发明名称
丁基橡胶离聚物－热塑性材料接枝共聚物及其生产方法
摘要
本发明涉及丁基橡胶离聚物的官能化和可选地将聚酰胺接枝到卤化丁基橡胶离聚物。具体地，公开了经由反应性挤出产生官能化离聚物和将聚酰胺接枝到卤化丁基离聚物的方法和由此获得的产物。方法包括使卤代丁基聚合物与至少一种氯和/或磷类亲核试剂反应以提供含有共轭二烯单元的卤化丁基离聚物；将胺－反应性二烯基亲和物接枝到所述离聚物以形成官能化离聚物；以及可选地将获得的官能化离聚物与聚酰胺共混。
1. 一种用于制备丁基接枝共聚物的方法，所述方法包括：
使卤代丁基聚合物与至少一种氢和/或磷类亲核试剂反应以提供卤代丁基离聚物；以及
通过反应性混合过程将未卤化的胺－反应性二烯亲和物接枝到所述离聚物以提供官能化离聚物。

2. 根据权利要求1所述的方法，其中，所述卤代丁基聚合物包含衍生自至少一种异烯烃和至少一种多烯烃的重复单元。

3. 根据权利要求2所述的方法，其中，所述异烯烃包含异丁烯并且所述多烯烃包含异戊二烯。

4. 根据权利要求1至3中任一项所述的方法，其中，所述至少一种氢和/或磷类亲核试剂是根据以下程式:

 \[R_1 \quad R_2 \quad R_3 \]

其中，A是氢或磷，R₁、R₂或R₃选自由以下组成的组：直链或支链C₁-C₁₈烷基取代基；为单环或由稠合C₅-C₆环组成的芳基取代基；和/或选自由B、N、O、Si、P和S组成的组的杂原子。

5. 根据权利要求1至4中任一项所述的方法，其中，所述至少一种氢和/或磷类亲核试剂是三苯基膦。

6. 根据权利要求1至5中任一项所述的方法，其中，所述二烯亲和物是马来酸酐。

7. 根据权利要求1至6中任一项所述的方法，其中，所述方法进一步包括在接枝步骤之后将所述官能化离聚物微粒化。

8. 根据权利要求1至7中任一项所述的方法，其中，反应步骤和接枝步骤发生在挤出机中。

9. 根据权利要求8所述的方法，其中，所述挤出机在25至250℃的温度运行。

10. 根据权利要求8或9所述的方法，其中，在所述挤出机中添加所述氢和/或磷类亲核试剂。

11. 根据权利要求8至10中任一项所述的方法，其中，在所述挤出机中添加所述胺－反应性二烯亲和物。

12. 根据权利要求1至11中任一项所述的方法，其中，所述方法进一步包括将所述官能化离聚物与含氨基的热塑性材料共混以形成丁基橡胶离聚物－热塑性材料接枝共聚物。

13. 根据权利要求12所述的方法，其中，共混步骤发生在挤出机中。

14. 根据权利要求12所述的方法，其中，通过在挤出机开始时提供所述二烯亲和物和所述离聚物并且在随后的时刻添加所述热塑性材料，在同一挤出机中实施接枝步骤和共混步骤。

15. 一种官能化丁基离聚物，包含：
 衍生自至少一种异烯烃单体和至少一种多烯烃单体的重复单元；
 相应于氢或磷类亲核试剂和烯丙基卤的反应产物，在衍生自所述多烯烃单体的重复单
元上的离聚物部分；

相应于将胺反应性二烯亲和物接枝到衍生自所述多烯烃单体的重复单元的胺反应性
官能团。

16. 根据权利要求 15 所述的官能化离聚物，其中，所述异烯烃包含异丁烯并且所述多
烯烃包含异戊二烯。

17. 根据权利要求 15 或 16 所述的官能化离聚物，其中，至少一种含氨和 / 或磷的亲核
试剂是根据以下式：

其中，A 是氨或磷，\(R_1, R_2 \) 或 \(R_3 \) 选自由以下组成的组：直链或支链 C_{1-6}烷基取代基；为
单环或由稠合 C_{1-6}环组成的芳基取代基；和 / 或选自由 B、N、O、Si、P 和 S 组成的组的杂原子。

18. 根据权利要求 15 至 17 中任一项所述的官能化离聚物，其中，至少一种氨和 / 或磷
类亲核试剂是三苯基磷。

19. 根据权利要求 15 至 18 中任一项所述的官能化离聚物，其中，所述二烯亲和物是马
来酸酐。

20. 根据权利要求 15 至 19 中任一项所述的官能化离聚物，其中，所述离聚物具有至少
20 门尼单位的门尼粘度和至少 15MPa 的极限拉伸强度。

21. 一种丁基橡胶离聚物 - 热塑性材料接枝共聚物，包含，经由胺反应性官能团接枝到
含氨基的热塑性材料的根据权利要求 15 至 20 中任一项所述的官能化丁基离聚物。

22. 根据权利要求 21 所述的丁基橡胶离聚物 - 热塑性材料接枝共聚物，其中，所述含氨
基的热塑性材料是聚酰胺。

23. 根据权利要求 21 或 22 所述的丁基橡胶离聚物 - 热塑性材料接枝共聚物，其中，所
述共聚物具有至少 6MPa 的极限拉伸强度和至少 150% 的断裂伸长率。
丁基橡胶离聚物 - 热塑性材料接枝共聚物及其生产方法

技术领域
[0001] 本发明旨在丁基橡胶离聚物接枝于热塑性材料如聚酰胺，以便形成丁基橡胶离聚物 - 热塑性材料接枝共聚物 (thermoplastic graft copolymer)。本发明还涉及用于生产接枝共聚物的方法，尤其涉及在升高的温度下采用挤出机的方法。

