woO 20117103184 A2 |11 0K 010 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/103184 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
25 August 2011 (25.08.2011) PCT
(51) International Patent Classification: 74)
GO6F 12/10 (2006.01)
(21) International Application Number:
PCT/US2011/025075 (81)
(22) International Filing Date:
16 February 2011 (16.02.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/707,341 17 February 2010 (17.02.2010) US
(71) Applicant (for all designated States except US): AD-
VANCED MICRO DEVICES, INC. [US/US]; One
AMD Place, Sunnyvalle, CA 94088 (US). (84)
(72) Inventors; and
(75) Inventors/Applicants (for US only): KEGEL, Andrew

[US/US]; 17011 NE 136th Place, Redmond, WA 98052
(US). HUMMEL, Mark [US/US]; 68 Stewart Street,
Franklin, MA 02038 (US). BOLEYN, Erich [US/US];
4941 SW 26th Drive, Portland, OR 97239 (US).

Agents: WOOD, Theodore, A. et al.; Sterne, Kessler,
Goldstein & Fox PLLC, 1100 New York Avenue, N.W.,
Washington, DC 20005-3934 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: IOMMU ARCHITECTED TLB SUPPORT

(57) Abstract: Embodiments allow a smaller, simpler hardware
implementation of an input/output memory management unit
(IOMMU) having improved translation behavior that is indepen-
dent of page table structures and formats. Embodiments also pro-

1000

1010 1006 ‘/

vide device-independent structures and methods of implementa-
Peripheral cPU tion, allowing greater generality of software (fewer specific soft-
ware versions, in turn reducing development costs).
@ Request 1008
1002._| [J
IOMMU
1012 \>
Translation Look- CPUMMU
] | 2side Buffer {IOTLB)}
1022
Address
Translation 1004
information
S System Memory
Page Tables 1020
L 1028
1024
Command Queue Event Log Buffer
1030
Prefetch
Immediate [
o~ Command
1026

FIG. 10

WO 2011/103184 A2 W00 000 A A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2011/103184 PCT/US2011/025075

IOMMU ARCHITECTED TLB SUPPORT

BACKGROUND

Field of the Invention

[0001] The present invention is generally directed to computer systems, and more

particularly, to input/output memory management units (IOMMUS).

Related Art

[0002] A memory management unit (MMU) can be associated with a central processing
unit (CPU). For example, a CPU MMU is configured to translate virtual addresses used
by the CPU into physical addresses corresponding to system memory, and the CPU MMU
validates the access (present, read, write, etc.), allowing for memory over-commit,
relocation, and protection in association with the CPU.

[0003] In systems relating to x86 CPUs, an Input/Output (I0) MMU associated with
Input/Output peripherals has been defined relatively recently. An input/output memory
management unit (IOMMU) can retrieve translation information from system memory
responsive to peripheral requests associated with, e.g., virtual addresses used by the
peripheral, to translate the virtual addresses to corresponding physical addresses of
system memory.

[0004] The IOMMU typically can contain a page-table walker logic that inspects the
contents of main system memory to find the necessary translation information (perform a
page-table walk). For example, when a peripheral requests information that is not cached
in the IOMMU (i.e., a "miss"), the page-table walker is used to obtain information from
system memory. However, the page-table walker can be complex to implement,
increasing the silicon area and power dissipation of the IOMMU chip or chip component.
The JOMMU implements the page-table walker in an attempt to be locally optimal based
on limited information available to the IOMMU hardware (e.g., affecting information
cached in the IOMMU based on least-recently-used (LRU) algorithm). Such examples of
hardware-only implementations can potentially lead to excessive translation fetches
(“page-table walks”) and excessive translation misses, degrading performance of the 10

subsystem and leading to increased memory latency.

WO 2011/103184 PCT/US2011/025075
-0

[0005] Additionally, the IOMMU typically is configured to read and parse information
based on the format of page table entries associated with a particular architecture, limiting
the IOMMU to a particular page table architecture, committing page table formats into
hardware designs and, by implication, to a particular compatible processor
implementation.

[0006] Software architected/managed translation look-aside buffer (TLB) caches are also
known. Software manages a TLB and any page table walks are done in software. The
software loads entries into the TLB, but no hardware infrastructure is backing the
software architected TLB. Furthermore, software architected TLBs have inflexibility
when it comes to loading and/or invalidation - when an entry is loaded into the TLB, the
loader has the effect of replacing a previous entry.

[0007] Some IO controllers or peripherals contain simple MMUs that are managed by
device driver software in the operating system or hypervisor. For example, a typical
graphics controller contains a “local MMU” on the graphics card. In such a case, the
“local MMU” mapping hardware is controlled by system software using sophisticated
algorithms, but each MMU is unique and requires a unique driver. Changes to the
peripheral hardware require changes to the driver, driving up development costs and
lengthening development schedules, ultimately delaying time-to-market. This also means
that a vendor cannot write a general driver for a hypervisor in a virtualized system and so
specific drivers must be included within the hypervisor, the selection of which depends on
the precise IO peripherals present in the system. This means that yet another driver must
be written and tested for the hypervisor in addition to the drivers for the supported
operating systems, again driving up development costs and time.

[0008] An approach is needed that improves IOMMU performance and provides a
standardized interface enabling software to be written once for a hypervisor and used for

multiple implementations of a peripheral memory mapping architecture.

BRIEF SUMMARY

[0009] Embodiments of the present invention allow a smaller, simpler hardware
implementation of an IOMMU with improved translation behavior that is independent of

page table structures and formats. Embodiments also provide device-independent

WO 2011/103184 PCT/US2011/025075
-3

structures and methods of implementation, allowing greater generality of software (fewer
specific software versions, in turn reducing development costs).

