发明名称
进气歧管部件和进气系统

摘要
本发明涉及一种安装在特别是手机车辆的内燃机的进气系统 (1) 中的进气歧管 (2) 部件。管主体 (8) 包括入口开口 (11) 和出口开口 (12) 并包括从所述入口开口 (11) 延伸到所述出口开口 (12) 的新鲜空气通路部分 (13)。紧固到所述管主体 (8) 并伸出至所述新鲜空气通路部分 (13) 中的空气流量传感器 (9)，以及设置在所述管主体 (8) 上并绕开所述新鲜空气通路部分 (13) 的支路通道 (10)。且该支路通道 (10) 可以在入口侧连接额外通路 (7)。
1. 一种安装在特别是机动车辆的内燃机的进气系统（1）中的进气歧管部件，
具有管主体（8），该管主体（8）包括入口开口（11）和出口开口（12）并包括从所述入口
开口（11）延伸到所述出口开口（12）的新鲜空气通路部分（13），
具有空气流量传感器（9），该空气流量传感器（9）紧固到所述管主体（8）并伸出至所述
新鲜空气通路部分（13）中，
具有支路通道（10），该支路通道（10）设置在所述管主体（8）上并绕开所述新鲜空气通
路部分（13）且可以在入口侧连接漏气通路（7）。
2. 根据权利要求1所述的进气歧管部件，其特征在于：
所述支路通道（10）在所述管主体（8）上整体形成。
3. 根据权利要求1或2所述的进气歧管部件，其特征在于：
所述管主体（8）能够通过其入口开口（11）被连接到所述进气系统（1）的在流入侧的
构件（3）的入口（19），
所述管主体（8）能够通过其出口开口（12）被连接到所述进气系统（1）的在流出侧的
构件（4）的入口（20），
其中所述支路通道（10）被特别提供为在出口侧通往在流出侧的构件（4）。
4. 根据权利要求1至3之一所述的进气歧管部件，其特征在于：
所述管主体（8）具有在出口侧的出口连接部（23），该出口连接部（23）能够连接到所述
进气系统（1）的在流出侧的构件（4），
所述出口连接部（23）具有所述出口开口（12）和所述支路通道（10）的出口部分（16）。
5. 根据权利要求4所述的进气歧管部件，其特征在于：
所述出口连接部（23）具有内壳（24）和外壳（25），该内壳（24）具有圆形内部横截面并
横向界定所述出口开口（12），该外壳（25）具有围绕所述内壳（24）和所述支路通道的（10）
圆形外部横截面。
6. 根据权利要求1至5之一所述的进气歧管部件，其特征在于：
所述支路通道（10）在新鲜空气流动方向（6）伸出超过出口侧的所述出口开口（12）。
7. 根据权利要求1至6之一所述的进气歧管部件，其特征在于：
所述支路通道（10）具有在入口侧的连接件（29），该连接件（29）能连接到引导所述漏
气通路（7）的漏气管（31）的出口（30）。
8. 根据权利要求7所述的进气歧管部件，其特征在于：
所述漏气管（31）的所述出口（30）被布置在所述进气系统（1）的流入侧的构件（3）
上，
其中所述漏气管（31）的所述出口（30）被特别提供为整体形成在流入侧的所述构件
（3）上。
9. 根据权利要求1至8之一所述的进气歧管部件，其特征在于：
所述空气流量传感器（9）具有外壳（42）并被粘接或焊接到所述管主体（8），
其中所述管主体（8）和所述外壳（42）被特别提供为由塑料制成。
10. 根据权利要求1至9之一所述的进气歧管部件，其特征在于：
所述进气歧管部件（2）为预安装单元，能够与校准空气流量传感器（9）被安装至所述
进气系统（1）中。
11. 一种用于特别是机动车辆的内燃机的新鲜空气供给的进气系统，具有根据权利要求 1 至 10 之一所述的至少一个进气歧管部件 (2)。
进气歧管部件和进气系统

技术领域

[0001] 本发明涉及一种安装在特别是机动车辆的内燃机的吸入系统中的进气歧管部件。另外，本发明涉及一种特别是机动车辆的内燃机的进气系统，其装备有上述进气歧管部件。

