（54）发明名称
多重反射型单元，分析装置，排气分析装置
和光的射入方法

（57）摘要
本发明提供多重反射型单元，分析装置，排气分析装置
和光的射入方法。所述多重反射型单元具有多重反射
结构，所述多重反射机构在对射入的光进行多重反射后
将上述光向外部射出，所述多重反射型单元能够使光
射入测量对象的单元主体的容积变小，并且能够降低
在多重反射机构中未被反射而损失的光的量。所述多重反射
机构具有：第一物镜，与所述场镜相对，并且设置在所述多重反射机构的
光的射入侧；以及第二物镜，与所述场镜相对，并且设置在所述多重反射
机构的光的射出侧，射入所述多重反射机构的光最初被所述第二物镜反射。
1. 一种双重反射型单元，具有双重反射机构，所述多重反射机构在对射入的光进行多重反射后将所述光向外射出，
所述多重反射型单元的特征在于，
所述多重反射机构具有：
场镜；
第一物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射入侧；以及
第二物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射出侧，
射入所述多重反射机构的光最初被所述第二物镜反射。
2. 根据权利要求1所述的多重反射型单元，其特征在于，所述第一物镜和所述第二物镜配置成相对于包含所述场镜的光轴的对称面相对称。
3. 根据权利要求1所述的多重反射型单元，其特征在于，
所述第一物镜的曲率中心设定在所述场镜的所述多重反射机构的光的射出侧，
所述第二物镜的曲率中心设定在所述场镜的所述多重反射机构的光的射入侧。
4. 根据权利要求1所述的多重反射型单元，其特征在于，所述场镜包括光从所述多重反射机构的外部射入的光的射入口和光从所述多重反射机构向外部射出的光的射出口。
5. 根据权利要求1所述的多重反射型单元，其特征在于，形成在所述场镜的反射面上的多个反射点的配置间隔，与反射面的中心部相比越朝向外边缘部越大。
6. 根据权利要求1所述的多重反射型单元，其特征在于，形成在所述第一物镜的反射面上的多个反射点的排列，以及形成在所述第二物镜的反射面上的多个反射点的排列分别呈抛物线状，各抛物线的顶点朝向所述多重反射机构的外侧。
7. 根据权利要求1所述的多重反射型单元，其特征在于，
所述多重反射型单元包括收容所述多重反射机构的单元主体，
在所述单元主体的所述场镜侧设置有使光从外部射入所述多重反射机构的射入窗和使光从所述多重反射机构向外部射出的射出窗，
所述射入窗的面板部与射入的光的光轴垂直，并且所述面板部朝向所述第二物镜侧，
所述射出窗的面板部与射入的光的光轴垂直，并且所述面板部朝向所述第一物镜侧。
8. 根据权利要求1所述的多重反射型单元，其特征在于，
所述多重反射型单元包括收容所述多重反射机构的单元主体，
在所述单元主体的所述场镜侧设置有使光从外部射入所述多重反射机构的射入窗和使光从所述多重反射机构向外部射出的射出窗，
在所述射入窗和所述射出窗的表面上形成有防止反射膜。
9. 根据权利要求1所述的多重反射型单元，其特征在于，最后被所述第一物镜反射的光从所述多重反射机构向外部射出。
10. 一种分析装置，其特征在于，包括权利要求1至9中任意一项所述的多重反射型单元。
11. 一种排气分析装置，其特征在于，
所述排气分析装置包括权利要求1至9中任意一项所述的多重反射型单元，
在所述场镜和所述第一物镜、所述第二物镜之间存在排气。
12. 一种光的射入方法，向多重反射型单元射入光，所述多重反射型单元包括多重反射
机构，所述多重反射机构对射入的光进行多重反射后将所述光向外部射出，
所述光的射入方法的特征在于，
所述多重反射机构具有：场镜：第一物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射入侧，以及第二物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射出侧，
以射入所述多重反射机构的光最初被所述第二物镜反射的方式，使光射入所述多重反射机构。
多重反射型单元、分析装置、排气分析装置和光的射入方法

技术领域
[0001] 本发明涉及多重反射型单元和使用该多重反射型单元的分析装置，以及排气分析装置和光的射入方法，该多重反射型单元对射入的光进行多重反射后将上述光向外部射出。

