
(19) United States
US 2004O221276A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0221276 A1
Raj (43) Pub. Date: Nov. 4, 2004

(54) METHOD AND COMPUTER PROGRAM FOR
DATA CONVERSION IN A
HETEROGENEOUS COMMUNICATIONS
NETWORK

(76) Inventor: Ashok Raj, Portland, OR (US)
Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 10/860,838

(22) Filed: Jun. 3, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/714,647, filed on
Nov. 17, 2000, now Pat. No. 6,772,320.

300

-Yes

310 Store bits 0-6 of byte 3
into an eight bit variable

Store highest bit of byte 3 into
315 bit 7 of of the eight bit variable

Set variables to
byte positions of SMP header

Publication Classification

(51) Int. Cl." G06F 9/45; G11C 5/00
(52) U.S. Cl. .. 717/136; 719/320

(57) ABSTRACT

A method and computer program for data conversion in a
heterogeneous communications network. This method and
computer program converts data for computer Systems hav
ing different data Storage architectures So that these com
puter Systems may simply and easily communicate over a
network. This is most useful when converting data Store in
little endian and big endian format. This method relies on
creating the data Structure used to convert the data using
embedded macroS that are not executed at run time. These
embedded macroS are expanded by the compiler to generate
the data Structure and thereby Saves Substantial time during
execution.

No

Store highest bit of byte 3 into
320-bit 0 of of the eight bit variable

Store bits 0-6 of byte 3
325 into its 1-7 of

an eight bit variable

--------------->
Store as variable

sbytes
330-7

—Yes

340 Store first 15 bits of
-bytes 4 and 5 in a variable

Store, bit 31 of byte 5
345 into bit 15 of variable

No

------Y-

Store bit 31 of byte 5
350 into bit 15 of variable

355- Store first 15 bits of
bytes 4 and 5 in a variable

Defire remainder of data structure 360
SMP header

totaling 36 bytes

Patent Application Publication Nov. 4, 2004 Sheet 1 of 5 US 2004/0221276 A1

FIG. 1

10

Host 1

Channel Channel
Adapter Adapter -- 60

60 -- 60 Channel Channel
to Norwar Adapter Adapter

60

60
Channel Adapter

IO fC)
controller Controller

70 70

60)
Channel Adapter

/O
controller N70

60 60

60 : Channel Channe Channel Channel
Adapter Adapter Adapter Adapter

Host 3 Host 4

Patent Application Publication Nov. 4, 2004 Sheet 2 of 5

FIG. 2

Transactid

P AttributelD 200

M KEY

O

23% ...is 3. 2. &Ssssssses assassiss 2.84.4%:

- Hop Counter Hop Pointer :

Attributemodifier. s

Source Ll) Dest LD .

US 2004/0221276 A1

3%
d :

63

Patent Application Publication Nov. 4, 2004 Sheet 3 of 5 US 2004/0221276 A1

Set variables to
byte positions of SMP header

310 Store highest bit of byte 3 into
bit 0 of of the eight bit variable

Store bits 0-6 of byte 3
into bits 1-7 of

an eight bit variable

Store bits 0-6 of byte 3
into an eight bit variable

Store highest bit of byte 3 into
315 bit 7 of of the eight bit variable

Store as variable
sbytes

Store bit 31 of byte 5
into bit 15 of variable

340 Store first 15 bits of
bytes 4 and 5 in a variable

Store first 15 bits of
bytes 4 and 5 in a variable

Store bit 31 of byte 5 355
into bit 15 of variable 345

Define remainder of data structure
SMP header

totaling 36 bytes

FG 3
Data Structure definition

Patent Application Publication Nov. 4, 2004 Sheet 4 of 5 US 2004/0221276 A1

Execute C
Compiler

The C compiler
expands the

embedded macro
defining the data

structure for
SMP Header

C Compiler compiles.
the function

Swap contents

FIG. 4

Compiler expansion of embedded
macros to create data structure

i

Patent Application Publication Nov. 4, 2004 Sheet 5 of 5

500 Seti to 0

if size

US 2004/0221276 A1

of Swap
strot t?