背景技术
[0002] 聚（异丁烯 - 香 - 异戊二烯）或 IIR 是通常被称为丁基橡胶（或丁基聚合物）的合成弹性体，其自 20 世纪 40 年代以来已经通过异丁烯与少量异戊二烯（通常不超过 2.5mol%）的无规阳离子共聚而制备。由于其分子结构，IIR 具有优异的气密性（不透气性）、高损耗模量、氧化稳定性和持久的抗疲劳性。
[0003] 丁基橡胶被理解为是异戊烯与一种或多种，优选共轭的多烯烃作为共聚单体的共聚物。商业丁基橡胶含有主要部分的异戊烯和少量，通常不超过 2.5mol% 的共轭多烯烃。丁基橡胶或丁基聚合物通常作为稀释剂的氯甲烷和作为聚合引发剂的部分的傅里德 - 克拉夫茨 (Friedel-Crafts) 催化剂以淤浆法 (slurry process) 进行制备。这种方法进一步描述于美国专利号 2,356,128 和乌尔曼工业化学百科全书 (Ullmanns Encyclopedia of Industrial Chemistry), A23 卷, 1993, 288-295 页中。
[0004] 这种丁基橡胶的卤化物在弹性体中产生反应性的烯丙基卤（烯丙基卤化物, allylic halide）官能性 (functionalities)。传统的丁基橡胶卤化方法描述于，例如，乌尔曼工业化学百科全书（第五完全修订版，A231 卷，编辑 Elvers 等人）和 / 或 Maurice Morton 的“橡胶技术 (Rubber Technology)” （第三版），第 10 章 (美国斯特兰德霍尔德公司 (Van Nostrand Reinhold Company) (c) 1987)，第 297-300 页中。
[0005] 卤化的丁基橡胶（卤代丁基橡胶，或 XIR）的开发通过提供高得多的固化速率并且使能够与通用橡胶如天然橡胶和苯乙烯-丁二烯橡胶共固化（硫化，vulcanization）而大大延长了丁基橡胶的有用性。丁基橡胶和卤代丁基橡胶是高价值聚合物，因为它们的独特性能（例如，在卤代丁基橡胶的情况下，优异的不渗透性、良好的弯曲、良好的耐气候性，与高不饱和橡胶的共固化）的组合使它们成为用于各种应用的优选材料，如它们在制造轮胎内胎和轮胎内衬中的用途。
[0006] 如其他橡胶，对于大多数应用，丁基橡胶必须进行混合和固化（化学交联）以产生有用且耐用的最终产品。
[0007] 反应性挤出有时用于制备商业规模的接枝共聚物。这种技术通常采用高的工艺温度；然而，以往的研究表明，在升高的温度（> 140°C）下，已知卤代丁基橡胶 XIR 会由于加速烯丙基阳离子中间体的 B - 断裂的 HX 消除而分解，这导致分裂。
[0008] 如 Parent 等人在高分子 (Macromolecules) 2002, 35, 3374-3379 中描述的这种热分解使得例如 IIR 与聚酰胺接枝于丁基橡胶上所需的挤出条件不相容。因此，它最终排除卤代丁基橡胶，尤其是溴代丁基橡胶用于高温混合。
[0009] 存在与由卤化及丁基聚合物形成离聚物相关的现有技术。例如，R. Resendes 等在
US20090299000 中教导了卤化丁基聚合物如何使用 N- 和 P- 亲核试剂转化成离聚物。昇丁烯类离聚物通过来自溴化聚（昇丁烯－共－昇戊二烯）（BIRR）的卤化物被三苯基膦（PPh3）和 N, N-二甲基乙基胺（DMOA）取代的制备被 J. S. Parent 等在“昇丁烯类溴化物与离聚物的合成和表征（Synthesis and Characterization of Isobutylene-Based Ammonium and Phosphonium Bromide Ionomers）”，高分子 37, 7477-7483, 2004 中证明。R. Resendes 等在 US2010010140 中公开了通过使其高摩尔百分比多烯烃的卤化丁基聚合物与至少一种氮和／或磷类亲核试剂反应制备的包含过氧化物固化剂、纳米粘土和高多烯烃卤代丁基离聚物的过氧化物可固化的橡胶纳米复合材料混合物。获得的高多烯烃卤代丁基离聚物含有约 2mol% 至 10mol% 的多烯烃。本发明还旨在包含橡胶混合物的成形制品。

还存在与经由狄尔斯－阿尔德（Diels–Alder）反应将未卤化的胺 – 反应性化合物（即，马来酰酐、丙烯酸缩水甘油酯、甲基丙烯酸缩水甘油酯）接枝于卤代丁基橡胶，和／或在与聚酰胺的共混物这些反应的产物的用途相关的现有技术。

例如，美国专利 1589985 教导了如何将卤化的丁基橡胶转化成共轭丁基橡胶并随后将其与 MAH 或马来酰亚胺在狄尔斯－阿尔德反应中反应。

美国专利 3,464,166 教导了如何使用卤化丁基橡胶并在其结构中形成共轭双键，随后将其与 MAH 反应而形成丁基橡胶与 MAH 的接枝聚合物，并将这种接枝聚合物与胺在溶液中反应而形成最终的反应产物。

EP0361769A2 描述了将胺 – 反应性接枝材料 MAH、丙烯酸和甲基丙烯酸缩水甘油酯接枝于卤代丁基橡胶和其后继在与聚酰胺共混物中获得的官能性丁基弹性体的用途。

EP0361769A2 教导了在溶液法中氯丁基橡胶转化成共轭二烯丁基橡胶，并随后与 MAH、丙烯酸和甲基丙烯酸缩水甘油酯在反应性混合过程中（reactive mixing process）进行反应。EP0361769A2 还教导了所述改性的丁基弹性体与聚酰胺的共混。

然而，这些聚合物的热不稳定使它们不适合用于与聚酰胺接枝的反应性挤出方法中，这些反应性挤出方法通常使用高工艺温度。此外，这些聚酰胺－卤代丁基橡胶接枝物并不会表现出商业有用性的物理性能，尤其在门尼粘度、极限拉伸强度（ultimate tensile strength）和极限伸长率的情况中。此外，这些聚酰胺－卤代丁基橡胶接枝物不适合于粒状，这会使其难以储存、运输和在商业相关的生产规模下工作。

因此，仍然需要开发用于将聚酰胺接枝到卤代丁基橡胶的经济方法。

发明内容

本发明的目的是开发丁基橡胶－聚酰胺接枝共聚物以及使用例如反应性挤出技术以商业相关规模制备这种接枝共聚物的工艺和方法。

本发明通过从含有烯丙基卤的卤代丁基橡胶开始并通过与氨或磷类亲核试剂如三苯基膦（TPP）的反应将橡胶骨架中的烯丙基卤官能性部分地或完全地转化成离聚物盐来解决上述问题。获得的丁基离聚物证明热稳定性增加，使其能够与聚酰胺在高温挤出条件下进行反应。