背景技术
[0002] 在利用例如FTIR(傅立叶变换红外光谱)法的气体的吸光分析中，使用具有多重反射机构的白光型(white)多重反射单元，该多重反射机构由多个反射镜构成，以便使必要的测量对象气体的容量变小，并且使测量对象气体的光的光路长度变长（参照非专利文献1）。[0003] 图9所示的多重反射机构MR配置在单元主体(图9中未示出)的内部，测量对象气体被导入该单元主体内部。此外，所述多重反射机构MR具有：一个场镜12；第一物镜13，与所述场镜12相对，并且设置在所述多重反射机构MR的光的射入侧；以及第二物镜14，与所述场镜12相对，并且设置在所述多重反射机构MR的光的射出侧。

[0004] 在这种多重反射机构MR中，首先以最初被所述第一物镜13反射的方式引导相对于光轴具有规定扩散角的光。此后，在所述场镜12和所述第一物镜13或所述第二物镜14之间反复进行导入的光的反射。并且，在所述多重反射机构MR内反复进行反射的光最终从射出侧向外部射出，该射出侧设定在所述多重反射机构MR的与光的射入侧相反侧上。

[0005] 例如像发动机的排气分析等那样，想要对测量对象气体的成分的时间变化进行测量时，需要使所述单元主体的容积变小且尽量使导入的测量对象气体的置换时间变短，从而提高响应性。

[0006] 为了能够达成上述要求，如果使所述单元主体的容积变小，则必然使各反射镜的间隔变短。因此，为了实现与以往同等程度的测量精度，就需要增加所述多重反射机构MR内的光的反射次数来保持光路长度。

[0007] 但是，如果所述多重反射机构MR内的反射次数增加，则与所述场镜12的中央部相比反射点密集地集中在外部边缘附近。由此，在外部边缘附近的射出口OP附近反射点重合，有时一部分光在到达规定的反射次数之前就从所述多重反射机构MR向外部射出（参照图8）。因此，不能准确地对测量对象气体的吸光度进行测量。


发明内容
[0009] 鉴于上述问题，本发明的目的在于提供一种多重反射型单元，该多重反射型单元可以使导入测量对象气体的单元主体的容积变小，并且能够降低多重反射机构中达到规定的反射次数之前就向外部射出、未被反射而损失的光的量。

[0010] 本发明的目的还在于提供使用该多重反射型单元的分析装置，以及排气分析装置
和光的射入方法。

【0011】即，本发明提供一种多重反射型单元，具有多重反射机构，所述多重反射机构在对射入的光进行多重反射后将所述光向外部射出。所述多重反射型单元的特征在于，所述多重反射机构具有：第一物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射入侧；以及第二物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射出侧，射入所述多重反射机构的光最初被所述第二物镜反射。

【0012】此外，本发明还提供一种光的射入方法，向多重反射型单元射入光，所述多重反射型单元包括多重反射机构，所述多重反射机构对射入的光进行多重反射后将所述光向外部射出，所述光的射入方法的特征在于，所述多重反射机构包括：场镜；第一物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射入侧；以及第二物镜，与所述场镜相对，并且设置在所述多重反射机构的光的射出侧，以射入所述多重反射机构的光最初被所述第二物镜反射的方式，使光射入所述多重反射机构。

【0013】由此，可以使射入所述多重反射机构的光的射入角变大，与以往相反，可以使反射点密集地集中在所述场镜的中心，并且使反射点不在于集中于该场镜的至少光射出的一侧的外边缘部。另外，场镜的中心部是表示远离至少包含中心部的光射入口侧的区域，场镜的外边缘部是表示至少接近光射出口侧的区域。

【0014】因此，当使所述多重反射型单元小型化时，即便使反射次数增多且通过测量对象的光的光路长度变长，也可以通过使反射点在场镜的光射出的一侧的外边缘部重合，降低达到规定的反射次数前向外部射出的光的量。因此，能够改进例如吸光分析时的响应速度，并且能够保持高的测量精度。

【0015】更具体地说，在以往的多重反射型单元中，以被配置在多重反射机构的射入侧的第一物镜最初反射的方式使光射入，并且被第二物镜最后反射的光向外部射出。因此，从第二物镜到形成在例如所述场镜上的射出口的光线的光轴，相对于所述场镜的光轴的角度变小，从而导致反射点集中发射出口的附近。而在本发明的多重反射型单元中，可以最初使光射入远离多重反射机构的入口侧的第二物镜，并且将最后被第一物镜反射的光向外部射出。因此，与以往相比，所述第二物镜向所述场镜前进的光和从所述场镜向所述第一物镜前进的光，相对于所述场镜的光轴倾斜前进，从而可以比所述第一物镜朝向所述场镜的光的射入角度变大。因此，可以防止在多重反射机构的出口附近反射点集中而使密度上升，从而能够容易地防止反射次数未达到规定次数就向外部射出。