背景技术

[0002] 用于内燃机的新鲜空气供给的进气系统通常装备有空气流量传感器，通过该空气流量传感器电机控制协同作用，以便能够根据需要运行内燃机。例如，燃料注入、节气门、气门控制次序、排放气体等参数均取决于在特定时刻供给的空气流量。这种空气流量传感器，优选可以被构造为热膜式传感器，对于杂质相对敏感。因此，进气系统中的空气流量传感器通常被布置在空气过滤器下游。而且，通常在空气流量传感器下游将漏气引入，该漏气从内燃机的曲柄轴箱返回到进气系统中。

[0003] 为了漏气的返回，其基本能够连接进气系统，源自曲柄轴箱或源自汽缸盖的软管。这承担相对高的费用。

发明内容

[0004] 本发明涉及问题指向一种在背景技术中提及类型的进气系统或一种相关进气歧管部件，一种改进的或至少不同的实施方式，其特别不同之处在于简便安装和/或生产和/或功能可靠性。

[0005] 根据本发明，上述问题由独立权利要求的内容解决。优选实施方式为从属权利要求的内容。

[0006] 本发明基于将能够被安装在进气系统中的管主体一方面装备空气流量传感器而另一方面装备支路通道的一般思路，其中，支路通道一方面能被连接到漏气通路而另一方面绕开管主体中延伸的新鲜空气通路部分。漏气通路将漏气从曲柄轴箱或从汽缸盖引导至进气系统，其中按照本发明的提议，上述引入进气系统的过程现在通过管主体的支路通道进行。新鲜空气通路被引导通过管主体。空气流量传感器伸出至管主体内的所述新鲜空气通路。

[0007] 因此通过本发明，提供了一种进气歧管部件，该进气歧管部件能够与剩余的进气系统被分别制造，并且该进气歧管部件包括具有空气流量传感器的管主体和支路通道。通过该整合构造的方法，能确保以特别简单的方式引入空气流量传感器下游的漏气。然而，特别有利的因素是，连接件（进气歧管部件通过该连接件整合至进气系统）能够被特别简单地构造，使得一方面与进气系统的新鲜空气通路的联接且另一方面与漏气通道的联接都能够被更简单地实现，其中特别地，能够实现不同通风的同时连接。而且，也能想到将入口侧的两个连接位置整合到共享接口中。

[0008] 在此，特别优选地是，支路通道被整体形成在管主体上的实施例。特别是，管主体与支路通道能想到由塑料制成，特别是被制成单片注塑部件。

[0009] 为了简化进气歧管部件在进气系统上的安装，管主体能通过其入口开口连接到进
气系统的在流入侧的构件的出口，能够通过其出口开口连接到进气系统的在流出侧的构件的入口。特别地，由此能产生限定的接口，简化了将进气歧管部件整合或分别安装至进气系统。

[0010] 根据特别优选的进一步发展，支路通道现在可以被提供为在出口侧通往进气系统的在流出侧的构件。换言之，在将进气歧管部件安装至进气系统中之后，管主体的新鲜空气通路部分和支路道道两者通往进气系统的在流出侧的构件。由此产生共享的连接位置或接口，其将进气歧管部件与进气系统的在流出侧的构件连接，其中同时新鲜空气通路部分和支路通道通往在流出侧的该构件，由此在流出侧的该部件中，返回的漏气混合或引入到新鲜空气流。

[0011] 根据另一优选实施例，支路通道能在出口侧沿新鲜空气流动方向伸出超过管主体的出口开口。因此，能降低漏气返回流动到空气流量传感器的风险。

[0012] 根据本发明提出的进气歧管部件，优选在入口侧的支路通道能够装备有能够被连接到漏气通路出口连接件，其中能基本想到该出口的任何期望的构造。例如，所述出口可布置在进气系统在流入侧的构件上，且特别地，能在其上整体形成。支路通道的所述连接件也能被用于例如连接软管，漏气通过软管返回。为此能使用相应的联接装置，其能够安装和拆卸软管。可替换地，同样能够想到将软管紧固地布置或预安装在支路通道的连接件上，然后在进气歧管部件的装置上的所述软管能够在其入口端处与曲柄轴箱或与油缸盖连接。例如，该软管能够被焊接或盘绕到支路通道的连接件上。

[0013] 本发明的进一步的特征或优点将在从属权利要求、附图和参照附图的相关附图描述中示出。

[0014] 应该理解，在不偏离本发明的范围的情况下，上述特征和下文中将进一步详细解释的特征不仅能够以分别提到的组合形式使用，而且能够以其它组合形式或单独地使用。