在聚酰胺接枝之前，丁基离聚物可选地与胺反应性二烯亲和物（dienophile），例如，马来酰酐（MAH）通过狄尔斯－阿尔德反应进行反应。这增加了将丁基橡胶离聚物在挤出条件下接枝于聚酰胺的程度。
[0019] 根据本发明的一个方面，提供了用于制备丁基接枝共聚物的方法，其包括：使卤代丁基聚合物与至少一种氯和/or磺类亲核试剂反应以提供卤代丁基离聚物；以及
[0020] 通过反应性混合过程将未卤化的胺 - 反应性二烯烃和物接枝于所述离聚物以提供官能化离聚物。
[0021] 卤代丁基聚合物可以包含衍生自至少一种异烯烃，例如异丁烯，以及至少一种多烯烃，例如共插二烯，如异戊二烯的重复单元。可选地，卤代丁基聚合物可以另外含有与异烯烃和/or二烯丙共聚的重复单元，例如乙烯基芳族单体，如对甲基苯乙烯。卤素可以是溴或氯，优选溴。氯或磺类亲核试剂可以包括三苯基膦。二烯烃和物可以包括马来酸酐 (MAH)。方法可以发生于挤出机中。亲核试剂和二烯烃和物可以加入到挤出机中。方法可以进一步包括在接枝步骤之后微粒化学能离聚物。方法可以进一步包括在适合形成丁基橡胶离聚物 — 热塑性材料接枝共聚物的条件下，可选地在反应性挤出方法中将官能化离聚物与含氨基热塑性材料共混。接枝和共混步骤可以在相同挤出机中通过在挤出机开始时提供二烯烃和物和离聚物并且在随后的时刻，例如，沿着挤出机的桶加入所述热塑性材料来进行。
[0022] 根据本发明的一个方面，提供了官能化丁基离聚物，其包含：衍生自至少一种异烯烃单体和至少一种多烯烃单体的重复单元；相应于氯或磷类亲核试剂和烯丙基卤的反应产物，在衍生自多烯烃单体的重复单元上的离聚物部分；相应于将胺反应性二烯烃和物接枝于衍生自多烯烃单体的重复单元的胺反应性官能团。
[0023] 官能化离聚物可以具有至少 20 门尼单位的门尼粘度和至少 15MPa 的极限拉伸强度。
[0024] 根据本发明的另一方面，提供了丁基橡胶离聚物 — 热塑性材料接枝共聚物，其包含：衍生自至少一种异烯烃单体和至少一种多烯烃单体的重复单元；相应于氯或磷类亲核试剂和烯丙基卤的反应产物的衍生自多烯烃单体的重复单元上的离聚物部分；相应于将胺反应性二烯烃和物接枝于衍生自多烯烃单体的重复单元的胺反应性官能团；和接枝于胺反应性官能团的含氨基的热塑性材料。含氨基的热塑性材料可以包括聚酰胺，例如尼龙热塑性材料。热塑性材料接枝共聚物可以具有至少 6MPa 的极限拉伸强度和至少 150% 的断裂伸长率。
[0025] 根据本发明的一个方面，提供了经由反应性挤出将聚酰胺接枝于卤代丁基离聚物的方法，所述方法包括：(a) 使卤代丁基聚合物与至少一种氯和/or磺类亲核试剂反应以提供含有共轭二烯单元的卤代丁基离聚物；(b) 将胺 - 反应性二烯烃和物接枝于从步骤 (a) 获得的所述离聚物；和 (c) 将所获得的二烯烃和物接枝离聚物与聚酰胺在反应性挤出条件下共混。
[0026] 根据本发明的一个实施方式，两个反应 (b) 和 (c) 能够在同一挤出步骤中通过在挤出机开始时进料二烯烃和物和离聚物并且在随后的阶段将聚酰胺 (PA) 加入挤出机或，例如，经由侧进料口 (side-stuffer) 加入挤出机的桶来进行。
[0027] 根据本发明的一个实施方式，优选的胺反应性二烯烃和物是马来酸酐 (MAH)。包含至少 2phr 的 MAH 的组合物特征在于断裂伸长率比无 MAH 的相应对照组合物增强。
[0028] 根据本发明的一个实施方式，反应过程开始于商业朗盛 (LANXESS) 卤代丁基橡胶等级和散装可获得的化学品，并只依赖于两个挤出运行中的化学改性。丁基离聚物从而能够与二烯烃和物，如 MAH 进行热接枝；获得的 MAH 接枝的离聚物可以在合适条件下熔融共混
说明书

时结合至聚酰胺，例如，这般能够使用反应性挤出方法产生。

【0029】根据本发明的一个方面，公开了用于制备丙烯基离聚物 - 热塑性材料接枝共聚物的方法，其包括：
【0030】（a）使卤代丁基聚合物与至少一种氮和 / 或磷类亲核试剂反应以提供卤代丁基离聚物；
【0031】（b）通过反应性混合过程将未卤化的胺 - 反应性二烯烃和物化合物接枝于来自步骤（a）的所述离聚物；和
【0032】（c）使步骤（b）的所述未卤化胺 - 反应性化合物 - 接枝的离聚物与含氨基的热塑性材料共混。
【0033】根据本发明的另一方面，公开了用于制备丁基接枝聚合物的工艺，其包括以下步骤：
【0034】（a）提供卤代丁基聚合物；
【0035】（b）提供至少一种氮和 / 或磷类亲核试剂；
【0036】（c）使卤代丁基聚合物与至少一种氮和 / 或磷类亲核试剂反应以提供含有共轭二烯单元的卤代丁基离聚物；
【0037】（d）将胺反应性二烯烃和物接枝于来自步骤的所述离聚物以提供二烯烃和物接枝的离聚物；和
【0038】（e）将步骤（d）的所述未卤化胺反应性二烯烃和物接枝的离聚物与含氨基的热塑性材料共混。
【0039】根据本发明进一步的方面，公开了由以上描述的方法和工艺生产的官能化丁基离聚物和丁基离聚物 - 热塑性材料接枝共聚物。