[0010] One embodiment relates to a method including receiving a prefetch immediate
command at an input/output (/O) memory management unit JIOMMU) of a system. The
prefetch immediate command specifies address translation information including (i) a
virtual address and (ii) a translated physical address associated with the virtual address.
The method further includes selectively storing, based on at least a resource status, the
address translation information into an I/O translation look-aside buffer (IOTLB)
associated with the IOMMU.

[0011] Another embodiment relates to a system including an input/output (I/O) memory
management unit (IOMMU) configured to receive a prefetch immediate command. The
prefetch immediate command specifies address translation information including (i) a
virtual address and (ii) a translated physical address associated with the virtual address.
An T/O translation look-aside buffer (IOTLB) associated with the IOMMU is configured
to selectively store, based on at least a resource status, the address translation information.

[0012] Yet another embodiment relates to a tangible computer-readable medium having
stored thereon, computer-executable instructions that, if executed by a computing device,
causes the computing device to perform a method including receiving a prefetch
immediate command at an input/output (I/O) memory management unit (IOMMU) of a
system. The prefetch immediate command specifies address translation information
including (i) a virtual address and (ii) a translated physical address associated with the
virtual address. The method further includes selectively storing, based on at least a
resource status, the address translation information into an I/O translation look-aside
buffer (IOTLB) associated with the IOMMU.

[0013] Further features and advantages of the invention, as well as the structure and
operation of various embodiments of the invention, are described in detail below with
reference to the accompanying drawings. It is noted that the invention is not limited to
the specific embodiments described herein. Such embodiments are presented herein for
illustrative purposes only. Additional embodiments will be apparent to persons skilled in

the relevant art(s) based on the teachings contained herein.

WO 2011/103184 PCT/US2011/025075
-4 -

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0014] The accompanying drawings, which are incorporated herein and constitute part of
the specification, illustrate embodiments and, together with the general description given
above and the detailed description of the embodiments given below, serve to explain the
principles of the embodiments of the present invention. In the drawings:

[0015] FIG. 1 is a block diagram illustrating a system including an IOMMU in
accordance with an embodiment;

[0016] FIG. 2 is a block diagram illustrating an IOMMU in accordance with another
embodiment;

[0017] FIG. 3 is a block diagram illustrating a system including an IOMMU interacting
with system memory in accordance with another embodiment;

[0018] FIG. 4 is a block diagram illustrating a system including an IOMMU interacting
with system memory in accordance with another embodiment;

[0019] FIG. 5 is a flow diagram illustrating a method for selectively storing address
translation information in accordance with another embodiment;

[0020] FIG. 6 is a block diagram illustrating an IOMMU in accordance with another
embodiment;

[0021] FIG. 7 is a block diagram illustrating a system including an IOMMU interacting
with system memory in accordance with yet another embodiment;

[0022] FIG. 8 is a block diagram illustrating a system including an [OMMU interacting
with system memory in accordance with yet another embodiment;

[0023] FIG. 9 is a flow diagram illustrating a method for servicing a request for address
translation data in accordance with yet another embodiment;

[0024] FIG. 10 is a block diagram illustrating a system including an IOMMU interacting
with system memory in accordance with yet another embodiment; '

[0025] FIG. 11 is a block diagram illustrating a system including an IOMMU and a
peripheral with an IOTLB in accordance with yet another embodiment; and

[0026] FIG. 12 is a block diagram illustrating an IOMMU including an interrupt

remapping buffer and a device table entry buffer in accordance with yet another

embodiment.

WO 2011/103184 PCT/US2011/025075

[0027]

[0028]

[0029]

[0030]

[0031]

-5
DETAILED DESCRIPTION

An embodiment of the present invention provides a memory management unit,
and applications thereof. In the detailed description that follows, referencés to "one
embodiment,” "an embodiment,” "an example embodiment," etc., indicate that the
embodiment described may include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particular feature, structure, or
characteristic. Moreover, such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is within the knowledge of one
skilled in the art to affect such feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described.

FIG. 1 is a block diagram illustration of a system 100 including CPU 106 and
CPU MMU 108 associated with CPU 106. System 100 further includes an IOMMU 102
associated with peripheral 110. Although not illustrated here, multiple IOMMUs are
contemplated in system 100, just as multiple CPU MMUs 108 are contemplated (e.g.,
multiprocessor systems).

The IOMMU 102 operates in accordance with a set of defined functions and
behaviors. These functions and behaviors are associated with a set of commands that are
queued in system memory 104 and read by the IOMMU 102 to be performed/consumed
by the IOMMU 102.

The IOMMU 102 translates virtual/physical addresses between the peripheral 110
and the system memory 104 and performs interrupt remapping. Interrupt remapping
functions similar to address translation in that it translates addresses corresponding to
remapping interrupts. For improving translation/remapping speeds of the IOMMU 102,
address translation/interrupt remapping information stored in system memory 104 can be
cached in the IOMMU 102. This process increases the speed at which the IOMMU 102
can access the translation or remapping information.

FIG. 2 is a more detailed block diagram illustration of the IOMMU 102 of FIG. 1.
The IOMMU 202 includes a page-table walker 214 configured to inspect the contents of
main system memory 104 (see FIG. 1). The page-table walker 214 also facilitates
location and retrieval of information for storage/caching in the IOMMU 102. The page-

table walker 214 can insert translation information into a cache referred to as a translation

WO 2011/103184 PCT/US2011/025075
-6-

look-aside buffer (TLB) 212, also known as an input/output TLB (IOTLB) 212. The
IOTLB 212 can be used for address translations between virtual addresses 216 and
physical addresses 218. Similar caching structures can be used for interrupt remapping.

