(11) Application No. AU 2001279687 B2 (12) STANDARD PATENT (19) AUSTRALIAN PATENT OFFICE (54)Title Skin conditioning compositions containing compounds for mimicking the effect on skin of retinoic acid $(51)^7$ International Patent Classification(s) A61K 007/48 (21)Application No: 2001279687 (22)Date of Filing: 2001.06.25 (87)WIPO No: WO02/02074 (30)Priority Data Country (31)Number (32)Date (33)60215301 2000.06.30 US Publication Date: 2002.01.14 (43)Publication Journal Date: 2002.04.11 (43)Accepted Journal Date: 2005.02.24 (44)(71)Applicant(s) Unilever PLC Inventor(s) (72)Donovan, Robert Mark; Licameli, Lisa; Teklits lobst, Susanne; Scott, Ian Richard; Granger, Stewart Paton (74)Agent / Attorney

Davies Collison Cave, Level 10 10 Barrack Street, Sydney, NSW, 2000

(56)

Related Art

Citations mentioned in WO 2002/02074

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/02074 A2

(51) International Patent Classification7: A61K 7/48

(21) International Application Number: PCT/EP01/07234

(22) International Filing Date: 25 June 2001 (25.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

30 June 2000 (30.06.2000) 60/215,301

- (71) Applicant (for AE, AG, AU, BB, BZ, CA, CY, GB, GD, GH, GM, IE, IL, KE, LC, LK, LS, MN, MW, NZ, SD, SG, SL, SZ, TT, TZ, UG, ZA, ZW only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).
- (71) Applicant (for all designated States except AE, AG, AU, BB, BZ, CA, CY, GB, GD, GH, GM, IE, IL, IN, KE, LC, LK, LS, MN, MW, NZ, SD, SG, SL, SZ, TT, TZ, UG, US, ZA, ZW): UNILEVER NV [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
- (71) Applicant (for IN only): HINDUSTAN LEVER LIM-ITED [IN/IN]: Hindustan Lever House, 165/166 Backbay Reclamation, Mumbai 400 202, Maharashtra (IN).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): GRANGER, Stewart, Paton [GB/GB]; Unilever Research Colworth, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44

1LQ (GB). SCOTT, Ian, Richard [GB/US]; Unilever Research U.S. Inc., 45 River Road, Edgewater, NJ 07020

- (74) Agents: ELLIOTT, Peter, William et al.; Unilever PLC, Patent Department, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK. LR. LS. LT. LU, LV. MA. MD. MG. MK. MN. MW. MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SKIN CONDITIONING COMPOSITIONS CONTAINING COMPOUNDS FOR MIMICKING THE EFFECT ON SKIN OF RETINOIC ACID

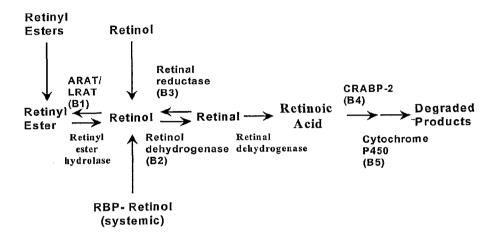
(57) Abstract: A skin care product comprising from about 0.001 % to about 10 % of a retinoid, in combination with 0.0001 % to about 50 % of a combination of retinoid boosters.

WO 02/02074 PCT/EP01/07234

SKIN CONDITIONING COMPOSITIONS CONTAINING COMPOUNDS FOR MIMICKING THE EFFECT ON SKIN OF RETINOIC ACID

The present invention relates to cosmetic skin conditioning compositions containing certain compounds which mimic the effect on skin of retinoic acid.

Retinol (vitamin A) is an endogenous compound which occurs naturally in the human body, and is essential for normal epithelial cell differentiation. Natural and synthetic 10 vitamin A derivatives have been used extensively in the treatment of a variety of skin disorders and have been used as skin repair or renewal agents. Retinoic acid has been employed to treat a variety of skin conditions, e.g., acne, wrinkles, psoriasis, age spots and discoloration. See e.g., 15 Vahlquist, A. et al., J. Invest. Dermatol., Vol. 94, Holland D.B. and Cunliffe, W.J. (1990), pp. 496-498; Ellis, C.N. et al., "Pharmacology of Retinols in Skin", Vasel, Karger, Vol. 3, (1989), pp. 249-252; Lowe, N.J. et al., "Pharmacology of Retinols in Skin", Vol. 3, (1989), pp. 240-248; PCT Patent 20 Application No. WO 93/19743.


It is believed that retinol esters and retinol are enzymatically converted in the skin into retinoic acid according to the following mechanism:

25

10

15

Retinol metabolism in the epidermis: enzyme names

The present invention is based on the discovery that certain compounds enhance the conversion of retinyl esters The compounds are collectively retinol to retinoic acid. termed "boosters" and are coded as groups B1 to B5 according to the boosting mechanism of the particular compound. mechanism of the booster groups is as follows: inhibiting retinol (AcvlCoenzymeA(CoA): ARAT/LRAT transferase/Lecithin: retinol acyl transferase) activity (B1), enhancing retinol dehydrogenase activity inhibiting retinal reductase activity (B3), antagonising CRABP-II (Cellular Retinoic Acid Binding Protein II) binding of retinoic acid (B4) and inhibiting cytochrome P450 dependent retinoic acid oxidation (B5).

The boosters alone or in combination with each other potentiate the action of retinoids by increasing the conversion of the retinoids to retinoic acid and preventing

the degradation of retinoic acid. The boosters act in conjunction with a retinoid (e.g. retinol, retinyl esters, retinal, retinoic acid), the latter being present endogenously in the skin. The preferred compositions, however, include a retinoid in the composition, co-present with a booster or a combination of boosters, to optimise performance.

Several patents by Granger et al describe the use of retinoid boosters in cosmetic compositions to improve the 10 efficacy of retinol and retinyl esters (US patent numbers: 5747051,5716627, 5811110. 5759556, 5756109, 5747051, 5599548, 5955092, 5885595, 5759556, 5693330). boosters described in these patents are restricted to class B1 and B5. Furthermore Johnson & Johnson have a series of 15 patents which describe the use of molecules which fall into class 5 booster molecules (U.S. 5028628; U.S. 5037829; U.S. 5151421; U.S. 476852; U.S. 5500435; U.S. 5583136; U.S. 5612354).

20

25

The molecules which act as retinoid boosters are common ingredients in cosmetic products. There is considerable prior art describing their use in cosmetic compositions. There is substantial prior art describing the use of two or more of these molecules in the same composition. Some of the examples of the prior art are as in US 5,665,367, US 5747049, US 5853705, US 5766575, and US 5849310.

However, the prior art does not describe synergy arising 30 from combinations of booster molecules. This observation of a synergistic boosting of retinoid activity from combinations of booster molecules was an unexpected finding. The prior art does not describe optimal concentrations or ratios of booster molecules or ratios of booster molecules to that of retinoids. Thus, the present invention is novel in that by combining cosmetic retinoids with booster molecules, at the most appropriate concentrations or ratios, a substantial improvement in efficacy of the retinoids is obtained.

10 The classes of boosters suitable for use in the present invention include but are not limited to the boosters listed in Tables B1 through to B5.

Best Groups of Boosters

15 B1 Compounds

	, · · · · · · · · · · · · · · · · · · ·
1. Fatty Acid Amides	These are readily commercially available and have the added
	advantage of being surfactants and
	thus help generate emulsions
	suitable for cosmetic preparations.
2. Ceramides	These can additionally act as
	precursors of stratum corneum
	barrier ceramides.
3. Carotenoids	These can offer some UV protection
	and act as natural colorants.
4. Flavanoids	Natural antioxidants.
5. Cyclic fragrances	These are readily commercially
	available and additionally can be
	used to fragrance the product.
6. Non-cyclic	These can be used to fragrance the
fragrances	product.
7. Phospholipid	These can be utilised by skin cells
analogues	to nourish the generation of
	barrier components.
8. Ureas	These are readily commercially
	available and can also act as
	preservatives for the product.

B2 Compounds

	Most preferred as most active activator of Retinol Dehydrogenase
2. Sphingomyelin	

5 B3 Compounds

Arachidonic Acid	Fatty Acids which can be
Linoleic Acid	useful in maintaining stratum
Linolenic Acid	corneum barrier
Myristic Acid	
Linoleic Acid	Essential Fatty Acids
Linolenic Acid	
Arachidonic Acid Non-essential fatty acids	
Myristic Acid	
Glycyrrhetinic Acid	Polycyclic triterpene
	carboxylic acid which is
	readily obtained from plant
	sources.
Phosphatidyl ethanolamine	Can be incorporated into
	cellular membranes.

B4 Compounds

10

Hexadecanedicic acid 12-hydroxystearic acid Isostearic acid	Saturated fatty acids.
Linseed oil Elaidic acid	Unsaturated fatty acids
Elaidic acid Isostearic acid Hexadecanedioic acid	Solid at room temperature
Linseed oil 12-hydroxystearic acid	Liquid at room temperature

B5 Compounds

Bifonazole	Antimicotics
Climbazole	
Clotrimazole	
Econazole	
Ketoconazole	
Miconazole	
Climbazole	Readily commercially available
Lauryl hydroxyethylimidazoline	Compounds which are readily commercially available and have the added advantage of being surfactants and thus help generate emulsions suitable for cosmetic preparations.
Quercetin	Naturally occuring flavanoid which has antioxidant properties.
Coumarin	Natural colorant
Quinolines	
Isoquinolines	
Metyrapone	

5 The present invention includes, in part, a skin conditioning composition containing from about 0.0001% to about 50%, preferably from 0.001% to 10%, most preferably from 0.001% to 5% by weight of the composition of a booster or combination of boosters and a cosmetically acceptable vehicle.

10

15

The boosters or combinations thereof included in the inventive compositions are selected from the group consisting of:

- (a) a booster selected from the group consisting of B2; B3; B4;
- (b) binary combinations of boosters selected from the group consisting of:

B1/B2; B1/B3; B1/B4; B1/B5; B2/B3, B2/B4; B2/B5, B3/B4; B3/B5; B4/B5

- (c) ternary combinations of boosters selected from the group consisting of:
 B1/B2/B3; B1/B2/B4; B1/B2/B5; B1/B3/B4; B1/B3/B5;
 B1/B4/B5; B2/B3/B4; B2/B3/B5; B2/B4/B5; B3/B4/B5
- (d) quaternary combinations of boosters selected from the group consisting of:

 B1/B2/B3/B4; B1/B2/B3/B5; B1/B2/B4/B5;

 B1/B3/B4/B5; B2/B3/B4/B5;

 and

(e) a combination of five groups of boosters: B1/B2/B3/B4/B5.

As now claimed, according to one aspect, the present invention provides a skin care composition comprising:

- 20
- a. from 0.001% to 10% of a retinoid;
- b. a combination of retinoid boosters belonging to classes B1 to B5 in an amount of from 0.0001% to 50% including at least one booster from each of any four of the classes B1 to B5;
 - c. a cosmetically acceptable vehicle.
- 30 The preferred compositions include from about 0.001% to about 10%, by weight of the composition of a retinoid.

The compounds included in the present invention as boosters are selected based on the ability of such compounds to pass, at a certain concentration listed in Table A, in-vitro Assays for a specific enzymes as described below under sections 2.1 through to 2.7. Such a booster is included in the present invention even if it is not explicitly mentioned herein. Put another way, if a compound inhibits or enhances sufficiently an enzyme in an assay described below, it will act in combination with a retinoid to mimic the effect on keratinocytes (skin cells) of retinoic acid, and thus it is included within the scope of the present invention.

The term "conditioning" as used herein means prevention and treatment of dry skin, acne, photo-damaged skin, appearance of wrinkles, age spots, aged skin, increasing stratum corneum flexibility, lightening skin colour, controlling sebum excretion and generally increasing the quality of skin. The composition may be used to improve skin desquamation and epidermal differentiation.

10 The presence of the selected compounds in the inventive product substantially improves the performance of a retinoid.

compositions contain, preferred inventive as a The ingredient, a retinoid, which is selected from retinyl esters, retinol, retinal and retinoic acid, preferably 15 retinol or retinyl ester. The term "retinol" includes the following isomers of retinol: all-trans-retinol, 13-cis-9-cis-retinol, 11-cis-retinol, 3,4-didehydroretinol, retinol, 3,4-didehydro-13-cis-retinol; 3,4-didehydro-11-cisretinol; 3,4-didehydro-9-cis-retinol. Preferred isomers are 20 all-trans-retinol, 13-cis-retinol, 3,4-didehydro-retinol, 9-cis-retinol. Most preferred is all-trans-retinol, due to its wide commercial availability.

Retinyl ester is an ester of retinol. The term "retinol" has been defined above. Retinyl esters suitable for use in the present invention are C₁-C₃₀ esters of retinol, preferably C₂-C₂₀ esters, and most preferably C₂, C₃, and C₁₆ esters because they are more commonly available. Examples of retinyl esters include but are not limited to: retinyl palmitate, retinyl

WO 02/02074 PCT/EP01/07234

formate, retinyl acetate, retinyl propionate, retinyl butyrate, retinyl valerate, retinyl isovalerate, retinyl hexanoate, retinyl heptanoate, retinyl octanoate, retinyl nonanoate, retinyl decanoate, retinyl undecandate, retinyl laurate, retinyl tridecanoate, retinyl myristate, retinyl pentadecanoate, retinyl heptadeconoate, retinyl stearate, retinyl isostearate, retinyl nonadecanoate, retinyl arachidonate, retinyl behenate, retinyl linoleate, and retinyl oleate.

10

15

20

25

The preferred ester for use in the present invention is selected from retinyl palmitate, retinyl acetate and retinyl propionate, because these are the most commercially available and therefore the cheapest. Retinyl linoleate and retinyl oleate are also preferred due to their efficacy.