具体实施方式

【0040】对于本文中所公开的主题的目的，术语“卤代丁基橡胶”、“卤代丁基聚合物”和“卤化的异烯烃共聚物”可以互换使用。本发明中所使用的卤化共聚物是至少一种烯烃单体和一种或多种烯烃单体以及可选的一种或多种烯烃取代的芳族乙烯基单体的共聚物。
【0041】具有 4 至 7 个碳原子的烯烃适用于本发明。这种 C₄ 至 C₅ 烷烯烃的具体实例包括丙烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、4-甲基-1-戊烯、以及其混合物。优选的 C₄ 至 C₅ 卤化二烯烃单体是卤代烯烃。合适的 C₂ 至 C₅ 烷烃二烯烃包括，例如，1,3-丁二烯、异戊二烯、2-甲基-1,3-戊二烯、4-丁基-1,3-戊二烯、2,3-二甲基-1,3-戊二烯、1,3-己二烯、1,3-辛二烯、2,3-二丁基-1,3-戊二烯、2-乙基-1,3-戊二烯、2-乙基-1,3-丁二烯等，1,3-丁二烯和异戊二烯是优选的。基于烯烃和共轭二烯烃单体的聚合物可以是含有一或多种共轭二烯烃单体的共聚物，或含有交联二烯单体和乙烯基芳族单体的三聚物。
【0042】如果使用乙烯基芳族单体，它们应该与采用的其他单体可共聚。通常，可以使用已知与有机金属引发剂共聚的任何乙烯基芳族单体。这种乙烯基芳族单体通常包含范围为 8 至 20 个碳原子的单聚或 8 至 14 个碳原子的烯烃的这种乙烯基芳族单体的实例包括苯乙烯、α-甲基苯乙烯，各种烷基苯乙烯，包括对甲基苯乙烯、对甲氧基苯乙烯、1-乙烯基萘、2-乙烯基萘、4-乙烯基甲苯等。对甲基苯乙烯是优选的烷基取代的乙烯基芳族单体。
在实施方式中，用于形成丰发明的离聚物的卤化共聚物含有至少一种烯丙基卤素部分。

在实施方式中，卤代共聚物含有衍生自至少一种异烯烃单体的重复单元和衍生自一种或多云多烯烃单体的重复单元。在实施方式中，一种或多种衍生自多烯烃单体的重复单元含有烯丙基卤素部分。

卤化共聚物通过首先由包含一种或多种异烯烃和一种或多种多烯烃的单体混合物制备共聚物，接着将获得的共聚物进行卤化过程以形成卤化共聚物来获得。卤化能够根据本领域的技术人员已知的方法，例如，由Maurice Morton编辑的橡胶技术，第3版，克拉维尔科学出版社（Kluwer Academic Publishers），第297至300页和其中引用的进一步的文献中描述的方法来进行。

卤化期间，共聚物的一些或全部多烯烃含量转化为包含烯丙基卤的单元。卤化聚合物的总烯丙基卤含量不能超过母体共聚物的起始多烯烃含量。

在实施方式中，制备丁基橡胶中使用的单体混合物含有按重量计约80％至约99.5％的至少一种异烯烃单体和按重量计约0.5％至约20％的至少一种多烯烃单体。在实施方式中，单体混合物含有按重量计约83％至约98％的至少一种异烯烃单体和按重量计约2.0％至约17％的多烯烃单体。

在实施方式中，丁基聚合物含有至少0.5mol％的衍生自多烯烃单体的重复单元。在实施方式中，衍生自多烯烃单体的重复单元为至少0.75mol％。在实施方式中，衍生自多烯烃单体的重复单元为至少1.0mol％。在实施方式中，衍生自多烯烃单体的重复单元为至少1.5mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少2.0mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少2.5mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少4.0mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少5.0mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少6.0mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为至少7.0mol％。

在实施方式中，衍生自多烯烃单体的重复单元为约0.5mol％至约20mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为约0.5mol％至约8mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为约0.5mol％至约4mol％。在一个实施方式中，衍生自多烯烃单体的重复单元为约0.5mol％至约2.5mol％。

在实施方式中，用于本发明的卤化共聚物包括由异丁烯和小于2.2mol％的异戊二烯形成的卤化丁基橡胶，其购自朗盛德国有限责任公司（LANEXS Deutschland GmbH）并在名称Bromobutyl 2030™、Bromobutyl 2040™和Bromobutyl X2-™下出售。

在实施方式中，用于本发明的卤化共聚物包括由异丁烯和至少3mol％的异戊二烯或至少4％的异戊二烯形成的高异戊二烯卤化丁基橡胶，这两种异戊二烯二烯分别描述于加拿大专利申请号2,578,583和2,418,884中。

在实施方式中，本发明的卤化共聚物含有至少一种异烯烃、一种或多种多烯烃单体和一种或多种烷烃取代的芳族乙烯基单体的共聚物。在实施方式中，衍生自多烯烃单体的一种或多种单元含有烯丙基卤素部分。

在实施方式中，用于制备异烯烃、多烯烃和烷烃取代的芳族乙烯基单体的共
聚物的单体混合物含有按重量计约 80％至约 99％的异烯烃单体、按重量计约 0.5％至约 5％的多烯烃单体和按重量计约 0.5％至约 15％的烷基取代的芳族乙烯基单体。在一个实施方式中，单体混合物含有按重量计约 85％至约 99％的异烯烃单体、按重量计约 0.5％至约 5％的多烯烃单体和按重量计约 0.5％至约 10％的烷基取代的芳族乙烯基单体。

用于生产多烯烃丁基橡胶聚合物的混合物可以进一步包含多烯烃交联剂。术语交联剂是指通过化学交联的化合物。合适的交联剂包括硅油、硫、硅烷、多胺等。其中，硅油和硫是最常见的交联剂。

卤代丁基橡胶或卤代丁基聚合物应该具有的总氯原子含量为 0.05mol％至 2.0mol％，优选为 0.2mol％至 1.0mol％，并且至少有 0.5mol％至 0.8mol％的氯原子。在有残余多烯烃的情况下，残留多烯烃水平是起始多烯烃含量减去烯丙基卤含量的余量。

