A service station vapour management system

International Patent Classification(s)
B67D 005/378 B67D 005/06

Application No: 199947472 Application Date: 1999.09.09

Priority Data

Priority Data

Publication Date: 2000.03.16
Publication Journal Date: 2000.03.16
Accepted Journal Date: 2002.10.17

Applicant(s)
Marconi Commerce Systems Inc.

Inventor(s)
Seifollah Nanaji; Hal C. Hartsell Jr.

Agent/Attorney
WATERMARK PATENT and TRADEMARK ATTORNEYS, Locked Bag 5, Hawthorn VIC 3122

Related Art
US 5592979
US 5484000
US 5507325
The following statement is a full description of this invention, including the best method of performing it known to us: -
Abstract

A service station vapour management system including a plurality of vapour handling subsystems and a controller in electronic communication with the vapour handling subsystems for monitoring subsystem operation, determining an overall service station V/L ratio and controlling subsystem operation to maintain the V/L ratio or total site hydrocarbon emissions within predetermined limits.
A SERVICE STATION VAPOUR MANAGEMENT SYSTEM

The present invention relates to a service station vapour recovery management system and more particularly to a controller configured to receive information from various devices in the fuelling environment and make logical decisions based on the received information to maximize the vapour recovery efficiency of the service station.

Distributed, assist vapour recovery systems, such as Gilbarco, Inc.'s Vapour Vac® system are used to recover hydrocarbon vapours that normally escape to the atmosphere from vehicle tanks during refuelling and return these vapours to the underground storage tank. Most of these assist vapour recovery systems have a vapour recovery rate that is a function of the fuel delivery rate of the dispenser with which they are associated.

The recovery efficiency will vary considerably with variations in vehicle fuel neck designs. The objective in obtaining regulatory certification is to tune an assist systems recovery algorithm to achieve 95% efficiency when measured over a number of vehicles in the certification test. Another major variable that will have a dramatic effect on overall site efficiency is vehicles equipped with onboard vapour recovery systems (ORVR). When fuelling an ORVR equipped vehicle, most vapours will be retained in the vehicle and the assist vapour recovery system, if unmodified, will pump air into the service station fuel storage tank. The net effect will be to increase storage tank pressure causing so-called "fugitive" emissions. A number of systems have been developed to deal with these emissions.
With the implementation of digital electronic control into vapour recovery system designs, it is possible to establish the best vapour recovery vapour/liquid (V/L) ratio or curve for each model vehicle tank and filler neck design, among other variables, and store them in memory in the vapour recovery system. It is also possible to add a smart card or transponder-type device to the vehicle to communicate with the dispenser and provide the dispenser with information necessary to select an appropriate vapour recovery algorithm for the vehicle. For further information regarding specific control of vapour recovery based on ORVR detection, see U.S. Patent No. 5,782,275.

In the prior art systems each dispenser operates independently of each other without accounting for its effect on the other, each being concerned with achieving a vapour recovery efficiency level for that particular dispenser.

In accordance with a first aspect of the invention there is provided a service station vapour management system including:

- a) a plurality of vapour handling subsystems; and
- b) a controller in communication with and arranged to monitor operation of the plurality of vapour handling subsystems and to control overall hydrocarbon emission from the service station by determining an overall service station ratio of vapour recovered to liquid dispensed (V/L ratio) and control subsystem operation to maintain the overall V/L ratio within predetermined limits.

In accordance with a second aspect of the invention there is provided a fuel dispenser including:

- a) a vapour recovery system for returning vapours from a vehicle fuel tank to a service station underground tank; and
- b) an electronic interface to a controller remote from the fuel dispenser and capable of monitoring the operation of the vapour recovery system and controlling the operation of the vapour recovery system taking into account the operation of at least one other fuel dispenser to maintain hydrocarbon vapour discharge from the service station within predetermined limits.

Employing the present invention provides a service station vapour management system that manages vapour handling subsystems to achieve a particular performance characteristic for an entire site. The present invention
coordinates the operation of these subsystems to control V/L ratio and/or hydrocarbon vapour emissions from a location perspective.
The controller may be arranged to control subsystem operation to maintain hydrocarbon vapour discharge within predetermined limits.

The system may also include at least one ambient temperature sensor or at least one atmospheric pressure sensor for providing ambient temperature or atmospheric pressure information to the controller. This control system is in electronic communication with the controller.

The invention may employ at least one fuel dispenser vapour recovery system, controlled by the controller, for collecting vapour generated during a vehicle fuelling operation and returning the vapour to an underground tank, the controller monitoring the operation of the system, and controlling the operation of the at least one vapour recovery system to control overall emissions of hydrocarbon vapours from the service station.

Various embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings of which:

Figure 1A is an elevational and partial sectional view of a typical gasoline dispenser having a vapour recovery system;
Figure 1B is a block diagram providing a basic overview of a modern fuelling environment;

Figure 2A is a schematic diagram of a first embodiment of a vapour recovery site efficiency management system constructed according to the present invention;

Figure 2B is a schematic diagram of a second embodiment of a vapour recovery site efficiency management system constructed according to the present invention;

Figure 2C is a flow diagram showing a preferred method of operating the overall site management system.

Figure 3 depicts a typical vacuum assist vapour recovery nozzle and the cross section of a fuel tank of a vehicle equipped with onboard recovery vapour recovery equipment;

Figure 4 is a perspective view of a fuel dispenser hose configured for use with a gasoline dispenser having a vapour recovery system;

Figure 5 is a cross-sectional view of a gasoline dispenser hose having a sensor in the vapour return path;

Figure 6 is an enlarged perspective view of a fibre-optic hydrocarbon sensor;

Figure 7 is a cross-sectional view of a vapour return passage having an infrared transmitter and receiver;
Figure 8 is a schematic block diagram of a portion of the gasoline dispenser’s vapour recovery control system;

Figure 9 is a perspective view of a module for diverting vapour flow for hydrocarbon sensing;

Figure 10 is an elevational and partial sectional view of a booted fuel dispensing hose and nozzle inserted into a motor vehicle gasoline tank having an onboard vapour recovery system;

Figure 10A is a flow chart representing a basic flow of a control process for controlling a vapour recovery system according to the present invention;

Figure 10B is a flow chart representing a detailed flow of a process controlling a vapour recovery system depending on the type of ORVR equipment present on the vehicle;

Figure 10C is a flow chart representing a basic flow of a control process controlling a vapour recovery system according to the placement of a restrictor plate in the fuel neck of a vehicle’s fuel tank according to the present invention; and

Figure 11 is a flow chart representing a basic flow of a vapour recovery control process according to the present invention.

A basic overview of a typical fuelling environment is first described below to provide a foundation for describing the present invention.
As best seen in Figure 1A, an automobile 100 is shown being fuelled from a gasoline dispenser or pump 18. A spout 28 of nozzle 2 is shown inserted into a filler pipe 22 of a fuel tank 20 during the refuelling of the automobile 100. A fuel delivery hose 4 has an annular fuel delivery passageway 12 and a tubular vapour recovery passageway 8 for transferring fuel vapours expelled from the vehicle's fuel tank 20 to underground storage tank 5 during the fuelling of a vehicle that is not equipped with an onboard vapour recovery system.