附图说明

[0015] 本发明的优选实施例在附图中被示出并在下面的描述中进一步详细解释，其中相同的附图标记指示相同或相似或功能相同的构件。

[0016] 分别图解地显示：

[0017] 图 1：进气歧管部件的透视图；

[0018] 图 2：与图 1 中相同的透视图，但是为不同观察方向；

[0019] 图 3：在进气歧管部件区域中的进气系统的纵截面。

具体实施方式

[0020] 根据图 3，仅由局部示出的进气系统 1，其用于内燃机（未示出）的新鲜空气供给，其能被布置在特别是机动车辆中，包括进气歧管部件 2 和在流入侧的至少一个构件 3 和在流出侧的至少一个构件 4。在图 3 中，新鲜空气通路 5 由箭头指示。另外，跟随新鲜空气通路 5 的新鲜空气流的流动方向 6 由一个箭头指示。因此，在流入侧的构件 3 被布置在进气歧管部件 2 关于流动方向 6 的上游，而在流出侧的构件 4 被布置在进气歧管部件 2 关于流动方向 6 的下游。

[0021] 在所示示例中，另外，同样由箭头指示的漏气通路 7 在流入侧的构件 3 的区域中延
根据图1至图3，进气歧管部件2包括管主体8、空气流量传感器9和支路通道10。管主体8具有入口开口11和出口开口12，其中包括新鲜空气通路部分13，该新鲜空气通路部分13在图3中由箭头指示并从入口开口11引向出口开口12。在图3的安装状态下，管主体8的新鲜空气通路部分13被整合到进气系统1的新鲜空气通路5中。

可优选为热膜传感器的空气流量传感器9被紧固到管主体8，并伸出至新鲜空气通路部分13中。

支路通道10被布置在管主体10上并绕开新鲜空气通路部分13。另外，支路通道10能够在入口侧连接到漏气通路7。在安装状态下，支路通道10引导漏气通路7的端部14。对应，漏气通路7和所述漏气通路端部14在支路通道10中相适应。

支路通道10被布置在管主体8外部，而新鲜空气通路部分13在管主体8内部延伸或被单独引导。这里所示实施例为特别有利的，其中支路通道10在管主体8上整体形成。优选地，管主体8和支路通道10由塑料制成并被设计为注塑部件。在此所示的图1-3的示例中，支路通道10具有入口部分15和出口部分16，其中入口部分15具有例如圆形横截面，出口部分16具有与入口部分15不同的横截面。在示例中，出口部分16的流动横截面基本为矩形，其中此矩形形状为稍微弯曲，从图1和图2中能看到。转换部分17连接入口部分15与出口部分16将入口横截面特别连续地过渡至出口横截面。在示例的实施例中，出口部分16与进气歧管部件2被整体实现。根据另一实施例，出口部分16也能被实现为单独的构件并能被安装、焊接或拧到入口部分15。而且，单独的构件能在弹性构件形成，特别由弹性软管形成。因此，出口部分16能实现为更长和/或弯曲。在入口部分15的区域中，在支路通道10与管主体8之间能存在间隙18。

根据图3，管主体8通过其入口开口11被连接到在流入侧的构件3的出口19上，同时通过出口开口14被连接到在流出侧的构件4的出口20上。有利的，现在根据图3的支路通道10能被提供为在出口侧打开，即此处其出口部分16，通往流出侧的构件4。换言之，支路通道10的出口开口21通往流出侧的构件4。因此，返回的漏气能在那里进入进气系统1的新鲜空气通路中。结果是，在区域22发生漏气与新鲜空气的混合。如所示，该混合区域22位于空气流量传感器9的下游，能避免空气流量传感器9被返回的漏气污染。在此所示的实施例特别有利，其中支路通道10沿新鲜空气流的流动方向6在入口侧伸出超过管主体8的出口开口12。在示例中，出口部分16在出口侧显著地伸出超过管主体8在出口侧的端部。例如，支路通道10在下游侧伸出超过管主体8至少管主体8的轴向长度的30%，在这里约为50%。规定明显地减小了漏气返回流动到空气流量传感器9的风险。