本发明的聚物通过卤代丁基橡胶（即，卤化异烯烃共聚物）与亲核试剂在现有技术中众所周知的反应条件下反应来获得。

根据本发明的方法，卤代丁基聚合物能够与至少一种根据以下反应的含氯和/或磺的亲核试剂反应：

![化学结构式]

其中 A 是氯或磺，R1、R2、R3 和 R4 选自由以下组成的组：直链或支链 C1-C20烷基取代基：为单环或由稠合的 C1-C2环组成的芳基取代基；和/或选自来自 B、N、O、Si、P 和 S 的杂原子。

在一般情况下，合适的亲核试剂将含有至少一个具有对于参与亲核取代反应，电子和空间上可接近的孤电子对的中性氟或磷中心。合适的亲核试剂包括三甲胺、三乙胺、三异丙胺、三正丁胺、三甲基膦、三乙基膦、三异丙基膦、三正丁基膦和三苯基膦（TPP）。

根据本发明的一个实施方式，基于高多烯烃卤代丁基聚合物中存在的烯丙基卤的总摩尔量，与卤代丁基共聚物反应的亲核试剂的量在 0.1 至 5 摩尔当量，优选 0.1 至 1 摩尔当量，并且更优选 0.1 至 0.5 摩尔当量的范围内。

在一个实施方式中，卤代丁基类离聚物具有 0.05mol％至 2.0mol％的离聚物基团。在本发明的另一实施方式中，卤代丁基类离聚物具有 0.2mol％至 1.0mol％的离聚物基团。在本发明的另一实施方式中，卤代丁基类离聚物具有 0.2mol％至 0.5mol％的离聚物基团。在本发明的另一实施方式中，卤代丁基类离聚物具有 0.5mol％至 0.8mol％的离聚物基团。

根据本发明的一个实施方式，所得的离聚物是聚合物 - 结合的离聚物部分和烯丙基卤的混合物，使得离聚物部分和烯丙基卤官能性的总摩尔量存在的范围不会超过起始
烯丙基卤含量，如 0.05mol%至 2.0mol%，优选 0.2mol%至 1.0mol%，并且甚至更优选 0.5mol%至 0.8mol%，残余多烯烃存在的范围为 0.2mol%至 1.0mol%，并且甚至更优选 0.5mol%至 0.8mol%。

[0065] 根据本发明另一实施方式，所得的高聚物仅仅含有聚合物 – 结合的高聚物部分，基本上没有剩余的烯丙基卤官能性。

[0066] 未卤化的胺反应性接枝材料含有 C1至 C16不饱和羧酸衍生物。根据本发明可以使用 C = C 双键和羧酸或羧酸衍生物结合在同一分子中的任何化合物。羧酸衍生物的基团可以选自以下列表：羧酸、羧酰胺、羧酸酯、羧酸酸化物 (carboxylic acid halide) 和羧酸酐。不饱和羧酸衍生物可以选自由以下组成的组：马来酸 (盐)、衣康酸 (盐)、丙烯酸酯 (盐)、甲基丙烯酸酯 (盐)、甲基丙烯酸 (盐)、血酸盐 (hemic acid salt) 或相应的羧酸、酰胺、酯和酸酐，以及其 Cl 至 C16 烷基取代的衍生物。优选地，羧酸衍生物是羧酸。更优选地，不饱和羧酸衍生物是环状羧酸。不饱和羧酸衍生物可以选自由以下组成的组：马来酸氯、氯马来酸酯、衣康酸酯、血酸酯或相应的二羧酸，如马来酸或富马酸，或其酯。优选地，不饱和羧酸衍生物是马来酸。

[0067] 通过常规定义，热塑性材料是当施加热时软并且在冷却时恢复其起始特性合成树脂。对于本发明的目的，热塑性材料 (可替换地称为热塑性树脂) 是热塑性聚合物或共聚物，或其混合物，可选地具有 23℃下大于 200MPa 的杨氏模量。树脂具有约 160℃至约 260℃的熔融温度。热塑性树脂可以单独使用或组合使用。所使用的热塑性树脂的至少一种含有氨基基团，如存在于，例如，聚酰胺中。

[0068] 合适的聚酰胺 (尼龙) 包括结晶或树脂状的高分子量固体聚合物，其包括聚合物链中具有重复酰胺单元的共聚物和三聚物。聚酰胺可以通过聚合一种或多种 ε 内酰胺如己内酰胺、吡咯烷酮、月桂内酰胺和氨基十一烷内酰胺、或氨基酸，或通过二元酸和二胺缩合来制备。成纤和模制级尼龙是合适的。这种聚酰胺的实例是聚已内酰胺 (尼龙 -6)、聚月桂内酰胺 (尼龙-12)、聚己内酰胺 (尼龙 -6,6)、聚己内酰胺二酰胺 (尼龙6,9)、聚己内酰胺二二酰胺 (尼龙 -6,10)、聚己内酰胺二酰胺二酰胺 (尼龙 -6,11)、聚己内酰胺二酰胺 (尼龙 -11)。市售聚酰胺可以有利地用于本发明的实践中，具有 160℃至 260℃之间的软化点或熔点的线性结晶聚酰胺是优选的。

[0069] 卤代丁基橡胶 (XIIIR) 通过与氮或磷类亲核试剂反应转化成丁基类离聚物 (Iono-XIIIR) 的反应方案的说明性实例示出在以下方案 1 中。Iono-XIIIR 进一步与胺反应性接枝材料如二烯烃和物马来酸酐反应，产生官能团接枝的丁基类离聚物 (FG-Iono-XIIIR) 或官能化丁基离聚物。后者在熔融混合方法如反应性挤出方法中易于接枝聚酰胺 (PA)，产生共混物，其中一些或所有 PA 共价接枝于一定或所有官能化丁基离聚物 (PA-FG-Iono-XIIIR)。