A vapour recovery pump 14 provides a vacuum in the vapour recovery passage 8 for removing fuel vapour during a refuelling operation. The underground tank 5 includes a vent 17 and a pressure-vacuum vent valve 19 for venting the underground tank 5 to atmosphere. The vent 17 and controllable vent valve 19 allow the underground tank 5 to breathe in order to substantially equalize the ambient and tank pressures as well as control hydrocarbon vapour levels to minimize breathing losses. The valve may be constructed to open and close at preset pressure and vacuum points. Typical set points are +3 inches of water pressure and -8 inches of water.

Figure 1B depicts a typical fuelling and retail environment including a forecourt where the fuel dispensers 18 are located, a convenience or fuel station store 120, one or more quick-serve restaurants (QSR) 122, a car wash 124, and a backroom 126. The backroom 126 is generally the central control area for integrating or coordinating control of the fuel dispensers 18, convenience store 20, QSR 122, and car wash 124. In the present invention, it is preferable to incorporate any necessary control for the overall vapour
recovery site management system in this central control area. This central control area will include a central control system 50 configured with the necessary hardware, software.

5 The central control system 50 may include a number of individual controllers for various parts of the fuelling environment to provide overall system control integration. The central control system 50 will typically interface with the dispensers 18, store transaction terminal 130, and other ancillary components necessary. Additionally the dispensers 18 have interrogators 152, providing communications with transponders 164. The transponders are configured to transmit information indicative of the presence of ORVR equipment, and optionally, information aiding the dispenser's vapour recovery system and optimizing vapour recovery. Such information may include the type of ORVR equipment, automobile fuel tank configuration, fuel tank internal ullage pressure, volume or vapour pressure or preferred vapour recovery functions for the particular make or model of the vehicle.

With reference now to Figures 2A and 2B, the central control system 50 may be the central controller for the entire station or the dedicated vapour recovery management control system, with concentrating hardware to manage the input and output control corresponding to the various peripheral systems and components.

The central control system 50 interfaces with one or more of the following systems or components: fuel dispensers 18, the underground storage tank 5, or ambient measurement devices.
Each fuel dispenser includes a CPU 56 and necessary hardware or software for vapour recovery control of a vapour recovery pump 14. The dispenser includes the vapour recovery passage 8 and preferably a hydrocarbon sensor 32 associated with the vapour recovery passage 8 and/or an interrogator 152 configured to communicate with ORVR equipped vehicles. Generally, each fuel dispenser controls its own vapour recovery system under the direction of the CPU 56 and vapour recovery controller 60. The manner in which vapour recovery is controlled is based on the presence of ORVR equipment, V/L ratios and/or information from the central control system 50 relating to overall management of vapour recovery for the site. Information concerning the presence of an ORVR equipped vehicle may be received through RFID techniques using the interrogator 152, sensing hydrocarbon concentrations in the vapour recovery passage, sensing pressure changes in the vapour recovery passage, or any other known or future method for detecting ORVR equipment. The vapour recovery rates may be based on information received from the vehicle through the interrogator 152, control algorithms for general vapour recovery, specific vapour recovery control algorithms for a type of vehicle, fuel delivery rate, fuel tank initial volume at the beginning of the fuelling process and/or temperatures and pressures relating to the vapour recovery system or the ambient.

To optimize site efficiency, the central control system 50 is provided access to ambient temperature data through an ambient temperature sensor 61 and ambient atmospheric pressure data through an ambient pressure transducer 63. Furthermore, the central control system has access to hydrocarbon concentration, pressure and temperature information relating to the underground storage tank 5 and its vent 17. In particular,
hydrocarbon sensors 21, 65 may be placed in the vent 17 for the underground storage tank 5, respectively. The underground storage tank 5 may also include a temperature sensor 68 and a pressure sensor 67. Preferably, the vent 17 is provided with a controllable vent valve 19 in order to variably control venting. The vent valve 19 will preferably derive a portion of its control from the central control system 50, either directly or indirectly through other control systems associated with the underground storage tank 5.

As shown in Figure 2B, vent control and sensor inputs may be directed to an underground storage tank control subsystem 69 which is in communication with the central control system 50. In such an embodiment, the central control system 50 will basically interact with the dispenser control systems and the underground storage tank control subsystem 69 in order to optimize site efficiency. The underground tank control system may be an ullage pressure control system is known in the art. As depicted in the drawing figures, the central control system 50 may be directly linked to various sensors or configured to receive information from the underground storage tank control system 69. Control signals or information directed to the underground storage tank may likewise be sent directly to any system, such as the vent control valve 19, directly or through the underground storage tank control system 69. Although not depicted, ambient temperature and pressure may be read by the underground storage tank control system 69 or any one of the numerous dispensers in the forecourt.

During operation, information may be received from three sources: 1) the fuel dispenser, 2) the underground storage tank, and 3) sensors or systems providing data on ambient
conditions. Additional sources of information include the dispenser vapour recovery subsystem, the tank ullage control subsystem and a vehicle discrimination subsystem.

Typically, the dispenser may provide information relating to vapour recovery performance and conditions for the individual dispenser, the presence or type of ORVR equipment on a vehicle being fuelled or vehicles having been fuelled, and, as noted above, ambient conditions. The vapour recovery information may include V/L ratios, operating efficiencies, and equipment conditions. The ORVR equipment information may be received using a radio frequency identification device (RFID) technique wherein information is directly communicated from the vehicle to the dispenser indicating the presence or absence of ORVR equipment, and optionally, providing vehicle configuration information or vapour recovery control functions to help optimize vapour recovery with respect to that particular vehicle. Alternatively, the dispenser may detect the presence of ORVR equipment on a vehicle based on techniques including sensing hydrocarbon concentrations or pressure increases in the vapour return passage 8 that are indicative of the presence of ORVR equipment.

The dispensers and underground storage tank control systems may be configured to collect historical information relating to any of the above parameters. Alternatively, the central control system 50 may periodically gather information and maintain historical records as desired to gather information helpful in monitoring and controlling site efficiencies. Notably, the underground tank vent may share control processes with the underground storage tank control system or may include its own control system for monitoring hydrocarbon concentrations, the ingress or egress of air and/or hydrocarbon
vapours to and from the underground storage tank, and controlling venting. In such an embodiment, the processor would preferably communicate directly with the central control system 50 or concentrating hardware 51.

With reference to Figure 2C, basic operation of the overall site management control system is shown. The process starts at block 200 where various set points and control parameters are checked, determined or updated as desired (block 202). Next, the information necessary for the particular management configuration is received from the various vapour handling systems and/or sensors providing selected information from that described immediately above (block 204). The information is analysed (block 206) and compared as with the set points and/or control parameters (block 208). The control system will then determine any necessary adjustments for the vapour handling subsystems, underground storage tank and/or underground storage tank vent to maintain or move toward a desired overall operational state (block 210). If any adjustments are necessary, the central control system 50 will provide the necessary control signals to affect adjustments to the vapour handling subsystems in the dispensers and/or underground storage tank, the underground storage tank and/or the underground storage tank vent (block 212).

