wo 2013/176849 A1 I} 00 00 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/176849 Al

28 November 2013 (28.11.2013) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/10 (2006.01) G11C 16/34 (2006.01) kind of national protection available). AE, AG, AL, AM,
G11C 7/10 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) International Apolication Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: PCT/USI013/03887 DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
30 April 2013 (30.04.2013) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
B . NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(26) Publication Language: English IM, IN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(30) Priority Data:
13/479 442 24 May 2012 (24.05.2012) Us (84) Designated States (unless otherwise indicated, for every
’ kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: SANDISK TECHNOLOGIES INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
[US/US]; 6900 North Dallas Parkway, Two Legacy Town UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Center, Plano, Texas 75024 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: TUERS, Daniel Edward; 6271 Opackaa Rd., EE, ES, FL, FR, GB, GR, HR, HU, IL, IS, IT, LT, LU, LV,
" . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
Kapaa, Hawaii 96746 (US). CHENG, Steven; 601 Mc-
carthy Blyd., Milpitas, California 95035 (US) TR), OAPI (BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW,
” > : ML, MR, NE, SN, TD, TG).
(74) Agent: TOLER, JEFFREY G.; 8500 Bluffstone Cove, Published:

Suite A201, Austin, Texas 78759 (US).

with international search report (Art. 21(3))

(34

Title: SYSTEM AND METHOD TO SCRAMBLE DATA

yoio

10z

Data Storage Device

04

Mamory
{29, NAND Fiash}

142

146

145 ™

Scrarnbled Data

£CC Parity

ot
Veader / Serambled /- ECC ECC
ESK Oala S Parity Codewaord
108 |
Cortrofer | 122
| ECC Enging
447N T T Yl
Header Serambled
JSOESK Data
fe.q., Hamming,
Voling; Parity}
+ a
iy 18 134
138‘\| 140
—
cramble ey | =3 Serambler
Generalor | REL g LFSR
56
10~ o SV
T e
Host
FIG. 1

(57) Abstract: A data storage device (02) includes a memory (104) and a
controller (106). The controller (106) is configured to scramble data (152)

using a scramble key (139) to produce scrambled data (142) and to encode
the scramble key (139) to produce an encoded scramble key (146). The
controller (106) is turther configured to store the encoded scramble key
(146) and the scrambled data (142) to the memory (104).

10

15

20

25

WO 2013/176849 PCT/US2013/038879

SYSTEM AND METHOD TO SCRAMBLE DATA

FIELD OF THE DISCLOSURE

The present disclosure is generally related to scrambling data.

BACKGROUND

Non-volatile data storage devices, such as universal serial bus (USB) flash memory
devices or removable storage cards, have allowed for increased portability of data and
software applications. Flash memory devices can enhance data storage density by
storing multiple bits in each flash memory cell. For example, Multi-Level Cell (MLC)
flash memory devices provide increased storage density by storing 3 bits per cell, 4 bits
per cell, or more. Although increasing the number of bits per cell and reducing device
feature dimensions may increase a storage density of a memory device, a bit error rate

of data stored at the memory device may also increase.

Error correction coding (ECC) is often used to correct errors that occur in data read
from a memory device. Prior to storage, data may be encoded by an ECC encoder to
generate redundant information (e.g. “parity bits”) that may be stored with the data as an
ECC codeword. As more parity bits are used, an error correction capacity of the ECC

increases and a number of bits required to store the encoded data also increases.

Flash memory devices may be sensitive to repeated patterns stored in a flash block (i.c.,
a portion of a flash memory). A scrambler is often used to modify a data pattern stored
in the flash block to reduce pattern sensitivity. The scrambler may use a scramble key
and apply a logical operation, such as an exclusive OR (XOR), to the data pattern to
modify the data pattern.

Descrambling of data may depend on accurate retrieval of the scramble key from the
flash block. Although the scramble key may be protected by the ECC parity bits,
performing de-scrambling after ECC decoding may increase a delay in reading data

from the flash memory device.

10

15

20

25

WO 2013/176849 PCT/US2013/038879

SUMMARY

Data is scrambled based on a scramble key to produce scrambled data. The scramble
key is separately encoded for storage with the scrambled data. By scrambling the data
based on the scramble key and separately encoding the scramble key for storage with
the scrambled data, stronger error correction protection of the scramble key may be
achieved. In addition, decoding of the scramble key may be performed independent of
and prior to, or in parallel with, decoding the scrambled data, which may reduce latency

during a data read operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a first particular illustrative embodiment of a system
including a data storage device configured to scramble data prior to storage at a

memory;

FIG. 2 is a block diagram of a second particular illustrative embodiment of a system
including the data storage device of FIG. 1 configured to read scrambled data from the

memory;

FIG. 3 is a flow chart of a first particular illustrative embodiment of a method of

scrambling data; and

FIG. 4 is a flow chart of a second particular illustrative embodiment of a method of

scrambling data.

DETAILED DESCRIPTION

Referring to FIG. 1, a particular illustrative embodiment of a system including a data
storage device 102 configured to scramble data is depicted and generally designated
100. The system 100 includes the data storage device 102 coupled to a host device 130
via a bus 160. The data storage device 102 includes a memory 104 coupled to a
controller 106. The controller 106 is configured to scramble data based on a scramble

key and to separately encode the scramble key for storage with the scrambled data.