[0070] 方案 1

```
XIIIR 亲核试剂 → Iono-XIIIR 胺反应性接枝材料 → FG-Iono-XIIIR
```

[0071] 根据本发明的一个实施方式，(i) 通过狄尔斯–阿尔德环加成将二烯烃和物热接枝于共轭二烯或烯丙基卤代丁基离聚物和 (ii) 将所得二烯亲核物－接枝离聚物与聚酰胺
共混能够通过在挤出机开始时提供乙烯基物和离聚物并且在随后的时刻沿着挤出机的槽加入熔塑性材料（聚酰胺）在同一挤出步骤中进行。

[0072] 根据本发明的官能化丁基离聚物期望地表现出优选的共混性能。例如，官能化丁基离聚物期望地表现出至少 20 的门尼粘度和至少 15MPa 的极限拉伸强度。在测量这种期望的其余的物理性能之前，可以在高达 260°C 的温度下加工官能化丁基离聚物。这使其适合于在挤出机中加工。

[0073] 当使用官能化丁基离聚物以形成丁基离聚物接枝的热塑性材料共聚物时，所述共聚物期望地表现出至少 6MPa 的极限拉伸强度和 / 或至少 150％或至少 175％的断裂伸长率。使用未官能化的丁基离聚物形成的丁基离聚物接枝的热塑性材料共聚物期望地表现出 5 至 5.9MPa 的极限拉伸强度和 / 或 95％至 149％的断裂伸长率。

[0074] 实验
[0075] 概述

[0076] 所选的商业丁基橡胶等级实验丁基离聚物等级的挤出分别在 MAH 存在和不存在下进行。挤出物的等分试样的纯化产生用于 ¹H NMR 和 IR 表征的样品。也制备了各自的聚酰胺橡胶共混物。这些挤出物被称作线或颗粒，并进一步经由注射成型加工成哑铃状物（dumbbell）或经由压缩成型加工成薄板以分别进行拉伸测试和重量提取（gravimetric extraction）。

[0077] 材料

[0078] 实施例中使用的商业材料略述于表 1 中。

<table>
<thead>
<tr>
<th>化学名</th>
<th>供应商</th>
<th>商标名</th>
</tr>
</thead>
<tbody>
<tr>
<td>丁基橡胶</td>
<td>朗盛</td>
<td>LANXESS Butyl 402</td>
</tr>
<tr>
<td>溴化丁基橡胶</td>
<td>朗盛</td>
<td>LANXESS Bromobutyl2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANXESS Bromobutyl X2</td>
</tr>
<tr>
<td>马来酸酐（MAH）</td>
<td>Sigma-Aldrich</td>
<td>马来酸酐</td>
</tr>
<tr>
<td>聚酰胺 612</td>
<td>EMS-Grivory</td>
<td>Grilon CR8</td>
</tr>
<tr>
<td>聚酰胺 61</td>
<td>朗盛</td>
<td>Durethan CI 31 F</td>
</tr>
<tr>
<td>正丁基苯磺酰胺</td>
<td>朗盛</td>
<td>Uniplex 214</td>
</tr>
<tr>
<td>滑石</td>
<td>Imerys Talc</td>
<td>Mistron CB</td>
</tr>
<tr>
<td>季戊四醇四(3-</td>
<td>汽巴（Ciba）</td>
<td>Irganox 1010</td>
</tr>
<tr>
<td>(3,5-二叔丁基-4-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>羟基苯基）丙酸酯)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0081] 实施例 1a-4b 的挤出
挤出机在 50~300rpm 之间在莱斯特瑞兹 (Leistritz) ZSE27MX-48D 同向旋转双螺杆挤出机中于 100℃至 250℃之间的温度中进行。挤出机具有 27mm 的螺杆直径,28:1 的 L/D 比和 12 个桶 / 区（包括模头 (die)), 自加热或冷却。

将 3.0g 含 PA 的样品压成薄板。板的一部分利用玻璃微纤维双管进行一系列的索氏提取。在开始提取前, 记录化合物和管套的质量。将管套加入到索氏提取装置中并用回流甲苯 4h, 甲酸 4h, 甲苯 4h 提取, 并且最后甲酸再 4h 提取。在最终提取后, 管套真空干燥并计算剩余质量 %。在存在残留质量的情况下, 残留物通过 ATR IR 光谱表征。

挤出物的纯化

将不包含热塑性材料的挤出物进行纯化用于 IR 和 NMR 分析以除去任何未接枝的 MAH 或其他可能干扰分析的挥发物。将少量样品 (<1g) 在室温下溶解于甲苯中。然后将化合物用丙酮凝结出来, 并容许任何过量的溶剂进行空气干燥。重复此过程。在分析前, 样品在真空烘箱中最后干燥过夜。

DSM 注射成型

含有 PA 的化合物在 DSM Xplore 微型混合器 (DSM) 中注射成型以形成哑铃型状体积用于拉伸测试。将 DSM 加热至 220℃, 并且将约 12g 的每种化合物（以颗粒或股线）加入到桶 (100rpm) 中, 并使其熔融 2 分钟。混合物然后注射成型至 S2 微哑铃模其中。

拉伸测试

注射成型的 S2 微哑铃状物根据 ASTM D412 对应力-应变性能在 T2000 张力计上测量三次。

门尼粘度

如果合适, 通过门尼粘度测量 ML 1+8@125℃ (ASTM D1646) 分析挤出物。

伸长循环疲劳

除了应变循环之外, 根据 ASTM D 4482 测试样品。此标准方法要求使用由凸轮控制的测试仪以引起由四分之一的时间增加应变, 四分之一的时间降低应变, 然后一半的时间应变为零组成的应变循环（脉冲型测试）。本文中, 使用引起一半时间的增加应变和一半时间的降低应变的 DeMattia 弯曲试验机测试样品。注射成型的模头 C 哑铃状物在 1.7Hz (100rpm) 下进行循环应变至指定的初始伸长比 (extension ratio)。伸长比定义为 L / L0, 其中 L 是试样的伸长的长度并且 L0 是未伸长的长度。由于弯曲, 开裂通常由自然存在的缺陷开始, 生长并且最终导致失败。试样的疲劳寿命通过失败的循环数进行测定, 其中失败通过样品的完全断裂界定。将 25mm 的基准标记放置于样品上以确定初始伸长比。在 1000 个循环后, 把手经过调节用于试样的永久变形, 这降低伸长比。报告了两个试样失败的循环平均数。初始伸长比为 0.24。

核磁共振 (NMR)