pass 16 bit variable
andpointer to every

16 bits

Yes

w Yes and pointer to every
32 bits

pass 64 bit variable
and pointer to every

64 bits

Yes

Yes | PS 128 bit variable
and pointer to every

128 bits

F.G. 5

Execution of swap contents
function

Call swap function and

Call swap function and
pass 32 bit variable

Call Swap function and 570

Call swap function and 585

US 2004/0221276 A1

METHOD AND COMPUTER PROGRAM FOR
DATA CONVERSION IN A HETEROGENEOUS

COMMUNICATIONS NETWORK

FIELD

0001. The invention relates to a method and computer
program for data conversion in a heterogeneous communi
cations network. More particularly, the present invention
converts data for computer Systems having different data
Storage architectures So that these computer Systems may
Simply and easily communicate over a network.

BACKGROUND

0002. In the rapid development of computers many
advancements have been seen in the areas of processor
Speed, throughput, communications, and fault tolerance.
Initially computer Systems were Standalone devices in which
a processor, memory and peripheral devices all communi
cated through a single bus. Later, in order to improve
performance, Several processors and were interconnected to
memory and peripherals using one or more buses. In addi
tion, Separate computer Systems were linked together
through different communications mechanisms. Such as,
shared memory, Serial and parallel ports, local area networks
(LAN) and wide area networks (WAN). However, these
mechanisms have proven to be relatively slow and Subject to
interruptions and failures when a critical communications
component fails. Further, in the case where a high Speed
direct memory access communications method is used, all to
often these communications Systems are limited in the types
of computers that may access and eXchange information on
the network.

0.003 Examples of differing processor and memory
architectures may be seen in big endian versus little endian
architectures. In a big endian architecture the most signifi
cant byte is placed in a lower memory address. This is
typically the way humans deal with arithmetic functions and
the method employed by a Motorola TM 680x0 system. There
is also a little endian architecture in which the least signifi
cant byte is placed in a lower memory address. This is done
Since numbers are calculated by a processor Starting with
least Significant digits and little endian data Structures are
already Set up to facilitate this operation. This type of little
endian architecture is employed by the IntelTMx86 line of
Systems. In addition, a bi-endian machine has been devel
oped, such as the PowerPCTM, which can handle both types
of byte ordering.

0004. However, when a big endian machine and a little
endian machine attempt to communicate through memory
reads and writes to each other, the data must be re-formatted
to be accessible by the other machine. In order to accomplish
this programmer's have developed code that Swaps bits and
bytes of data within words being accessed. However, this
development of code by different programmerS is time
consuming and prone to error. Further, this code is often
Specific to each specific application generated. Therefore,
one of the purposes of direct memory access for communi
cations is defeated by the lengthy time requirements for this
conversion process. Also, time involved in developing and
debugging Software for each application may be Substantial
and thus expensive.
0005 Therefore, what is needed is a method and com
puter program which will create a data Structure to enable

Nov. 4, 2004

the conversion from one memory Storage format to another.
This method and computer program must be generally
applicable to all applications programs and all types of data.
This method and computer program must also be efficient in
the generation of the data Structure and the re-formatting of
the data. Thus, this method and computer program must be
easily usable by all applications and programmerS and must
execute in run-time very quickly So as to facilitate the rapid
eXchange of information.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 The foregoing and a better understanding of the
present invention will become apparent from the following
detailed description of exemplary embodiments and the
claims when read in connection with the accompanying
drawings, all forming a part of the disclosure of this inven
tion. While the foregoing and following written and illus
trated disclosure focuses on disclosing example embodi
ments of the invention, it should be clearly understood that
the same is by way of illustration and example only and the
invention is not limited thereto. The spirit and scope of the
present invention are limited only by the terms of the
appended claims.
0007. The following represents brief descriptions of the
drawings, wherein:
0008 FIG. 1 is an example of an overall InfiniBand
Systems diagram;

0009 FIG. 2 is an example of a InfiniBand subnet
management packet (SMP) header;
0010 FIG. 3 is a flowchart of the logic used to create an
InfiniBand subnet management packet (SMP) header data
Structure in the example embodiments of the present inven
tion;
0011 FIG. 4 is a flowchart of a compiler expansion of
embedded macros used to create the SMP header data
Structure in the embodiments of the present invention; and
0012 FIG. 5 is a flowchart of the logic involved in
converting data used in the example embodiments of the
present invention.