[0032] The IOMMU 102 reads commands from system memory 104 that control the
filling of information to be cached, and the invalidation or flushing of
translation/remapping information that is cached in the IOMMU 102 and/or IOTLB 212.
The IOMMU 102 is further capable of automatically loading translation/remapping
information from the system memory 104, responsive to requests for the information
from peripheral 110. For example, the IOMMU 102 can implement a hardware page-
table walker 214 to perform a page-table walk and retrieve physical addresses 218 from
page tables of system memory 104. The page-table walk can be responsive to requests
from peripheral 110 including virtual addresses 216, when the virtual addresses 216 to be
translated are not cached in IOTLB 212.

[0033] Address translation/remapping information in the IOTLB 212 can be maintained
and updated in various ways (also referred to as translation buffer policy) via hardware
and/or software. For example, the system software on the CPU 106 can invalidate cached
information in the IOMMU 102 that is no longer valid because of changes in
corresponding information stored in system memory 104. The IOMMU 102 can also
implement translation buffer policy in hardware, such that hardware primarily decides
caching and eviction of translation entries cached in the IOMMU 102. A cached
translation entry can be evicted to make room for new information. A cached translation
entry must be flushed when it is no longer valid. These and other techniques can be
applied in dealing with information in the IOTLB 212 when it is to be replaced or is no
longer valid.

[0034] The IOMMU 102 can prefetch information from system memory 104, prior to
receiving a request for that information from a peripheral 110. A prefetch command can
be implemented, for example, as disclosed in U.S. Patent Application Ser. No.
12/112,611, filed April 30, 2008 and entitled "Translation Data Prefetch in an IOMMU,"
the contents of which are hereby incorporated by reference in full. A prefetch command
can instruct IOMMU 102 to walk page tables of the system memory 104 and preload

translation information associated with, for example, a specified (device virtual) address.

WO 2011/103184 PCT/US2011/025075
-7 -

Accordingly, the preloaded translation information is available in the IOTLB 212 when a
request comes in to the IOMMU 102

[0035] FIG. 3 is a block diagram illustration of a system 300, including an IOMMU 302
and system memory 304. System 300 further includes page tables 320 and event log
buffer 328. Address translation information 322 is accessible in the page tables 320. An
IOMMU entry 330 is accessible in the event log buffer 328. System 300 can additionally
include CPU 306 and CPU MMU 308.

[0036] Regarding filling the IOMMU cache(s), the IOMMU 302 accesses and caches
address translation information 322 stored in the page tables 320 of system memory 304.
As illustrated, page-table walker 314 of the IOMMU 302 performs a page-table walk to
retrieve the address translation information 322. The address translation information 322
is then cached in the IOTLB 312. When a subsequent request from peripheral 310 arrives
at the IOMMU 302 for the address translation information 322, the address translation
information 322 is available in the IOTLB 312 such that a page-table walk is not
necessary. If a request arrives at the IOMMU 302 for address translation information 322
that is no longer available at the IOTLB 312, then a subsequent page-table walk can be
performed to obtain the address translation information 322 from the page tables 320.
Alternatively, the system 300 can utilize a prefetch immediate command 326 to update
contents of the [OTLB 312.

[0037] The IOMMU 302 can read and consume commands stored in the command queue
324 of the system memory 304. The IOMMU 302 can thereby fill its cache(s) using
information passed in the commands. In addition to fill policies, commands read by the
IOMMU 302 can, in effect, allow system software to invalidate or otherwise update
information cached in the IOTLB 312. For example, invalidation can be associated with
a condition when the address translation information 322 changes, such that the
previously cached address translation information in the IOTLB 312 no longer
corresponds with the changed address translation information 322.

[0038] Commands read from the command queue 324 by the IOMMU 302 can further
augment functions of the IOMMU 302. A prefetch immediate command 326 can contain
the address translation information 322 within the body of the prefetch immediate
command 326. The IOMMU 302 can then receive address translation information 322

via the prefetch immediate command 326. Accordingly, the IOMMU 302 does not need

WO 2011/103184 PCT/US2011/025075
-8 -

to use the page-table walker 314 to walk the page tables 320 to obtain the address
translation information 322. The information in the prefetch immediate command 326
can be loaded directly into the target IOTLB 312 without performing any page-table
walking. As illustrated, page-table walker 314 is available to back-up and/or work in
conjunction with the prefetch immediate command 326.

[0039] Prefetch immediate command 326 can be implemented as a new command to the
IOMMU, or as a variation of the prefetch command described above. It can also be
implemented as a set of MMIO registers to which system software writes the necessary
information.

[0040] FIG. 4 is a block diagram illustration of a system 400 implementing a prefetch
immediate command 426 in accordance with the present embodiments. System 400 is
associated with a peripheral 410, and can include a CPU 406, CPU MMU 408, and
system memory 404. System memory 404 includes page tables 420, command queue
424, and event log buffer 428. System memory 404 also can be associated with IO page
tables 430. Address translation information 422 can be stored in 10 page tables 430. The
internal format of IO Page Tables 430 need not be the same as the internal format of
Page Tables 420. Prefetch immediate command 426 caches address translation
information 422 into the IOTLB 412. The address translation information 422 is
associated with the virtual addresses 416 and the physical addresses 418. The system 400
can manage the command queue 424 and the prefetch immediate command 426 to
provide the address translation information 422 for use by the prefetch immediate
command 426. Accordingly, the system 400 interacting with the IOMMU using the
prefetch immediate command 426, introduces flexibility and opportunities for the system
400 to be associated with the caching of data in the IOMMU 402.