Retinol or retinyl ester is employed in the inventive composition in an amount of from about 0.001% to about 10%, preferably in an amount of from about 0.01% to about 1%, most preferably in an amount of from about 0.01% to about 0.5%.

The essential ingredient of the inventive compositions is a compound which passes in vitro Assays described below in sections 2.1 through to 2.7. A compound suitable for use in the present invention inhibits or enhances at a concentration listed in Table A an enzyme to at least a broad % listed in Table A.

10

Most Preferred

Optimum

> 40%

> 50%

Section A: Identification of Booster:

TABLE A
Booster Test Concentrations and % Inhibition/Increase

ARAT / LRAT Assay (To identify B1 boosters)			
Invention	Compound Concentration	% Inhibition	
Broad	100 μΜ	> 10%	
Preferred	100 μΜ	> 25%	

Retinol Dehydrogenase Assay	(To identify B2 boosters)			
Invention	Compound Concentration	% Increase		
Broad	100 μM	> 10%		
Preferred	100 μΜ	> 15%		
Most Preferred	100 µM	> 20%		
Ontimum	100 uM	> 25%		

100 μM

100 μM

Retinal Reductase Assay	(To identify B3 boosters	·)
Invention	Compound Concentration	% Inhibition
Broad	100 μΜ	> 5%
Preferred	100 μM	> 10%
Most Preferred	100 μΜ	> 20%
Optimum	100 µM	> 35%

CRABPII Antagonist Assay	(To identify B4 boosters)		
Invention	Compound : Retinoic acid Ratio	% Inhibition	
Broad	7000:1	> 25%	
Preferred	7000 : 1	> 50%	
Most Preferred	70:1	> 25%	
Optimum	70 : 1	> 50%	

Retinoic Acid Oxidation Assay (To identify B5 boosters)

Invention	Invention Compound Concentration		
Broad	100 μΜ	> 25%	
Preferred	100 μΜ	> 45%	
Most Preferred	100 μΜ	> 70%	
Optimum	100 μM	> 80%	

The in vitro Microsomal Assays employed for determining the suitability of the inclusion of the compound in the inventive compositions are as follows:

1. Materials

All-trans-retinol, all-trans-retinoic acid, palmitoyl-CoA, 10 dilauroyl phosphatidyl choline, NAD, and NADPH were purchased from Sigma Chemical Company. Stock solutions of retinoids for assays were made up in the microsomal acetonitrile. All retinoid standard stock solutions for HPLC analysis were prepared in ethanol, stored under atmosphere of 15 N_2 at $-70\,^{\circ}\text{C}$ and maintained on ice under amber lighting when Other chemicals and the inhibitors were out of storage. commercially available from cosmetic material suppliers or chemical companies such as Aldrich or International Flavours and Fragrances. 20

2. Methods

25

2.1 Isolation of RPE microsomes (modified from (1))

50 frozen hemisected bovine eyecups, with the retina and aqueous humor removed were obtained from W. L. Lawson Co.,

10

Lincoln, NE, USA. The eyes were thawed overnight and the colored iridescent membrane was removed by peeling with forceps. Each eyecup was washed with 2x 0.5mL cold buffer (0.1M PO4 / 1mM DTT / 0.25M sucrose, pH 7) by rubbing the darkly pigmented cells with an artist's brush or a rubber policeman. The cell suspension was added to the iridescent membranes and the suspension was stirred for several minutes in a beaker with a Teflon stir bar. The suspension was filtered through a coarse filter (Spectra/Por 925µ pore size polyethylene mesh) to remove large particles, and the resulting darkly colored suspension was homogenized using a Glas-Col with a motor driven Teflon homogenizer.

The cell homogenate was centrifuged for 30 min. at 20,000g (Sorvaal model RC-5B centrifuge with an SS34 rotor in 2.5x10cm tubes at 14,000 RPM). The resulting supernatant was subjected to further centrifugation for 60 min. at 150,000g (Beckman model L80 Ultracentrifuge with an SW50.1 rotor in 13x51mm tubes at 40,000 RPM). The resulting pellets were dispersed into ~5mL 0.1M PO₄ / 5mM DTT, pH 7 buffer using a Heat Systems Ultrasonics, Inc. model W185D Sonifier Cell Disruptor, and the resulting microsomal dispersion was aliquoted into small tubes and stored at -70°C. The protein concentrations of the microsomes were determined using the BioRad Dye binding assay, using BSA as a standard.

2.2 Isolation of rat liver microsomes (4)

Approximately 6 grams of frozen rat liver (obtained from 30 Harlan Sprague Dawley rats from Accurate Chemical and Scientific Corp.) was homogenized in 3 volumes of 0.1M tris /

0.1M KCl / 1mM EDTA / 0.25M sucrose, pH 7.4 buffer using a Brinkmann Polytron. The resulting tissue suspension was further homogenized in the motor driven Teflon homogenizer described above. The resulting homogenate was successively centrifuged for 30 min. at 10,000g, 30 min. at 20,000g, and 15 min. at 30,000g, and the resulting supernatant was ultracentrifuged for 80 min. at 105,000g. The pellet was sonicated in ~5mL of 0.1M PO4 / 0.1mM EDTA / 5mM MgCl₂, pH 7.4 buffer as described above and stored as aliquots at -70°C. Protein concentrations were determined as described above.

2.3 Assay for ARAT and LRAT activity (To identify B1)

10

15

20

25

The procedure below was a modification of a method described in the literature (2). The following buffer was prepared and stored at 4°C: 0.1M PO₄ / 5mM dithiothreitol, pH 7.0 (PO₄/DTT). On the day of the assay, 2mg BSA per mL of buffer was added to give a PO₄ / DTT / BSA working buffer. 1mM retinol substrate was prepared in acetonitrile and stored in amber bottles under nitrogen gas at -20°C. Solutions of 4mM Palmitoyl-CoA in working buffer (stored in aliquots) and 4mM dilauroyl phosphatidyl choline in ethanol were prepared and stored at -20°C. Inhibitors were prepared as 10mM stock solutions in $\rm H_2O$, ethanol, acetonitrile or DMSO. The quench solution was prepared using pure ethanol containing $\rm 50\mu g/mL$ butylated hydroxytoluene (BHT), and a hexane solution containing $\rm 50\mu g/mL$ BHT was used for the extractions.

To a 2 dram glass vial, the following were added in order: PO₄

30 / DTT / BSA buffer to give a total volume of 500µL, 5µL acyl

donor (4mM palmitoyl-CoA and/or dilauroyl phosphatidyl

10

15

20

25

choline), 5µL inhibitor or solvent blank (10mM stock or further dilutions) followed by approximately 15µg of RPE microsomal protein (approximately 15µL of a ~1ma/mL microsomal protein aliquot). The mixture was incubated for 5 min. at 37°C to equilibrate the reaction temperature and then The vials were capped, vortexed 5µL 1mM retinol was added. for 5 seconds and incubated for 30-90 minutes at 37°C. The reaction was quenched by adding 0.5mL ethanol/BHT. The retinoids were extracted by adding 3mL hexane/BHT, vortexing the tubes for several seconds several times and centrifuging the tubes at low speed for 5 min. to quickly separate the layers. The upper hexane layer was removed into a clean vial, layer re-extracted with and the aqueous another hexane/BHT, as described above. The hexane layers were combined, and the hexane evaporated by drying at 37°C under a stream of nitrogen gas on a heated aluminum block. The dried residue was stored at -20°C until HPLC analysis. The amount of retinyl palmitate and retinyl laurate was quantitated for ARAT and LRAT activity, respectively, by integration of the HPLC signal as described below.

Note that the incubation solution contains $40\mu\text{M}$ acyl donor, $100\mu\text{M}$ or less inhibitor, $10\mu\text{M}$ retinol, approximately $30\mu\text{g/mL}$ microsomal protein, and nearly 0.1M PO₄/ pH 7 / 5mM DTT / 2mg/mL BSA. All steps subsequent to the addition of retinol were done in the dark or under amber lights.

2.4 Assay for Retinol Dehydrogenase Activity (To identify B2)

30 The following stock solutions were prepared:

50mM KH2PO4, pH 7.4 buffer, sterile filtered.

10mM all trans Retinol (Sigma R7632) in DMSO.

200mM Nicotinamide adenine dinucleotide phosphate, sodium salt (NADP) (Sigma N0505) in sterile water.

5 40mM test compound in appropriate solvent (water, buffer, ethanol, chloroform or DMSO).

1:10 dilution of rat liver Microsomes in 50mM KH2PO4, pH 7.4 buffer $(4\mu g/\mu l)$.

10 In a two-dram glass vial with screw cap, the following were added in order:

Buffer to give a final volume of 400µl

 $25\mu l$ diluted Microsomes (final = $100\mu g$) - boiled Microsomes 15 were used for controls and regular Microsomes for test samples.

4ul of 200mM NADP (final = 2mM)

1 μ l of 40mM test compound (final = 100 μ M)

 $8\mu l$ of 10mM retinol (final = $200\mu M$)

20

25

30

The vials were incubated in a 37°C shaking water bath for 45 minutes. 500µl ice-cold ethanol was added to each vial to quench the reaction. The retinoids were extracted twice with ice cold hexane (2.7ml per extraction). Retinyl acetate (5µl of a 900µM stock) was added to each vial during the first extraction as a means of monitoring the extraction efficiency in each sample. Samples were vortexed for ten seconds before gently centrifuging for five minutes at 1000rpm, 5°C in a Beckman GS-6R centrifuge. The top hexane layer containing the retinoids was removed from the aqueous layer after each extraction to a clean two-dram vial. The hexane was

evaporated off under a gentle stream of nitrogen gas. The dried residue was then stored at $-20\,^{\circ}\text{C}$ until HPLC analysis.

2.5 Assay for Retinal Reductase Activity (To identify B3)

5

All stock solution were prepared as above with the following substitutions:

10mM all trans Retinaldehyde (Sigma R2500) in DMSO - instead

200mM, Nicotinamide adenine dinucleotide phosphate, reduced form, tetrasodium salt (NADPH) (Sigma N7505) in sterile water - instead of NADP.

15 In a two-dram glass vial with screw cap, add the following in order:

Buffer to give a final volume of $400\mu l$

25µl diluted Microsomes (final = $100\mu g$) - use boiled

20 Microsomes for controls and regular Microsomes for test samples.

 $4\mu l$ of 200mM NADPH (final = 2mM)

1ul of 40mM test compound (final = 100μM)

 $3\mu l$ of 10mM retinaldehyde (final = $75\mu M$)

25

Follow the same incubation and extraction procedure as detailed above.

2.6 Assay for CRABPII antagonists (To identify B4)

2.6.1. Synthesis of CRABPII

a. System of expression

5 The gene CRABPII was cloned in pET 29a-c(+) plasmid (Novagen). The cloned gene was under control of strong bacteriophage T7 transcription and translation signals. The source of T7 polymerase was provided by the host cell E.coli BLR(DE3)pLysS (Novagen). The latter has a chromosomal copy of T7 polymerase under lacUV5 control, induced by the presence of IPTG.

The plasmid was transferred into E. coli BLR(DE3)pLysS cells by transformation according to the manufacturer protocol (Novagen).

b. Induction

15

An overnight culture of the transformed cells was diluted 1:100 into 2xYT containing 50 µg/mL kanamycin and 25µg/mL chloramphenicol. The cells grew while shaking at 37°C until the OD at 600 nm reached 0.6-0.8. Then IPTG was added to a final concentration of 1mM and the culture was incubated for an additional two hours. The cells were harvested by centrifugation at 5,000g for 10 minutes at room temperature.

25 The pellet was stored at -20°C.

2.6.2. Purification

Purification was performed according to the method described in Norris and Li, 1997.

30 a. Lysis

The frozen pellet was thawed at RT and resuspended in 1-2 pellet volumes of freshly prepared lysis buffer (50 mM Tris-HCl, pH 8, 10%(w/v) sucrose, 1 mM EDTA, 0.05%(w/v) sodium azide, 0.5 mM DTT, 10 mM MnCl₂, 2.5 mM phenylmethylsulfonyl fluoride, 2.5 mM benzamidine, 6µg/mL DNase). The lysate was incubated for 30 mins. at room temperature. Further lysis was accomplished by sonication (six 30-sec bursts at 10,000 psi alternated with five 30-sec delay on ice). The insoluble fraction of the lysate was removed by centrifugation at 15,000 rpm 1 hour at 4°C and the supernatant is stored at -10 20°C.

b. Gel filtration on Sephacryl S300

15

20

30

The supernatant from step a. was loaded onto a 2.5x100 cm column of sephacryl S-300 (Pharmacia) at room temperature. The elution buffer was 20 mM Tris-HCl, pH 8, 0.5mM DTT, 0.05% The flow rate was 2mL/min. sodium azide (buffer A). checked for ultraviolet 2-mL fractions were Collected absorbance at 280 nm. The fractions representing the peaks were examined by SDS-page for the presence of CRABPII.

c. Anion-exchange chromatography

2 mL of gel filtration fractions containing CRABPII were loaded onto a quaternary amine anion-exchange column FPLC (Fast Protein Liquid Chromatography) type monoQ (Pharmacia). CRABPII was eluted using a gradient buffer from 100% buffer A to 30% buffer B (100 % buffer B = buffer A + 250 mM NaCl) over a 20-min period at room temperature. 1 mL-fractions were collected every minute. Once more, the presence of CRABPII was checked by SDS page. CRABPII was stored at 4°C before freeze-drying using a Micromodulyo 1.5K with vial. WO 02/02074 PCT/EP01/07234 19

platform attachment (Edwards High Vacuum International). The desiccated samples were stored at room temperature until their use in the binding assay.

d. Detection of the presence of CRABPII The expression and purification of CRABPII was validated using denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on a 7-15% polyacrylamide gel (Biorad). 10 μL samples were mixed with 10 µL of 2X loading buffer (100 mM Tris-HCl pH6.8, 4% SDS, 0.2% BPB, 20% glycerol, 1mM DTT) and 10 The samples were denatured by heating (2 mins. at 80°C). loaded onto the gel that was immersed in a 1X Tris-glycine buffer (Biorad) and a constant current (25 mA) was applied for 1 hour at room temperature. After Coomassie blue staining, the protein was identified according to its 15 molecular weight as determined with the Benchmark pre-stained protein ladder (Gibco BRL).