The central control system 50 treats the site as a whole by taking input from the several vapour handling subsystems and sensors to make logical decisions regarding the values of variable subsystem parameters to maximize the vapour recovery efficiency of the site. The term "vapour handling subsystems" includes individual fuel dispenser vapour recovery systems, vehicle discrimination systems to include vehicle interrogation systems
and UST ullage pressure control systems and any other systems that transport, manage or are otherwise associated with hydrocarbon vapours generated during fuelling operations. To affect these changes that improve efficiency, this system provides input to the Stage II assist vapour recovery subsystems in the fuel dispensers in order to adjust their V/L ratios to improve efficiency in recovering vapours. The system may also make changes to the fuel storage tanks venting system to control the amount of ingress or ambient air of the amount of egress of an air/hydrocarbon vapour mixture. To acquire the necessary data for decision making and implementation of these functions, any one or more of the following is preferably used: pressure transducers, hydrocarbon sensors, mass spectrometers, vapour flow meters, intelligent assist vapour recovery system controls, temperature sensors, and electronically controlled and operated storage tank vent valving.

In a typical operating scenario, the central control system 50 receives underground fuel storage tank and ambient air temperatures and uses this information to adjust a baseline V/L value in the dispenser's vapour recovery system. Independent of or in conjunction with this action, the central control system 50 may keep a record of a number of ORVR and non-ORVR vehicle refuelling operations and corresponding storage tank ullage pressures. From this data, the controller calculates the average site V/L, and determines changes in dispenser V/L values, either individually or by site, and may also define the amount of ingress or egress to allow at the storage tank vent.

The controller used in the practice of the present invention may desirably use one or more trained artificial neural networks (ANN) or fuzzy logic devices to affect the control of the
various vapour handling subsystems. An ANN is a well-known tool for handling problems that involve many variables. A typical ANN is a computer program, modelled roughly after the human brain, that can learn to perform tasks and make decisions based on past experiences or examples. Computers so programmed "learn" by gathering and storing information from the computer user. When the computer receives new information, it uses its stored expertise to classify or recognize a new pattern in the information. As applied to the fuelling environment, the ANN may be trained to expect certain patterns of environmental conditions, i.e. temperature swing from day to night and variances in vehicle traffic that effect the amount of hydrocarbon vapour generated at a site. The latter of these two could encompass data concerning the average number of ORVR-equipped vehicles that can be expected to be fuelled at a particular site. Having knowledge of this past site information, the ANN may control the various vapour handling subsystems to maintain a particular overall site V/L ratio, to control total site hydrocarbon vapour emissions, or to control fugitive emissions from an underground tank. It will be readily appreciated that an ANN trained for a cold weather climate site may manage vapour handling subsystems much differently than that for a hot weather climate site.

Preferably, this system will track the fuelling of ORVR and non-ORVR equipped vehicles and use this information to adjust each dispenser's vapour recovery system V/L ratio or curve for non-ORVR vehicles. When fuelling an ORVR vehicle, the central site controller can send commands to the individual dispenser to turn the vapour recovery system off or modify the V/L ratio. The system can increase V/L for non-ORVR vehicles if the underground storage tank pressure stays low most of the time. It can also decrease
the V/L to the minimum certified level for non-ORVR vehicle refuelling if the underground storage tank pressure increases during a period of the day or night. This process will minimize the pressure differential between the underground storage tanks and atmosphere. If the underground storage tank experiences excessive pressure at night, which results in emission of vapour through the vent stack, the system may gradually decrease the V/L for non-ORVR vehicles to the minimum certified level during the hours prior to station close or the time when tank pressure starts to go up. This process prevents or minimizes fugitive emissions.

Although in most instances the amount of vapours recovered from the nozzle-fuel tank interface will be reduced when an ORVR vehicle is detected, in certain instances the V/L ratio will not be changed. It has been found that ORVR systems using mechanical seals rather than liquid seals do not present the kinds of excess air ingestion problems described herein. Consequently, there would be no need to modify fuel dispenser vapour recovery system performance. Accordingly, the practice of the present invention includes the additional step of determining what type of seal mechanism is installed in the fill neck of an ORVR vehicle and using that information to make the decision whether or not to modify dispenser vapour recovery system operation. Under certain circumstances, no changes would be made to that operation.

In conjunction with the central site controller 50 or independently thereof, each dispenser may be configured to adjust and correct the V/L ratio after a predetermined number of ORVR vehicles have been refuelled. A preprogrammed family of algorithms or the ability to internally compute the algorithm necessary to make the appropriate adjustment
may be provided. Furthermore, a central control system can monitor individual dispenser usage and adjust its respective V/L ratio to achieve the minimum necessary level of vapour recovery at the vehicle fill-neck in order to reduce storage tank pressure. The system can also adjust the V/L ratios in those dispensers that are used less by the customers to further manage underground storage tank pressure. In the above-cases, each dispenser may end up having its own V/L ratio at any given time. A history of adjustments can be recorded and be available for inspection.

In this regard, the history of system adjustments and performance can be made available to an offsite location in a variety of ways. By way of non-limiting example, the central control system may print periodic reports concerning the vapour emission performance of a particular location. Alternatively, remote electronic access may be provided using dial up connections, satellite communications links or Internet links. Each of these communication methods could provide historical information on a periodic batch basis or, alternatively, provide the ability to monitor system performance in a "real time" fashion. It will be readily appreciated that a remote central monitoring station could be established for monitoring the operation of a number of sites. Data from these sites can be assembled and analysed to provide an area-wide assessment of vapour emission performance. The benefits of this approach include, but are not limited to, the ability to identify sites that require equipment maintenance, to monitor the population distribution of ORVR and non-ORVR vehicles, and to identify those locations/areas that are not in compliance with emissions limits. This data could be made available to regulatory authorities to meet compliance inspection requirements again using the electronic communications links discussed above.
The provision of remote monitoring of site vapour emission performance makes remote adjustment of system performance possible. That is, responsive to the system performance data received at a remote location, a person or a controller remote from the location may transmit instructions to the onsite controller to change system performance. This approach is an extension of the concept of coordinating the operation of the vapour handling subsystems at a particular location. The practice of the present invention includes coordinating the operation of a number of individual vapour emitting locations as part of a cohesive strategy for addressing vapour emissions for a particular geographic area.

The system can also automatically record tank pressure or fugitive emission violations with the times and dates of such occurrences. Violations can be reported to maintenance personnel and allow the entire site to, in effect, provide a self compliance method of operation. Historical information concerning these violations can be used by regulators for enforcement efforts.