[0041] Additionally, the system 400 can achieve caching of address translation
information 422 at the IOTLB 412, without requiring the use of the page-table walker
414. Thus, the system 400 is not required to contain specific system drivers to interface
with a specific hardware implemented page-table walker 414 (if utilized). However, it is
contemplated that the prefetch immediate command 426 can work in conjunction with a
hardware page-table walker 414 to improve overall performance, if applicable.

[0042] FIG. 5 is a flowchart illustration of an exemplary method 560 of selectively

storing address translation information based on the system status, in accordance with the

WO 2011/103184 PCT/US2011/025075
-0.

present embodiments. In step 570, the IOMMU receives a prefetch immediate command
specifying address translation information. In step 572, a system status is checked, for
example by the IOMMU or the system. The system status can include a resource status
of the system, which can include an availability of system resources, an availability of
one or more vacant address entries in the IOTLB, a power-conserving and/or sleep status,
and/or an availability of system resources in view of outstanding system requests. The
resource status can also include a priority of one or more valid address entries stored in
the IOTLB corresponding to the address translation information specified in the prefetch
immediate command, or an invalidation indication specified in the prefetch immediate
command.

[0043] In step 574, a decision is made whether to ignore the prefetch immediate
command based on the system status. If the decision is not to ignore the prefetch
immediate command, the method proceeds to step 576, and the address translation
information is stored at the IOTLB of the IOMMU. The method then proceeds from step
576 to step 578. If the decision is to ignore the prefetch immediate command at step 574,
the method proceeds to step 578 and the next IOMMU command in the command queue
is processed.

[0044] The command format for the prefetch immediate command can contain the
translated physical address and other information including permission access indicators
and IOMMU Domain information for the specified (device virtual) address. The
command format may also contain the IOTLB slot destination.

[0045] The IOMMU can selectively ignore the prefetch immediate command. For
example, the IOMMU can decide that an existing entry in the IOMMU caches should not
be overwritten, and that there is not a currently available IOMMU cache entry where the
address translation should be inserted. When a request later arrives at the IOMMU for the
address translation information that was contained in the ignored prefetch immediate
command but not inserted, the IOMMU can perform a page-table walk or request a
prefetch immediate command to obtain the requested address translation information. If,
for some reason, it would be inconvenient or not the right time to honor a prefetch
immediate command, it is safe for the prefetch immediate command to be ignored.

[0046] The selective honoring/ignoring of the prefetch immediate command enables the

IOMMU to optimize system performance by considering resource status in deciding

WO 2011/103184 PCT/US2011/025075
-10 -

whether to honor the command. Hardware-based infrastructure/mechanisms for obtaining
and inserting address translation information are available to embodiments of the
IOMMU, and the prefetch immediate command is an acceleration on top of the hardware
infrastructure. The prefetch immediate command can load the address translation
information, or the command can be ignored and the hardware mechanism can be relied
upon to load the address translation information.

[0047] The prefetch immediate command provides an alternative to the page-table walker
of the IOMMU for providing address translation information to the IOMMU.
Additionally, various techniques can be implemented for loading and/or inserting the
provided address translation information into the IOTLB of the IOMMU. Embodiments
described herein can work in conjunction with existing functionality of the IOMMU, or
override the IOMMU functionality.

[0048] In one embodiment, the IOMMU's native cache replacement algorithm can be
used to insert the provided address translation information into the [OMMU's IOTLB, i.e.,
into the IOMMU's internal address translation cache. In this way, the IOMMU IOTLB
translation cache would function normally when loading/inserting the provided address
translation information into the IOTLB. However, the IOMMU overall would not need
the page-walk function to obtain and/or provide the address translation information to the
IOMMU's native cache replacement algorithm.

[0049] Accordingly, the native cache replacement algorithm of the IOMMU can handle
situations that can result in eviction, e.g., when there is not a free slot in the IOTLB to
store the provided address translation information. For example, the normal operation of
the IOTLB may cause address translation information already cached in the IOTLB to be
evicted (replaced) by other provided address translation information, even before the
already cached address translation information is used or requested.

[0050] In another embodiment, the prefetch immediate command can contain information
directing the IOMMU to load the information into a specific slot in the IOMMU IOTLB
translation cache. The loading of this information overrides or replaces the IOMMU
translation cache replacement hardware and/or algorithm for that prefetch immediate
command. The normal operation of the IOTLB subsequently may cause the translation

information to be evicted (replaced) before it is used. Because the system can direct the

WO 2011/103184 PCT/US2011/025075
11 -

IOMMU, the system is freed from the specifics of the IOMMU translation cache
replacement hardware and/or algorithm.

[0051] In yet another embodiment, the IOTLB structure is exposed directly in, for
example, MMIO space where system software can directly manipulate the contents, or
indirectly in MMIO space through an address/data register pair.

[0052] FIG. 6 is a block diagram illustration of another embodiment of an IOMMU 602
including side TLB 632, in accordance with the present embodiments. IOMMU 602 is
associated with virtual addresses 616, physical addresses 618, and page-table walker 614.
The side TLB 632 is separated from the IOTLB 612. The IOMMU 602 can insert the
provided address translation information into special “side” translation look-aside buffers
(side TLB 632). The side TLB 632 can be managed by the system software and can
contain frequently used translations. Keeping the frequently used translations aside from
the IOTLB 612 by using side TLB 632 frees the frequently used translations from
competing with other address translations for slots in the IOTLB 612. The frequently
used translations cached in the side TLB 632 would not be evicted by normal translation
cache operation of the IOMMU 602 performed on IOTLB 612, making the side TLB 632
“sticky” and always available for storing address translation information. For example,
device direct memory access (DMA) operations that need address translation information
stored in the entries of the side TLB cache would be translated quickly and would not be
delayed by page walks by the IOMMU.