A western blot was used to confirm the presence of CRABPII. 20 The proteins separated on the SDS-PAGE were transferred on an Immobilon-P transfer membrane (Millipore) using a Biorad cassette. The transfer occurred in 1X Tris-glycine buffer (Biorad) + 10% methanol. An electrical currant (60 mA) was applied for 3 hours to allow the protein to migrate through the membrane. Afterwards, the membrane was blocked with 5% 25 dry milk in 1X TBS for one hour at room temperature and probed with primary antibodies to CRABPII (1/1000 dilution of mouse anticlonal 5-CRA-B3) in the same buffer at 4°C The following day, the membrane was washed with overnight. PBS (3 \times 5 minutes) and then incubated with 1:2000 dilution 30 of the secondary antibody, peroxidase conjugated anti-mouse antibody (ECLTM, Amersham), for 1 hour at room temperature. The membrane was washed with 1xPBS (3x5 minutes) and the protein was detected using ECL detection kit according to the manufacturer instruction (Amersham).

5

The concentration of purified CRABPII was determined using BSA kit (Pierce).

2.6.3. Radioactive Binding assay

- 220 pmol of CRABPII was incubated in 20 mM Tris-HCl buffer pH 10 7.4 with 15 pmol of radioactive all trans retinoic acid (NEN) in a total volume of 70µL. For the competitive assay, another ligand in excess (6670:1, 670:1 or 70:1) was added to The reaction occurred for one hour at room temperature in the dark. In order to separate the unbound 15 all-trans retinoic acid from the bound all-trans retinoic acid, a 6kD cut-off minichromatography column (Biorad) was The storage buffer was discarded using a Microplex manifold for according to the manufacturer instruction (Pharmacia). The samples were loaded onto the column and the 20 separation occurred by gravity over a 30-min period. Retinoic acid ("RA") bound to CRABPII appeared in the filtrate while free RA remained in the column. radioactivity of the filtrate was measured by scintillation counter. 25
 - 2.7 Assay for NADPH dependent retinoic acid oxidation (To identify B5)
- 30 The procedure below is a modification of a method described in the literature (4). The following assay buffer was

10

15

20

prepared and stored at 4°C : 0.1M PO₄ / 0.1mM EDTA / 5mM MgCl₂, pH 7.4. On the day of the assay, a 60mM NADPH solution in buffer was prepared. Inhibitor stocks, acidified ethanol / BHT quench solution, and hexane / BHT were prepared as described above. A working 1mM retinoic acid solution was prepared by dilution of a 15mM stock (in DMSO) with ethanol.

To a 2 dram vial, the following were added in order: assay buffer to give a final volume of $500\mu L$, $20\mu L$ 60mM NADPH, $5\mu L$ inhibitor or solvent blank, followed by approximately 2mg of rat liver microsomal protein.

The mixture was incubated for 5 mins. at 37°C, then 5µL working 1mM retinoic acid solution was added. Incubation was continued for 60mins. at 37°C - the vials were not capped, since the oxidation process required molecular O₂ in addition to NADPH. Quenching was carried out with acidified ethanol/BHT and extraction was carried out with hexane/BHT as described above. Quantitation of the quickly eluting polar retinoic acid metabolites (presumed to be 4-oxo retinoic acid) was carried out by integration of the HPLC signal as described below.

All steps subsequent to the addition of retinoic acid were done in the dark or under amber lights. The final incubation solution contained 2.4mM NADPH, 100µM or less inhibitor, 10µM retinoic acid, approximately 4mg/mL rat liver microsomal protein and nearly 0.1M PO₄ / 0.1mM EDTA / 5mM MgCl₂.

30 HPLC analysis of individual retinoids

WO 02/02074 PCT/EP01/07234

Samples for retinoid quantitation by HPLC were prepared by dissolving the residue in each vial with 100µL of methanol. The solution was transferred to a 150µL glass conical tube within a 1mL shell vial, capped tightly, and placed inside a Waters 715 Autosampler. Aliquots of 60µL were injected immediately and analysed for retinoid content.

The chromatography instrumentation consisted of a Waters 600 gradient controller/pump, a Waters 996 Photodiode Array detector and a Waters 474 Scanning Fluorescence detector. Two HPLC protocols were used for retinoid analysis. For the ARAT and LRAT assay, the separation of retinol and retinol esters was performed with a Waters 3.9x300mm C18 Novapak reverse-phase analytical column and Waters Sentry NovaPak C18 guard column with an 80:20(v/v) methanol/THF isocratic mobile phase adjusted to a flow rate of lmL/min. for 10 min. The eluate was monitored for absorbance at 325nm and fluorescence at 325ex/480em.

20 A shorter Waters 3.9x150mm C18 Novapak reverse-phase analytical column and Waters Sentry NovaPak C18 guard column were used to separate retinoid acids and alcohols for the retinol and retinoic acid oxidation assays utilising a modification of a gradient system described by Barua (5).

25 This system consisted of a 20 mins. linear gradient from 68:32(v/v) methanol/ water containing 10mM ammonium acetate to 4:1(v/v) methanol:dichloromethane followed by a 5 mins. hold at a flow rate of lmL/min. The column eluate was monitored from 300nm to 400nm.

10

15

These protocols were selected based on their ability to clearly resolve pertinent retinoid acids, alcohols, aldehydes, and/or esters for each assay and relative quickness of separation. Identification of individual retinoids by HPLC was based on an exact match of the retention time of unknown peaks with that of available authentic retinoid standards and UV spectra analysis (300-400nm) of unknown peaks against available authentic retinoids.

10

25

References

- 1 J. C. Saari & D. L. Bredberg, "CoA and Non-CoA Dependent 15 Retinol Esterification in Retinal Pigment Epithelium", J. Bill. Chem. 263, 8084-8090 (1988).
 - 2 J. C. Saari & D. L. Bredberg, "ARAT & LRAT Activities of Bovine Retinal Pigment E p i t h e l i a l Microsomes", Methods Enzymol. 190, 156-163 (1990).
- 20 3 J. L. Napoli & K. R. Race, "The Biosynthesis of Retinoic Acid from Retinol by Rat Tissues in vitro", Archives Biochem. Biophys. 255, 95-101 (1987).
 - 4 R. Martini & M. Murray, "Participation of P450 3A Enzymes" in Rat Hepatic Microsomal Retinoic Acid 4-Hydroxylation", Archives Biochem. Biophys. 303, 57-66 (1993).
- 5 A. B. Barua, "Analysis of Water-Soluble Compounds: Glucuronides", Methods Enzymol. 189, 136-145 (1990).
- The boosters suitable for use in the present invention 100 include but are not limited to the boosters listed in Tables 100 B₁ through to 100 below. The table below gives the booster

WO 02/02074 PCT/EP01/07234

class $(B_1 - B_5)$, the chemical name of the compound, and the results from the appropriate assays used to identify the booster (i.e. ARAT/LRAT for B1, retinol dehydrogenase for B_2 , retinaldehyde inhibation for B3, CRABP is binding for B_4 and retinoic acid oxidation inhibition for B_5 .

ARAT/LRAT Inhibitors (B1)

		%Inhibition					
Class	Compound	Overall	Overall	%Inhibition	%Inhibition	%Inhibition	%Inhibition
	-	TG(-ROH/RE)	TG (IC 50)	ARAT (10m)	ARAT	LRAT (10jm)	LRAT (100jm)
					(100 _{jm})		-
			0.055.05	7.50			 15%
Carotenoid	Crocetin		3.75E-05	15%	34%	0	15% 50%+/-18
Fatty Acid & Other Surfactants	Acetyl Sphingosine		6.78E-06	19%+/-12	62%+/-11	10%+/-10	,
Fatty Acid Amides &	C13 Beta-Hydroxy Acid/	17%			28%		25%
Other Surfactants	Amide Castor Oil MEA		3.25E-05				
Fatty Acid Amides & Other Surfactants	Castor Oll MEA		3.25E-05				
Fatty Acid Amides &	Cocamidopropyl Betaine				25%		
Other Surfactants	- P						
Fatty Acid Amides &	Coco Hydroxyethyl-		2.84E-07		68%		65%
Other Surfactants	imidazoline				100		240
Fatty Acid Amides &	Cocoamide-MEA (or	11%			13%		34%
Other Surfactants	Cocoyl Monoetharol- amide)						500.7.0
Fatty Acid Amides &	Glycerol-PCA-Oleate				41%+/-6		588+/-2
Other Surfactants	Hexanoamide				20%		
Fatty Acid Amides & Other Surfactants	nexamoanizue				200		
Fatty Acid Amides &	Hexanoyl Sphingosine		9.99E-05		288+/-4		37%+/-9
Other Surfactants			J.JJE 00				•
Fatty Acid Amides &	Hydroxyethy1-2-		3.29E-05		35%		35%
Other Surfactants	Hydroxy-C12 Amide						222
Fatty Acid Amides &	Hydroxyethyl-2-				25%		30%
Other Surfactants Fatty Acid Amides &	Hydroxy-C16 Amide Lauroyl Sarcosine				20%		
Other Surfactants	Dauloyi Salcosine				200		
Fatty Acid Amides &	Lidocaine				12%		0
Other Surfactants							
Fatty Acid Amides &	Linoleamide-DEA (or	59%		12%+/-3	43%+/-3	11%+/-9	51%+/-15
Other Surfactants	Linoleoyl						
Harry hald hadden f	Diethanolamide) Linoleamide-MEA (or		1.61E-05	14%	35%	20%+/-8	35%
Fatty Acid Amides & Other Surfactants	Linoleoyl Monoethanol-		1.015-03	74.0	22.0	20017 0	55 %
Other Surfaceance	amide)						
Fatty Acid Amides &	Linoleamidopropyl				69%+/-18		75%+/-4
Other Surfactants	Dimethylamine						
Fatty Acid Amides &	Melinamide				64%+/-15		43%+/-21
Other Surfactants	Maria barra da mara da mara				41%+/-14		11%+/-11
Fatty Acid Amides &	Myristoyl Sarcosine				416+/-14		エエクエ/ ニエエ

	WO 02/02074
26	
	PCT/EP

21%

28%

							•	
Other Surfactants								
Fatty Acid Amides &	Oleyl Betaine		2.80E-05		47%			
Other Surfactants Fatty Acid Amides &	Palmitamide-MEA			6%	23%	12%	33%	
Other Surfactants Fatty Acid Amides &	Stearylhydroxyamide				10%		10%	
Other Surfactants Fatty Acid Amides &	Utrecht-1	21%		43%	54%	51%	48%+/-6	
Other Surfactants Fatty Acid Amides &	Utrecht-2		3.47E-06	42%	83%+/-9	51%	92%+/-3	
Other Surfactants Flavanoids	Naringenin				33%		14%	
Fragrances	Allyl Alpha-Ionone			16%+/-14	22%+/~23	17%+/-10	36%/-7	
Fragrances	Alpha-Damascone		3.35E-04	67%+/-27	83%+/~12	87%+/-6	98%+/-1	
Fragrances	Alpha-Ionone		9.27E-04		45%+/-27		49%+/-30	
Fragrances	Alpha-Methyl Ionone				67%		77%	
Fragrances	Alpha-Terpineol				26%		25%	
Fragrances	Beta-Damascone			45%	84%	52%	92%	
Fragrances	Brahmanol				70%		75%	
Fragrances	Damascenone			23%	70%	29%	79%	
Fragrances	Delta-Damascone			58%	87%	64%	95%	
Fragrances	Dihydro Alpha-Ionone				13%		18%	
Fragrances	Ethyl Saffranate				51%		49%	
Fragrances	Fenchyl Alcohol				12%		4 %	
Fragrances	Gamma-Methyl Ionone				21%		38%	
Fragrances	Isobutyl Ionone				8%		45%	
Fragrances	Isocyclogeraniol				18%		16%	
Fragrances	Isodamascone				80%		92%	
Fragrances	Lyral		1.27E-04		76%		71%	
Fragrances	Santalone				23%		12%	
Fragrances	Santanol				15%		43%	
Fragrances	Timberol				34%		33%	
Fragrances	Tonalid				50%		33%	
					112		21%	

1.46E-06

Traseolide

Citral

Coco Trimethylammonium Cl-Urosolic Acid

Fragrances

Miscellaneous

Miscellaneous

Noncyclic Fragrances 41%

27%

21%

20%

Noncyclic	Citronellol				30%		0
Fragrances Noncyclic	Farnesol		9.35E-05	23%+/-18	53%+/-18	10%+/-7	53%+/-19
Fragrances Noncyclic	Geraniol		7.83E-03	13%	32%		
Fragrances Noncyclic	Geranyl Geraniol			38%+/-12	81%+/-6	16%+/-9	77%+/-13
Fragrances Noncyclic	Linalool				28%		0
Fragrances Noncyclic	Nonadieneal				20%		
Fragrances Noncyclic	Pseudoionone				128		37%
Fragrances Phospholipid	Dioctylphosphatidyl Ethanolamine			23%	50%+/-2	0	17%+/-17
Urea	Dimethyl Imidazolidinone	22%					
Urea	Imidazolidinyl Urea	35%					

10

Retinol Dehydrogenase Activators (B2)