The data storage device 102 may be a memory card, such as a Secure Digital SD® card,

a microSD® card, a miniSD.TM card (trademarks of SD-3C LLC, Wilmington,

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-3-

Delaware), a MultiMediaCard. TM (MMC.TM) card (trademark of JEDEC Solid State
Technology Association, Arlington, Virginia), or a CompactFlash® (CF) card
(trademark of SanDisk Corporation, Milpitas, California). As another example, the data
storage device 102 may be embedded memory in the host device 130, such as eMMC®
(trademark of JEDEC Solid State Technology Association, Arlington, Virginia) and

eSD memory, as illustrative examples.

The host device 130 may be configured to provide data to be stored at the memory 104
or to request data to be read from the memory 104. For example, the host device 130
may include a mobile telephone, a music or video player, a gaming console, an
electronic book reader, a personal digital assistant (PDA), a computer, such as a laptop
computer, a notebook computer, or a tablet, any other electronic device, or any

combination thereof.

The memory 104 may be a non-volatile memory of a flash device, such as a NAND
flash device, a NOR flash device, or any other type of flash device. The memory 104
includes a group of storage elements 110, such as a page, a wordline, or a block, as
illustrative examples. The memory 104 may be configured to receive an error
correction code (ECC) codeword 150 from the controller 106 and to store the ECC

codeword 150 in the group of storage elements 110.

The controller 106 is configured to receive data and instructions from and to send data
to the host device 130 while the data storage device 102 is operatively coupled to the
host device 130. The controller 106 is further configured to send data and commands to
the memory 104 and to receive data from the memory 104. For example, the controller
106 is configured to send data and a write command to instruct the memory 104 to store
the data, such as the ECC codeword 150, to a specified address, such as addresses
corresponding to the group of storage elements 110. As another example, the controller
106 is configured to send a read command to read data from a specified address of the

memory 104.

The controller 106 includes an ECC engine 132, a header generator 134, a scramble key
encoder 136, a scramble key generator 138, and a scrambler 140. The controller 106 is

configured to receive data, such as data 152 from the host device 130, and to scramble

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-4.-

the data 152 in the scrambler 140 using a scramble key 139 to produce scrambled data
142.

The scramble key 139 is provided to the scrambler 140 by the scramble key generator
138. The scramble key 139 may be chosen by the scramble key generator 138
randomly. Alternatively, the scramble key 139 may be chosen or provided to the
scramble key generator 138, such as by using a table lookup of keys. The table lookup
of keys may be defined by firmware (e.g., executable instructions that are executed by a
processor (not shown) in the controller 106). The table lookup of keys may use a
logical address translated to a pseudo-random key to prevent the scramble keys from

being generated in a sequential pattern.

The scrambler 140 may be configured to scramble data, such as the data 152 received
from the host device 130. The scrambler 140 may be configured to scramble the data
152 during a data write operation. The scrambler 140 may include a linear feedback
shift register (LFSR) configured to generate a pseudo-random scrambling word based
on the scramble key 139 to scramble the data 152 to produce the scrambled data 142.
For example, the scrambler 140 may receive the data 152 from the host device 130 and
the scramble key 139 from the scramble key generator 138, load the scramble key 139
to the LFSR, and cycle resulting data through the LFSR to produce a pseudo-random
scrambling word. A logical operation, such as an exclusive OR (XOR) of the data and

the pseudo-random scrambling word may be used to generate the scrambled data 142.

In a specific implementation, a NAND data latch circuit (i.e., NAND XDL) may be
used in combination with the LFSR to “expand” the LFSR by one bit. For example, if
the scramble key 139 is a 6-bit key, five of those bits may be used as an initial value to
be loaded in the LFSR. The sixth bit of the scramble key 139 may be examined by
logic at the memory 104. If a value of the sixth bit = 1, the memory 104 may flip all
bits in the scrambled data 142 and store the result. If the value of the sixth bit = 0, the
memory may not flip the bits in the scrambled data 142 and store the result. Although
described as a 6-bit key, in other implementations, the scramble key 139 may be any

size.

The header generator 134 may be configured to generate a header 144 corresponding to

the scrambled data 142 for storage with the scrambled data 142 in the memory 104. For

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-5.

example, the header 144 may include metadata related to the scrambled data 142. An
encoded scramble key 146 is also included in the header 144.

The scramble key encoder 136 may be configured to encode a copy of the scramble key
139 received from the scramble key generator 138 to produce the encoded scramble key
146. For example, the scramble key encoder 136 may include an encoder configured to
apply a Hamming code to encode the scramble key 139 and to enable error correction of
the encoded scramble key 146. For example, a sum of positions of erroneous parity bits
may identify an erroneous bit. To illustrate, if parity bits in positions 1, 2, and 8 of a
Hamming codeword indicate an error, then bit 1+2+8=11 of the codeword is in error.
As another example, the scramble key encoder 136 may be configured to encode the
scramble key to enable error correction using parity bits, such as by using a low-power
“mini” ECC encoder. To illustrate, the “mini” ECC encoder may include a Reed
Solomon encoder that generates three to five parity bits to enable correction of one to
two bit errors. As a further example, the scramble key encoder 136 may be configured
to encode the scramble key via a repetition encoding to enable error correction using a
voting scheme, such as a majority voting scheme. For example, each bit of the scramble
key 139, or the entire scramble key 139, may be repeated multiple times. For each bit
of the scramble key 139, a comparison of all corresponding bit values may be
performed, and if the corresponding bit values are different, then a bit value that appears
most often may be selected. The encoded scramble key 146 may be decodable
independent of the scrambled data 142 as described in further detail with respect to FIG.
2.