[0053] FIG. 7 is a block diagram illustration of a system 700 with IOMMU 702 including
IOTLB 712 and side TLB 732 in accordance with the present embodiments. System 700
includes CPU 706, CPU MMU 708, and system memory 704. System memory 704
includes page tables 720, command queue 724, and event log buffer 728. In the system
700, a request from peripheral 710 including virtual addresses 716 arrives at IOMMU
702. TOMMU 702 determines whether address translation information associated with
physicél addresses 718 and corresponding to the virtual addresses 716 is cached at the
IOMMU 702 in the IOTLB 712 and/or the side TLB 732. If the information is not
available at the IOMMU 702, and is available from page tables 720 of main system
memory 704, there is an IOTLB miss (distinct from a page fault, where the information is
not available). The page-table walker 714 is available to access the page tables 720 of

system memory 704 to obtain and provide the address translation information needed to

WO 2011/103184 PCT/US2011/025075
212 -

serve the request at the IOMMU 702. Additionally, system 700 can use the command
queue 724 to execute a prefetch immediate command 726 to provide address translation
information 722 for the side TLB 732 and the IOTLB 712, without waiting for the page-
table walker 714 to perform a page-table walk.

[0054] The IOMMU 702 can be configured to provide information to system software
and/or system 700 about the size and functionality of the storage (cache; e.g., IOTLB 712
and side TLB 732) associated with the prefetch immediate command 726 so that system
software can optimize use of the storage cache. The provided information can include,
for example, the number and type of entries and their organization as a cache.
Accordingly, the system 700 can intelligently manage the storage cache resources of the
IOMMU 702 at a global system level.

[0055] FIG. 8 is a block diagram illustration of a system 800 with IOMMU 802 including
IOTLB 812 in accordance with the present embodiments. System 800 includes system
memory 804 and CPU MMU 808. System memory 804 includes page tables 820,
command queue 824, and event log buffer 8§28. In the embodiment of FIG. 8, the
IOMMU 802 does not include a page table walker, thus conserving power and chip real-
estate. A request from peripheral 810 including virtual addresses 816 arrives at the
IOMMU 802. The IOMMU 802 determines whether address translation information
associated with the virtual addresses 816 and physical addresses 818 is available at the
IOMMU 8§02 to serviée the translation request from the peripheral 810. When address
translation information is not cached at the IOMMU 802 (e.g., an IOTLB miss), the
IOMMU 802 creates a new IOMMU event log entry at the event log buffer 828. The
event log entry signals the main CPU 806 that translation information is required by the
IOMMU 802. The main CPU 806 can use the prefetch immediate command 826 to insert
the address translation information 822 into the IOTLB 812 and resume the 10 operation
of the peripheral 810 that triggered the event. A side TLB (not illustrated in FIG. 8; see,
e.g., FIG. 7) can be included in IOMMU 802 to further reduce or eliminate the probability
of an IOTLB miss, depending on implementation decisions and usage patterns of the
IOMMU 802 cache.

[0056] The prefetch immediate command can contain the domain information (the

Device Table Entry contents) in order to inject the domain information into the IOMMU

WO 2011/103184 PCT/US2011/025075
-13 -

cache structure. Alternatively, injecting the domain information can be implemented as a
, separate command, depending on various implementation specifics.

[0057] FIG. 9 is a flowchart illustration of an exemplary method 960 for servicing a
request from an I/O operation. In step 980, a request is received from an /O operation
requesting address translation information. In step 982, it is determined whether address
translation information associated with the request is already stored in the IOTLB of the
IOMMU. If the address translation information is already stored, the method proceeds to
step 984 and the requested address translation information is provided. If, at step 982, the
address translation information is not already stored, the method proceeds to step 986 and
an IOMMU event log entry is created, signaling that address translation information is
requested. In step 990, the requested address translation information is inserted into the
one or more IOMMU caches responsive to the IOMMU event log entry, using a prefetch
immediate command. In step 992, the I/O operation requesting the address translation
information is resumed.

[0058] FIG. 10 is a block diagram illustration of a system 1000 with an event log buffer
1028 including IOMMU event log entry 1030. The illustrated embodiment does not
include a page table walker in the IOMMU 1002, thus conserving power and chip real-
estate. System 1000 includes CPU MMU 1008 and system memory 1004. System
memory 1004 includes page tables 1020, command queue 1024, and event log buffer
1028. In the system 1000, a request from peripheral 1010 arrives at the IOMMU 1002.
The IOMMU 1002 determines whether address translation information is available at the
IOMMU 1002 to service the translation request from the peripheral 1010. In the event
that address translation information is not cached at the IOMMU 1002 (e.g., an IOTLB
miss), a new IOMMU event log entry 1030 is created at the event log buffer 1028. The
IOMMU entry 1030 signals the main CPU 1006 that translation information is requested
by the IOMMU 1002. The main CPU 1006 uses prefetch immediate command 1026 to
provide the address translation information 1022 to the IOTLB 1012. The translation
information 1022 is provided by putting the prefetch immediate command 1026 into the
command queue 1024 of system memory 1004. The IOMMU 1002 fetches the prefetch
immediate command 1026 from the command queue 1024, and the IOMMU 1002

executes the prefetch immediate command 1026. The provided address translation

WO 2011/103184 PCT/US2011/025075
-14 -

information 1022 can then be inserted into the IOTLB 1012 using various fill polioies
described above.