DETAILED DESCRIPTION

0013 Before beginning a detailed description of the
subject invention, mention of the following is in order. When
appropriate, like reference numerals and characters may be
used to designate identical, corresponding or Similar com
ponents in differing figure drawings. Further, in the detailed
description to follow, exemplary sizes/models/values/ranges
may be given, although the present invention is not limited
to the same. As a final note, well-known components of
computer networks may not be shown within the FIGS. for
Simplicity of illustration and discussion, and So as not to
obscure the invention.

0014 FIG. 1 is an example of an overall InfiniBand
Systems diagram which may be used by the embodiments of
the present invention. Using Such an InfiniBand architecture
it may be possible to link together a processor based System
10, through Switches 50 to several Input/Output (I/O) con
trollers 70, and other processor based systems 20, 30 and 40.
Each processor based system 10, 20, 30 and 40 may be
composed of one or more central processing units (CPU)

US 2004/0221276 A1

(not shown), dynamic random access memory (DRAM) (not
shown), memory controller (not shown) and a channel
adapter 60. A Switch 50 may be used to interconnect serial
ports to achieve transfer rates of more than one gigabit-per
Second.

0015 Referring to FIG. 1, the InfiniBand architecture
defines interfaces that move data between two “memory”
regions or nodes. Access to an I/O controller 70 and pro
cessor based system 10, 20, 30 and 40, may be accomplished
by Send or receive operations, as well as, remote direct
memory access (RDMA) read and RDMA write operations.
Cluster or channel adapters provide the control and logic
that allows nodes to communicate to each other over the
InfiniBand network. A processor based system 10, 20, 30 or
40 may have one or more channel adapters 60 connected to
it. Further, an I/O controller 70 may have one or more
channel adapters 60 connected to it. Communications in an
InfiniBand architecture may be accomplished through these
cluster or channel adapters 60 directly or through switches
50.

0016 AS can be seen in FIG. 1, the InfiniBand architec
ture enables redundant communications links between chan
nel adapters 60 and Switches 50. Further, it may be possible
to create a routing and distance table to identify the shortest
paths between nodes in the network. In this case, distance is
defined as being the shortest time between to points and not
the physical distance. A node or cluster adapter may be a
channel adapter 60. Therefore, when data is sent to a
memory location in a node it will take the shortest path
available and arrive as fast as possible. However, if a failure
occurs to a switch 50 then an alternate path may have to be
configured and the distance table would have to be com
puted again.

0017 FIG. 2 is an example of an InfiniBand subnet
management packet (SMP) header 200. Each InfiniBand
architecture is divided into Subnets having at least one
subnet manager (SM). Each SM may reside on a switch 50
and is responsible for configuring the Subnet. Communica
tions between the SM and other Subnet management agents
(SMA) is done through subnet management packet (SMP).
Therefore, whenever a computer resides on the Subnet it is
necessary to be able to reformat data So that it meets the
requirements of either big endian or little endian data format.
This also applied to the SMP header 200 illustrated in FIG.
2.

0018. The SMP header 200 illustrated in FIG. 2 is
composed of several 64-bit fields. The SMP header 200
defines the base version which is a one byte field indicating
the version of management datagram based format. A one
byte field for management class is provided which repre
Sents a Subnet management class value. A one byte field for
class version is provided which indicates the version field
for the management class. A one bit field R is provided to
indicate a request/response field. Further, a 7 bit field is
provided for method representing the method of Subset
management being used. In the Second 64-bit field a two
byte status field is provided which encodes the status of the
method. In addition, a hop pointer is provided to indicate the
current byte of the initial/return path field. A hop counter is
used to contain the number of valid bites in the initial/return
that indicates how many direct route hops to take. In the
third 64-bit field a transaction identification (ID) is provided

