Title: HUMIDIFYING MEDIUM HAVING EXCELLENT LIFESPAN CHARACTERISTICS AND METHOD FOR MANUFACTURING SAME

Abstract: Disclosed is a humidifying medium which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.

Abstract: The humidifying medium is disclosed which adopts a natural humidifying system and has excellent lifespan characteristics. The humidifying medium according to the present invention is formed by coating a linerboard to one side or both sides of a corrugated medium. The corrugated medium and the linerboard have different mean pore diameters, and preferably the humidifying medium of the present invention is formed by coating a linerboard having a mean pore diameter of 35-40 \(\mu \)m to one side or both sides of a corrugated medium having a mean pore diameter of 8-10 \(\mu \)m.
A. CLASSIFICATION OF SUBJECT MATTER

F24F 6/04(2006.01)i, B32B 29/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F24F 6/04; F24F 6/00; F24F 6/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: corrugating medium, ribs, humidification, pore alumina sol, coating

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 08-021644 A (SHOEI SHOJI CO., LTD.) 23 January 1996 See claims 1-2, paragraphs [0008]-[0019].</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>JP 2004-271156 A (ONE WILL CO., LTD.) 30 September 2004 See claims 1, 6, 13.</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-0306489 Y1 (JEONG, CHANG SIK) 08 March 2003 See claim 1, figure 1.</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-0388854 Y1 (NURIANTECH CO., LTD. et al.) 07 July 2005 See claims 1, 3 and figures 1-2.</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

Date of mailing of the international search report

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seomsa-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 20-0306489 Y1</td>
<td>08.03.2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 20-0388854 Y1</td>
<td>07.07.2005</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

F24F 6/04(2006.01)i, B32B 29/08(2006.01)i

B. 조사된 분야

조사된 최소문헌(국제특허분류를 기재)
F24F 6/04; F24F 6/00; F24F 6/02

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허출원공고 및 한국공개특허신청공고: 조사된 최소문헌만에 기재된 IPC
일본특허출원공고 및 일본공개특허신청공고: 조사된 최소문헌만에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 기워드: 광섬지, 주름, 가습, 가공 양품미나 줄, 코팅

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 08-021644 A (SHOEI SHOJI CO., LTD.) 1996.01.23 3</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-0306489 Y1 (정창식 JEONG, CHANG SIK) 2003.03.08 1</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-0388554 Y1 (주식회사 크렌데텍 의 1명) 2005.07.07 3</td>
<td>1-24</td>
</tr>
</tbody>
</table>

추가 문헌이 C(계속)에 기재되어 있습니다. ❌ 대응특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
"A" 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
"E" 국제특허출원의 특별한 문헌으로, 출원과 상호지지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
"I" 국제특허출원 또는 관련 출원의 특별한 문헌으로, 출원과 상호지지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
"O" 특별한 문헌으로, 출원과 상호지지가 없으며, 출원과 상호지지가 없는 것으로 본다.
"P" 특별한 문헌으로, 출원과 상호지지가 없으며, 출원과 상호지지가 없는 것으로 본다.
"Q" 특별한 문헌으로, 출원과 상호지지가 없으며, 출원과 상호지지가 없는 것으로 본다.

국제조사의 실적 완료일

국제조사보고서 발송일

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 창동대로 189,
전화번호 82-42-472-7140

서식 PCT/ISA/210 (우편주소 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 이용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 08-21644 A</td>
<td>1996.01.23</td>
<td>JP 2789427 B2</td>
<td>1998.08.20</td>
</tr>
<tr>
<td>KR 20-0306489 Y1</td>
<td>2003.03.08</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 20-0388854 Y1</td>
<td>2005.07.07</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>