【0016】可以通过必要且最小数量的反射镜来得到所述多重反射机构，为了能够容易使所述多重反射型单元小型化，并且实现高性能的分析装置，可以将所述第一物镜和所述第二物镜配置成相对于所述场镜的光轴的对称面对称。

【0017】在所述多重反射型单元小型化的情况下，为了容易使所述多重反射机构内的光的反射次数增加，并且容易降低未到达规定的反射次数就向外部射出的光的量，可以将所述第一物镜的曲率中心设定在所述场镜的所述多重反射机构的光的射入侧，并且将所述第二物镜的曲率中心设定在所述场镜的所述多重反射机构的光的射出侧。

【0018】可以使光不从所述场镜和所述第一物镜之间射入，作为用于使所述多重反射型单元的内部容积变小，并且能够降低未到达规定的反射次数就向外部射入的光的量的具体结构，可以例举的是所述场镜包括光从所述多重反射机构的外部射入的光射入口和光从所述
多重反射结构向外部射出的光射出口。由此，可以使在所述多重反射结构内被反复反射的光到达所述场镜的外边缘之前，从所述光射出口向所述多重反射结构的外部射出。因此，可以减少外边缘部的反射点，从而可以使未被反射镜射出的光减少。

【0019】作为可以使反射次数增多并使光轴长度变长且降低未达到规定的反射次数就向外部射出的光的数量的具体结构例，可以例举的是，形成在所述场镜的反射面上的多个反射点的配置间隔与反射面的中心部相比越朝向外边缘部越大。

【0020】作为可以降低所述场镜的外边缘部的反射点的产生密度、并且降低未达到规定的反射次数就向外部射出的光的数量的具体结构例，可以例举的是，形成在所述第一物镜的反射面上的多个反射点的排列、以及形成在所述第二物镜的反射面上的多个反射点的排列分别为抛物线状，各抛物线的顶点朝向所述多重反射结构的外侧。

【0021】多重反射型单元包括收容所述多重反射机构的单元主体。并且，上述单元主体在所述场镜侧设置有使光从外部向所述多重反射机构射入的射入窗和使光从所述多重反射机构向外部射出的射出窗。在上述结构中，为了降低射入窗和射出窗的光因反射产生的损失，优选的是，所述射入窗的面板部与射入的光的光轴垂直，并且该面板部朝向所述第二物镜侧，所述射出窗的面板部与射入的光的光轴垂直，并且该面板部朝向所述第一物镜侧。

【0022】此外，为了降低射入窗和射出窗的光因反射产生的损失，优选的是，在所述射入窗和所述射出窗的表面上形成有防止反射膜。

【0023】如果是最后被所述第一物镜反射的光从所述多重反射机构向外部射出的结构，则可以将光从所述场镜上反射点的形成密度小的部分向外部导出，消除未进行规定次数的反射就向外部射出的光，从而容易地防止光量的损失。

【0024】按照本发明的使用多重反射型单元的分析装置，可以使所述多重反射型单元内的容积小型化并提高测量的响应性，并且能降低未达到规定的反射次数就向外部射出的光，从而实现高的测量精度的分析。

【0025】排气分析装置具有本发明的多重反射型单元，并且在所述场镜和所述第一物镜、所述第二物镜之间存在排气，按照上述结构的排气分析装置，可以使装置整体小型化，并且能够进行高精度的排气的成分分析和浓度测量。

【0026】按照本发明的多重反射型单元，由于射入所述多重反射机构的光最初被所述第二物镜反射，所以可以使所述场镜的反射点集中在中心部，并且在外边缘部稀疏。因此，即使为了使多重反射型单元小型化并使光轴长度变长而使所述多重反射机构的反射次数增多，也能够降低未达到规定的反射次数就向外部射出的光，并且能够保持高的测量精度。优选的是，可以防止在场镜的外边缘部、来自物镜的反射光在未达到规定的反射次数前就向外部射出。