在 Bruker 500MHz 光谱仪上在 CDCl3 中进行 NMR 分析。含 MAH 的挤出物的 NMR 谱显示出 3.2 和 3.4ppm 处的信号, 这先前已归因于外-CD 单元与马来酸酐的狄尔斯-阿尔德加成物。接枝的 MAH 的 mo1% 由以上信号的积分进行计算。

实施例 1a-4a

在这些实施例中使用的丁基异聚物衍生自 LANXESS Bromobuty12030 和三苯基膦
并具有 0.5mol %的离子含量，以及 58 的门尼粘度。这组实施例在不存在热塑性材料下实施，以便允许对获得的挤出物在溶液中进行加工和表征。丁基聚合物有滑石 (7phr)。对于每个实施例，挤出物组成陈述于表 2 中。如以上描述的，挤出组合物，将挤出物纯化并进行 IR 和 'H NMR 分析。表 2 还陈述了对于 MAH 接枝不存在或存在的光谱证据（即，1780cm⁻¹ 处的 IR 吸光度以及 3.2 和 3.4ppm 处的 'H NMR 谱中的共振）。

表 2

<table>
<thead>
<tr>
<th>实施例类型</th>
<th>实施例 1a</th>
<th>实施例 2a</th>
<th>实施例 3a</th>
<th>实施例 4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANXESS Butyl 402</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>丁基高聚物</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MAH (phr)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Irganox 1010 (phr)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>滑石</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

IR: 1780cm⁻¹ 处的 MAH 吸光度

NMR: 3.2 和 3.4ppm 处的共振

表 2 表明，MAH 的接枝仅仅成功于如果使用 MAH 和丁基高聚物的组合之时。该代丁基橡胶代替常规的丁基橡胶和丁基高聚物的挤出导致挤出物不适宜的低粘度。

实施例 1b-4b

在这些实施例中使用的丁基高聚物衍生自 LANXESS Bromobutyl 2030 和三苯基膦并具有 0.5mol %的离子含量以及 58 的门尼粘度。这组实施例在存在热塑性材料 (Durethan CI 31F) 下实施。丁基聚合物有滑石 (7phr)。对于每个实施例，挤出物组成陈述于表 3 中。挤出发生于 219℃的平均筒温度，150rpm 下。除了 Durethan CI 31F 之外，所有成分都在 0 区中在 5kg • h⁻¹ 的速率下进料至挤出机中；将 Durethan CI 31F 经由位于区 8 的侧进料口在 4.75kg • h⁻¹ 的速率下加入到挤出机中。挤出物经过造粒，干燥并注射成型成测试试验样用于应力 - 应变测量和提取的进一步表征。

表 3
<table>
<thead>
<tr>
<th>实施例类型</th>
<th>1b</th>
<th>2b</th>
<th>3b</th>
<th>4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANXESS Butyl 402 (phr)</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>丁基离聚物（phr）</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Durethan CI 31 F (phr)</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>MAH (phr)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Irganox 1010 (phr)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mistron CB (phr)</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>提取之后的剩余质量（%）</td>
<td>1.2</td>
<td>0.3</td>
<td>0.4</td>
<td>10.5</td>
</tr>
<tr>
<td>提取残余物的 IR: 1650 cm⁻¹ 处的 PA 吸光度</td>
<td>未检测到</td>
<td>未检测到</td>
<td>未检测到</td>
<td>存在</td>
</tr>
<tr>
<td>断裂伸长率 (%)</td>
<td>32</td>
<td>31</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>拉伸强度（MPa）</td>
<td>17.4</td>
<td>15.9</td>
<td>11.6</td>
<td>15.6</td>
</tr>
</tbody>
</table>

[0106] 基于 MAH 以及含烯丙基砜的丁基离聚物进行混合的实施例 4b 表现出比剩余的比较例（实施例 1b、2b 和 3b）显著改善的断裂伸长率。此外，这种共混物在提取时并不完全溶解。提取残留物的 IR 分析进一步表明存在归属于聚酰胺和丁基橡胶的吸收带。在提取含 MAH 的 Durethan CI 31F / 丁基离聚物共混物时观察到的残余物质量支持 MAH 介导了离聚物丁基橡胶和聚酰胺之间的共价接枝。

[0108] 实施例 5–9

在实施例 5–9 中使用的丁基离聚物衍生自 LANXESS Bromobutyl X2 和三苯基膦并具有 0.3mol% 的离子含量和 56 的门尼粘度。对于实施例 5–9, 100 phr 的离聚物与 3phr 的滑石、2phr 的马来酸酐和 1phr 的 Irganox 1010 的组合物使用来自莱斯特瑞兹的具有 27mm 的螺杆直径和 57 的 L/D 比的同向旋转双螺杆挤出机在 15kg/h 的生产量和 350rpm 下采用不同的温度分布挤出。桶（区 0–13 及模头）的温度设定值列于表 4 中。门尼粘度和接枝 MAH 的量，如由对于各个实施例形成的狄尔斯–阿尔德加成物的¹H NMR 谱的信号确定的，报告于表 5 中。表 5 的结果表明，温度越高，所达到的接枝量越高并且挤出物的门尼粘度越低。

[0110] 表 4
表 5

<table>
<thead>
<tr>
<th>实施例</th>
<th>温度分布</th>
<th>门尼粘度 [MU]</th>
<th>接枝的 MAH [mol%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 5</td>
<td>#185</td>
<td>34</td>
<td>0.00</td>
</tr>
<tr>
<td>实施例 6</td>
<td>#200</td>
<td>34</td>
<td>0.00</td>
</tr>
<tr>
<td>实施例 7</td>
<td>#215</td>
<td>34</td>
<td>0.00</td>
</tr>
<tr>
<td>实施例 8</td>
<td>#230</td>
<td>27</td>
<td>0.05</td>
</tr>
<tr>
<td>实施例 9</td>
<td>#245</td>
<td>23</td>
<td>0.07</td>
</tr>
</tbody>
</table>