The ECC engine 132 is configured to receive data to be stored to the memory 104 and to
generate a codeword, such as the ECC codeword 150. For example, the ECC engine
132 may include an encoder configured to encode data using an ECC encoding scheme,
such as a Reed Solomon encoder, a Bose-Chaudhuri-Hocquenghem (BCH) encoder, a
low-density parity check (LDPC) encoder, a Turbo Code encoder, an encoder
configured to encode one or more other ECC encoding schemes, or any combination
thereof. The ECC engine 132 may include a decoder configured to decode data read
from the memory 104 to detect and correct, up to an error correction capability of the

ECC scheme, any bit errors that may be present in the data.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-6 -

The ECC engine 132 may be configured to receive the scrambled data 142 and the
header 144 including the encoded scramble key 146 and encode the scrambled data 142
and the header 144 including the encoded scramble key 146 to produce the ECC parity
bits 148 to form the ECC codeword 150. The ECC parity bits 148 provide error

correction for the scrambled data 142 and also for the encoded scramble key 146.

During operation, the host device 130 may provide the data 152 to be stored in the
memory 104. The data 152 may be scrambled by the scrambler 140 using the scramble
key 139 produced by the scramble key generator 138. The scrambled data 142 along
with the header 144 including the encoded scramble key 146 produced by the scramble
key encoder 136 may be received by the ECC engine 132. The ECC engine 132 may
encode the scrambled data 142, the header 144 (and the encoded scramble key 146) and
produce the ECC codeword 150. The ECC codeword 150 may be stored in the group of

storage elements 110 in the memory 104.

By scrambling data based on a scramble key and separately encoding the scramble key
for storage with the scrambled data, stronger error correction protection may be
achieved. In addition, subsequent decoding of the scramble key may be performed
independent of the scrambled data, which may reduce latency during an error correction

code decoding operation as described in further detail with respect to FIG. 2.

Referring to FIG. 2, a particular illustrative embodiment of a system including a data
storage device configured to read scrambled data is depicted and generally designated
200. The system 200 may be configured to retrieve stored data and includes the data
storage device 102 coupled to the host device 130. The data storage device 102
includes the memory 104 and the controller 106.

As explained above with respect to FIG. 1, the memory 104 may be configured to store
the ECC codeword 150 (not shown) in the group of storage elements 110 (not shown).
Over time, the stored ECC codeword 150 may be susceptible to errors, resulting in a
codeword representation 210. The memory 104 is configured to store the codeword
representation 210. For example, the codeword representation 210 may include a
representation of a header 212, a representation of scrambled data 214, and a
representation of ECC parity bits 216. The representation of the header 212 may

include a representation of an encoded scramble key 218.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-7-

The controller 106 is configured to send a read command to read data, such as the
codeword representation 210, from a specified address of the memory 104 (e.g., the
group of storage elements 110 of FIG. 1). The controller 106 includes the ECC engine
132, a scramble key decoder 236, a descrambler 240, a random access memory (RAM)
234, and scrambling control logic 246. The controller 106 is configured to receive data,
such as the codeword representation 210 from the memory 104, to decode the
representation of the encoded scramble key 218 via the scramble key decoder 236 to
produce a scramble key 239, and to descramble the representation of scrambled data

214 based on the scramble key 239 to produce a descrambled representation of data 243.

The scramble key decoder 236 may be configured to decode a copy of the
representation of the encoded scramble key 218 received from the memory 104 to
produce the scramble key 239. The representation of the encoded scramble key 218
may be decodable independent of the representation of scrambled data 214. For
example, the scramble key decoder 236 may include a decoder (e.g., a hardware
decoder) configured to apply a Hamming code to decode the representation of the
encoded scramble key 218. As another example, the scramble key decoder 236 may be
configured to decode the representation of the encoded scramble key 218 using parity
bits. As a further example, the scramble key decoder 236 may be configured to decode
the representation of the encoded scramble key 218 via a repetition encoding using a
voting scheme, such as a majority voting scheme. The scramble key 239 may be the
scramble key 139 of FIG. 1 or may be another scramble key as described in further

detail below.

The descrambler 240 may be configured to descramble data, such as the representation
of scrambled data 214 received from the memory 104. The descrambler 240 may be
configured to descramble the representation of scrambled data 214 during a data read
operation. The descrambler 240 may include a linear feedback shift register (LFSR)
241 configured to generate a pseudo-random scrambling word based on the scramble
key 239 to scramble the representation of scrambled data 214 and produce the
descrambled representation of data 243. For example, the descrambler 240 may receive
the representation of scrambled data 214 from the memory 104 and the scramble key
239 from the scramble key decoder 236, load the scramble key 239 to the LFSR 241,
and cycle resulting data through the LFSR 241 to produce the pseudo-random

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-8-

scrambling word. A logical operation, such as an exclusive OR 238 of the
representation of scrambled data 214 and the pseudo-random scrambling word may be
used to generate the descrambled representation of data 243. The descrambled

representation of data 243 may be written to the RAM 234.