Nov. 4, 2004

indicative of a transaction Specific identifier. In the fourth
64-bit field a 2 byte attribute identification (ID) is provided
indicating the attributes for the SMP Attributes for SMP's
are typically data objects that are composite Structures
having registers in Subnet nodes and these attributes may be
read or written. The SMP method uses the attribute ID and
attribute modifier to re-define or modify Specific registers
within a given node. Thereafter, two additional bytes are
reserved for future use. In the fifth field an attribute modifier
having four bytes is provided for an SMP to use as the index
value to further specify data to be obtained or modified. In
the Sixth field a management key (M KEY) having eight
bytes is provided for SMP authentication. Thereafter, in the
seventh field a source local identifier (SLID) and a destina
tion local identifier (DLID) is provided for directed routing.
0019 FIGS. 3 through 5 are flowcharts representing the
logic employed by the example embodiments of the present
invention. The blocks illustrated in FIGS. 3 through 5
represent modules, code, code Segments, commands, firm
ware, hardware, instructions and data that are executable by
a processor-based System(s) and may be written in a pro
gramming language, Such as, but not limited, to C++.
0020 FIG. 3 is a flowchart of the logic used to create an
InfiniBand subnet management packet (SMP) header 200,
shown in FIG.2, data structure in the example embodiments
of the present invention. The logic shown in FIG.3 may be
implemented in the Sample C++ program illustrated in Table
1 provided ahead. It should be noted that the C++ program
illustrated in Table 1 is provided by way of example only and
as one of ordinary skill in the art would appreciate this
program may be implemented using any language and
different commands.

TABLE 1.

typedef struct SMP DIR HDR {
uints base ver; // byte O
uint& mgmt class; if byte 1
uint& class version; if byte 2
struct { If byte 3

#ifdef LTTLE ENDIAN
uint& method:7; // bits O-7 of byte 3
uint& req resp:1; // high bit of byte 3

#else
uint& req resp:1; // high bit of byte 3
uint& method:7; // bits O-7 of byte 3

#endilf
}sbyte3;
struct {

#ifdef LTTLE ENDIAN
uint16 Status:15; if byte 4-5 15 bits
uint16 direction:1; // bit 31 of byte 5

#else
uint16 direction:1; // bit 31 of byte 5
uint16 Status:15; if byte 4-5 15 bits

#endilf
}sbyte4
uints hop pointer; ff byte 6
uints hop count; If byte 7
uinto 4 transaction id;
uint16 attribute id:
uint16 resv1;
uint32 attribute mod:
uinto4 m key;
uint16 dr slid;
uint16 dr dilid;

} SMP DIR HDR;

ff bytes 8-15
ff bytes 16-17
ff bytes 18-19

ff bytes 20-23
ff bytes 24-31
ff bytes 32-33
ff bytes 34-35

0021 Referring to FIG. 3, execution begins in operation
300 where the variables are set to byte positions of the

US 2004/0221276 A1

subnet management packet (SMP) header 200, shown in
FIG. 2. Thereafter, processing proceeds operation 305
where it is determined if the little endian byte order is
desired. If little endian byte order is desired processing
proceeds operation 310 where bits 0 through 6 of byte three
are Stored in an eight-bit variable. Thereafter, processing
proceeds to operation 315 where the highest bit of byte three
is stored into bit 7 of the of the eight-bit variable. However,
if in operation 305 it is determined that little endian byte
order is not desired then processing proceeds to operation
320 where the highest bit of byte three is stored into bit Zero
of the eight-bit variable. Processing then proceeds to opera
tion 325 where bits 0 through 6 of byte 3 are stored into bits
1 through 7 of the eight-bit variable.