[0059] For example, the prefetch immediate command 1026 can include specific slot or
other information regarding a specific location of the IOTLB 1012. Alternatively, the
native cache replacement algorithm of the IOMMU can be used to insert the provided
address translation information 1022 into the IOTLB 1012. A side TLB (not illustrated)
can be included in IOMMU 1002 to further reduce or eliminate the probability of an
IOTLB miss, depending on implementation decisions and usage patterns of the IOMMU
1002 cache.

[0060] Address translation information can be invalidated and/or removed from the
translation cache(s) of the IOMMU for various reasons. For example, the address
translation information cached in the IOMMU may no longer correspond to the address
translation information stored in page tables of system memory.

[0061] In an embodiment, an INVALIDATE _IOMMU_PAGES command can be used to
specify address translation information or a particular address to invalidate, such that the
IOMMU searches its internal address translation cache(s) using a native IOMMU search
algorithm to find any particular entry or entries to invalidate.

[0062] In another embodiment, the INVALIDATE IOMMU PAGES command can
indicate a specific slot of the [OMMU to invalidate, instead of the address to invalidate.
The command can be structured as a variant of the INVALIDATE JOMMU_PAGES
command, or the command can be structured as a new command.

[0063] In another embodiment, invalidation can be accomplished by issuing a prefetch
immediate command. The prefetch immediate command can specify an occupied address
translation slot, and specify that the information contained in the occupied address
translation slot should be overwritten. For example, the prefetch immediate command
can contain an invalidation bit. When the invalidation bit is indicated, the IOMMU is
directed to obey the prefetch immediate command and overwrite pre-existing address
translation information. Thus, the invalidation bit can control whether the [OMMU can
selectively ignore the prefetch immediate command.

[0064] In yet another embodiment, where the IOTLB structure is exposed directly in, for
example, MMIO space where system software can directly manipulate the contents,

invalidation can be accomplished by using a direct-access method. In this embodiment,

WO 2011/103184 PCT/US2011/025075
-15-

system software can invalidate entries the same way it inserts them into the table — by
manipulating the IOTLB through MMIO space.

[0065] Although the system software running, for example, on the main x86 processor is
augmented by these new commands, the benefits introduced can be implemented in
software that is easily changed to implement the benefits. The system software is able to
implement more sophisticated, appropriate, adaptable, and efficient replacement
techniques than unmodified hardware mechanisms can anticipate or implement at a local
level. For some system constraints, typically systems that are performance sensitive, a
full IOMMU with a hardware page-table walker can be implemented to complement the
software commands and associated structure described herein.

[0066] FIG. 11 is a block diagram illustration of a system 1100 including an IOMMU
1102 and a peripheral 1111 with an IOTLB. System 1100 includes system memory 1104,
CPU 1106, and CPU MMU 1108. Some peripherals will use an IOTLB within the
peripheral. The IOTLB of the peripheral can function as a logical extension of the
IOTLB of the IOMMU 1102. A peripheral with an IOTLB 1111 can utilize an IOMMU
1102 to perform page-table walks to obtain and return the translation information (e.g.,
PCI-SIG ATS Address Translation Services). The prefetch immediate command and
other associated commands and structures described herein are therefore compatible with
such systems including a peripheral with an IOTLB 1111.

[0067] Peripherals with an IOTLB 1111 in such systems can continue to use the PCI-SIG
ATS protocol to populate their IOTLB. The peripherals with an IOTLB in such a system
can also adopt embodiments described herein to populate their IOTLB. System software
can populate both the IOMMU and the IOTLB of the peripheral, and the protocols and
software interface can be compatible for efficiency. In an embodiment, the IOMMU
would not need to support the ATS protocol, simplifying the design and reducing the
silicon area and power requirements.

[0068] FIG. 12 is a block diagram illustration of a further embodiment of an IOMMU
1202 including an IOTLB 1212, a page-table walker 1214, an interrupt remapping buffer
1234, and a device table entry buffer 1236. The IOMMU 1202 provides a feature called
Interrupt Remapping that functions similarly to address translation in translating between
virtual addresses 1216 and physical addresses 1218, but applies to interrupts. The

techniques and embodiments described herein can therefore be used for Interrupt

WO 2011/103184 PCT/US2011/025075
- 16 -

Remapping. New commands or variants of existing commands can be implemented to
carry interrupt remapping information, instead of address translation. Similarly, new or
variant commands can be implemented for invalidation of interrupt remapping
information. The address translation and interrupt remapping can be implemented
independently, because the corresponding tables are separate and independent, correlated
by the IOMMU Device Table Entry Buffer 1236. Accordingly, IOMMU 1202 can

perform enhanced address translation and interrupt remapping.

CONCLUSION

[0069] Embodiments described herein can improve time-to-market for an IOMMU
implementation (product), reduce the effort required to develop, test, and support new
IOMMU hardware, and provide a mechanism that allows software to make globally
optimal policy decisions to improve upon locally optimal policy decisions made by
hardware, where applicable. Embodiments also allows for a software-managed “quick
path” translation feature utilizing side TLBs. The function of an IO memory management
unit can be implemented more efficiently (less silicon area), and IO can flow faster
through such a system. Multiple IOMMUs, with and without the proposed
enhancements, can coexist in a system for compatibility reasons — older and newer chip
designs can be intermixed in system designs. Because some embodiments do not require
page-walker hardware, the resulting IOMMU can be smaller and fit on smaller FPGAs.
Because embodiments do not require the IOMMU to hard-wire the format of specific
page tables, embodiments can work with a variety of page table formats (e.g., with non-
x86 processors and formats).