The ECC engine 132 may be configured to perform an ECC decoding operation
including decoding data read from the memory 104 and generating error location data
233 corresponding to erroneous bit locations. The ECC decoding operation may be
performed in parallel with the scramble key decoder 236 decoding the representation of
the encoded scramble key 218 and the descrambler 240 descrambling the scramble key
239. For example, the ECC engine 132 may be configured to receive the codeword
representation 210 from the memory 104 and to decode the representation of the header
212 including the encoded scramble key 218, the representation of the scrambled data
214, and the representation of the ECC parity bits 216 to produce the error location data
233. The error location data 233 is provided to the RAM 234 to correct (e.g., “flip”)
bits in those locations such that error correction is performed in the RAM 234. For
example, the error location data 233 may be applied to the descrambled representation
of data 243 written to the RAM 234 to produce an unscrambled, error corrected version
of data 242 and an unscrambled, error corrected version of a header 244 including a

scramble key.

If errors in the error location data 233 occur in the header 244, then a determination may
be made whether the ECC corrected scramble key in the header 244 matches the
scramble key 239. If the ECC corrected scramble key does not match the scramble key
239, then the scramble key decoder 236 “guessed wrong” and an erroneous scramble
key was used to descramble the representation of scrambled data 214. In that case, the
unscrambled, error corrected version of data 242 may be “re-scrambled” using the
“wrong” key (e.g., the scramble key 239) to return the unscrambled, error corrected
version of data 242 to a prior state (e.g., another scrambled representation of data 243).
The other scrambled representation of data 243 may be written to the RAM 234. The
other scrambled representation of data 243 may thereafter be “re-descrambled” using
the “correct” key (i.e., the error corrected version of the scramble key in the header 244
in the RAM 234) to produce yet another descrambled representation of data 243. The
yet another descrambled representation of data 243 may be stored in the RAM 234,

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-9.

Alternatively, instead of writing the other scrambled representation of data 243 to the
RAM 234 after “re-scrambling”, resulting in two “hops” into and out of the RAM 234,
the other scrambled representation of data 243 may be “re-descrambled” “on the fly”
(e.g., the re-scramble and the re-descramble can be done in one step), reducing memory

copying to one hop.

To illustrate, the scramble control logic 246 may be configured to read the error
corrected version of header 244 including the scramble key from the RAM 234, and
compare the error corrected version of the scramble key in the header 244 to the
scramble key 239 generated by the scramble key decoder 236. If the error corrected
version of the scramble key in the header 244 matches the scramble key 239 generated
by the scramble key decoder 236, then the unscrambled, error corrected version of data

242 is correct.

If the error corrected version of the scramble key in the header 244 does not match the
scramble key 239 generated by the scramble key decoder 236, then the unscrambled,
error corrected version of data 242 is incorrect and may be “re-scrambled” using the
“wrong” key (e.g., the scramble key 239) to produce scrambled corrected data. For
example, the scramble control logic 246 may be configured to read the (incorrectly)
unscrambled, error corrected version of data 242 from the RAM 234 to be provided to

the descrambler 240.

The (incorrectly) unscrambled, error corrected version of data 242 may be re-scrambled
(e.g., descrambled) by the descrambler 240 using the “wrong” key to produce scrambled
corrected data that may be written to the RAM 234. The scramble control logic 246
may be configured to read the scrambled corrected data and the “correct” key (i.c., the
error corrected version of the scramble key in the header 244 that was decoded by the
ECC engine 132) from the RAM 234 and to write the scrambled corrected data and the
“correct” key to the descrambler 240. The scrambled corrected data may thereafter be
descrambled by the descrambler using the “correct” key to produce another descrambled
representation of data 243. The resulting descrambled representation of data 243
includes error corrected bits previously identified by the ECC engine 132 and may be

stored in the RAM 234 along with the header 244.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-10-

By decoding the scramble key 239 at the scramble key decoder 236 independent of the
representation of scrambled data 214, latency during an error correction code decoding
operation may be reduced. For example, because the scramble key 239 is decoded and
the representation of scrambled data 214 is descrambled prior to the ECC engine 132
completing decoding of the codeword representation 210, descrambling using the
scramble key 239 may occur “on the fly” rather than having to wait for the error

correction code decoding operation to complete.

Although the data storage device 102 of FIG. 1 illustrates encode path components and
the data storage device 102 of FIG. 2 illustrates decode path components, such
components, together with the scramble key encoder 136 and the scramble key decoder
236, may be implemented to re-use circuitry or other components common to both the
encode path and the decode path. For example, the scrambler 140 and the descrambler
240 may be the same component and/or use circuitry or other components in common.
In addition, although no RAM is illustrated in FIG. 1 for simplicity of explanation, the
RAM 234 of FIG. 2 may be used to buffer data during ECC encoding of the data.