Class	Compound	%Increase Retinol Dehydrogenase
Phospholipid	Phosphatidyl Choline	21% increase
Phospholipid	Sphingomyelin	26% increase

Retinaldehyde Reductase Inhibitors (B3)

	·	Overall	% Inhibition
Class	Compound	TG(IC 50)	Retinal Reductase
Aldehyde	Vanillin	9.70E-03	6%
Fatty Acid	Arachidic Acid		20%
Fatty Acid	Arachidonic Acid		49%
Fatty Acid	Linoleic Acid	1.63E-04	62%+/-2
Fatty Acid	Linolenic Acid	1.34E-04	54%+/-16
Fatty Acid	Myristic Acid	1.72E-05	26%
Miscellaneous	Amsacrine	6.26E-06	22%+/-8
Miscellaneous	Carbenoxolone	3.61E-07	26%+/-2
Miscellaneous	Glycyrretinic Acid	8.64E-06	38%+/-1
Phospholipid	Phosphatidyl ethanolamine		37%

CRABPII Antagonists (B4)

		Overall	% Inhibition
Class	Compound	TG(IC 50)	CRABPII
Fatty Acid	Elaidic Acid	6.50E-05	>50%
Fatty Acid	Hexadecanedioic Acid	1.30E-04	>50%
Fatty Acid	12-Hydroxystearic Acid	2.91E-05	>50%
Fatty Acid	Isostearic Acid	6.88E-05	>50%
Fatty Acids	Linseed Oil		>50%

Retinoic Acid Oxidation Inhibitors (B5)

		Overall	%Inhibition	% Inhibition
		TG(IC 50)	Retinoic	Retinoic
Class	Compound		Acid (10µM)	Acid (100µM)
Imidazole	Bifonazole		89%	100%
Imidazole	Climbazole	4.47E-06	808	92%
Imidazole	Clotrimazole		76%	85%
Imidazole	Econazole		888	100%
Imidazole	Ketoconazole	1.85E-07	84%	84%
Imidazole	Miconazole	2.78E-07	74%	8 6%
Fatty Acid Amides & Other	Lauryl Hydroxyethylimidazoline	4.67E-07		
Surfactants Fatty Acid Amides & Other Surfactants	Oleyl Hydroxyethylimidazoline	3.02E-05	54%	80%
Flavanoids	Quercetin	6.29E-05	40%	74%
Coumarin	Coumarin			
Quinoline	(7H-Benzimidazo [2,1-a]Benz [de]-Isoquinolin-7-one	8.59E-07		
Quinoline	Hydroxyquinoline (Carbostyril)	3.64E-04		
Quinoline	Metyrapone (2-Methyl-1,2-di-3- Pyridyl-1-Propane)			47%

WO 02/02074 PCT/EP01/07234 32

SECTION B. Effects Of Booster Combinations

In order to assess the effect of combinations of booster molecules an assay is required which encompasses the effect of each of the five booster classes. A single enzyme assay is not suitable for this purpose, as it will be specific only for one class of booster molecule. An assay which retinoid concentration in keratinocytes reflects necessary to relate the effects of single booster molecules 10 with combination of booster molecules. For this reason, a transglutaminase (Tgase) assay was utilised. Tgases are calcium dependent enzymes that catalyse the formation of covalent cross-links in proteins. Several Tgase enzymes are membrane bound in keratinocytes which is important for 15 epidermal cell maturation. This enzyme is inhibited by The higher the concentration of retinoic retinoic acid. acid, the greater the inhibition of Tgase expression. Tgase is a good marker of both keratinocyte differentiation and of the retinoid effect on keratinocytes. 20

Transglutaminase as a marker of skin differentiation

During the process of terminal differentiation in the epidermis, a 15nm thick layer of protein, known as 25 cornified envelope (CE) is formed on the inner surface of the The CE is composed of numerous distinct cell periphery. been cross-linked together by the proteins which have of $N\Sigma$ -(γ -glutamyl) lysine isodipeptide formation catalysed by the action of at least two different 30

I is expressed in abundance in the differentiated layers of the epidermis, especially the granular layer, but is absent in the undifferentiated basal epidermis. Thus TGase I is a useful marker of epidermal keratinocyte differentiation with high TGase I levels indicating a more differentiated state. An ELISA based TGase I assay, using a TGase I antibody, was used to assess the state of differentiation of the cultured keratinocytes in the examples that follow.

10

15

20

25

30

Keratinocytes (cultured as described above) were plated in 96 well plates at a density of 4,000-5,000 cells per well in 200µl media. After incubation for two to three days, or until cells are ~50% confluent, the media was changed to media containing test compounds (five replicates per test). The cells were cultured for a further 96 hours after which time the media was aspirated and the plates stored at -70°C. Plates were removed from the freezer, and the cells were washed twice with 200µl of 1xPBS. The cells were incubated for one hour at room temperature (R/T) with TBS/5% BSA (wash buffer, bovine serum albumin). Next the TGase primary antibody was added: 50µl of monoclonal anti-Tgase I Ab B.C. The primary antibody was diluted 1:2000 in wash buffer. incubated for 2 hours at 37°C and then rinsed 6x with wash buffer. Cells were then incubated with 50µl of secondary antibody (Fab fragment, peroxidase conjugated anti-mouse IgG obtaining from Amersham) diluted 1:4,000 in wash buffer for two hours at 37°C, then rinsed three times with wash buffer. Following the rinse with washing buffer, the cells were rinsed 3x with PBS. For colourimetric development, the cells were incubated with 100µl substrate solution (4 mg ophenylenediamine and 3.3 µl 30% H_2O_2 in 10ml 0.1M citrate buffer pH 5.0) for exactly five minutes, R/T, in darkness (under aluminum foil). The reaction was stopped by the addition of 50µl 4N H_2SO_4 . The absorbance of samples was read at 492nm in a 96 well plate UV spectrophotometer. Out of the five replicates, four were treated with both antibodies, the fifth one was use as a Tgase background control. TGase levels were determined and expressed as percentage control.

10

15

25

Details of of Tgase assay:

Prior to initiating experiments, to determine the effects of combinations of booster molecules standard Tgase assay conditions were investigated. A fully validated Tgase assay was established as follows:

A. Reagents

20 Cells: Human Keratinocytes
(P2 in T75 flasks; P3 in 96
well assay plates)
Primary Antibody: TGm specific
monoclonal Ab B.C1

Secondary Ab: Peroxidase labeled antimouse Ig F(ab)2

Substrate solution: For 10 ml phosphate citrate buffer 4.0 mg o-phenylenediamine 3.3 µl of 30% H₂O₂

Neonatal Human foreskin

Biogenesis (Cat# 5560 -6006)

Amersham (Cat # NA9310)

Sigma P-7288 Sigma H-1909

Bio-tek Instuments Inc.

Packard

	B. Media/Buffers	
	Keratinocyte Growth Media (KGM)	Clonetics (Cat# 3111)
5	Phosphate Buffered Saline; Dulbecco's without Ca/MgCl ₂)	Life Technology (Cat # 14200-075)
	Tris Buffered Saline	•
10	Blocking buffer (1xTBS + 5% dry milk)	BioRad (Cat #170-6404)
15	Washing buffer (1% dry milk in TBS + 0.05% Tween 20)	Sigma (Cat # P-7949)
	Phosphate citrate buffer: 1:1 mixture of 0.2M dibasic sodium phosphate and 0.1 M citric acid	Sigma (Cat # S-9763) Sigma (Cat # C-1909)
	4 N H ₂ SO ₄	
25	C. <u>Culture ware</u> 96-well polypropylene microtitre	Contag (Cot # 3505)
30	plate 96-well polypropylene U-bottom plate T75- vent cap	Costar (Cat # 3595) Costar (Cat # 3794) Costar (Cat # 3376)
	D: <u>Instrumentation/Equipment</u>	

35 Biotek Model EL 340 Microplate

reader

Multiprobe II

PCT/EP01/07234

36

E: Cell Culture Procedure

Seeding of Keratinocytes in 96 well plates

- 5 1. A suspension of keratinocytes was prepared at a concentration of 3000 cells/200 μ l/ well in KGM medium (Used $3x10^5$ cells /12 ml media in each microtitre plate)
 - 2. $200\mu l$ of the keratinocyte suspension was transferred into each of the inner 60 wells only.
- 10 3.200µl of KGM media was pipetted into the outer wells (to maintain thermal equilibrium).
 - 4. Each plate was incubated at 37°C and 5% CO_2 for 3 days or until cells are ~50% confluent.

15 Treatment of keratinocytes with samples.

- 5. Stock solutions of the samples were prepared in DMSO.
- 6. The samples were diluted to desired concentration with the final assay concentration of DMSO being 0.1 %.
- 7. 20 μl of the sample was transferred into wells and 180 μl of KGM medium added to give a final assay volume of 200 μl .
 - 8. Plates were incubated at 37° C and 5% CO_2 for 72 hours.
 - 9. Media were completely removed from each well.
- 25 10. Wells were rinsed with 2x with 200 µl of 1xPBS
 - 11. Finally they were frozen for at least 1.5 hours at -70°C .

F: Transglutaminase Assay

1. Block:

5

Incubate plates at room temperature with 200 μ l/well of blocking buffer for 1 hour.

2. Primary Antibody:

Aspirate blocking buffer. Incubated with 100 μ l/well of TGm-specific monoclonal antibody B.C1 (diluted 1:2000 in washing buffer) at 37°C for at least 2 hours.

- The primary antibody was not added in background control wells.
 - 3. Rinsed wells 6x with washing buffer.
 - 4. Secondary Antibody:

Incubated with 100 μ l/well peroxidase labeled antimouse IgF(ab)2 fragment (diluted 1:4000 in washing buffer) at 37 0 C for 2 hours.

- 5. Rinsed wells 3X with washing buffer (added 200 μ l) and aspirated after each rinse.
- 6. Rinsed wells 3X with PBS w/o Tween.
- 7. Incubated with 100 μ l/well substrate solution at room temperature for exactly 5 minutes.
 - 8. Stopped reaction with 50 µl/well 4N H₂SO₄.
 - 9. Read absorbance at 492 nm in the Bio-tek plate reader.
- 25 I. Optimization Studies
 - a. Time Course of Transglutaminase Production

A time course experiment was conducted to determine the optimal incubation time for transglutaminase production in keratinocytes grown in 96-well plates (4000)

10

15

cells/well). This time course study was conducted with multiple variables including dose response analyses of retinoic acid and retinol as well as incubation in the presence of 1.2 mM CaCl2. Although the transglutaminase production in the control cells (0.1% DMSO) was not altered, both retinoic acid and retinol exhibited a dose dependent inhibition of transglutaminase production over the five day incubation period. The most pronounced retinoid effect was observed on day 2 and day 3. maximal inhibition was observed on day 2 with the transglutaminase production being inhibited by 85% and 55% in the presence of the highest concentration (1 μ M) of retinoic acid and retinol respectively. experiment was also conducted with varying cell density (3000 cells/well and 5000 cells/well) and comparable results were observed.

B: DMSO Sensitivity

Various concentrations of DMSO ranging from 0-2% were tested for the effect on transglutaminase production in keratinocytes. The assay was sensitive to DMSO concentration with significant inhibition of activity, above 0.5% DMSO. Hence, a final assay concentration of 0.1% was selected for subsequent sample concentration studies.

C: Dose Response Curves: Retinoic Acid and Retinol

Based on the data, day 3 was selected as the optimal time and 0.1%DMSO was selected as the concentration to be used for further testing. An additional dose

> response experiment was carried out with retinoic acid and retinol in the presence of 0.1% DMSO, with the transglutaminase production being assayed on day 3. A good dose response was observed for Tgase inhibition by 10-7M retinol gave an retinoic acid and retinol. in the linear inhibition of Tgase range concentration. Therefore, this concentration of retinol was chosen to evaluate the booster combinations.

10

30

5

Final conditions used to test boosters or combination of boosters

Days of incubation of keratinocytes with

3 days 15 retinol and boosters Final DMSO concentration less than 0.1%

10-7M (0.1uM)Retinol concentration 10 mM to 0.1 nM Booster concentrations

Using the above conditions, dose response for all the 20 different boosters (B1-B5) were tested to identify the best concentration of booster to test in combinations.

Transglutaminase levels were determined and expressed in the 25 Tables B1 through B5 either as:

- (i) % (booster + retinol inhibition / control inhibition) % (ROH inhibition / control inhibition), which measures the added effect of booster + retinol induced TGase inhibition over retinol alone, or
- (ii) as an IC50 value when the inhibitory effect of multiple booster concentrations was examined - this provides the concentration of booster which, in combination with a

constant retinol concentration of 10^{-7} M, inhibits TGase by 50%.

Booster combinations and booster ratios:

5

It has been discovered surprisingly that certain compounds increase the endogenous levels of retinoic acid formation from retinol or retinyl esters by different mechanisms. These compounds are collectively called here as "retinoid These include: inhibitors of ARAT/LRAT (B1 10 boosters". inhibitors of retinaldehyde reductase boosters), boosters), inhibitors of retinoic acid binding to CRABP-2 (B4 boosters) and inhibitors of retinoic acid oxidation catalysed by cytochrome P450 enzymes (B5 boosters), or certain other compounds which enhance or activate retinol 15 dehydrogenase (B2 boosters). These boosters are coded as groups B1 through to B5, as seen in chart 1 herein above.

The boosters alone or in combination with each other,
20 potentiate the action of a retinoid by increasing the amount
of retinol available for conversion to retinoic acid and
inhibiting the degradation of retinoic acid. The boosters
act in conjunction with a retinoid (e.g. retinol, retinyl
ester, retinal, retinoic acid) the latter being present
25 endogenously in the skin. The preferred compositions,
however, include a retinoid in the composition, co-present
with a booster, to optimise performance.