[0070] Instructions executed by the logic to perform aspects of the present invention can
be coded in a variety of programming languages, such as C and C++, Assembly, and/or a
hardware description language (HDL) and compiled into object code that can be executed
by the logic or other device.

[0071] The embodiments described above can be described in a hardware description
language such as Verilog, RTL, netlists, etc. and that these descriptions can be used to
ultimately configure a manufacturing process through the generation of
maskworks/photomasks to generate one or more hardware devices embodying aspects of

the invention as described herein.

WO 2011/103184 PCT/US2011/025075
-17 -

[0072] Aspects of the present invention can be stored, in whole or in part, on a computer
readable media. The instructions stored on the computer readable media can adapt a
processor to perform embodiments of the invention, in whole or in part.

[0073] It is to be appreciated that the Detailed Description section, and not the Summary
and Abstract sections, is intended to be used to interpret the claims. The Summary and
Abstract sections may set forth one or more but not all exemplary embodiments of the

present invention as contemplated by the inventor(s), and thus, are not intended to limit

the present invention and the appended claims in any way.

WO 2011/103184 PCT/US2011/025075
- 18 -

WHAT IS CLAIMED IS:

1. A method comprising:

determining a resource status of a computer system including a memory management
unit; and
selectively storing address translation information at a cache associated with the memory

management unit based upon the determined resource status.

2. The method of claim 1, wherein the address translation information is included in a

prefetch immediate command.

3. The method of claim 1, wherein the address translation information includes (1) a virtual

address and (ii) a translated physical address associated with the virtual address.

4. The method of claim 1, wherein the memory management unit is an input/output (I/O)

memory management unit IOMMU).

5. The method of claim 1, wherein the cache is an I/O translation look-aside buffer
(IOTLB).
6. The method of claim 5, wherein the cache further comprises a side translation buffer

isolated from translation cache operations associated with the [OTLB.
7. The method of claim 1, further comprising:

creating an event log entry responsive to a request for address translation information not

stored in the cache; and

inserting the requested address translation information into the cache responsive to the

event log entry.

8. The method of claim 1, further comprising:

WO 2011/103184 PCT/US2011/025075
-19-

performing a page-table walk, using a page-table walker associated with the memory

management unit, responsive to a request for address translation information not stored in the

cache;

obtaining, using the page-table walker, the requested address translation information from
a translation table in a system memory of the computer system; and

inserting the requested address translation information into the cache using a cache

replacement mechanism associated with the memory management unit.

9. The method of claim 1, further comprising:

inserting the address translation information into one or more specified slots associated
with the cache, thereby bypassing a cache replacement mechanism associated with the memory

management unit.

10. The method of claim 1, further comprising:

invalidating locations associated with the cache using an invalidation mechanism

associated with the memory management unit,
wherein the invalidating is responsive to an invalidation command specifying at least one

of: (i) one or more address entries, and (ii) one or more slots.

11. The method of claim 1, further comprising:

storing specified address translation information responsive to an invalidation indication,
regardless of any already stored address translation information associated with the specified

address translation information.

12. The method of claim 1, further comprising:

WO 2011/103184 PCT/US2011/025075
=20 -

selectively storing, based on at least the resource status, interrupt remapping information

at an interrupt remapping buffer associated with the memory management unit.

13. A computer system comprising:

a memory management unit configured to determine a resource status of the computer
system; and
selectively store address translation information at a cache associated with the memory

management unit based upon the determined resource status.

14. The system of claim 13, wherein the address translation information is included in a

prefetch immediate command.

15. The system of claim 13, wherein the address translation information includes (i) a virtual

address and (ii) a translated physical address associated with the virtual address.

16. The system of claim 13, wherein the memory management unit is an input/output (I/O)

memory management unit (IOMMU).

17. The system of claim 13, wherein the cache is an /O translation look-aside buffer
(I0OTLB).
18. The system of claim 17, wherein the cache further comprises a side translation buffer

isolated from translation cache operations associated with the IOTLB.
19. The system of claim 13, wherein the memory management unit is further configured to:

create an event log entry responsive to a request for address translation information not

stored in the cache; and

insert the requested address translation information into the cache responsive to the event

log entry.

WO 2011/103184 PCT/US2011/025075
221 -

20. The system of claim 13, wherein the memory management unit is further configured to:

perform a page-table walk, using a page-table walker associated with the memory

management unit, responsive to a request for address translation information not stored in the

cache;

obtain, using the page-table walker, the requested address translation information from a
translation table in a system memory of the computer system; and
insert the requested address translation information into the cache using a cache

replacement mechanism associated with the memory management unit.

21. The system of claim 13, wherein the memory management unit is further configured to:

insert the address translation information into one or more specified slots associated with
the cache, thereby bypassing a cache replacement mechanism associated with the memory

management unit.

22. The system of claim 13, wherein the memory management unit is further configured to:

invalidate locations associated with the cache using an invalidation mechanism associated
with the memory management unit, responsive to an invalidation command specifying at least

one of: (i) one or more address entries, and (ii) one or more slots.

23. The system of claim 13, wherein the memory management unit is further configured to:

store specified address translation information responsive to an invalidation indication,
regardless of any already stored address translation information associated with the specified

address translation information.

24. The system of claim 13, further comprising:

WO 2011/103184 PCT/US2011/025075
-0 -

an interrupt remapping buffer associated with the memory management unit and

configured to selectively store, based on at least the resource status, interrupt remapping

information.