With respect to FIGs. 1 and 2, in a specific implementation, each logical page in a
physical page of the memory 104 may have a scramble key. As such, if the physical
page (e.g., having a size of 8KB) stores multiple logical pages (e.g., four 2KB logical
pages), each logical page may have its own scramble key in the header, which may
allow a particular logical page to be read independently. In addition, each logical page
having its own scramble key may provide advantages in the event that the scramble key
of a logical page cannot be determined. For example, if the scramble key cannot be
determined by the firmware (e.g., executable instructions that are executed by a
processor (not shown) in the controller 106) in a particular logical page, then the
scramble key in an adjacent logical page in the physical page may be evaluated to make
a determination regarding the scramble key for the particular logical page. For example,
if the scramble key 239 cannot be determined by the firmware in the controller 106, the
descrambler 240 may be configured to evaluate one or more scramble keys in one or
more logical pages adjacent to the particular logical page and based on the evaluation,

make a determination regarding the scramble key for the particular page.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

“11 -

With respect to FIG. 2, in a specific implementation, an alternative to having the
“hardware” (e.g., the descrambler 240 and the scrambling control logic 246) perform a
“second pass” (e.g., re-scrambling the descrambled data 243 with the “wrong” scramble
key, descrambling with the “correct” scramble key, and storing the descrambled data
243 back to the RAM 234) of the descrambled data 243 after determining that the error
corrected version of the scramble key in the header 244 does not match the scramble
key 239 generated by the scramble key decoder 236 may be for the hardware to notify
the firmware of an error in the scramble key 239 provided by the scramble key decoder
236. Thereafter, the firmware may re-read the codeword representation 210 from the
memory 104 and “override” the hardware by directly providing the “correct” scramble

key to the descrambler 240.

For example, the scrambling control logic 246 may be configured to detect that the
scramble key 239 provided by the scramble key decoder 236 and used in the
descrambler 240 is different than the error corrected version of the scramble key in the
header 244 as explained above. Instead of performing the “second pass,” the
scrambling control logic 246 may be configured to notify a processor executing the
firmware of an error in the scramble key 239 provided by the descrambler 240. The
firmware may be configured to retrieve the “correct” scramble key (e.g., the error
corrected version of the scramble key in the header 244) and “override” the “hardware”
(including the scramble key decoder 236) by directly providing the “correct” scramble
key to the descrambler 240 and bypassing the scramble key decoder 236.

FIG. 3 depicts a flowchart that illustrates an embodiment of a method 300 of scrambling
data. The method 300 may be performed by a data storage device, such as the data
storage device 102 of FIG. 1 and FIG. 2.

Data is scrambled using a scramble key to produce scrambled data, at 302. For
example, the scrambler 140 of FIG. 1 may receive the data 152 from the host device 130
and the scramble key 139 from the scramble key generator 138, load the scramble key
139 to the LFSR, and cycle resulting data through the LFSR to produce a pseudo-
random scrambling word. A logical operation, such as an exclusive OR of the data and

the pseudo-random scrambling word, may be used to generate the scrambled data.

10

15

20

25

WO 2013/176849 PCT/US2013/038879

-12-

The scramble key is encoded to produce an encoded scramble key, at 304. For example,
the scramble key encoder 136 may encode a copy of the scramble key 139 received
from the scramble key generator 138 to produce the encoded scramble key 146. The
scramble key encoder 136 may apply a Hamming code to encode the scramble key and
to enable error correction of the encoded scramble key 146. As another example, the
scramble key encoder 136 may apply parity bits to encode the scramble key and to
enable error correction of the encoded scramble key 146, such as by using a low-power
“mini” ECC encoder (e.g., a Reed-Solomon encoder). As a further example, the
scramble key encoder 136 may encode the scramble key via a repetition encoding to

enable error correction using a voting scheme, such as a majority voting scheme.

The encoded scramble key and the scrambled data are stored to a non-volatile memory
of the data storage device, at 306. For example, the ECC engine 132 may encode the

scrambled data 142 and the header 144 (and the encoded scramble key 146) to produce
the ECC codeword 150. The ECC codeword 150 may be stored in the group of storage

elements 110 in the memory 104.

The method 300 enables stronger error correction protection to be achieved by
scrambling data based on a scramble key and separately encoding the scramble key for
storage with the scrambled data. In addition, subsequent decoding of the scramble key
may be performed independent of the scrambled data, which may reduce latency during

a data read, descramble, and ECC decode operation.

FIG. 4 depicts a flowchart that illustrates an embodiment of a method 400 of receiving
data. The method 400 may be performed by a data storage device, such as the data
storage device 102 of FIG. 1 and FIG. 2.

Data is received including a representation of scrambled data and a representation of an
encoded scramble key, at 402. For example, the ECC engine 132 may receive the
codeword representation 210 from the memory 104. The codeword representation 210
may include the representation of the header 212, the representation of scrambled data
214, and the representation of ECC parity bits 216. The representation of the header

212 may include the representation of an encoded scramble key 218.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-13-

The representation of the encoded scramble key is decoded to produce a scramble key,
at 404. For example, the scramble key decoder 236 may decode a copy of the
representation of the encoded scramble key 218 received from the memory 104 to
produce the scramble key 239. For example, the scramble key decoder 236 may apply a
Hamming code to decode the representation of the encoded scramble key 218. As
another example, the scramble key decoder 236 may decode the representation of the
encoded scramble key 218 using parity bits according to a mini-ECC scheme. As a
further example, the scramble key decoder 236 may decode the representation of the
encoded scramble key 218 via a repetition encoding using a voting scheme, such as a

majority voting scheme.