The present invention includes, in part, a second 30 composition containing from about 0.0001% to about 50%,

preferably from 0.001% to 10%, most preferably from 0.001% to 5% by weight of the composition of at least one booster compound, or a combination of binary, tertiary, quaternary or 5 booster combinations. The combined concentration of the booster combinations of 0.001% to 5% in specified ratios as shown below, inhibit transglutaminase in an in vitro transglutaminase assay to more than 50%, and a cosmetically acceptable vehicle.

- The boosters included in the inventive compositions are 10 selected from the group consisting of:
 - a. Two boosters, wherein both are selected from the group consisting of B2, B3 and B4;
- b. Binary combinations of boosters selected from the group consisting of B1/B2; B1/B3, B1/B4; B1/B5; B2/B3, B2/B4; 15 B2/B5; B3/B4, B3/B5; B4/B5
 - c. Ternary combinations of boosters selected from the group consisting of B1/B2/B3;B1/B2/B4;B1/B2/B5; B1/B3/B4; B1/B3/B5; B1/B4/B5; B2/B3/B4; B2/B3/B5; B2/B4/B5;B3/B4/B5
 - d. Quaternary combinations of boosters selected from the group consisting of B1/B2/B3/B4; B1/B2/B3/B5; B1/B2/B4/B5; B1/B3/B4/B5; B2/B3/B4/B5; and
 - e. A combination of five groups of boosters B1/B2/B3/B4/B5.

Booster to booster ratios:

20

25

The boosters of different classes (B1 to B5) in combinations as shown above have an optimal concentration of between 30 0.001% to 5% in a cosmetic product at specific ratios as

shown below for inhibition of Tgase activity to at least below 50%:

	Invention	Ratios of boosters to boosters	Concentrations
5 10	Broad Preferred Most preferred Optimum	1: 10,000 to 10,000:1 1: 1000 to 1000:1 1:100 to 100:1 1:10 to 10:1	100 mM to 1 nM 10 mM to 10 nM 1 mM to 100 nM 0.1 mM to 1 µM

Retinoid to booster ratios:

The preferred composition includes a retinoid (e.g. retinol, retinyl ester, and retinaldehyde) in the composition, copresent with a booster or a combination of the boosters, to 15 optimise performance.

For optimum performance, the concentration of retinoid to booster should be present in the composition in ratios as given below:

	Invention	Ratios of boosters to retinoids	Concentrations
25	Broad	10,000:1 to 1:10,000	100 mM- 1 nM booster; 0.001-10% retinoids
	Preferred	1000:1 to 1:1000	10 mM-10 nM booster; 0.001-10% retinoid
	Most preferred	100:1 to 1:100	1 mM-100 nM booster; 0.01-1% retinoid

30

20

Concentrations of individual boosters used in the examples:

Since the objective is to establish synergistic inhibition 35 of transglutaminase expression by combinations of the active compounds with retinol, it was essential to determine the dose response profiles (IC20 and IC50 values) of the active compounds, when tested individually in the presence of retinol. The detailed dose response of boosters belonging to B2-B4 is given in the tables following the IC50 and IC 20 table below. This data was used to identify an appropriate sub-maximal inhibitory concentration of each active compound, to eventually make it possible to identify putative synergistic effects of the mixtures of the active compounds in the presence of retinol. The data in the following table represents the IC50 and IC20 (80% of control) values and the concentrations used when testing synergies with combinations of boosters.

5

10

15

20

25

In order to demonstrate synergy of two compounds, it is essential to select concentrations to test that are at most IC20, in other words, a compound concentration that individually boosts the retinol inhibition of Tgase expression by 20%. Two such compounds should have an additive inhibition of 40%. Using this strategy to determine concentrations leaves a window of 40-100% for further inhibition for detecting synergy of the two compounds under examination.

A more challenging concentration criterion would be selecting concentrations of compounds which alone showed no inhibition effect, but in combination show inhibition. In this study however, we chose an even more challenging criteria. We selected concentrations of compounds that were 10 to 1000 fold lower than the minimally effective Tgase inhibiting concentration. Identification of synergistic combinations using such very low concentrations would mean

that the most effective synergistic combinations were identified.

Booster	Compound Name			Con. Used for
Class	Compound Name	IC50	IC20	synergy
Ciass				(binary,
				tertiary,
				quaternary)
B1	LinoleoylMonoethanolamide	1.61E-05	1.48E-05	1E-05 to 1E-09
	(LAMEA)			
	Palmitamide Monoethanolamide	ND	ND	1E-06 to 1E-10
	Oleyl Betaine	2.80E-05	1.08E-05	1E-05 to 1E-8
	Naringenin	ND	ND	1E-05 to 1E-09
	Echinacea	ND	ND	1E-05 to 1E-09
	Dimethyl imidazolinone	ND	ND	1E-05 to 1E-09
	Melinamide	ND	ND	1E-05 to 1E-09
	Geranyl geraniol	ND	ND	1E-05 to 1E-09
	Farnesol	9.35E-05	7.82E-05	1E-06 to 1E-09
	Geraniol	7.83E-03	4.72E-03	1E-03 to 1E-07
	α-Damascone	3.35E-04	1.69E-04	1E-04 to 1E-08
	α -Ionone	9.27E-04	1.42E-04	1E-04 to 1E-08
	Castor oil Methyl Ester Acid (MEA)	3.25E-05	9.38-E06	1E-06 to 1E-09
	Ursolic Acid	1.46E-06	5.94-E07	1E-06 to 1E-09
	Utrecht-2	3.47-E06	3.30-E06	1E-06 to 1E-09
	Cocoyl hydroxyethylimidazoline	2.84E-07	9.21E-08	1E-08 to 1E-11
	Acetyl sphingosine (C2 Ceramide)	6.78E-06	5.15E-06	1E-06 to 1E-09
	Hexanoyl sphingosine (C6	9.99E-05	6.94E-05	1E-05 to 1E-09
	Crocetin	3.75E-05	2.52E-05	1E-05 to 1E-09
-	Lyrial	1.27E-04	4.00E-05	1E-05 to 1E-09
1	N-Hydroxyethyl-2- hydroxydodecyl amide	3.29E-05	2.40E-05	1E-05 to 1E-09
B2	Phosphatidyl Choline	ND	ND	1E-05 to 1E-09
	Sphingomyelin	ND	ND	1E-05 to 1E-09
	TCC	9.64E-07	6.18-E07	1E-07 to 1E-10
	1,2-dioctancyl-sn-glycero-3-phosphoethanolamide	ND	ND	1E-05 to 1E-09
в3	Amsacrine-HCl	6.26E-06	3.30E-06	1E-06 to 1E-09
	Carbenoxolone	3.61E-07	2.00E-07	1E-07 to 1E-10
	Glycyrrhetinic Acid	8.64E-06	5.96E-06	1E-06to 1E-09
	Linoleic Acid	1.63E-04	8.95E-05	1E-05 to 1E-09
	Linolenic Acid	1.34E-04	1.21E-04	1E-05 to 1E-09
	Arachidonic Acid (Na+ salt)	ND	ИD	1E-05 to 1E-09
	Myristic Acid	1.72E-05	1.05E-05	1E-05 to 1E-09
	Vanilin	9.70E-03	8.47E-03	1E-03 to 1E-06
В4	Hexadecanedioic acid	1.30E-04	8.40E-05	1E-05 to 1E-09
	12-Hydroxystearic acid	2.91E-05	1.45E-05	1E-05 to 1E-09
	Elaidic acid	6.50E-05	5.88E-05	1E-05 to 1E-09
	Linseed oil	ND	ND	1E-05 to 1E-09
	Isostearic acid	6.88E-05	6.23E-05	1E-05 to 1E-09
	2-Hydroxystearic acid	ND	ND	1E-05 to 1E-09
В5	Climbazole	4.47E-06	2.45E-07	1E-07 to 1E-10

Clotrimazole	ND	ND	1E-05 to 1E-09
Miconazole	2.78E-07	8.42E-08	1E-08 to 1E-11
Coumarin	ND	ND	1E-05 to 1E-09
Ketoconazole	1.85E-07	5.52E-08	1E-08 to 1E-11
3,4,-Dihydro-2(1H)-	ND	ND	1E-05 to 1E-09
quinolinone (Hydrocarbostyril)			
2-	3.64E-04	1.70E-04	1E-04 to 1E-08
Hydroxyquinoline(Carbostyril)			<u></u>
Amino Benzotriazole	ND	ND	1E-05 to 1E-09
Lauryl	4.67E-07	2.69E-07	1E-07 to 1E-10
hydroxyethylimidazoline			
Quercetin	6.29E-05	5.11E-05	1E-05 to 1E-09
Oleoyl hydroxyethlimidazoline	3.02E-05	5.65E-06	1E-06 to 1E-09
7H-Benzimidazo[2,1-	8.59E-07	4.69E-07	1E-07 to 1E-09
a]Benz[de]-isoquinolin-7-one	l		

ND: Not determined or a clear dose response was not observed. For synergies, a wide range of concentration (4 orders of magnitude 10-5 to 10-9M) was tested.

Dose response for boosters class B2 to B4

10 The following tables include the data on the dose response of boosters belonging to class B2 to B4. Concentration of boosters are given in Molar; mean Tgase level and Standard deviation of 4 replicates is expressed as % of control (0.1% DMSO and 10-7M retinol). Higher numbers (close to 100 or above 100) indicate no inhibition of Tgase. The lower the number, the more potent the inhibitor is at that concentration. The IC50 and IC20 values were calculated from this dose response table and expressed in the above table.

B2 class boosters:

Phosphatidyl choline (B2)

Concentration	Tgase levels (Mean)	Tgase (SD)
4.4E-05	90.9	0.01
1.47E-05	120.3	10.6
4.89E-06	70.1	11.4
1.63E-06	98.8	0.00
5.43E-07	86.7	6.19
1.8E-07	75.9	20.5
6.0E-08	87.8	3.9
1.2E-08	159	42.3
2.4E-09	85.5	0.39

5

Sphingomyelin (B2)

Concentration	Tgase levels (Mean)	Tgase (SD)
3.0E-05	45	3.21
1.0E-05	77.8	25.5
3.33E-06	76.4	7.55
1.1E-06	98.8	0.00
3.73E-07	91.6	14.9
1.23E-07	70.0	3.63
4.10E-08	74.6	4.19
8.2E-08	115.2	1.02
1.65E-09	68.4	2.03
3.29E-10	69.2	2.1

TCC (B2)

Concentration	Tgase levels (Mean)	Tgase (SD)
1.14E-03	36.3	4.6
3.8E-04	3.8	0.96
3.31.23E-04	-3.2	0.91
4.22E-05	-11.2	0
1.41E-06	3	4.88
4.69E-07	15.9	3.52
6.26E-08	18.9	3.12
1.25E-08	100.2	23.3
6.9E-09	77.6	21.2
1.0E-09	54.4	11.23

1,2 dioctanoyl-sn-glycero-3-phopshoethanolamide (B2)

Concentration	Tgase levels (Mean)	Tgase (SD)
1.6E-04	58.1	2.08
5.33E-05	95.4	21.3
1.78E-05	104	4.01
5.93E-06	129	0.0
1.98E-06	110	8.74
6.58E-07	92.8	15.78
2.19E-09	88.6	12.3
4.39E-08	127.3	3.39
8.78E-09	119	21.1
1.79E-9	82	15.6

B3 Class boosters

Amscrine B3

5

Concentration	Tgase levels (Mean)	Tgase (SD)
3.0E-05	-10	3.29
1.0E-05	1.8	7.45
3.33E-06	64	4.2
1.1E-06	84	0
3.73E-07	109	6.2
1.23E-07	65	15.8
4.10E-08	110	10.5
8.2E-08	131	27
1.65E-09	113	18
3.29E-10	92	8.9

Carbenoxolone (B3)

Concentration	Tgase levels (Mean)	Tgase (SD)
3.0E-06	-7.1	0
1.0E-06	27.3	1.15
3.33E-07	51.7	0
1.1E-07	158	0
3.73E-08	126	4.67
1.23E-08	81	29
4.10E-09	135	6.88
8,2E-10	112	32
1.65E-10	77.8	10.6
3.29E-11	64	49

Glyrrhetinic acid (B3)

Concentration	Tgase levels (Mean)	Tgase (SD)
3.0E-04	-0.3	3.9
1.0E-05	0.7	3.55
3.33E-05	2.5	2.1
1.1E-06	96.4	0.00
3.73E-06	120	33.2
1.23E-07	112	38
4.10E-07	93	11
8.2E-08	225	108
1.65E-08	103	1.1
3.29E-9	100	6.2

Linoleic acid (B3)

Concentration	Tgase levels (Mean)	Tgase (SD)		
9.0E-03	-6	3.06		
3.0E-03	0.1	2.01		
1E-03	-16.4	16.3		
1.1E-04	4.4	0		
3.73E-04	79.2	0		
1.23E-05	62.6	6.2		
4.10E-05	76.8	3.69		
8.2E-06	146	44.2		
1.65E-07	106	20.2		
3.29E-07	60.2	2.3		

Linolenic acid (B3)

Concentration	Tgase levels	Tgase (SD)
	(Mean)	
9.0E-03	-11	8.7
3.0E-03	-5.7	0.74
1E-03	-7.5	7.8
1.1E-04	-23	0
3.73E-04	68	0.57
1.23E-05	94.9	17.2
4.10E-05	65.9	0.03
8.2E-06	119	1.6
1.65E-07	77	8.5
3.29E-07	98	7.0

Myristic acid (B3)

Concentration	Tgase levels (Mean)	Tgase (SD)
1E-03	-2	4.1
1.1E-04	-8	2.3
3.73E-04	-6	1.16
1.23E-05		
4.10E-05	75.1	1.06
8.2E-06	74.2	10.0
1.65E-07	88.9	8.4
3.29E-07	-101	4.47
5.0E-08		
1.1E-08		