In addition to the controlling vapour recovery and the flow of hydrocarbons to the vents of the underground storage tanks, a solenoid valve on the tank vent makes it possible for the system to check for leaks in the underground piping and the tank installation. The system may monitor tank pressure while the solenoid valve is closed and there is no refuelling activity at the site. Pressure changes may be monitored over time. If the pressure change during this time is greater than a predetermined value, the central site control system can send a request to maintenance personnel or the station manager to
check for possible leakage or other system malfunctions. This feature can also be used as part of a self-compliance program. Furthermore, the system may have a leak detection program that closes the vent valve, increases the tank pressure to a predetermined level, stops all fuelling activities for a predetermined period of time and checks for a pressure drop.

As noted, the tank vent may be equipped with a vapour flow meter 71 that measures the amount of egress and ingress from and into the underground storage tank. The vapour flow meter 71 may be directly coupled to the central control system 50 or the concentrating hardware 51. Alternatively, the flow meter 71 may be coupled directly to an underground storage tank control system, as disclosed in Figure 2B. Notably, standard dispenser vapour recovery systems include a similar flow meter in vapour return passage. The output of the dispenser vapour flow meters are generally provided directly to the dispenser's control system. The vent may also be equipped with a thermocouple, or a hydrocarbon sensor configured as a mass spectrometer 73 to measure the concentration and/or the amount of harmful volatile organic compounds in the egress vapour from the tank and the amount of ambient air ingressed to the tank. The output of the vapour flow meter 71 can be recorded for emission calculations.

It is also possible to install a secondary vapour processor on the vent stack to eliminate hydrocarbon emissions in case of any egress from the tank. The processor can be equipped with a thermocouple, vapour flow meter 71, hydrocarbon sensor and/or mass spectrometer 73 to monitor its efficiency and output into the atmosphere. In all of the cases above, the output of all measurement and monitoring devices is directly or
indirectly fed to the central site controller 50. This controller is used to make the decisions on setting, affecting, and/or controlling vapour recovery and vapour recovery ratios throughout the system.

Turning now to Figure 3, the vehicle fuel tank 20 of an ORVR vehicle has an associated onboard vapour recovery system 24. These onboard vapour recovery systems 24 typically have a vapour recovery inlet 26 extending into the tank 20 (as shown) or the filler pipe 22 and communicating with the vapour recovery system 24. In the ORVR system of Figure 3, incoming fuel provides a seal in fill neck 22 to prevent vapours from within the tank 20 to escape. This sealing action is often referred to as a liquid seal. As the tank fills, pressure within tank 20 increases and forces vapours into the vapour recovery system 24 through the vapour recovery inlet 26. Other ORVR systems may use a check valve 21 along the fill neck 22 to prevent further loss of vapours. The check valve 21 is normally closed and opens when a set amount of gasoline accumulates over the check valve within the fill neck 22.

The spout 28 has numerous apertures 29. The apertures 29 provide an inlet for fuel vapours to enter the vapour recovery path 8 of fuel dispenser 18 from the vehicle's filler pipe 22. As liquid fuel rushes into the fuel tank 20 during a fuelling of a vehicle not equipped with an ORVR system, fuel vapours are forced out of the fuel tank 20 through the fill pipe 22. The fuel dispenser's vapour recovery system pulls fuel vapour through the vapour recovery apertures 29, along the vapour recovery path 8 and ultimately into the underground tank 5 (as shown in Figure 1).
Figures 4 and 5 depict partial and complete cross-sectional views of the fuel dispenser hose 4. In an embodiment of the current invention, a hydrocarbon sensor 32 is placed inside the vapour passage 8 to detect the presence or absence of hydrocarbons associated with fuel vapours. An absence of hydrocarbons in the vapour passage 8 indicates the presence of an onboard vapour recovery system in the vehicle being fuelled. If an onboard system is detected, the dispenser could either shut off the vapour pump 14 completely, or calculate and control the pump 14 to supply the amount of air to the storage tank needed to replenish the volume of liquid taken from the tank 5 and thus eliminate breathing losses. The hydrocarbon sensor 32 may be located anywhere along the vapour recovery passage 8, including within the vapour recovery pump 14, storage tank 5, dispenser 18, or hanging hardware. Certain applications will locate the hydrocarbon sensor 32 at either, or both, an inlet or outlet to the vapour recovery pump 14.

In one embodiment, the hydrocarbon sensor 32 is a fibre-optic sensor 44 capable of sensing an amount or concentration of hydrocarbons present in the vapour return passage 8 to detect the presence of an ORVR-equipped vehicle. The fibre-optic sensor 44 is shown in detail in Figure 6. Preferably, the fibre-optic sensor 44 uses two fibre-optic light rails 46, a sense fibre 46a and a reference fibre 46b. The sense fibre 46a has a special coating and the reference fibre 46b is isolated. The light rails 46a and 46b run between a single light source 48 and two photodetectors 50. The photodetectors 50 may be photodiodes. The refractive index of the sense fibre 46a changes when in contact with hydrocarbon vapour, causing the fibre to lose light through its surface. This loss of light is proportional to the concentration of hydrocarbon vapour. The amount of light
transmitted by the reference fibre 46b is compared to the amount transmitted by the sense fibre 46a. Since they share the same light source 48, any change in the output voltages at the photodetectors 50 can be attributed to the losses from the side of fibre 46a caused by the concentration of the vapour stream.

As seen in Figure 7, another embodiment employs an infrared emitter 34 and an infrared detector 36 as a hydrocarbon sensor in the tubing 10. Preferably, the infrared emitter 34 is either a solid state or a black body radiator with an appropriate filter, if required, irradiating through a cross-section of sampled vapour 40 to the infrared detector 36. An optical bandpass filter 39 may be used to narrow the sensor sensitivity to certain wavelengths. The infrared detector 36 is either solid state or pyro-electric infrared (PIR).

The attenuation in the infrared spectrum 38 caused by the absorption of infrared by hydrocarbons is detected by detector 36. When the amount of hydrocarbons to absorb the infrared falls from an expected level during operation, the fuel dispenser may disable or adjust its vapour recovery system.

Desirably, there is a response time of less than 6 seconds from the beginning of the fuelling operation or within delivering one gallon of fuel before detecting whether fuel vapours are normal, present in abnormally low quantities, or not present. The absence or low concentration of hydrocarbons indicates that the vehicle is equipped with an onboard vapour recovery system. The hydrocarbon sensors, the same as or similar to those described above, may be used in the underground storage tank and associated vent
system.

The discussion of sensing to this point has focussed on determining amount or concentration of hydrocarbon material in vapour form being returned to the underground tank by the dispenser vapour recovery system. An alternative approach would be to sense the oxygen concentration of the returning vapour stream. It will be readily appreciated that a stream rich in hydrocarbon vapours will be have a low oxygen content and that a stream low in hydrocarbon vapour content will have a higher oxygen content. Thus, monitoring the oxygen content of the vapour stream can provide the same feedback concerning the ORVR status of a vehicle being fuelled as that provided by monitoring the hydrocarbon vapour content. The practice of the present invention includes using both approaches.