25. A tangible computer-readable medium having stored thereon, computer-executable
instructions that, if executed by a computing device, cause the computing device to

perform a method comprising:

determining a resource status of a computer system including a memory management
unit; and
selectively storing address translation information at a cache associated with the memory

management unit based upon the determined resource status.

WO 2011/103184

Peripheral

L

fOMMU

110

102

1/12

CPU

PCT/US2011/025075

100

104

<

System
Memory

FIG. 1

WO 2011/103184

PCT/US2011/025075

2/12

Virtual
Addresses

214\~

Page-table
walker

AL 212

Translation Look-aside
Buffer (TLB or IOTLB)

IOMMU
= &
34
o ©
£
W

FIG. 2

WO 2011/103184 PCT/US2011/025075

3/12
300
o~ 310 306
Peripheral CPU
il 302 ii o~ 308
IOMMU
314
"N Page-table walker | [T, CPU MMU
312 N Translation Look- -« g
aside Buffer (IOTLB) R
P System Memory
320 _t~| Page Tables | ! P 304
Address Translation '4_)
,\/ Info
322
Command Queue Event L.og Buffer
324 |~ 328
TN Prefetch N
immediate IOMMU Eniry
A~ Command \/'\
326 330

FIG. 3

WO 2011/103184 PCT/US2011/025075

4/12
400
410 406
Peripheral CPU
Virtual ~ 416
402 ddresses Py 408

IOMMU
\{ Page-table walker]

414
CPU MMU

412 \/\\ Translation Look-
aside Buffer (I0TLB)
7\

b

: %ﬂ8

Physical

: Addresses '

S 404

System Memory
490 | |Page Tables |O Page Tables |~ 430
\/'\:\ Address 422
! Translation | 1
: Information
i 428
i {Command Queue Event Log Buffer
424)
\’//\:\\ Prefetch
“t--24 Immediate
42(\/ Command

FIG. 4

WO 2011/103184

PCT/US2011/025075

5/12

560

IOMMU Receives Prefetch

Immediate Command | —~_~ 570
Specifying Address

Translation Information

M

572
Check System Status [~ ™

574

Ignore Prefetch

Immediate Command No
Based On System
Status?
1) 576
Store
Address
Translation
Information
578

Process Next IOMMU
Command In Command =
Queue

FIG. 5

WO 2011/103184

6/12

Virtual
Addresses

612

Page-
table
walker

Translation Look-
aside Buffer (TLB or
IOTLB)

Side TLB

IOMMU

PCT/US2011/025075

. 602

L 632

hysical

Addresses

|

FIG. 6

WO 2011/103184 PCT/US2011/025075
7/12
700
o~ 710 ~_ 706
Peripheral CPU
Virtual ~ /16
702\~ ddresses 708
IOMMU
714
\/\\{ Page-table walker I
712 N_~h] Translation Look- CPU MMU
aside Buffer (IOTLB) 732
A
22 | riswems Y
7)
> 71
Address | . /,\JB
Translation | i Physical
Information | :! Addresses
¥ o~ 704
System Memory
720 \/N\ Page Tables
724 M /728
{1|Command Queue Event Log Buffer
§ p Prefetch
\ Immediate
72(\’/’ Command

FIG. 7

WO 2011/103184 PCT/US2011/025075
8/12
800
810 806
Peripheral CPU
iL Virtual ~5 816 i r
Addresses
802 _~_ 808
IOMMU
812 NN
Translation Look- CPU MMU
aside Buffer (10TLB)
822 A
Address ;) o8
Translation | ! A!;Eysmal
. resses
Information | 804
E System Memory
820 \/\ Page Tables
; 828
Command Queue Event Log Buifer
824 \ |

\/\'\ Prefetch

N Immediate

826 Command

FIG. 8

WO 2011/103184 PCT/US2011/025075

9/12

960

Receive Request From /O
Operation Requesting
Address Translation Info

082

Address Translation Yes
Info Already Stored In

The TLB?

986 v 984

Create IOMMU Event Log
Entry Signaling That Address
Translation Info Is Requested

Provide The Requested
Address Translation Info

v o~ 990
Insert The Requested
Address Translation Info Into
The One Or More [OMMU
Caches Responsive To The
IOMMU Event Log Entry,
Using A Prefetch Immediate
Command

{ 992

Resume The /O Operation

Requesting The Address
Translation Info

FIG. 9

WO 2011/103184 PCT/US2011/025075

10/12

(g‘lO 1006 4/

Peripheral CPU
® Re%estil iL 1008
1002 fJ
IOMMU
1012\~
Translation Look- CPU MMU
— 51 | aside Buffer (IOTLB)
1022
Address
Translation 1004
Information
System Memory
Page Tables
o~ 1020
28
1024 10
Command Queue Event Log Buffer
Prefetch 1030
/\\-/
Immediate @ ‘%h:tMU @ -
_+t1_Command Y
1026

FIG. 10

WO 2011/103184 PCT/US2011/025075

11/12
1100
1111 1106
Peripheral
w/IOTLB CPU
L 1102 1108
CPU
IOMMU MMU

1104

System
Memory

a4

FIG. 11

WO 2011/103184 PCT/US2011/025075
12/12
g |~ 1216
T v
g9
>3
<
1236\/\ |~ 1202
Device Table Entry Buffer
1214 =
Page-
table | Translation Look- Interrupt TN 1234
walker | gside Buffer (TLB| Remapping
or IOTLB) Buffer
1212
IOMMU
= O 1218
Sa
20
Euliye
o
<

|

FIG. 12

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