表 5 表明，根据温度分布 #230 或更高使用温度导致马来酸酐接枝于丁基高聚物。具体而言，温度分布 #230 导致门尼粘度和马来酸酐接枝的期望平衡。

实施例 10-14

在实施例 10-12 中使用的丁基高聚物衍生自 LANXESS Bromobutyl X2 和三苯基膦并具有 0.3mol% 的离子含量和 56 的门尼粘度。对于实施例 10-14，表 6 中叙述的组合物使用来自莱斯特瑞兹的具有 27mm 螺杆直径和 57 的 L/D 比的同向旋转双螺杆挤出机在所述表中叙述的生产量和 200rpm 下使用表 4 中描述的温度分布 #203 挤出（103phr 离聚物＝ 100phr 离子聚合物与 3phr 滑石）。门尼粘度和接枝 MAH 的量，如由对于各个实施例形成的狄尔斯–阿尔德加成物的 1H NMR 谱的信号确定，报告于表 6 中。另外，挤出物通过水下造
粒机造粒在实施例 10 至 12 中是可能的。比较例 13 和例 14 的挤出物粘度太低而不能加工成颗粒或进行门尼粘度测定。比较例 13 和 14 由此表明，溴代丁基橡胶不能与马来酰氯进行热接枝而同时维持门尼粘度超过 10，而实施例 10-12 表明当使用丁基离聚合物时获得了远远超过 10 的门尼粘度。实施例 10 和 11 表明，在反应性混合过程中将马来酰氯接枝于丁基离聚合物，实现接枝水平大于或等于 0.05mol%，例如接枝水平为 0.16-0.17mol% 是可能的。

<table>
<thead>
<tr>
<th>实施例</th>
<th>类型</th>
<th>组成[phr]</th>
<th>挤出机生产量[kg/h]</th>
<th>门尼粘度[MU]</th>
<th>接枝的 MAH [mol%]</th>
<th>造粒可能性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 10</td>
<td>本发明</td>
<td>103</td>
<td>2</td>
<td>1</td>
<td>15.00</td>
<td>30</td>
</tr>
<tr>
<td>实施例 11</td>
<td>本发明</td>
<td>103</td>
<td>4</td>
<td>2</td>
<td>15.45</td>
<td>25</td>
</tr>
<tr>
<td>实施例 12</td>
<td>比较</td>
<td>103</td>
<td>1</td>
<td>2</td>
<td>14.00</td>
<td>19</td>
</tr>
<tr>
<td>实施例 13</td>
<td>比较</td>
<td>103</td>
<td></td>
<td></td>
<td>15.00</td>
<td>未检测到</td>
</tr>
<tr>
<td>实施例 14</td>
<td>比较</td>
<td>103</td>
<td>4</td>
<td>2</td>
<td>15.45</td>
<td>未检测到</td>
</tr>
</tbody>
</table>

[0120] 实施例 15-19

[0121] 实施例 10-12 进一步进行与聚酰胺共混。实施例 15-19 依赖于 Grilon CR8 作为聚酰胺，并且正丁基苯磺酰亚胺 (BBSA) 作为增塑剂。聚酰胺共混物使用 102phr (＝100phr 弹性体 +2phr 隔离剂) 水平的弹性体和 63phr Grilon CR8 以及 14 或 27phr BBSA 进行制备。由于比较例 13 和 14 都是不可加工的，因此由这些材料不能制备聚酰胺共混物。对于实施例 15 使用 LANXESS Bromobutyl X2 代替。实施例 15-19 的组合物总结于表 7 中。在这些实施例中的铜温度为 200-230°C，并且螺杆速度为 500-700rpm。挤出物胶线在水槽中冷却并造粒。将获得的颗粒干燥至湿度含量在 0.08wt% 以下。对于测试试验（哑铃状物）的制备，使用了 Arburg 320-500 注射成型机。得到的样品按照成型的进行表征，没有调节至具体湿度。获得的材料的性能总结于表 8 中。

[0122] 表 7

[0123]
实施例 | MAH-接枝聚合物 BBX2 | 施 例 | 12 | 10 | 11 | Grilon CR8 | BBSA | 生产量 [kg/h] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 15</td>
<td>否</td>
<td>102</td>
<td>63</td>
<td>27</td>
<td>19.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 16</td>
<td>否</td>
<td>102</td>
<td>63</td>
<td>27</td>
<td>19.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 17</td>
<td>是</td>
<td>102</td>
<td>63</td>
<td>14</td>
<td>17.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 18</td>
<td>是</td>
<td>102</td>
<td>63</td>
<td>27</td>
<td>19.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 19</td>
<td>是</td>
<td>102</td>
<td>63</td>
<td>27</td>
<td>19.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0124] 表 8

<table>
<thead>
<tr>
<th>实施例</th>
<th>MAH 接枝聚合物 BBX2</th>
<th>拉伸强度 [Mpa]</th>
<th>断裂伸长率 [%]</th>
<th>拉伸变形[%]</th>
<th>伸长循环疲劳[千周]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 15</td>
<td>否</td>
<td>5.1 ± 0.5</td>
<td>108 ± 13</td>
<td>断裂</td>
<td>1.2</td>
</tr>
<tr>
<td>实施例 16</td>
<td>否</td>
<td>7.8 ± 0.3</td>
<td>244 ± 12</td>
<td>21.0 ± 2.3</td>
<td>未测试</td>
</tr>
<tr>
<td>实施例 17</td>
<td>是</td>
<td>6.8 ± 0.7</td>
<td>121 ± 25</td>
<td>15.0 ± 0.0</td>
<td>未测试</td>
</tr>
<tr>
<td>实施例 18</td>
<td>是</td>
<td>6.8 ± 0.3</td>
<td>251 ± 26</td>
<td>11.0 ± 2.3</td>
<td>7.3</td>
</tr>
</tbody>
</table>

[0126] 比较例 15 不能够加工成颗粒，因此未制备测试样。这表明，无代丁基橡胶不适合用于制备聚酰胺弹性体共混物。比较例 16 (包含丁基离聚物而无任何接枝的马来酸酐) 能够加工成测试样，但相对于基于马来酸化的丁基离聚物的本发明实施例 17-19 表现出较差的性能（较低的拉伸强度、较低的断裂伸长率、拉伸变形测定期间断裂、在弯曲疲劳测试中仅在 1200 次循环后断裂）。因此，马来酸化的丁基离聚物给予聚酰胺共混物改善的性能。