管主体8在出口侧方便地装备有出口连接部23，通过该出口连接部23它能在流出侧与构件4连接。该出口连接部23围绕或在此分别环绕管主体8的出口开口12和支路通道10的出口部分16。特别如图1中所示，为此，出口连接部23具有横向限定出口开口12的内壳24，该内壳具有圆形内部横截面。另外出口连接部23具有外壳25，其围绕内壳24和支路通道10或支路通道10的出口部分16，所述外壳具有圆形外部横截面。在此，外口横截面大于内部横截面，从而支路通道10能布置在内壳24与外壳25之间。相对于内壳24和外壳25的横截面，内壳24和外壳25非同心地布置，从而它们在支路通道10的区域被最大限度地彼此隔开，同时它们在直径的反向处具有相互间最小的距离。因此，在支路通道
10的区域，内壳24和外壳25之间产生间隙26，支路通道10被插入或分别地安装到间隙26中。通过这种类型的结构，将管主体8的出口连接部与流出侧的构件4连接是特别简单的。例如，流出侧的构件4的该套筒形部分27能在外部被推到出口连接部23，即，能在外部被推到外壳25上。该连接部可以被固定，例如使用夹具。在图1和图2的示例中，以环形形状包围的外部槽28装备出口连接部23内部（即在外壳25上）。密封件能够被插入到外部槽28上。内部横截面优选为圆形，同时外部横截面优选为椭圆形或卵形，反之亦然。

[0028] 支路通道10在入口侧（即，其入口部分15）装备有连接件29。支路通道10能够通过该连接件29连接到漏气管线31的出口30。该漏气管线31将漏气通路7向上引导到支路通道10。该出口30或漏气管线31具有出口30的部分可以图3中所示的实施例被布置在流入侧的构件3上。该出口30或漏气管线31具有出口30的部分在此可以特别地整体形成在流入侧的构件3上。

[0029] 在图3的示例中，漏气管线31由通道形成，其在面向新鲜空气通路5的一侧由空气过滤器外壳33的壁部分32限制，在背离新鲜空气通路5的一侧由汽缸盖35的壁部分34限制。在这种情况下，空气过滤器外壳33和汽缸盖35共同形成在流入侧的构件3，进气岐管部分2与该构件3连接。通过这种整体式结构，能够以特别简单的方式一方面为新鲜空气通路5而另一方面为漏气通路7提供共享接口。例如，在图示示例中，进气岐管部分2能简单地将其入口端应用到流入侧的构件3上，其中连接件29穿透至被构造为通道的漏气管线31中，而管主体8的入口突缘36在前表面与入口侧的构件3或与空气过滤器外壳33连接。该入口突缘36围绕入口开口19并可以装备例如轴向密封件37，该轴向密封件37插入至环绕环形入口开口11的轴向槽38中。通过这种方式，实现了轴向密封件配合在入口突缘36上。与此相反，通过将环形密封件39插入至以环形形状在外部环绕的槽40中，可以实现径向密封件配合在连接件29上，该槽40布置在连接件29外部上。

[0030] 与在此示出的特定实施例不同，也能想到其它实施例用于将支路通道10连接到漏气通路7。例如，软管可以盘绕在连接件29上，然后该软管形成为漏气管线31的一部分。同样，可以将油分离器（未示出）整合至漏气通路7中，然后漏气通路7的漏气出口形成出口30，支路通道10能与出口30相连接。所述油分离器能被整合到例如流入侧的构件3中，并优选整合至空气过滤器外壳33中。

[0031] 在此所示的示例中，管主体8的入口开口11和支路通道10的进入开口41具有相同的方向，即，一方面入口开口11所在的平面与另一方面进入开口41所在的平面彼此平行延伸。一方面新鲜空气的流动方向与另一方面漏气的流动方向也在基本彼此平行的开口11,41中延伸。不过，入口开口11和进入开口41在结构上彼此分离或者各自彼此隔开地构造在管主体8上。因此，管主体8或进气岐管部件2一方面与新鲜空气通路5以及另一方面与漏气通路7的分隔连接被简化。

[0032] 根据优选实施例，空气流量传感器9具有可粘接或焊接到管主体9的外壳42。因此，可以确保外壳42与管主体8之间有足够的密封。一个实施例是特别优选的，其中外壳42和管主体8分别由塑料制造，由此能够以特别简单的方式将外壳42焊接到管主体8。另外，空气流量传感器9具有连接部43，空气流量传感器9可以通过该连接部43与控制器或类似物连接。

[0033] 一个实施例是简便的，在该实施例中，进气岐管部件2形成预安装单元，其可以与
剩下的进气系统1分别制造，并能特别简单地安装到后者。当空气流量传感器9已经被安装到管部件8中而进气歧管部件2本身还没有安装到进气系统1中时，以简便的方式校准空气流量传感器9是可行的。采用这种方式，具有经过校准的空气流量传感器9的进气歧管部件2可以被安装到进气系统1中。这在安装进气系统1时带来了可观的简化。