The dispenser electronics, as depicted in block diagram in Figure 8, process a resulting signal 54 from the sensor, whether it be of fibre-optic sensor 44, IR detector 36 or some other sensor, and take appropriate action. The action could take any of several forms. The vapour return pump 14 could slow down in order to reduce the effective vacuum, thereby reducing the effect of vapour growth which the ingestion of clean air often creates. Breathing losses are a major cause of fugitive emissions. If the underground tank pressure is greater than the ambient pressure, hydrocarbon saturated fuel vapour is released into the atmosphere through standard pressure-vacuum valves. In contrast, if the pressure in tank 5 is less than that of the ambient, a standard vent -allows fresh air into tank 5 to equalize the pressure. The fresh air becomes saturated with hydrocarbons and increases the pressure within the tank 5 and hydrocarbon laden vapour is then released
to ambient through the vent. As the tank continues to "breathe" in this manner, hydrocarbons are repeatedly released to atmosphere. Thus, it is important to minimize any pressure differential between tank 5 and the atmosphere to prevent the ingestion of air. By controlling in a coordinated fashion all of the vapour handling subsystems and related conditions in the fuelling environment, the present invention is more capable of minimizing this pressure difference than typical fuelling environments which have several subsystems operating independently of each other.

When fuelling a standard or non-ORVR equipped vehicle, the vapour recovery system of fuel dispenser 18 should pull in enough hydrocarbon vapour and air mixture to compensate for the dispensed liquid fuel and minimize breathing losses. When an ORVR equipped vehicle is detected, the dispenser compensates for the vapour recovered by the vehicle's ORVR system by pulling in ambient air.

Upon detection of an ORVR equipped vehicle, slowing down the vapour return pump 14 allows for continuous monitoring of the vapour concentration in the vapour return passage 8 to ensure that a mistake was not made in the initial identification of an onboard vapour recovery system associated with the vehicle. Alternatively, the vapour recovery pump 14 could simply shut down until the next transaction. Other approaches may forego shutting down the fuel dispenser’s vapour recovery system. For example, the system may redirect the flow of air from the apertures 29 through vapour passage 8 to ambient through valve 15 (see Figure 1A3). This may be used when the vapour recovery system of the dispenser 18 uses a liquid driven vapour pump 14. Redirecting flow to ambient will prevent over pressurizing the underground tank and reduce breathing losses.
Such redirection will be affected as necessitated by overall site conditions and requirements by the central control system 50 and any vapour handling systems in the dispensers 18 or underground storage tanks 5.

5 The various sensors, such as the hydrocarbon sensor 32 or the infrared detection sensor 36 provide a signal 54 to a dispenser processing unit (CPU) 56. The CPU 56 evaluates the signal 54 to determine whether the vehicle being fuelled has an onboard vapour recovery system and passes such information on to the central control system 50. Accordingly, the CPU 56 provides a control signal 58 to a vapour recovery pump controller 60. The control signal 58 is preferably affected or influenced by overall site conditions and necessary control adjustments provided by the central control system 50. The vapour recovery pump controller 60 then controls the vapour recovery pump 14 with control signal 62.

15 As shown in Figure 9, any of the hydrocarbon sensors 32 may be installed within a separate module 64 designed to divert the flow path of a certain amount of fuel vapours. The module 64 may split the vapour path 8 into two vapour paths 8a, 8b. The hydrocarbon sensor is installed in one vapour path 8b. In the fibre-optic sensor embodiment, vapour path 8b of module 64 may be designed so that only a fraction of the hydrocarbon vapour and air mixture flows over the probe 44.

20 Once detection of a vehicle equipped with an onboard vapour recovery system occurs, various vapour recovery control options are available. Disabling the fuel dispenser's vapour recovery system reduces underground fuel tank pressure and thereby reduces
losses due to fugitive emissions and reduces wear and unnecessary use of assist type vapour recovery systems when operation would be redundant. Alternatively, the dispenser's vapour recovery system is adjusted to reduce the vacuum created by the fuel dispenser during the fuelling of an onboard vapour recovery equipped vehicle. The vapour recovery system provides enough ambient air to the underground tank 5, that when the air saturates, the hydrocarbon saturated air volume is approximately equal to the amount of fuel dispensed; thereby minimizing pressure fluctuation in the underground tanks. Another option, particularly useful with liquid driven vapour pumps, is to use an output of CPU 56 to open valve 15 to redirect the airflow in the vapour recovery passage 8 to atmosphere through the vapour passage vent valve 15 (as shown in Figure 3). All of these controls may be directly or indirectly controlled by the central control system 50.

Adjusting the vacuum created by the fuel dispenser's vapour recovery system prevents over pressurizing the underground fuel tanks, thus mitigating fugitive emissions. Fugitive emissions is a collective term for emissions from the vent 19 or any other leak path to the atmosphere at the dispensing facility.

The current invention may adjust any of the vapour handling systems in cooperation with the vent 19 to compensate for both vapour shrink and vapour growth conditions. Typically, during vapour shrink conditions, an amount of air greater than the volume of liquid dispensed is drawn into the tank 5. Vapour shrink conditions usually occur during hot summer months when the ambient temperature is high and the tank temperature is relatively cool. As the air and/or vapour is drawn into the tank, the air contracts. The fuel dispenser compensates for this decrease in volume by increasing the amount of air
pulled into the underground tank 5.

In contrast with the vapour shrink conditions, vapour growth conditions typically occur during winter months when the ambient temperature is low and the tank temperature is relatively high. Under vapour growth conditions, the air pulled into the tank expands when subjected to the warmer tank temperatures. The fuel dispenser's vapour recovery system pulls in an amount of air less than the amount of fuel dispensed to compensate for the volume expansion in the tank. The CPU 56 of fuel dispenser 18 and/or central control system 50 may receive temperature data from an ambient temperature sensor 616 and an underground tank temperature sensor 68 (see Figure 1). Pressure measurements at ambient and in the tank ullage may also be taken. Alternatively, rough air ingestion compensation may be accomplished by having predefined select flow settings for various times of the day or year. For example, the recovery system can be set to ingest air or vapour mixture in an amount equal to two-thirds the volume of fuel dispensed, thus allowing the air or vapour mixture to expand by a factor of approximately 1.4 or 1.5 to fill the tank volume when saturated. Overall site management allows fine tuning of the system.

Also, the fuel dispenser's vapour recovery system may continually monitors the vapour concentration to ensure an initial mistake was not made in determining whether or not the vehicle being fuelled has an ORVR system or if a malfunction in the vehicle's ORVR system occurs. In either of the latter two cases, the fuel dispenser's vapour recovery system resumes vapour recovery accordingly.
The disclosed and claimed invention also encompasses kits, modules and the like for retrofitting pre-existing dispensers to enable ORVR equipped vehicle detection. For retrofitting, sensor modules are configured to operatively associate with existing pump electronics (see Figure 8). For example, the sensor and/or sensor module is placed along or within the vapour passage 8 to sense hydrocarbon levels. Preferably, the sensor or module is placed within the vapour passage 8 at points allowing the easiest and most economical access to the vapour path, such as at the inlet or outlet of the vapour pump 14, or other connection points in the system.