附图说明

【0027】图1是表示本发明一种实施方式的分析装置的示意图。

【0028】图2是表示同一实施方式的多重反射型单元的示意图。

【0029】图3是表示同一实施方式的多重反射单元的反射状态的示意图。

【0030】图4是表示同一实施方式的多重反射型单元的反射点的间隔的示意图。

【0031】图5是表示变形实施方式的分析装置的示意图。
具体实施方式

[0048] 参照图1，对本发明一种实施方式的多重反射型单元100和分析装置200进行说明。
[0049] 本实施方式的分析装置200用于测量包含在从汽车的内燃机排出的排气中的多种
成分的浓度，作为时间系列数据。即，本实施方式的分析装置200构成为排气分析装置。
[0050] 如图1所示，所述分析装置200与汽车的排气管连接并对排气的一部分进行取样，
其包括：稀释机构21，利用空气将排气稀释到预定的浓度；以及分析机构2，与所述稀释机构
21连接，根据稀释排气来测量排气中的各成分的浓度。
[0051] 所述分析机构2利用FTIR法来测量排气中的例如CO2、NOx等多种成分的各自浓度。该
分析机构2包括：多重反射型单元100，导入利用所述稀释机构21稀释的稀释排气；光源
22，向所述多重反射型单元100导入红外光；光检测器23，检测通过所述多重反射型单元100
射出的光的强度；泵24，向所述多重反射型单元100导入稀释排气；以及基准气体供给部25，
将用于所述光检测器23的校准的零点气体，校准用气体向所述多重反射型单元100内供给。
另外，泵24可以设置在多重反射型单元100的上游，也可以设置在下游。
[0052] 接着，对所述多重反射型单元100进行详细说明。
[0053] 多重反射型单元100包括：单元主体11，向内部导入作为测量对象气体的稀释排气；
以及多重反射机构MR，设置在所述单元主体11内，对射入的光进行多重反射后向外射出。
[0054] 如图2所示，所述多重反射机构MR具有一个场镜12和设置成与所述场镜12相对的
第一物镜13和第二物镜14。各反射镜是凹面镜，配置成使反射后的光在相对的反射镜的反
射面上成像。更具体地说，所述第一物镜13和所述第二物镜14配置成相对于包含所述场镜
12的光轴的对称面SP（通过反射型单元的中心线的虚拟平面）对称。另外，在以下的说明中，
将所述对称面SP作为边界来定义“所述多重反射机构MR的光的射入侧”和“所述
所述光射出口OP向外部射出。这是因为通过使光从所述光射入口IP射入处于远方的所述第二物镜14，光的射入角相对于所述场镜12越朝向外边缘部越大。

[0062] 另一方面，在图7和图8记载的现有技术中，表现出与本实施方式的所述场镜12的反射点的产生状态完全相同的倾向。

[0063] 如图7和图8所示，如使光从光射入口IP射入近的第一物镜13，则以第一物镜13、场镜12、第二物镜14、场镜12、第一物镜13、场镜12的顺序反复进行光的反射。此外，如果观察形成在场镜12的反射面上的反射点，当使光从光射入口IP射入近的第一物镜13时，则第一物镜13的反射光的轨迹RF1在每次反复进行反射后，反射点从光射出口OP向光射入口IP移动。此外，第二物镜14的反射光的轨迹RF2在每次反复进行反射后，反射点从光射入口IP向光射出口OP移动。此时，与中央部相比，在所述场镜12的外边缘部，反射点的产生间隔变小，这是因为光的射入角相对于场镜12越朝向外边缘部越小。

[0064] 因此，如图7所示，在场镜12的外边缘部，反射点的间隔变小，反射点集中。特别是，当光不是像激光等那样相干性强的光，而是在光轴具有预定的散射角的光时，如果反射点集中在光射出口OP的附近，则相对于光轴扩散的光在达到预定的反射次数之前就射入所述光射出口OP，因此，在外边缘部的反射次数越多，未达到预定的反射次数就向所述多重反射机构MR的外边缘部射出的光的量越多。

[0065] 此外，如图4所示，在本实施方式中，形成在所述第一物镜13的反射面上的多个反射点的排列、以及形成在所述第二物镜14的反射面上的多个反射点的排列是具有预定的离散曲面。上述离散曲面为大体抛物线状，在所述第一物镜13上所述多重反射机构MR的光的射入侧为凸部，在所述第二物镜14上所述多重反射机构MR的光的射出侧为凸部。

[0066] 由此，按照本实施方式的多重反射型单元100，由于最初光射入配置在所述多重反射机构MR的光的射出侧的所述第二物镜14，所以如上所述，可以降低在所述场镜12外边缘部的反射频率，并且可以提高在中央部的反射频率。

[0067] 因此，即使射入所述多重反射型单元100的光的相干性弱，且以规定的立体角边扩散边前进，也可以降低在所述场镜12的外边缘部、在达到预定的反射次数前进入所述光射出口OP而向外边缘部射出的光的量。