0022 Regardless of whether the little endian byte order is
Selected in operation 305 processing proceeds to operation
330 where the eight-bit variable determined in operation 310
through 325 is stored as sbytes. Thereafter, processing
proceeds to operation 335 where again it is determined if
little endian byte order is desired. If little endian byte order
is desired then processing proceeds to operation 340 where
the first 15 bits of bytes 4 and 5 are stored in a variable.
Thereafter in operation 345 bit 31 of byte 5 is stored into bit
15 of the variable. However, if in operation 335 it is
determined that little endian byte order is not desired then
processing proceeds to operation 350. In operation 350, bit
31 of byte 5 is stored into bit 15 of a variable. In operation
355 the first 15 bits of bytes 4 and 5 are stored in the
variable. Regardless of whether little endian byte order is
desired in operation 335, in operation 360, the remaining
portion of the SMP header 200 data structure is defined.
0023 FIG. 4 is a flowchart of a compiler expansion of
embedded macros used to create the SMP header 200 data
structure in the embodiments of the present invention. The
processes shown in FIG. 4 compile the embedded macros
and code contained in Table II discusses further detail ahead.
The operations shown in FIG. 4 begin in operation 400 by
executing a Standard C++ compiler. Thereafter, in operation
410, the C++ compiler expands embedded macros shown in
Table I which define the data structure for the SMP header
200 shown in Table I. These embedded macros takes the
place of the logic shown and discussed in reference to FIG.
3. The embedded macros create the SMP header 200 data
structure as shown and discussed in FIG. 3. The advantage
of using the embedded macros shown in Table II and
compiled in operation 410 is that the data structure is
generated during compilation rather than during execution.
The Savings in terms of processor power is enormous when
the data Structure can be generated during compilation time
which is in constant usage by application programs. Further,
once tested these embedded macroS may be incorporated in
every application program that utilizes the SMP header 200.
Thereafter, in operation 420, the C++ compiler compiles the
function Swap contents shown in Table III.

#define field offset(struct name, field) \
(uint16) ((char *)& (struct name *) 0)->field))

#define DEFINE STRUCT START(name) \
swap struct t swap #name = {

#define DEFINE STRUCT FIELD(struct name, field) \

sizeof (((struct name *) 0)->field), \

Nov. 4, 2004

-continued

field offset(struct name, field) \
3.

#define DEFINE STRUCT END (struct name) {0,0}}:
#define SWAP STRUCT NAME(struct name) swap #name
If Now the definition that describes this structure
If the same definition and function are used both while sending
If and receiving a stucture that needs transformation.
DEFINE STRUCT START (SMP DIR HDR)
DEFINE STRUCT FIELD(SMP DIR HDR, sbyte4)
DEFINE STRUCT FIELD(SMP DIR HDR, transaction id)
DEFINE STRUCT FIELD(SMP DIR HDR, attribute id)
DEFINE STRUCT FIELD(SMP DIR HDR, attribute mod)
DEFINE STRUCT FIELD(SMP DIR HDR, m key)
DEFINE STRUCT FIELD(SMP DIR HDR, dr slid)
DEFINE STRUCT FIELD(SMP DIR HDR, dr did)

DEFINE STRUCT END

0024 Table III is an example of the expansion of the
embedded macros illustrated in Table II and executed in
operation 410. This expansion is only for the data structure
referred to as "define struct start” and is only provided by
way of example. AS would be appreciated by one of ordinary
skill in the art, the expansion of the macroS performed by the
compiler is three levels deep and further expansion in Table
III is not required. It should be again noted that the expan
Sion of the data structure is accomplished by the C++
compiler rather than during program execution as illustrated
in FIG. 3.

TABLE III

If Expanded form after pre-compilation.
swap struct t swap SMP DIR HDR = || Defined by
DEFINE STRUCT START
{

{2,4}, ff sbyte4: size 2, offset 4
{8, 8, // transaction id: size 8, offset 8
{2, 16/1 attribute id: size 2, offset 16
{4.20// attribute mod: size 4, offset 20
{8,24/7 m key: size 8, offset 24
{2,32// slid: size 2, offset 32
{2,34// dilid: size 2, offset 34
{0,0} If placed by DEFINE STRUCT END

0025 FIG. 5 is a flowchart of the logic involved in
converting data used in the example embodiments of the
present invention as performed by the Swap contents func
tion module. The Swap contents function module begins
execution in operation 500 where a variable I is set to zero.
In operation 510, it is determined whether I is equal to the
size of the Swap structure variable to be converted. If the
value of I=the size of the Swap structure variable then
processing proceeds to operation 590 where processing
terminates. However, if the value of I is not equal of the size
of the Swap Structure variable, then processing proceeds to
operation 520. In operation 520, it is determined if the size
of the Swap structure variable is equal to two bytes. If the
Swap Structure variable has a size equal to two bytes then
processing proceeds to operation 530. In operation 530, the
Swap function is called and passed a 16-bit variable and
pointer to every 16 bits. Thereafter, processing loops back to
operation 510 from operation 530.