In an alternative embodiment for detecting ORVR equipped vehicles, pressure changes in the vapour recovery passageway may be used to detect such vehicles. As shown in Figure 10, the nozzle 2 may includes a vapour recovery boot 6 for preventing fuel vapours from escaping to atmosphere during the vapour recovery process. The vapour recovery boot 6 of nozzle 2 forms an annular chamber about nozzle 28 and covers the end of filler pipe 22. The annular chamber formed by vapour recovery boot 6 and the nozzle spout 28 operatively communicates with the vapour recovery passage 8. A pressure sensor 30 is placed in the annular chamber formed by the vapour recovery boot 6 and the nozzle spout 28 to detect an increase in vacuum associated with the vehicle's onboard vapour recovery system working in opposition to the fuel dispenser's vapour recovery system. In this embodiment, the increased vacuum may trip the nozzle's automatic shutoff venturi mechanism (not shown) and therefore make fuelling extremely difficult if not impossible. Therefore, it is preferable that there be no "airtight" seal between the vapour recovery boot 6 and the filler pipe 22 and that the vapour recovery system is vented via valve 15 to allow normal fuelling.
spout 28 operatively communicates with the vapour recovery passage 8. A pressure sensor 30 is placed in the annular chamber formed by the vapour recovery boot 6 and the nozzle spout 28 to detect an increase in vacuum associated with the vehicle's onboard vapour recovery system working in opposition to the fuel dispenser's vapour recovery system. In this embodiment, the increased vacuum may trip the nozzle's automatic shutoff venturi mechanism (not shown) and therefore make fuelling extremely difficult if not impossible. Therefore, it is preferable that there be no "airtight" seal between the vapour recovery boot 6 and the filler pipe 22 and that the vapour recovery system is vented via valve 15 to allow normal fuelling.

Additionally, equipping the vapour recovery boot 6 with an orifice 16 designed to allow a vacuum in excess of 20-25 inches to be developed in the fill pipe area when fuelling a vehicle equipped with an onboard vapour recovery system will eliminate premature cut-off. This level of vacuum is high enough to be recognized by the fuelling system, but not enough to trip the automatic shutoff mechanism of the nozzle 2. The increase in the vacuum may be detected by placing the sensor 30 in the boot area as shown, at the vapour recovery pump 14, or anywhere along the vapour recovery passage 8.

A vehicle discrimination system using a transponder 164 or other like communication system may be configured to transmit a signal indicative of the absence or presence of an ORVR system. When a dispenser 18 receives a signal via interrogator 152 indicating the absence or presence of an ORVR system, the vapour recovery system of the dispenser 18 may be shut-off or modified as desired during the subsequent fuelling operation. A simplistic approach incorporates a signal from the transponder 14 to the dispenser 18 to
indicate the presence of an ORVR system. Upon receipt of this signal, the dispenser 18 may deactivate the vapour recovery system during the fuelling operation. A more complex system may incorporate a two-way communication link between the transponder 164 and the dispenser 18 wherein information in addition to that regarding the presence of an ORVR system is included to enable the dispenser to control the vapour recovery system in conjunction with the vehicle's ORVR system to maximize vapour recovery and fuel flow rate and/or according to a vapour recovery control function for the particular vehicle. The central control system 50 will preferably influence the dispenser's vapour recovery control in an effort to increase overall site efficiency.

A basic flow chart of these processes is shown in Figure 10A. The process starts (block 300) wherein the control system begins to monitor and receive signals from the vehicle's transponder (block 302). The control system will determine whether the vehicle is equipped with an ORVR system (decision block 304). If the vehicle is not equipped with an ORVR system, the control system will activate the dispensers vapour recovery system for the subsequent fuelling operation (block 306). The control system will monitor for the end of the fuelling operation (block 308) and determine the end of the fuelling operation (block 310). Once the fuelling operation is complete, the process is ready to be repeated. If the transponder 164 represents to the control system that the vehicle is equipped with an ORVR system (decision block 304), the vehicle's vapour recovery system may be adjusted or deactivated completely during the subsequent fuelling operation based on local and overall site parameters (block 312).

As noted, when ORVR equipment is detected on the vehicle, the vapour recovery control
system may adjust or deactivate the vapour recovery system in various ways. Preferably the control system is adapted to receive the type of ORVR equipment and control the vapour recovery system of the fuel dispenser accordingly. An exemplary process of the preferred embodiment is shown in Figure 10B. The scenario depicted in Figure 10B represents a preferred scenario and is not intended to limit the concept of controlling the vapour recovery system based on the type of ORVR equipment on the vehicle. With this in mind, the process is picked up after ORVR equipment is detected (block 304 of Figure 10A).

Once ORVR equipment is detected, the control system determines the type of ORVR equipment present on the vehicle (block 314). The control system will determine whether the ORVR equipment uses a mechanical or liquid seal (block 316). If a mechanical seal is used, the control system will preferably activate the vapour recovery system at a full or reduced flow rate to compensate for the volume of fuel leaving the underground storage tank 851 (block 318). The rate of vapour flow will typically depend on differences between ambient and underground tank conditions. If a liquid seal is sued, then preferably the flow rate is designed to run at a reduced flow rate to facilitate ingestion of hydrocarbon vapours escaping the vehicle's ORVR equipment while minimizing the amount of hydrocarbon-free air ingested in the tank. As discussed in detail below, ingesting unsaturated, hydrocarbon-free air into the underground tank is preferably avoided to the extent possible.

If a liquid seal is detected, the control system will determine whether or not the vehicle's tank and ORVR system provides recirculation with the liquid seal embodiment (block
320). If recirculation is provided, the control system will completely deactivate the vapour recovery system or activate the vapour recovery system of the fuel dispenser at a significantly reduced flow rate of generally about fifty percent (50%) or less (block 322), depending upon conditions. In liquid seal arrangements using recirculation, there tends to be a higher vapour concentration at or near the nozzle spout 28 in the fill neck 22 of the fuel tank #20 than in liquid seal systems without recirculation. The control system will preferably run the vapour recovery equipment of the dispenser at a recovery rate sufficient to replace the volume lost in the storage tank and, with enough unsaturated hydrocarbon/air vapour mixture that, when saturated, equals the volume of fuel removed from the underground storage tank, the escape of any hydrocarbon-saturated air at or near the nozzle spout.