The representation of scrambled data is descrambled based on the scramble key to
produce a descrambled representation of data, at 406. For example, the descrambler
240 may receive the representation of scrambled data 214 from the memory 104 and the
scramble key 239 from the scramble key decoder 236, load the scramble key 239 to the
LFSR 241, and cycle resulting data through the LFSR 241 to produce a pseudo-random
scrambling word. The exclusive OR 238 of the representation of scrambled data 214
and the pseudo-random scrambling word may be used to generate the descrambled
representation of data 243. The descrambled representation of data 243 may be written

to the RAM 234,

The descrambled representation of data and the scramble key are decoded using an error
correction code decoder to produce decoded data, at 408. For example, the ECC engine
132 may receive the codeword representation 210 from the memory 104 and decode the
representation of the header 212 including the encoded scramble key 218, the
representation of the scrambled data 214, and the representation of the ECC parity bits
216 to produce the error location data 233. The error location data 233 is provided to
the RAM 234 to correct (e.g., “flip”) bits in those locations such that error correction is
performed in the RAM 234. The error location data 233 may be applied to the
descrambled representation of data 243 written to the RAM 234 to produce decoded
data including an unscrambled, error corrected version of data 242 and an error

corrected version of a header 244 including a scramble key.

10

15

20

25

30

WO 2013/176849 PCT/US2013/038879

-14-

By decoding the scramble key 239 independent of the scrambled data 214, latency
during a data read operation may be reduced. For example, rather than serially
performing ECC decoding and then descrambling using the error corrected key,
descrambling and ECC decoding may be performed at least partially in parallel. When
the scramble key 239 is “correct”, a number of transfers of data into and out of the
RAM 234 may be reduced, which may reduce latency in providing requested data. For
example, the scramble key decoder 236 may be configured to achieve a statistical
likelihood of success based at least in part on factors such as a strength of an encoding
scheme, a length of the scramble key 239, an estimated probability of bit errors, or any

combination thereof.

Although the encoded scramble key 146 is illustrated in FIG. 1 as being stored with the
scrambled data 142, in other embodiments the encoded scramble key 146 may not be
stored with the scrambled data 142. For example, the encoded scramble key 146 may
be stored in a same word line of a NAND flash memory as the scrambled data 142 but
in a location that is non-adjacent to the scrambled data 142 in the word line, such as in a
word line header area that may be read with the scrambled data 142 in a single read
operation and recombined with the scrambled data 142 to form the codeword
representation 210 of FIG. 2 for decoding. As another example, the encoded scramble
key 146 may be stored in a different word line than the scrambled data 142, such asin a

dedicated encoded scramble key storage area of the memory 104.

Although various components depicted herein are illustrated as block components and
described in general terms, such components may include one or more microprocessors,
state machines, or other circuits configured to enable the scramble key encoder 136 of
FIG. 1 to separately encode the scramble key 139 for storage with the scrambled data
142. For example, the scramble key encoder 136 may represent physical components,
such as hardware controllers, state machines, logic circuits, or other structures, to enable
the scramble key encoder 136 to separately encode the scramble key 139 for storage

with the scrambled data 142.

In a particular embodiment, the data storage device 102 may be implemented in a
portable device configured to be selectively coupled to one or more external devices.

However, in other embodiments, the data storage device 102 may be attached or

10

15

20

25

WO 2013/176849 PCT/US2013/038879

-15-

embedded within one or more host devices, such as within a housing of a host
communication device. For example, the data storage device 102 may be within a
packaged apparatus such as a wireless telephone, a personal digital assistant (PDA), a
gaming device or console, a portable navigation device, or other device that uses
internal non-volatile memory. In a particular embodiment, the data storage device 102
may be coupled to a non-volatile memory, such as a three-dimensional (3D) memory, a
flash memory (e.g., NAND, NOR, Multi-Level Cell (MLC), a Divided bit-line NOR
(DINOR) memory, an AND memory, a high capacitive coupling ratio (HiCR),
asymmetrical contactless transistor (ACT), or other flash memories), an erasable
programmable read-only memory (EPROM), an electrically-erasable programmable
read-only memory (EEPROM), a read-only memory (ROM), a one-time programmable
memory (OTP), or any other type of memory.

The illustrations of the embodiments described herein are intended to provide a general
understanding of the various embodiments. Other embodiments may be utilized and
derived from the disclosure, such that structural and logical substitutions and changes
may be made without departing from the scope of the disclosure. This disclosure is
intended to cover any and all subsequent adaptations or variations of various

embodiments.

The above-disclosed subject matter is to be considered illustrative, and not restrictive,
and the appended claims are intended to cover all such modifications, enhancements,
and other embodiments, which fall within the scope of the present disclosure. Thus, to
the maximum extent allowed by law, the scope of the present invention is to be
determined by the broadest permissible interpretation of the following claims and their

equivalents, and shall not be restricted or limited by the foregoing detailed description.

10

15

20

25

WO 2013/176849 PCT/US2013/038879

-16 -

WHAT IS CLAIMED IS:

1. A method comprising:

in a data storage device including a non-volatile memory, performing:
scrambling data using a scramble key to produce scrambled data;
encoding the scramble key to produce an encoded scramble key; and

storing the encoded scramble key and the scrambled data to the non-volatile memory.

2. The method of claim 1, wherein the encoded scramble key is decodable independent

of the scrambled data.

3. The method of claim 1, wherein the scramble key is encoded to enable error

correction using a Hamming code.

4. The method of claim 1, wherein the scramble key is encoded to enable error

correction using a voting scheme.

5. The method of claim 1, wherein the scramble key is encoded to enable error

correction using parity bits.

6. The method of claim 1, wherein the encoded scramble key is stored in a header of an

error correction code (ECC) codeword.

7. The method of claim 6, wherein the encoded scramble key and the header are

encoded using an ECC encoder.