51

Vanillin (B3)

Concentration	Tgase levels	Tgase (SD)
	(Mean)	
1.4E-02	21.5	24.2
4.8E-03	93.8	1.7
1E-03	124	15.6
1.1E-04		
3.73E-04	101	14.3
1.23E-05	82	14.6
4.10E-05	98	2.4
8.2E-06	109	22
1.65E-07	80	4
3.29E-07	93	41

5

B4 Class boosters

Hexadecanedioic acid (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)		
1E-03				
1.1E-04	14.2	2.7		
3.73E-04	43.4	8.4		
1.23E-05	130	0		
4.10E-05	105	14		
8.2E-06	114	12		
1.65E-07	95	1.9		
3.29E-07				
5.0E-08	74	6.7		
1.1E-08	70	10.4		

12-hydroxysteric acid (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)		
3.73E-04				
1.23E-05	-5.2	2.3		
4.10E-05	32.4	5.3		
8.2E-06	97.6	0		
1.65E-07	90.2	11		
3.29E-07	82	28		
5.0E-08	81	3.8		
1.1E-08	98	24		
2.0E-08	118	28		
4.3E-09	71	2.3		

Elaidic acid (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)	
1E-03	12.8	12.1	
1.1E-04	8	0.45	
3.73E-04	13.8	1.92	
1.23E-05	80.9	0	
4.10E-05	58.2	8.8	
8.2E-06			
1.65E-07	58	0.13	
3.29E-07	69	44	
5.0E-08	50.5	3.8	
1.1E-08			

Ĩ0

Linseed Oil (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)
1E-04	138	15
3.73E-05	145	2.5
1.23E-05	88	12
4.10E-06	113	0
8.2E-06	113	13
1.65E-07	96	18
3.29E-07	106	10
5.0E-08	134	22
1.1E-09	83	13
9.9E-10	73	15

5

Isosteric acid (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)
1E-03	-8.6	3.4
1.1E-04	1.2	3.0
3.73E-04	-5.3	1.1
1.23E-05	80	0.0
4.10E-05	67	7.9
8.2E-06	103	12.3
1.65E-07	95	5.5
3.29E-07	123	0.5
5.0E-08	78	12.2
1.1E-08	78	29

. 10

2-hydroxysteric acid (B4)

Concentration	Tgase levels (Mean)	Tgase (SD)		
9.1E-04	46.6	6.2		
3.73E-04	69.3	8.3		
1.23E-04	51	8.8		
3.10E-05	96.0	0.0		
1.2E-05	105	30		
3.65E-06	63	8.0		
1.29E-06	80	4.7		
2.0E-07	142	34		
5.1E-08	64	20		
1.0E-08	58	17		

Synergy of Tgase inhibition with binary combinations of boosters

- To investigate synergistic inhibition of Tgase expression by 10 combinations of 2 different classes of boosters with retinol, selected combinations of compounds were tested at concentrations given in the above table. The concentrations tested were one log order of magnitude less than the concentration required for minimal inhibition of Tgase 15 activity (i.e. ${\rm IC}_{20}$). The compounds were tested alone and in combination and the % inhibition of Tgase is given for each compound and the combination.
- The following examples give the synergistic combinations in 20 all possible binary combinations (B1/B2; B1/B3, B1/B4; B1/B5; B2/B3, B2/B4; B2/B5; B3/B4, B3/B5; B4/B5). When the % inhibition of the combination is more than the inhibition of each compound added together, it indicates synergy (i.e. Inhibition by combination is greater than inhibition by
- 25

All the binary combination compound 1 + compound 2). in the following table synergistically examples given inhibited Tgase.

Binary	Compound 1	Compound 2	TG as	TG as	TG % C Combination
combinations	1	1	Compd	Compd	
	1		1	2	
· · <u> </u>		al aboline	99	97	84
B1/B2	Dimethyl	Phosphatidylcholine	1	-	
_	imidazolidinone		95	97	86
B1/B2	Alpha-demascone	Phospahtidylcholine	109	97	86
B1/B2	Hexanoyl sphingosine	Phospahtidylcholine	101	98	76
B1/B2	Alpha-ionone	Sphingomyelin	101	98	78
B1/B2	1,2 dioctanoyl-sn-	Phosphatidyl choline	100	98	. 70
D1 / D2	glycero-3-	<u> </u>		1	
	phosphoethanolamide			ļ. <u> </u>	
/DO	Alpha-demascone	Sphingomyelin	95	84	67
B1/B2	Alpha democratic		<u></u>		
	1,2 dioctanoyl-sn-	Amsacrine	123	134	75
B1/B3	1,2 dioctanoyi-sii	,		i .	
	glycero-3-		ŀ		·
	phosphoethanolamide	Carbenoxelone	123	164	96
B2/B3	1,2 dioctanoyl-sn-	Carpenoxerone			ł
	glycero-3-				1
	phosphoethanolamide	G-phanayalana	96	164	67
B1/B3	Caster oil MEA	Carbenoxelone	102	98	86
B1/B3	Utrecht-2	Amsacrine	102	164	91
B1/B3	Utrecht-2	Carbenoxelone	122	164	78
B1/B3	Hexanoyl sphingosine	Carbenoxelone	120	164	82
B1/B3	Lyral	Carbenoxelone			78
B1/B3	Castor oil MEA	Carbenoxelone	110	164	
B1/B3	Hexanoyl sphingosine	Amsacrine	122	134	92
B1/B3	Hexanoyl sphingosine	Eliadic acid	122	144	85
	Alpha ionone	Amsacrine	101	134	78
B1/B3	1,2 dioctanoyl-sn-	Glyccyrrhetinic acid	95	92	69
B1/B3	glycero-3-].	ł	1	
	phosphoethanolamide	1			
	phosphoethanoralide		1	1	
		2- hydroxy steric acid	95	112	78
B1/B4	Naringenin	2- hydroxy steric acid	99.3	112	77
B1/B4	Hexanoyl sphingosine	Hexadecanoic acid	120	95	69
B1/B4	Lyral	Hexadecanedioic acid	110	125	82
B1/B4	Castor oil MEA		122	146	93
B1/B4	Hexanoyl sphingosine	Isostearic acid	99.5	125	80
B1/B4	Oleoyl betaine	Hexadecanedioic acid	39.3	125	·
			 	102	68
B1/B5	Hexanoyl sphingosine	Cocoyl	99	1 102	""
11,100		hydorxyethylimidazolin	İ	1	ì
	· ·	е		1	
B1/B5	Farnesol	Ketokonazole	98	111	84
	Hexanoyl sphingosine	Miconazole	99	101	56
B1/B5	Hexanoyl sphingosine	Ketoconazole	99	99	65
B1/B5	Hexanoyl sphingosine	Lauryl	99	98	51
B1/B5	Hexanoyi Spillingosine	hydroxyethylimiazoline		<u> </u>	
		Amino benzotriazole	122	105	83
B1/B5	Utrecht-2	3,4-dihydro-2	122	102	89
B1/B5	Hexanoyl sphingosine	quinclinone		1	1
		Amino benzotriazole	122	126	85
B1/B5	Hexanoyl sphingosine		110	98	56
B1/B5	Castor oil MEA	Lauryl	1 ***	1 ~	1
· ·		hydroxyethylimiazoline	122	98	83
B1/B5	Hexanoyl sphingosine	Climbazole		99	78
B1/B5	Hexanoyl sphingosine	Miconazole	122		90
B1/B5	Hexanoyl sphingosine	Ketoconazole	122_	110	1 30

B1/B5	Oleoyl beatine	ketoconazolo	96	116	81
B1/B5	Utrecht-2	Lauryl	122	98	57
22,20		hydroxyethylimiazoline			
B1/B5	A_pha-demascone	Oleoyl	112	73	76
21,25		hydroxyethylimiazoline			
B1/B5	Alpha-ionone	Lauryl	101	98	49
,		hydroxyethylimiazoline			
B1/B5	Alpha-ionone	Oleoyl	101	73	75
		hydroxyethylimiazoline			
B2/B3	Phosphatidyl choline	Glycyrrhetinic acid	98	92	73
B2/B4	Phosphatidyl choline	2-hydroxy steric acid	98	82	70
				<u> </u>	
B2/B5	Phosphatidyl choline	Climbazole	98	102	82
B2/B5	Phosphatidyl choline	Miconazole	98	111	92
B2/B5	Phosphatidyl choline	Ketoconazole	98	101	89
B2/B5	Phosphatidyl choline	Lauryl	98	106	82
		hydorxyimidazoline		<u> </u>	
			102	82	75
B3/B4	Amscarine	2-hydroxy steric acid			78
B3/B4	Myristic acid	2-hydroxy steric acid	110	82	18
B3/B5	Amscarine	Aminobenzotriazole	102	98	84
B3/B5 B3/B5	Amscarine	Dimethyl imidazoline	102	112	94
	Myristic acid	Climbazole	110	102	82
B3/B5	MYTTSCIC ACIG	CITRIBAZOTO	3.20	102	
B4/B5	Trinseed oil	Lauryl hydroxyethyl	98	73	57
D4/ D3	Himbeed 511	imidazoline			
B4/B5	2-hydroxystearic acid	Ketaconazole	92	109	77
B4/B5	Linseed oil	Oleoyl	98	92	75
,		hydorxyethylimdazoline			
B4/B5	2-hydroxystearic acid	Coumarin	92	96	70
,	<u> </u>				

Synergy of Tgase inhibition with tertiary combinations of boosters

5

10

15

To investigate synergistic inhibition of Tgase expression by combinations of 3 different classes of boosters with retinol, selected combinations of compounds were tested. The concentrations tested were one log order of magnitude less than the concentration required for minimal inhibition of Tgase activity (i.e. IC_{20}). The compounds were tested alone and in combination and the % inhibition of Tgase is given for each compound and the combination. The following examples give the synergistic combinations in all possible tertiary combinations (B1/B2/B3;B1/B2/B4;B1/B2/B5;

B2/B3/B4; B2/B3/B5; B1/B4/B5; B1/B3/B4;B1/B3/B5; B2/B4/B5;B3/B4/B5). The % inhibition of the combination is more than the inhibition of each compound added together, which indicates synergy (i.e. Inhibition by combination is greater than inhibition by compound 1 + compound 2 + compound 3). All the examples of teritiary combinations of boosters given in the following table synergistically inhibited Tgase in the presence of 10-7M retinol.

Compound 1	Compound 2	Compound 3	TG as C Compd		TG as C Compd	-	TG as C Compd		TG as % C Combo
B1/B2/B3 combinations Phosphatidyl Choline Phosphatidyl Choline Phosphatidyl Choline Phosphatidyl Choline	Glycyrrhetinic Acid Glycyrrhetinic Acid Glycyrrhetinic Acid Glycyrrhetinic Acid	Echinacea	, •	88 88 88 88		91 91 91 91		85 119 99 118	52 58
1,2-dioctanoyl-sn- glycero-3- phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3- phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid Amsacrine-HCl Amsacrine-HCl	Linoleoyl Monoethanolamide (LAMEA) Palmitamide Monoethanolamide		81		79 79		127 95	
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3- phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid Glycyrrhetinic Acid	a-Damascone Echinacea		81		91 91		89 119	77
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3- phosphoethanolamide Castor oil Methyl Ester Acid (MEA)	Glycyrrhetinic Acid Carbenoxelone	Dimethyl imidazolinone Phosphatidyl Choline		81		91 95		87	

B1/B2/B4	
Combinations	:

B1/B2/B5						
Combinations: Phosphatidyl Choline	Climbazole	Echinacea	88	84	119	75
Phosphatidyl Choline	Climbazole	Geraniol	88	84	105	76
Phosphatidyl Choline	Climbazoje	Farnesol	88	84	118	82
Phosphatidyl Choline	CIImbazote	Acetyl sphingosine	88	84	99	82
Phosphatidyl Choline	CTIMPASOIS	(C2 Ceramide)				=-
Phosphatidyl Choline	Miconazole	a-Ionone	88	92	88	70
Phosphatidyl Choline		Castor oil Methyl Ester Acid (MEA)	88	92	85	72
B1/B3/B4						
Combinations:			79	87	93	0
Amsacrine-HCl	Dimethyl imidazolinone	Elaidic acid	73	07	,55	•
D-Ionone	Amsacrine-HCl	12-Hydroxystearic acid	68	79	95	62
Lyrial	Hexadecanedioic	Vanillin	97	90	134	81
-	acid		104	87	91	58
Hexanoyl sphingosine (C6 Ceramide)	Isostearic acid	Acid	104	u,	32	
B1/B3/B5						
Combinations:		_	79	87	95	32
Amsacrine-HCl	Dimethyl imidazolinone	2- Hydroxyquinoline(C arbostyril)	75	07	J J	J.
Amsacrine-HCl	Dimethyl	Lauryl	79	87	52	-13
Amsacrine-nor	imidazolinone	hydroxyethylimidaz				
		oline Ouercetin	79	87	92	-24
Amsacrine-HCl	Dimethyl imidazolinone	Omercerru		Ŧ.		
Amsacrine-HCl	Dimethyl	Oleoyl	79	87	76	39
	imidazolinone	hydroxyethlimidazo				
	Dimethyl	line 7H-	79	87	94	32
Amsacrine-HCl	imidazolinone	Benzimidazo[2,1-				
		a]Benz[de]-				
	m/abbad	isoquinolin-7-one Coumarin	79	87 -	80	30
Amsacrine-HCl	Dimethyl imidazolinone	Commercia				
Hexanoy1	Carbenoxolone	Oleoyl	104	88	76	64
sphingosine (C6		hydroxyethlimidazo				
Ceramide)	3,4,-Dihydro-	Vanillin	104	90	134	62
Hexanoyl sphingosine (C6	2 (1H) -				•	
Ceramide)	quinolinone (Hyd					
	rocarbostyril) Amino	Echinacea	79	105	119	48
Amsacrine-HCl	Benzotriazole					60
Hexanoyl	Amino	Sphingomyelin	104	105	60	69
sphingosine (C6	Benzotriazole					
Ceramide) Amsacrine-HCl	Amino	Acetyl sphingosine	79	105	99	-7
Whoretrie	Benzotriazole	(C2 Ceramide)	68	79	94	54
D-Ionone	Amsacrine-HCl	7H- Benzimidazo[2,1-	00	13	,	
		a]Benz[de]-				
		isoquinolin-7-one				