When a liquid seal embodiment without recirculation is detected, the control system will completely deactivate the vapour recovery system or may substantially reduce the rate of flow in the vapour recovery system to typically ten to thirty percent (10%-30%) of the nominal flow rate used during a normal vapour recovery operation (block 324). Running the dispenser's vapour recovery system for both liquid seal types without these controls would result in ingesting excess hydrocarbon-free air -- a situation preferably avoided. Importantly, the control system is adapted to operate in conjunction with the communications electronics of the dispenser to determine the type of ORVR equipment and control the vapour recovery system to optimize vapour recovery and reduce the amount of unsaturated or hydrocarbon-free air ingested into the underground tank. After the type of ORVR equipment is detected and the control is determined, the process will continue as shown in Figure 10A (block 308) by monitoring for the end of the fuelling
shown in Figure 3, the nozzle spout 28 typically extends through a restrictor plate 31 in
the fuel tank's fill neck 22. The nozzle 28 includes a plurality of apertures 29
communicating with the vapour return passage. The restrictor plate 31 substantially
blocks the fuel tank's fill neck 22 and includes an opening sized to allow the nozzle spout
to extend through during fuelling. The opening may have a door, which closes when the
vehicle is not being fuelled. Most non-ORVR fuel tanks have a vent tube 33 running
from a top portion of the tank to a point near the end of the fill neck. Certain fuel tanks
have the vents extending past the restrictor plate, such that vapours vented from the top
of the tank through the vent tube are placed back into the fill neck between the restrictor
plate and the outside of the vehicle, while other tanks balance vapours via the vent tube
33 back into the fill neck 22 between the fuel tank 20 and the restrictor plate 31 as shown
in Figure 3. In the former situation where the vent tube is above the restrictor plate, it is
more difficult to recover the fuel vapours because of the unconfined environment at the
end of the fill neck. When the vent tube 11 connects to the fill neck 2 below the restrictor
plate 5, the vapours are concentrated in the confined area just before the restrictor plate
near the end of the fill neck.

Thus, an embodiment of the present invention is adapted to determine the placement of
the restrictor plate relative to the vapour return inlet of the vent tube and control vapour
recovery accordingly. Again, the information will be provided by the transponder 164
of the vehicle 14 (block 326). If the inlet is above the restrictor plate (block 328), the
control system will preferably operate the dispenser's vapour recovery system at a higher
flow rate (block 330) given the increased difficulty in recovering vapours in the relatively
uncontained area between the restrictor plate and ambient near the very end of the fill
neck. If the inlet is not above the restrictor plate, the control system will operate the dispenser's vapour recovery system at a lower flow rate (block 332) because the fuel vapours will be highly concentrated and contained below the restrictor plate near an upper portion of the fill neck. Once the vapour recovery control is set, the process will return to block 308 of Figure 10A.

Another control option, used alone or in combination with the earlier described processes, provides a vapour recovery control function to optimize vapour recovery for a particular vehicle and/or fuel tank configuration with or without ORVR equipment. As shown in Figure 11, the process begins (block 340) where signals are received from a transponder (block 342). From these signals, the control system determines a vapour recovery control function (block 344). The control function may take many forms and be dependent upon a number of different variables. The variables may be vehicle specific, such as ullage values, fuel quantities, temperature, pressure, or any combination thereof, to name a few. The variables may also be non-vehicle specific, such as time, flow rate, vapour recovery flow rate or amount of fuel delivered. Additionally, the function may be a constant representing a fixed flow rate for a particular vehicle or tank configuration.

The control system will determine whether or not the vapour recovery control function is dependent upon a vehicle-specific variable (block 346). If the function is dependent upon a vehicle-specific variable, the control system will receive or calculate the variable and control function (block 348) and control the vapour recovery system accordingly (block 350). The system will then monitor for the end of fuelling (block 352). If fuelling is not at an end, the process may include a loop to repeat in which a new value is either
received from the vehicle or calculated at the control system to arrive at a flow rate according to the vapour recovery function. For example, if the function is based on ullage, the control system may continuously monitor the new ullage values from the vehicle or calculate the new ullage values based on the original ullage value and the amount of fuel delivered, which is a value capable of being determined by the dispenser. At the end of fuelling, the process ends (block 360).

If the vapour recovery control function is not dependent upon the vehicle variable (block 346), the appropriate variables are determined, if necessary, at the control system (block 354). The vapour recovery control function will be calculated based on the desired variables, and the vapour recovery system is controlled accordingly (block 356). The control system will repeat the process until the end of fuelling (blocks 358, 360). Notably, if the vapour recovery control function is a constant, the control system need not update the control function throughout the fuelling process. However, certain embodiments may require a combination of a constant vapour recovery flow rate for one portion of the fuelling operation and a variable flow rate for another portion of the fuelling operation.

Even when an ORVR equipped vehicle is detected, it may be desirable to have the dispenser's vapour recovery system operate to supply an amount of air to the storage tank required to replenish the volume of liquid taken from the tank during the fuelling operation to minimize or eliminate tank breathing loses discussed above. The transponder 164 of the vehicle 100 and dispenser may also communicate information relating to the effectiveness or the presence of a malfunction of the ORVR system. In
such cases, the dispenser may further modify or activate the vapour recovery system accordingly to minimize the escape of vapours during the fuelling operation. Importantly, any of the above control functions may be altered, influenced, or otherwise affected by the central control system 50 in an effort to improve overall site efficiency and not merely an efficiency at a single dispenser.

In summary, once the absence or presence of an ORVR equipped vehicle is detected, various vapour recovery control options are available. Appropriate control of the fuel dispenser’s and underground storage tank’s vapour handling systems as well as the vent reduces underground fuel tank pressure and thereby reduces loses due to fugitive emissions and reduces wear and unnecessary use of assist-type vapour recovery systems when operation would be redundant. The vapour recovery system may provide enough ambient air to the underground tank, so that when the air saturates, the hydrocarbon saturated air volume is approximately equal to the amount of fuel dispensed, thereby minimizing pressure fluctuations in the underground tanks. Another option, particularly useful with liquid driven vapour pumps, is to use an output of the control system to open a dispenser valve or tank vent valve 19 is to ambient to redirect the air flow of the vapour recovery passage to atmosphere through an ambient vent.

Although the present invention has been described with preferred embodiments, it is to be understood that modifications and variations may be utilised which will be in the scope of the appended claims.
Any discussion of documents, devices, acts or knowledge in this specification is included to explain the context of the invention. It should not be taken as an admission that any of the material formed part of the prior art base or the common general knowledge in the relevant art in Australia on or before the priority date of the claims herein.

"Comprises/comprising" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof."
1. A service station vapour management system including:
 a. a plurality of vapour handling subsystems; and
 b. a controller in communication with and arranged to monitor operation of the plurality of vapour handling subsystems and to control overall hydrocarbon emission from the service station by determining an overall service station ratio of vapour recovered to liquid dispensed (V/L ratio) and control subsystem operation to maintain the overall V/L ratio within predetermined limits.

2. A system as claimed in Claim 1 wherein the controller is arranged to control subsystem operation to maintain hydrocarbon vapour discharge within predetermined limits.

3. A system as claimed in 1 or 2 wherein the predetermined limits depend on parameters relating to the service station monitored by the controller.

4. A system as claimed in any preceding claim wherein at least one of the subsystems is a fuel dispenser vapour recovery system controlled by the controller in order to control overall hydrocarbon emissions.

5. The system of Claim 4 wherein the fuel dispenser vapour recovery system includes a signal generator for providing a signal to the controller indicative of at least one vapour recovery system operating parameter.
6. A system as claimed in Claim 4 or 5 wherein the controller takes into account the operation of at least one other fuel dispenser to control overall hydrocarbon emissions.