[0068] 换句话说，按照以往的光的射入方式，如果单纯地使多重反射型单元100的容积变小，则在所述场镜12的外边缘部的反射频率变高，在达到预定的反射次数前向外边缘部射出的光的量增多，从而不能充分地得到了为了执行FTIR法所需要的吸光。而按照本实施方式，即便使多重反射型单元100小型化，也能够从所述多重反射型单元100射出尽量保证分析精度的光量。因此，因容积减少而提高了多重反射单元内的测量对象气体的置换速度，从而能够提高成分分析的相应速度，并且能够实现与以往大体相同精度的成分分析。

[0069] 对其他实施方式进行说明。

[0070] 上述实施方式的分析装置对排气进行分析，但是也可以基于吸光度来测量其他气体。例如也可以将本发明用于NDIR法等的测量。此外，如果使用吸光度法进行测量，则利用本发明的多重反射型单元，测量的响应性和测量精度都能够提高。此外，所述多重反射型单元也能够用于基于吸光度的分析装置以外的装置。

[0071] 在上述实施方式中，使光通过设置在场镜上的光射入口射入第二物镜，但是也可以例如像图9所示的以往例子那样，使光从场镜和第一物镜之间射入多重反射机构内，并且
最初射入所述第二物镜并被反射。即使这样也能够得到与上述实施方式大体同样的效果。
【0072】场镜和物镜的个数并不限于上述实施方式所示的个数，可以进一步设置多个。在这种情况下，可以不使光将射入最接近所述多重反射机构的射入侧的物镜，而使光最初射入其他物镜并进行反射。即，所述多重反射机构的光的射入侧、或所述多重反射机构的光的射出侧的定义并不限于像上述实施方式中记载的那样，以基于所述场镜的光轴确定的对称面为基准。例如物镜相对于光在所述多重反射机构内的前进方向并列设置三个时，能够将该设置在第一个物镜和第二个物镜之间的虚拟平面为基准来定义光的射入侧和光的射出侧。在这样的情况下，可以使光最初射入第二个物镜或第三个物镜中的任意一个。
【0073】在上述实施方式中，利用大气取样取样的排气进行稀释，但是图3所示，分析装置200也可以利用取样取样部201对从例如汽车的排气管排出的排气的一部分或全部进行取样，并且不对由所述取样部201取样的排气进行稀释而导入多重反射型单元100。
【0074】此外，如图6所示，可以在单元主体11的场镜12侧设置使光从外侧射入多重反射机构的射入窗W1和使光从多重反射机构MR向外部射出的射出窗W2。另外，射入窗W1和射出窗W2可以使用氟化钡(BaF₂)基板、硒化锌(ZnSe)基板或硫化锌(ZnS)基板等。
【0075】其中，射入窗W1朝向第二物镜14侧，且相对于所述场镜12的光轴倾斜。即，射入窗W1配置成与第二物镜14的反射面相对，射入窗W1的法线方向配置成与第二物镜14的光轴14C大体一致。此外，射出窗W2朝向第一物镜13侧，且相对于所述场镜12的光轴倾斜。即，射出窗W2配置成与第一物镜13的反射面相对，射出窗W2的法线方向配置成与第一物镜13的光轴13C大体一致。即，射入窗W1、射出窗W2的面板分别配置成与射入的光或射出的光的光轴垂直，并且各面板被配置成朝向第二物镜14、第一物镜13的方向。
【0076】此外，为了降低射入窗W1和射出窗W2中的光因反射产生的损失，在射入窗W1和射出窗W2的表面上形成有防止反射膜。上述防止反射膜具有在作为分析对象的红外线的波长范围内80％以上的透射率。此外，防止反射膜可以形成在射入窗W1和射出窗W2的单元内侧表面和单元外侧表面双方上，也可以形成在单元内侧表面或外侧表面的任意一方上。另外，当在单元内侧表面上形成防止反射膜而产生因排气引起腐蚀或因防止反射膜引起排气污染的问题时，优选仅设置在单元外侧表面上。
【0077】此外，如图10所示，可以在上述实施方式的分析机构2的光源22的周围设置隔热部件221。该隔热部件221具有例如圆柱状的开口部221H，该开口部221H与作为光源22的例如陶瓷光源的发光部22x对应。由此，通过在光源22的周围设置隔热部件221，能够不容易受到来自外部的热量影响，并且能够通过开口部221H的形状来调节从光源22发出的光。
【0078】此外，只要不违反本发明的宗旨，可以进行各实施方式的组合和变形。
图3

场镜上的反射点

图4

第一物镜上的反射点

第二物镜上的反射点
图7
图10