8. A data storage device comprising:

a non-volatile memory; and

a controller configured to:

scramble data using a scramble key to produce scrambled data;
encode the scramble key to produce an encoded scramble key; and

store the encoded scramble key and the scrambled data to the non-volatile memory.

9. The data storage device of claim 8, further comprising a scramble key generator

configured to produce the scramble key.

10

15

20

25

WO 2013/176849 PCT/US2013/038879

-17 -

10. The data storage device of claim 8, further comprising a scramble key encoder

configured to scramble the scramble key.

11. The data storage device of claim 10, wherein the scramble key encoder is
configured to scramble the scramble key to enable error correction using a Hamming

code.

12. The data storage device of claim 10, wherein the scramble key encoder is
configured to scramble the scramble key to enable error correction using a voting

scheme.

13. The data storage device of claim 10, wherein the scramble key encoder is

configured to scramble the scramble key to enable error correction using parity bits.

14. The data storage device of claim 10, wherein the encoded scramble key is stored in

a header of an error correction code (ECC) codeword.

15. The data storage device of claim 14, further comprising an ECC encoder configured

to encode the encoded scramble key and the header to generate the ECC codeword.

16. A method comprising:

in a data storage device including a non-volatile memory, performing:

receiving data including a representation of scrambled data and a representation of an
encoded scramble key;

decoding the representation of the encoded scramble key to produce a scramble key;
descrambling the representation of scrambled data based on the scramble key to produce
a descrambled representation of data; and

decoding the descrambled representation of data and the scramble key using an error

correction code decoder to produce decoded data.

17. The method of claim 16, wherein the representation of the encoded scramble key is

decoded using a Hamming code.

10

15

20

25

WO 2013/176849 PCT/US2013/038879

- 18-

18. The method of claim 16, wherein the representation of the encoded scramble key is

decoded using a voting scheme.

19. The method of claim 16, wherein the representation of the encoded scramble key is

decoded using parity bits.

20. The method of claim 16, wherein the representation of the encoded scramble key is

stored in a header of an error correction code (ECC) codeword.

21. The method of claim 16, wherein the representation of the encoded scramble key is

decoded by a hardware scramble key decoder.

22. The method of claim 16, wherein the decoded data includes an ECC decoded
scramble key, and further comprising:

comparing the ECC decoded scramble key to the scramble key to produce a comparison
result;

re-scrambling the decoded data using the scramble key to produced scrambled corrected
data; and

descrambling the scrambled corrected data using the ECC decoded scramble key.

23. A data storage device comprising:

a non-volatile memory; and

a controller configured to:

receive data including a representation of scrambled data and a representation of an
encoded scramble key;

decode the representation of the encoded scramble key to produce a scramble key;
descramble the representation of scrambled data based on the scramble key to produce a
descrambled representation of data; and

decode the descrambled representation of data and the scramble key using an error

correction code decoder to produce decoded data.

24. The data storage device of claim 23, further comprising a scramble key decoder

configured to decode the representation of the encoded scramble key.

10

15

WO 2013/176849 PCT/US2013/038879

-19-

25. The data storage device of claim 24, wherein the scramble key decoder is
configured to decode the representation of the encoded scramble key using a Hamming

code.

26. The data storage device of claim 24, wherein the scramble key decoder is
configured to decode the representation of the encoded scramble key using a voting

scheme.

27. The data storage device of claim 24, wherein the scramble key decoder is

configured to decode the representation of the encoded scramble key using parity bits.

28. The data storage device of claim 23, further comprising an error correction code
decoder configured to decode the descrambled representation of data and the scramble

key, and to produce decoded data including an ECC decoded scramble key.

29. The data storage device of claim 28, further comprising scrambling control logic
configured to:

compare the ECC decoded scramble key to the scramble key to produce a comparison
result;

re-scramble the decoded data using the scramble key to produced scrambled corrected
data; and

descramble the scrambled corrected data using the ECC decoded scramble key.

WO 2013/176849 PCT/US2013/038879
i/4
/‘ 100
/102
Data Storage Device /04
Memory 144 142 148
(e.g. NAND Fiash) / - 4 y
Header Group of
146 —~ Encoded Scrambled Data | ECC Parity Storage
Scramble Key Elements
Header Scramblad ECC ECC
ESK Data Parity Codeword
/‘ 106
Controller 132
£CC Engine /_
A
144 ™\ 142
Header Scrambied
Data
136 ™\ 146 |
Scramble Key
Encoder oK Header
{e.g., Hamming; 5 Gensrator
Voting; Parity)
_7
@ 139 134
138 j 140 ™\
Scramble K s A Scrambl
cramble Key crambler
Generator {e.g. LFSR)
160
130

Host

FIG. 1

WO 2013/176849

/"EG.’Z

2/4

PCT/US2013/038879

{— 200

Data Storage Device / 1

04

Memaory
{e.g. NAND Flash)

/_24;2

/‘214 /‘216 /—210

Header

2187 Encoded
Scrambling Key

Codeword

Scrambled Data ECC Parity | Representation

/‘106

Controller

h 4

ECC Engine

233

Error Re-scramble
Location Path if Key/: FoR
Data is wrong

/‘ 234

] /— 236

Scramble Key Decoder
{e.g., Hamming; Voling;
Parity)