0026. However, in operation 520 if the size of the Swap
Structure variable is not two bytes then processing proceeds

US 2004/0221276 A1

to operation 550. In operation 550, it is determined whether
the Swap Structure variable has a size equal to 4 bytes. If the
Swap Structure variable has a size equal to 4 bytes then
processing proceeds to operation 540. In operation 540, the
Swap function is called and passed a 32-bit variable and a
pointer to every 32 bits. Thereafter, processing loops back
from operation 540 to operation 510.
0027) However, in operation 550 if the size of the swap
variable is not equal to four bytes in length then processing
proceeds to operation 560. In operation 560 it is determined
if the size of the Swap structure variable is equal to 8 bytes
in length. If the Size of the Swap Structure variable is equal
to 8 bytes in length, then processing proceeds to operation
570. In operation 570, the Swap function is called and passed
a 64-bit variable and pointers to every 64 bits. Thereafter,
processing loops back to operation 510 from operation 570.
0028. However, if in operation 560 it is determined that
the Swap Structure variable is not equal 8 bytes in size, then
processing proceeds to operation 580. In operation 580 it is
determined whether the size Swap Structure variable is equal
to 16 bytes in length. If the Swap Structure variable is equal
to 16 bytes in length then processing proceeds to operation
585. In operation 585, the Swap function is called and passed
a 128 bit variable with a pointer to every 128 bits. There
after, processing loops back to operation 510 from operation
585. However, if the Swap structure variable does not have
a size of 16 bytes, then processing proceeds to operation 590
and processing terminates.
0029. The benefit resulting from the present invention is
that a simple, reliable, fast method and computer program is
provided that will convert from little endian data format to
big endian data format and back again. The data Structure
required to accomplish this is generated using embedded
macroS during compilation. Therefore, no runtime proceSS
ing power is wasted creating the data Structure for each
application. This allows for extremely fast execution of the
conversion.

0030. While we have shown and described only a few
examples herein, it is understood that numerous changes and
modifications as known to those skilled in the art could be
made to the example embodiment of the present invention.
Therefore, we do not wish to be limited to the details shown
and described herein, but intend to cover all Such changes
and modifications as are encompassed by the Scope of the
appended claims.

1. A method of converting the format of a data Structure,
comprising:

generating a plurality of embedded macros, wherein each
embedded macro defines a portion of the data Structure;

incorporating the plurality of embedded macroS into an
application program;

Nov. 4, 2004

expanding the embedded macroS to create the data Struc
ture by compiling the application program;

executing a Swap function module to reformat the data
Structure to conform to a memory architecture Speci
fied; and

transmitting the data Structure to a machine that has the
ability to manipulate data contained in the data Struc
ture.

2. The method recited in claim 1, wherein the embedded
macroS and the application program are written in C++.

3. The method recited in claim 1, wherein the data
Structure is a Subnet management packet.

4. The method recited in claim 3, wherein the memory
architecture Specified is either little endian or big endian.

5. The method recited in claim 4, wherein the Swap
function module modifies the data structure So as to conform
to a little endian memory architecture.

6. The method recited in claim 4, wherein the Swap
function module modifies the data structure So as to conform
to a big endian memory architecture.

7. A program embodied in a storage medium and execut
able by a machine, the program, when executed, resulting in
performance of operations comprising:

generating a plurality of embedded macros, wherein each
embedded macro defines a portion of the data Structure;

incorporating the plurality of embedded macroS into an
application program;

expanding the embedded macroS to create the data Struc
ture by compiling the application program;

executing a Swap function module to reformat the data
Structure to conform to a memory architecture Speci
fied; and

transmitting the data Structure to a machine that has the
ability to manipulate data contained in the data Struc
ture.

8. The program recited in claim 7, wherein the embedded
macroS and the application program are written in C++.

9. The program recited in claim 7, wherein the data
Structure is a Subnet management packet.

10. The program recited in claim 9, wherein the memory
architecture Specified is either little endian or big endian.

11. The program recited in claim 10, wherein the Swap
function module modifies the data structure So as to conform
to a little endian memory architecture.

12. The program recited in claim 10, wherein the Swap
function module modifies the data structure So as to conform
to a big endian memory architecture.

13-16. (Cancelled).