Utrecht-2	Carbenoxolone	Quercetin	76	88	92	74
Utrecht-2	Carbenoxolone	Oleoyl hydroxyethlimidazo	76	88	76	69
Utrecht-2	Carbenoxolone	line 7H-	76	88	94	73
		Benzimidazo[2,1- a]Benz[de]-				
77	Carbenoxolone	isoquinolin-7-one 3,4,-Dihydro-	76	88	90	70
Utrecht-2	Calbelloxololle	2(1H)-				
		quinolinone (Hydroc arbostyril)				
Myristic Acid	Climbazole	Geraniol	79	84	105	74
Myristic Acid	Climbazole	□-Damascone	79	84	89	73
Myristic Acid	Climbazole	Acetyl sphingosine (C2 Ceramide)	79	84	99	70
Oleyl Betaine	Ketoconazole	Carbenoxolone	62	85	88	78
Oleyl Betaine	Ketoconazole	Glycyrrhetinic Acid	62	85	91	71
Oleyl Betaine	Ketoconazole	Linoleic Acid	62	85	11	83
Oleyl Betaine	Ketoconazole	Linolenic Acid	62	85	208	80
Hexanoyl sphingosine	3,4,-Dihydro-	Vanillin	104	90	134	62
(C6 Ceramide)	2(1H)- quinolinone(Hyd rocarbostyril)					
	1004120107					
B1/B4/B5						
Combinations:	-Hydroxyquinoline	Castor oil Methyl	93	95	85	75
	Carbostyril)	Ester Acid (MEA)	23	55		
	-Hydroxyquinoline Carbostyril)	Naringenin	93	95	94	86
Elaidic acid 2	-Hydroxyquinoline Carbostyril)	a-Damascone	93	95	89	80
Elaidic acid 2	-Hydroxyquinoline	Farnesol	, 93	95	118	82
	Carbostyril) -Hydroxyquinoline	Crocetin	93	95	90	78
(1	Carbostyril)					
B2/B3/B4						
Combinations: 1,2-dioctanoyl-sn-	Glycyrrhetinic	12-Hydroxystearic	81	91	95	57
glycero-3-	Acid	acid				
phosphoethanolamide 1,2-dioctanoyl-sn-	Glycyrrhetinic	Linseed oil	81	91	103	62
glycero-3-	Acid					
phosphoethanolamide 1,2-dioctanoyl-sn-	Glycyrrhetinic	Elaidic acid	81	91	93	75
glycero-3-	Acid					
phosphoethanolamide Phosphatidyl Cholin			88	83	78	60
	acid	(Na+ salt)				
B2/B3/B5						
Combinations: Phosphatidyl Cholin	e Climbazole	Linolenic Acid	88	84	208	84
Phosphatidyl Cholin		Arachidonic Acid	88	84	78	83
Emospiraciali cuottu	COTTIMUTOTE	(Na+ salt)				
1,2-dioctanoyl-sn- qlycero-3-	Amsacrine-HCl	Climbazole	81	79	84	58
phosphoethanolamide		7	0.1	70	Ω.4	59
1,2-dioctanoyl-sn-	Amsacrine-HCl	7H-	81	79	94	JB

glycero-3- phosphoethanolamide		a]B	zimidazo[2,1- enz[de]- guinolin-7-one					
1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	3,4 2(1	,-Dihydro- H)-	81	91	9	0	56
phosphoethanolamide			nolinone(Hydroc ostyril)					
1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	2- Hyd	roxyquinoline(C	81	91	9	5	75
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic	Ami	ostyril) no zotriazole	81	91	10	5	72
phosphoethanolamide 1,2-dioctanoyl-sn-	Glycyrrhetinic	Lav	ryl	81	91	5	2	79
glycero-3- phosphoethanolamide	Acid	hyd	roxyethylimidaz ne					
1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	Que	rcetin	81	91	9	2	73
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	Cli	mbazole	81	91	8	4	54
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	Clo	trimazole	81	91	7	'9	42
phosphoethanolamide 1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	Mic	conazole	81	91	8	12	43
phosphoethanolamide								
B2/B4/B5								
Combinations:								
Phosphatidyl Choline	.2-Hydroxystearic	2	Amino Benzotriazole		88	83	105	77
Phosphatidyl Choline		:	Lauryl hydroxyethylimidazol	ine	88	83	52	74
Phosphatidyl Choline	2-Hydroxystearic	2	Quercetin		88	83	92	69
Phosphatidyl Choline		2	Oleoyl		88	83	76	75
Phosphatidyl Choline	acid 2-Hydroxystearic	2	hydroxyethlimidazoli 7H-Benzimidazo[2,1-		88	83	94	79
Phosphatidyl Choline	acid		a]Benz[de]-isoquinol Elaidic acid	in-7-one	88	84	93	81

B3/B4/B5								
Combinations:						0.5	0.0	60
Elaidic acid	2-Hydroxyquinoli (Carbostyril)	ine	Carbenoxolone		93	95	88	69
Elaidic acid	2-Hydroxyquinoli (Carbostyril)	ine			93	95	134	81
Amsacrine-HCl	Amino Benzotriazole		Linseed oil		79	105	103	45
Myristic Acid	Climbazole		12-Hydroxystearic ac	id:	79	84	95	81
Myristic Acid	Climbazole		Linseed oil		79	84	103	81
Elaidic acid	2-Hydroxyquinoli (Carbostyril)	ine	Arachidonic Acid (Na	+ salt)	93	95	78	63

⁵ Synergy of Tgase inhibition with quaternary combinations of boosters

To investigate synergistic inhibition of Tgase expression by combinations of 4 different classes of boosters with retinol, selected combinations of compounds were tested. The concentrations tested were one log order of magnitude less than the concentration required for minimal inhibition of Tgase activity (i.e. IC_{20}).

The compounds were tested alone and in combination and the % inhibition of Tgase is given for each compound and the combination. The following examples give the synergistic combinations in all possible quaternary combinations B1/B2/B4/B5; B1/B3/B4/B5; B1/B2/B3/B5; (B1/B2/B3/B4; B2/B3/B4/B5;). Synergy was confirmed if the difference in % inhibition of the combination (of 4 boosters) is more than 30% that of the inhibition by 3 booster combinations (i.e. % inhibition of 4 booster combo is equal to or greater than % inhibition of 3 booster combo + 30%). All the quaternary combinations of boosters shown in the table given below showed synergy.

20

5

10

	Compound 1	Compound 2	Compound 3	Compound 4	Quarter- nary TG (%C)	Tertiary (1-3 combo; TG %C)	Differ- ence (<30%=sy nergy)
	B1/B2/B3/B4 Combina	ation:					
r	Castor oil Methyl Ester Acid (MEA)	Phosphatidyl Choline	Glycyrrhetinic Acid	12-Hydroxy- stearic acid	21	64	42
	Naringenin	Phosphatidyl Choline	Glycyrrhetinic Acid	12-Hydroxy- stearic acid	15	5 7	41
	Linoleoyl Monoethanolamide (LAMEA)			12-Hydroxy- stearic acid	-3	40	43
	Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Isostearic acid	5	40	35
	Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol-	Amsacrine-HCl	12-Hydroxy- stearic acid	-3	42	45

	amide		minidia onid	8	42	,	34
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol-	Amsacrine-HCI	Elaidic acid	8	42	•	34
Hexanoyl sphingosine (C6	amide TCC	Glycyrrhetinic Acid	Isostearic acid	7	54	1	47
Ceramide) Lyrial	TCC	Vanilin	Hexadecan- edioic acid	10	48	3	38
Cocoyl hydroxyethylimid- azoline	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Isostearic acid	0	3.	7	37
Cocoyl hydroxyethylimid-	Phosphatidyl Choline	Arachidonic Acid (Na+ salt)	2-Hydroxy- stearic acid	-1	3.	7	38
azoline Cocoyl hydroxyethylimid- azoline	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Linseed oil	-2	45	>	47
B1/B2/B3/B5 Combination:							
Castor oil Methyl Ester Acid (MEA)	Phosphatidyl Choline	Glycyrrhetinic Acid	Climbazole		20	64	44
Castor oil Methyl Ester Acid (MEA)	Phosphatidyl Choline	Glycyrrhetinic Acid	Clotrimazole		26	64	38
Castor oil Methyl		Glycyrrhetinic Acid	Miconazole		9	64	55
Ester Acid (MEA) Castor oil Methyl	Phosphatidyl Choline	Glycyrrhetinic Acid	Ketoconazole		5	64	59
Ester Acid (MEA) Castor oil Methyl	Phosphatidyl	Glycyrrhetinic	Lauryl	olino	15	64	49
Ester Acid (MEA) Castor oil Methyl		Acid Glycyrrhetinic	hydroxyethylimidaz Oleoyl		2	64	61
Ester Acid (MEA) Castor oil Methyl Ester Acid (MEA)	Choline Phosphatidyl Choline	Acid Glycyrrhetinic Acid	hydroxyethlimidazo 7H-Benzimidazo[2,1 a]Benz[de]-isoquin 7-one	-	25	64	39
Echinacea	Phosphatidyl	Glycyrrhetinic Acid	12-Hydroxystearic	acid	18	62	44
Echinacea	Choline Phosphatidyl	Glycyrrhetinic Acid	Climbazole		22	62	40
Echinacea	Choline Phosphatidyl	Glycyrrhetinic Acid	Clotrimazole		24	62	38
Echinacea	Choline Phosphatidyl	Glycyrrhetinic Acid	Miconazole		13	62	50
Echinacea	Choline Phosphatidyl	Glycyrrhetinic Acid	Ketoconazole		12	62	50
Echinacea	Choline Phosphatidyl	Glycyrrhetinic	Lauryl hydroxyethylimidaz	oline	14	62	49
Echinacea	Choline Phosphatidyl	Acid Glycyrrhetinic	Oleoyl hydroxyethlimidazo		3	62	59
Echinacea	Choline Phosphatidyl Choline	Acid Glycyrrhetinic Acid	7H-Benzimidazo[2,1 a]Benz[de]-isoquin 7-one		24	62	39
Naringenin	Phosphatidyl	Glycyrrhetinic Acid	Miconazole		1	57	56
Naringenin	Choline Phosphatidyl	Glycyrrhetinic Acid	Ketoconazole		22	57	34
Naringenin	Choline Phosphatidyl	Glycyrrhetinic	Lauryl hydroxyethylimidaz	oline	10	57	46
Naringenin	Choline Phosphatidyl	Acid Glycyrrhetinic Acid	Oleoyl hydroxyethlimidazo		2	57	54
Naringenin	Choline Phosphatidyl Choline	Glycyrrhetinic Acid	7H-Benzimidazo[2,1 a]Benz[de]-isoquir		15	57	42

			7-one			
Palmitamide	Phosphatidyl	Glycyrrhetinic Acid	Miconazole	-2	39 _{//} "	41
Monoethanolamide Palmitamide Monoethanolamide	Choline Phosphatidyl Choline	Glycyrrhetinic Acid	Olecyl hydroxyethlimidazoline	6	39	33
Farnesol	Phosphatidyl Choline	Glycyrrhetinic Acid	Miconazole	3	43	40
Farnesol	Phosphatidyl Choline	Glycyrrhetinic Acid	Oleoyl hydroxyethlimidazoline	6	43	37
Geraniol	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide		Miconazole	11	47	36
Geraniol .	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Oleoyl hydroxyethlimidazoline	3	47	44
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Climbazole	2	40	37
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Miconazole	5	40	35
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Ketoconazole	0	40	40
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Lauryl hydroxyethylimidazoline	-2	40	41
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	Oleoyl hydroxyethlimidazoline	5	40	35
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Glycyrrhetinic Acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	1	40	39
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Climbazole	7	42	35
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Clotrimazole	10	42	32
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Miconazole	5	42	37
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Ketoconazole	11	42	32
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Lauryl hydroxyethylimidazoline	-4	42	46
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Oleoyl hydroxyethlimidazoline	5	42	37
Linoleoyl Monoethanolamide (LAMEA)	1,2-dioctanoyl- sn-glycero-3- phosphoethanol-		7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	8	42	35