7. A system as claimed in Claim 4, 5 or 6 including a vehicle discrimination system capable of determining whether a vehicle being fuelled at a dispenser is equipped with an onboard vapour recovery (ORVR) system.

8. A system as claimed in Claim 7 wherein the controller controls operation of at least one vapour recovery system in dependence on monitored operation of each of the vapour recovery system and the vehicle discrimination system.

9. The system of any one of Claims 4 to 8 including a vehicle discrimination system capable of determining whether a vehicle being fuelled at a dispenser is equipped with an onboard vapour recovery (ORVR) system wherein the fuel dispenser vapour recovery system operating parameters include at least one of the fuel dispenser V/L ratio, the hydrocarbon concentration of the vapour being returned to the underground tank from the fuel dispenser, the number of ORVR and non-ORVR vehicles fuelled in a given time frame, and vapour pump operating speed.

10. A system according to any one of Claims 4 to 9 including at least one underground fuel storage tank having an atmospheric vent and at least one sensor for measuring a tank parameter affecting vapour conditions in said storage tank;
wherein the controller is adapted to monitor the vapour handling subsystems by monitoring a tank parameter affecting vapour condition in said storage tank.

11. The system of Claim 10 wherein the tank parameter is at least one of the group comprising tank ullage pressure, tank ullage temperature, and tank atmospheric vent hydrocarbon vapour concentration.

12. The system of Claim 10 or 11 further including at least one ambient sensor for measuring an ambient parameter wherein the controller controls said dispenser vapour recovery systems based on the ambient parameter in conjunction with said tank parameter.

13. A system as claimed in any preceding claim including an underground fuel tank wherein one subsystem is an ullage pressure control system for monitoring the pressure in the underground tank ullage and controlling the ullage pressure, the controller being arranged to monitor the operation of the ullage pressure control system and control the operation of the ullage pressure control system to maintain the pressure within predetermined limits taking into account the operation of at least one other subsystem.

14. The system of Claim 11 or 12 wherein said controller is further adapted to detect leaks in said tank and vapour recovery systems by closing a tank vent and monitoring pressure changes in said storage tank or vapour recovery system indicative of vapour leakage.
15. The system of any preceding claim wherein the controller includes a trained artificial neural network whose inputs include at least vapour handling subsystem operating parameters, ambient pressure, temperature and whose outputs include at least control instructions to the vapour handling subsystems.

16. The system of any preceding claim further including at least one ambient temperature sensor linked to the controller for providing ambient temperature information to the controller.

17. The system of any preceding claim further including at least one atmospheric pressure sensor linked to the controller for providing atmospheric pressure information to the controller.

18. The system of any preceding claim including an onboard vapour recovery (ORVR) vehicle discrimination system capable of determining whether a vehicle being fuelled at a fuel dispenser is equipped with an ORVR vapour recovery system.

19. The system of any preceding claim wherein at least one of the vapour handling subsystems is an underground tank ullage pressure control system.

20. The system of Claim 19 wherein the underground tank ullage control system includes a signal generator for providing a signal to the controller indicative of at least one of tank ullage pressure, tank ullage hydrocarbon vapour concentration,
tank ullage temperature or tank vent hydrocarbon vapour concentration.

21. A system according to any preceding claim wherein the controller receives at least one of:
 a. individual fuel dispenser V/L ratio;
 b. hydrocarbon content of vapour being returned to underground storage tanks by fuel dispenser vapour recovery systems;
 c. ORVR vehicle status of vehicles being fuelled at a fuel dispenser;
 d. service station ambient temperature; and
 e. service station ambient atmospheric pressure.

22. A system according to any preceding claim wherein the controller receives underground tank ullage conditions.

23. A system according to Claim 22 wherein the underground tank ullage conditions include at least one of the group including ullage pressure, ullage temperature, ullage hydrocarbon vapour content, hydrocarbon vapour concentration in an underground tank vent.

24. A system according to any preceding claim wherein the controller receives ambient temperature and ambient pressure data.

25. A service station vapour management system substantially as hereinbefore described with reference to and/or as illustrated in one or more of the accompanying figures.
26. A fuel dispenser including:
 a. a vapour recovery system for returning vapours from a vehicle fuel tank to a service station underground tank; and
 b. an electronic interface to a controller remote from the fuel dispenser and capable of monitoring the operation of the vapour recovery system and controlling the operation of the vapour recovery system taking into account the operation of at least one other fuel dispenser to maintain hydrocarbon vapour discharge from the service station within predetermined limits.

27. A fuel dispenser according to Claim 26 further including a vehicle discrimination system for determining whether a vehicle being fuelled at the dispenser is equipped with an ORVR system.

28. A fuel dispenser as claimed in claim 26 substantially as hereinbefore described with reference to at least one of the accompanying drawings.

DATED this 17th day of July 2002
MARCONI COMMERCE SYSTEMS, INC.

WATERMARK PATENT & TRADE MARK ATTORNEYS
290 BURWOOD ROAD
HAWTHORN VICTORIA 3122
AUSTRALIA
FIG. 1B
Fig. 2B
BEGIN

202 DETERMINE/UPDATE SET POINTS AND CONTROL PARAMETERS

204 RECEIVE DATA FROM VAPOUR HANDLING SYSTEMS AND/OR SENSORS FOR AMBIENT, DISPENSER, UST, UST VENT, AND/OR VR PASSAGE

206 ANALYZE DATA FROM VAPOUR HANDLING SYSTEMS AND SENSORS

208 COMPARE DATA WITH SETPOINTS AND/OR CONTROL PARAMETERS

210 DETERMINE ADJUSTMENTS NECESSARY FOR VAPOUR HANDLING SYSTEMS, UST AND/OR UST VENT

212 PROVIDE CONTROL SIGNALS AS NECESSARY TO EFFECT ADJUSTMENTS FOR VAPOUR HANDLING SYSTEMS, UST AND/OR UST VENT

FIG. 2C
FIG. 8
300 BEGIN

302 RECEIVE SIGNAL FROM VEHICLE TRANSPONDER

304 IS VEHICLE EQUIPPED WITH ORVR?

306 NO

308 MONITOR FOR END OF FUELING OPERATION

310 IS FUELING OPERATION COMPLETE?

312 ADJUST OR DEACTIVATE DISPENSER VAPOR RECOVERY SYSTEM FOR FUELING

308 YES
When ORV is equipped

Determine type of ORV equipment

Type of seal?

Mechanical

Liquid

With recirculation?

Yes

Activate VR at full or reduced flow rate

No

Deactivate VR or reduce VR to 50% or less

To block 308 of FIG. 10A

FIG. 10B
FROM BLOCK 304 FIG.10A

DETERMINE RESTRICTOR PLATE PLACEMENT

326

INLET ABOVE PLATE?

YES

328

NO

ACTIVATE AT HIGHER FLOW RATE

330

ACTIVATE AT LOWER FLOW RATE

332

TO BLOCK 300 FIG.10A

FIG. 10C