—= M 239
~E

Descrambier

/‘ 241

‘l(_ 238

+J‘

\
242 \ RAM

/ 244

|

Descrambied 243
Data

/— 246

Data

Header

i

Scrambling Control

Logic

Y /_13(}

Host

FIG. 2

WO 2013/176849 PCT/US2013/038879

{‘ 300

Scrambie data using a scrambie key to produce scrambled data

/‘ 302

Encoding the scrambie Key to produce an encoded scrambile key

/‘ 304

Store the encoded scrambie key and the scrambled data to a non-volatiie memory

/‘ 306

FiG. 3

WO 2013/176849 PCT/US2013/038879

4/4

’/— 400

Receive data including a representation of scrambled data and a representation of
an encoded scramble key

/‘ 402

'

Decode the representation of the encoded scramble key to produce a scramble key

/‘ 404

'

Descramble the representation of scrambled data based on the scramble key o
produce a descrambled representation of data

/— 406

'

Dacods the descrambied representation of data and the scramble key using an error
correction code decoder o produce decoded data

/‘ 408

FiG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/038879

A_CLASSIFICATION OF SUBJECT MATTER
INVY. GO6F11/10 G11C7/10
ADD.

G11Cl6/34

According to International Patent Classification (IPC) or to hoth national classification and IPC

B. FIELDS SEARCHED

GO6F G11C Gl1B HO3M

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such dosuments are included in the fields searched

EPO-Internal, INSPEC, COMPENDEX

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2009/204824 Al (LIN JASON T [US] ET AL) 1-6,
13 August 2009 (2009-08-13) 8-14,
l6-21,
23-28
abstract
paragraphs [0006] - [0011]
paragraphs [0058] - [0060]
paragraphs [0069] - [0077]
paragraphs [0099] - [0106]
figures 3A,3B
X US 2003/135798 Al (KATAYAMA YUKARI [JP] ET 1-6,
AL) 17 July 2003 (2003-07-17) 8-14,
16-21,
23-28
paragraphs [0104] - [0125]
paragraph [0276]
figures 9-21,52
/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Speoial oategories of oited doouments :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of anather citation or other
special reason (as specified)

"O" dooument referring to an oral disclosure, use, exhibition or other
means

“P" document published prior to the intemnational filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 August 2013

Date of mailing of the international search report

02/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Hermes, Lothar

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/038879
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008/158948 Al (SHARON ERAN [IL] ET AL) 1-6,
3 July 2008 (2008-07-03) 8-14,
16-21,
23-28
paragraphs [0063] - [0110]
figures 2,3,5
X US 7 158 058 B1 (YU ZHAN [US]) 1,3-6,
2 January 2007 (2007-01-02) 8-14,
16-21,
23-28
column 3, line 1 - column 6, line 15
figures 3-5
X US 2009/150637 Al (HATTORI RYOHEITA [US] 1,2,8,9,
ET AL) 11 June 2009 (2009-06-11) 16,23,24
the whole document
X US 20127005409 Al (YANG TSUNG-CHIEH [TW]) 1,3-6,
5 January 2012 (2012-01-05) 8-14,
16-20,
23-28
paragraphs [0023] - [0027]
paragraphs [0036] - [0048]
figures 1A,1F,1G,2
X US 20117035645 A1l (YANG TSUNG-CHIEH [TW]) 1,3-86,
10 February 2011 (2011-02-10) 8-14,
16-20,
23-28
the whole document
X, P WO 20127117263 Al (SANDISK IL LTD [IL]; 1,2,5,6,
SHARON ERAN [IL]; ALROD IDAN [IL]) 8-10,13,
7 September 2012 (2012-09-07) 14,16,
19-24,
27-29
page 3, line 21 - page 5, line 25
page 7, line 12 - page 9, line 32
page 15, line 20 - page 16, line 31
figures 1,2,7
X, P US 2012/284589 Al (KIM DONG [KR] ET AL) 1,2,5,8,
8 November 2012 (2012-11-08) 9,13,16,
19,21,
23,24,
27,28
paragraphs [0049] - [0071]
paragraphs [0089] - [0092]
paragraphs [0125] - [0129]
figures 1,4,7

Form PCT/ISA/210 (continuation of second sheet) [April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/038879
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009204824 Al 13-08-2009 EP 2240937 Al 20-10-2010
JP 2011508363 A 10-03-2011
KR 20100121472 A 17-11-2010
TW 200935420 A 16-08-2009
US 2009204824 Al 13-08-2009
WO 2009688920 Al 16-07-2009
US 2003135798 Al 17-07-2003 US 2003135798 Al 17-07-2003
US 2006248427 Al 02-11-2006
US 2008158948 Al 03-07-2008 KR 20090101887 A 29-09-2009
TW 200849257 A 16-12-2008
US 2008158948 Al 03-07-2008
WO 2008081426 Al 10-07-2008
US 7158058 Bl 02-01-2007 US 7158038 Bl 02-01-2007
us 7808404 Bl 05-10-2010
US 2009150637 Al 11-06-2008 NONE
US 2012005409 Al 05-01-2012 W 201203260 A 16-01-2012
US 2012005409 Al 05-01-2012
US 2011035645 Al 10-02-2011 US 2011035645 Al 10-02-2011
US 2013132654 Al 23-05-2013
W0 2012117263 Al 07-09-2012 TW 201250462 A 16-12-2012
Us 2012278687 Al 01-11-2012
WO 2012117263 Al 07-09-2012
US 2012284589 Al 08-11-2012 KR 20120123985 A 12-11-2012
US 2012284589 Al 08-11-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report
	Page 27 - wo-search-report