PCT/EP01/07234

	amide					
Palmitamide Monoethanolamide	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Miconazole	13	43	30
Palmitamide Monoethanolamide	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Oleoyl hydroxyethlimidazoline	3	43	40
Alpha-Damascone	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Miconazole	11	48	37
Alpha-Damascone	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Ketoconazolo	13	48	34
Alpha-Damascone	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Lauryl hydroxyethylimidazoline	15	48	33
Alpha-Damascone	1,2-dioctanoyl- sn-glycero-3- phosphoethanol- amide	Amsacrine-HCl	Oleoyl hydroxyethlimid- azoline	3	48	45
Castor oil Methyl Ester Acid (MEA)	Phosphatidyl Choline	Carbenoxolone	12-Hydroxystearic acid	3	55	52
Castor oil Methyl	Phosphatidyl Choline	Carbenoxolone	Climbazole	6	55	49
Ester Acid (MEA) Castor oil Methyl	Phosphatidyl	Carbenoxolone	Miconazole	-2	55	57
Ester Acid (MEA) Castor oil Methyl	Choline Phosphatidyl	Carbenoxolone	Ketoconazole	1	55	54
Ester Acid (MEA) Castor oil Methyl	Choline Phosphatidyl	Carbenoxolone	Lauryl hydroxyethylimi- dazoline	4	55	51
Ester Acid (MEA) Castor oil Methyl	Choline Phosphatidyl	Carbenoxolone	Oleoyl	3	55	52
Ester Acid (MEA) Castor oil Methyl Ester Acid (MEA)	Choline Phosphatidyl Choline	Carbenoxolone	hydroxyethlimidazoline 7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	11	55	44
Naringenin	Phosphatidyl	Linoleic Acid	Climbazole	-1	45	46
Geraniol	Choline Phosphatidyl	Linoleic Acid	Climbazole	1	40	39
Acetyl sphingosine		Linoleic Acid	Climbazole	0	40	40
(C2 Ceramide) Acetyl sphingosine	Choline Phosphatidyl	Linolenic Acid	Climbazole	10	40	30
(C2 Ceramide) Dimethyl	Choline TCC	Amsacrine-HCl	Elaidic acid	14	47	33
imidazolinone Dimethyl	TCC	Amsacrine-HCl	Quercetin	12	44	32
imidazolinone Dimethyl	TCC	Amsacrine-HCl	Coumarin	14	58	44
imidazolinone Hexanoyl sphingosine (C6	TCC	Glycyrrhetinic Acid	Amino Benzotriazole	8	48	40
Ceramide) Alpha-Damascone	TCC	Myristic Acid	Climbazole	10	44	34

B1/B2/B4/B5						
Combination:						
Lyrial	Vanilín	Hexadecanedioic acid	Miconazole	12	48	36
Lyrial	Vanilin	Hexadecanedioic acid	Oleoyl hydroxyethlimidazoline	4	48	45
Crocetin	TCC	Elaidic acid	2- Hydroxyquinoline(Carbost vril)	11	48	37
Hexanoyl sphingosine (C6 Ceramide)	Glycyrrhetinic Acid	12-Hydroxystearic	Amino Benzotriazole	14	48	33
Dimethyl imidazolinone	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	2	44	42
Melinamide	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	5	44	39
Geranyl geraniol	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1-a]Benz[de]-isoquinolin-7-one	9	44	35
Cocoyl hydroxyethylimidaz oline	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	-8	44	52
Acetyl sphingosine (C2 Ceramide)	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	10	44	34
Crocetin	Phosphatidyl Choline	2-Hydroxystearic acid		10	44	34
N, N-Diethyl Cocamide (Cocamide	Phosphatidyl Choline	2-Hydroxystearic acid	7H-Benzimidazo[2,1- a]Benz[de]-isoquinolin- 7-one	4	44	40
DEA) Cocoyl hydroxyethylimidaz oline	Phosphatidyl Choline	Elaidic acid	Climbazole	-4	30	34
B1/B3/B4/B5						
Combination: Dimethyl imidazolinone	Amsacrine-HCl	Elaidic acid	Miconazole	7	47	40
Dimethyl imidazolinone	Amsacrine-HCl	Elaidic acid	Ketoconazole	6	47	41
Dimethyl imidazolinone	Amsacrine-HCl	Elaidic acid	Oleoyl hydroxyethlimidazoline	3	47	44
Hexanoyl sphingosine (C6	Glycyrrhetinic Acid	Isostearic acid	Clotrimazole	20	54	34
Ceramide) Hexanoyl sphingosine (C6	Glycyrrhetinic Acid	Isostearic acid	Miconazole	10	54	43
Ceramide) Hexanoyl sphingosine (C6	Glycyrrhetinic Acid	Isostearic acid	Lauryl hydroxyethylimidazoline	20	54	33
Ceramide) Hexanoyl sphingosine (C6	Glycyrrhetinic Acid	Isostearic acid	Oleoyl hydroxyethlimidazoline	5	54	48
Ceramide) Crocetin	Linoleic Acid	Elaidic acid	2-Hydroxyquinoline	0	48	48
Crocetin	Linolenic Acid	Elaidic acid	(Carbostyril) 2-Hydroxyquinoline (Carbostyril)	-2	48	50
Castor oil Methyl Ester Acid (MEA)	Linoleic Acid	Elaidic acid	2-Hydroxyquinoline (Carbostyril)	-1	31	32
Cocoyl hydroxyethylimid- azoline	Carbenoxolone	Elaidic acid	2-Hydroxyquinoline (Carbostyril)	-6	28	34
arottine						

B2/B3/B4/B5						
Combination: 1,2-dioctanoyl-sn-	Glycyrrhetinic	Isostearic acid	Ketoconazole	4	37	33
glycero-3- phosphoethanol-	Acid					
amide 1,2-dioctanoyl-sn-	Glycyrrhetinic	Isostearic acid	Oleoyl	6	37	31
glycero-3- phosphoethanol-	Acid		hydroxyethlimidazoline			
amide	Arachidonic	2-Hydroxystearic	Miconazole	6	37	31
Phosphatidyl Choline	Acid (Na+ salt)	acid	1113011113			
Phosphatidyl	Arachidonic	2-Hydroxystearic	Oleoyl	5	37	32
Choline	Acid (Na+ salt)	acid Linseed oil	hydroxyethlimidazoline Miconazole	-1	45	47
1,2-dioctanoyl-sn- glycero-3-	Glycyrrhetinic Acid	Linseed OII	Miconazore			
phosphoethanolamid						
e				-	45	38
1,2-dioctanoyl-sn-		Linseed oil	Oleoyl hydroxyethlimidazoline	7	45	38
glycero-3-	Acid		nydroxyechtimidazoiine			
phosphoethanol- amide						
Phosphatidyl	Carbenoxolono	2-Hydroxystearic	7H-Benzimidazo[2,1-	8	44	36
Choline		acid	a]Benz[de]-isoquinolin- 7-one			
Phosphatidyl	Linoleic Acid	2-Hydroxystearic	7H-Benzimidazo(2,1-	-3	44	47
Choline		acid	a]Benz[de]-isoquinolin- 7-one			
Phosphatidyl	Glycyrrhetinic	Elaidic acid	Climbazole	-3	30	33
Choline	Acid Linoleic Acid	Elaidic acid	Climbazole	-2	30	32
Phosphatidyl Choline	Finoteic word	Elaluic aciu	0221100000	_		

Cosmetically Acceptable Vehicle

- The composition according to the invention also comprises a cosmetically acceptable vehicle to act as a dilutant, dispersant or carrier for the active components in the composition, so as to facilitate their distribution when the composition is applied to the skin.
- Vehicles other than or in addition to water can include 10 liquid or solid emollients, solvents, humectants, thickeners and powders. An especially preferred non-aqueous carrier is a polydimethyl siloxane and/or a polydimethyl phenyl siloxane. Silicones of this invention may be those with viscosities ranging anywhere from about 10 to 10,000,000 15 centistokes at 25°C. Especially desirable are mixtures of low

and high viscosity silicones. These silicones are available from the General Electric Company under trademarks Vicasil, SE and SF and from the Dow Corning Company under the 200 and 550 Series. Amounts of silicone which can be utilised in the compositions of this invention range anywhere from 5 to 95%, preferably from 25 to 90% by weight of the composition.

Optional Skin Benefit Materials and Cosmetic Adjuncts

An oil or oily material may be present, together with an emulsifier to provide either a water-in-oil emulsion or an oil-in-water emulsion, depending largely on the average hydrophilic-lipophilic balance (HLB) of the emulsifier employed.

15

20

5

Various types of active ingredients may be present in cosmetic compositions of the present invention. Various types of active ingredients may be present in cosmetic compositions of the present invention. Actives are defined as skin or hair benefit agents other than emollients and other than ingredients that merely improve the physical characteristics of the composition. Although not limited to this category, general examples include sunscreens, skin lightening agents, and tanning agents.

25

30

Sunscreens include those materials commonly employed to block ultraviolet light. Illustrative compounds are the derivatives of PABA, cinnamate and salicylate. For example, octyl methoxycinnamate and 2-hydroxy-4-methoxy benzophenone (also known as oxybenzone) can be used. Octyl

methoxycinnamate and 2-hydroxy-4-methoxy benzophenone are commercially available under the trademarks, Parsol MCX and Benzophenone-3, respectively.

The exact amount of sunscreen employed in the emulsions can 5 vary depending upon the degree of protection desired from the sun's UV radiation.

Another preferred optional ingredient is selected from essential fatty acids (EFAs), i.e., those fatty acids which 10 are essential for the plasma membrane formation of all cells, EFAdeficiency makes cells ìn keratinocytes hyperproliferative. Supplementation of EFA corrects this. EFA's also enhance lipid biosynthesis of epidermis and provide lipids for the barrier formation of the epidermis. 15 The essential fatty acids are preferably chosen from linoleic acid, y-linolenic acid, homo- y-linolenic acid, columbinic acid, eicosa-(n-6,9,13)-trienoic acid, arachidonic acid, ylinolenic acid, timnodonic acid, hexaenoic acid and mixtures 20 thereof.

Emollients are often incorporated into cosmetic compositions of the present invention. Levels of such emollients may range from about 0.5% to about 50%, preferably between about 5% and 30% by weight of the total composition. Emollients may be classified under such general chemical categories as esters, fatty acids and alcohols, polyols and hydrocarbons.

25

Esters may be mono- or di-esters. Acceptable examples of fatty di-esters include dibutyl adipate, diethyl sebacate, 30

15

20

diisopropyl dimerate, and dioctyl succinate. Acceptable branched chain fatty esters include 2-ethyl-hexyl myristate, isopropyl stearate and isostearyl palmitate. Acceptable tribasic acid esters include triisopropyl trilinoleate and trilauryl citrate. Acceptable straight chain fatty esters include lauryl palmitate, myristyl lactate, oleyl eurcate and include Preferred esters cocooleate. stearyl caprylate/caprate (a blend of coco-caprylate and cocoether glycol myristyl acetate, propylene caprate), diisopropyl adipate and cetyl octanoate.

Suitable fatty alcohols and acids include those compounds having from 10 to 20 carbon atoms. Especially preferred are such compounds such as cetyl, myristyl, palmitic and stearyl alcohols and acids.

Among the polyols which may serve as emollients are linear and branched chain alkyl polyhydroxyl compounds. For example, propylene glycol, sorbitol and glycerin are preferred. Also useful may be polymeric polyols such as polypropylene glycol and polyethylene glycol. Butylene and propylene glycol are also especially preferred as penetration enhancers.

25 Exemplary hydrocarbons which may serve as emollients are those having hydrocarbon chains anywhere from 12 to 30 carbon atoms. Specific examples include mineral oil, petroleum jelly, squalene and isoparaffins.

Another category of functional ingredients within the cosmetic compositions of the present invention thickeners. A thickener will usually be present in amounts anywhere from 0.1 to 20% by weight, preferably from about 0.5% to 10% by weight of the composition. thickeners are cross-linked polyacrylate materials available under the trademark Carbopol from the B.F. Goodrich Company. Gums may be employed such as xanthan, carrageenan, gelatin, and locust beans qum. Under certain karaya, pectin circumstances the thickening function may be accomplished by 10 a material also serving as a silicone or emollient. instance, silicone gums in excess of 10 centistokes and esters such as glycerol stearate have dual functionality.

Powders may be incorporated into the cosmetic composition of the invention. These powders include chalk, talc, Fullers earth, kaolin, starch, smectite clays, chemically modified magnesium aluminum silicate, organically modified montmorillonite clay, hydrated aluminum silicate, fumed silica, aluminum starch octenyl succinate and mixtures thereof.

Other adjunct minor components may also be incorporated into the cosmetic compositions. These ingredients may include coloring agents, opacifiers and perfumes. Amounts of these materials may range anywhere from 0.001% up to 20% by weight of the composition.

Use of the Composition

The composition according to the invention is intended primarily as a product for topical application to human skin, especially as an agent for conditioning and smoothening the skin, and preventing or reducing the appearance of wrinkled or aged skin.

In use, a small quantity of the composition, for example from 1 to 5ml, is applied to exposed areas of the skin, from a 10 suitable container or applicator and, if necessary, it is then spread over and/or rubbed into the skin using the hand or fingers or a suitable device.

Product Form and Packaging 15

20

30

The topical skin treatment composition of the invention can be formulated as a lotion, a fluid cream, a cream or a gel. The composition can be packaged in a suitable container to suit its viscosity and intended use by the consumer. example, a lotion or fluid cream can be packaged in a bottle or a roll-ball applicator, or a capsule, or a propellantdriven aerosol device or a container fitted with a pump suitable for finger operation. When the composition is a cream, it can simply be stored in a non-deformable bottle or 25 squeeze container, such as a tube or a lidded jar.

The invention accordingly also provides a closed container containing a cosmetically acceptable composition as herein defined.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that the prior art forms part of the common general knowledge in Australia.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

- 1. A skin care composition comprising:
- 5 a. from 0.001% to 10% of a retinoid;
 - combination of retinoid boosters belonging classes B1 to B5 in an amount of from 0.0001% to 50% including at least one booster from each of any four of the classes B1 to B5;
 - c. a cosmetically acceptable vehicle.
- 2. The skin care composition according to claim 1 where the 15 combination of retinoid boosters includes at least one booster form each of the classes B1 to B5.
- 3. A cosmetic method of conditioning skin, the comprising applying topically to the skin the composition 20 of claim 1 or claim 2.
 - 4. A cosmetic method of mimicking the effect on skin of retinoic acid, the method comprising applying to the skin the composition of claim 1 or claim 2.

25

10

- 5. A skin care composition or a method of substantially as hereinbefore described with reference to the examples.
- 30 DATED THIS 10th day of December, 2004.

UNILEVER PLC

By Its Patent Attorneys

DAVIES COLLISON CAVE