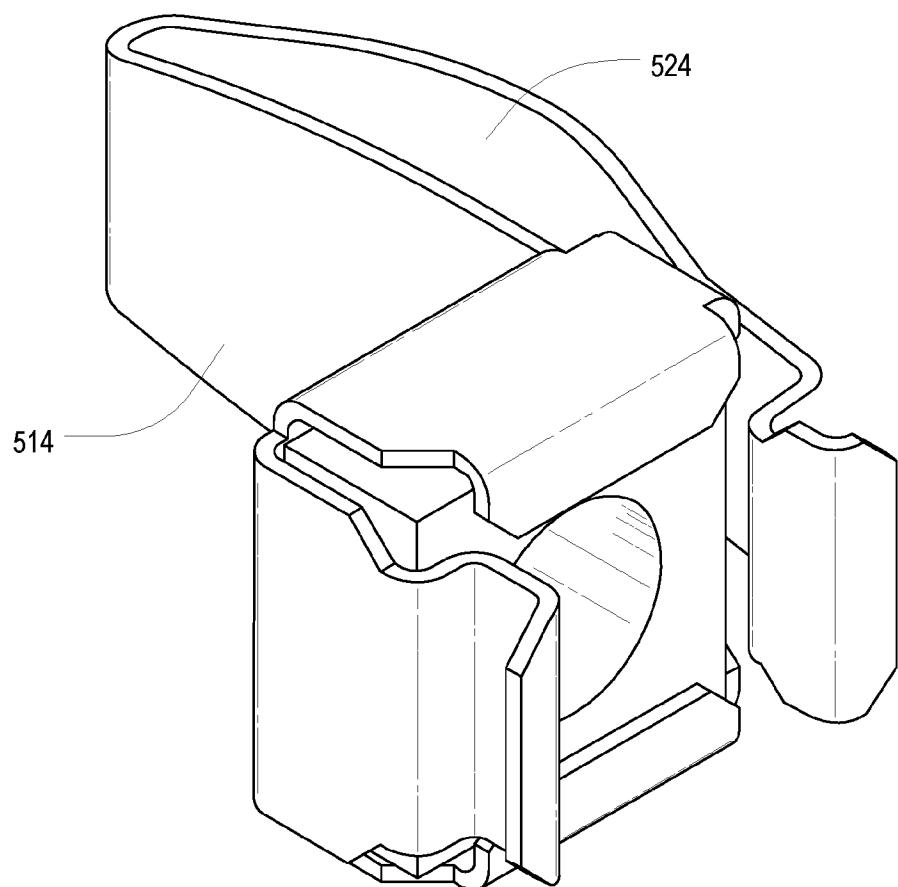




FIG. 7

410***FIG. 8***

510

FIG. 9