用于汽车的蓄电池电流传感器

摘要
本发明涉及一种用于汽车的蓄电池电流传感器，包括嵌入到蓄电池电路中的测量传感器和与该测量传感器相连接的测量电路装置，在该传感器中，至少测量电路装置的部件设置在电路基板上，该电路基板经由连接件与测量传感器位置固定地电连接和机械连接，其中各连接件具有至少一个压入触点，该连接件经由所述压入触点与电路基板和/或与测量传感器相连接。
1. 用于汽车的蓄电池电流传感器，包括嵌入到蓄电池电路中的测量传感器（1）和与该测量传感器（1）相连接的测量电路装置，其中至少测量电路装置的部件设置在电路基板（10）上，该电路基板经过连接件（7）位置固定地与测量传感器（1）电连接和机械连接，
其特征在于，
连接件（7）分别具有至少一个压入触点（12），该连接件经由该压入触点与电路基板（10）且/或与传感器（1）相连接。

2. 按权利要求1所述的蓄电池电流传感器，其特征在于，连接件（7）具有用于与测量传感器（1）或与电路基板（10）产生紧固连接的连接部分（13）。

3. 按权利要求2所述的蓄电池电流传感器，其特征在于，所述紧固连接是钎焊连接或熔焊连接。

4. 按权利要求1所述的蓄电池电流传感器，其特征在于，压入触点（12）形成弹性的环。

5. 按权利要求1所述的蓄电池电流传感器，其特征在于，连接件（7）设计为优选的直角弯折的金属部件。

6. 按权利要求2所述的蓄电池电流传感器，其特征在于，连接件（7）在压入触点（12）和连接部分（13）之间具有一弹性区域（14）。

7. 按权利要求1所述的蓄电池电流传感器，其特征在于，电路基板（10）设计为印制电路板或者其他陶瓷基板。

8. 按上述权利要求中的一个或多个所述的蓄电池电流传感器，其特征在于，设置多个连接件（7），并且压入触点（12）与电路基板相连接且连接部分（13）与测量传感器（1）紧固地连接。

9. 按权利要求1所述的蓄电池电流传感器，其特征在于，测量传感器（1）是测量电阻（1a）。

10. 按权利要求9所述的蓄电池电流传感器，其特征在于，测量电阻（1a）通过金属条构成。
用于汽车的蓄电池电流传感器

技术领域

本发明涉及一种用于汽车的蓄电池电流传感器，包括嵌入到蓄电池电路中的测量传感器和与该测量传感器相连接的测量电路装置。在该测量传感器中至少测量电路装置的部件设置在电路基板上，该电路基板经由连接件与测量传感器位置固定地电连接和机械连接。

背景技术

此种类型的蓄电池电流传感器由 DE 199 61 311 A1 是公知的，该蓄电池电流传感器机械地直接设置在蓄电池的电极接线柱上。在其中所描述的蓄电池电流传感器中，测量传感器设计为测量电阻且经过钎焊连接与印制电路基板相连接。此处测量传感器的接触面采用铜制造，而本身的电阻由锰镍铜合金制成，如此制成的测量传感器由此应当具有与所采用的印制电路板材料相同的热膨胀系数。

基于本发明的问题在于，在汽车中的电流电阻在运行时遭受非常强烈的温度波动。例如人们考虑一汽车，其在非常低的外界温度下停放较长时间，以致其蓄电池电流传感器已经被冷却到该外界温度。如果该汽车现在启动，这样在启动期间几百安培的电流流经蓄电池电流传感器，由此测量电阻特别地被剧烈加热。此时出现的温度跳跃可以容易地超过 100 摄氏度。

与所述温度跳跃联系在一起的是，测量电阻的不可忽视的热膨胀。如果载有测定电路的电路基板固定地亦即不经由柔性的线路与测量电阻相连接，其出于成本便宜和制造技术的考虑，蓄电池电流传感器优选简捷的造型，这样就出现如下问题，即尽可能好的平衡测量电阻和电路基板的交替的热膨胀。已知的解决方法是，如上所述提到的，尽可能地为测量电阻和电路基板设置具有相似热膨胀系数的材料。

在此缺点是，人们由此在选择要采用的材料时受到强烈地限制，
且由此大多数导致了在制造时成本增加。特别不利的是，通过已知的措施仅不完全地解决所述问题，因测量电阻和电路基板之间的温度平衡要求一定的时间，这样就不能完全避免由热引起的机械应力。此外，为了保护敏感的电器部件，也完全不期望的上述，电路基板承受测量电阻有时相当高的温度。

发明内容

因此本发明的目的在于，提供一种蓄电池电流传感器，该蓄电池电流传感器具有测量传感器和电路基板之间的直接的机械连接和电连接，在该蓄电池电流传感器中避免由于测量传感器的热膨胀而引起的上述缺点。

所述目的通过如下的措施实现，即连接件分别具有至少一个压入触点，该连接件经由所述压入触点与电路基板和/或与测量传感器相连接。

按本发明所述连接件由于其弹性特性实现在机械上固定的但不是刚性的、在电路基板和测量电阻之间的机械连接和电连接，所述弹性特性特别是通过压入触点地弹簧作用得到。由此以简单的且低成本的方式避免由温度引起的蓄电池电流传感器上的机械应力。

特别有利的是，通过该压入触点可以实现测量传感器和电路基板之间的机械连接，该连接具有相对较小的热耦合。由此一方面可能的是，电路基板的温度经过较长时间段适应于测量传感器的平均温度，而另一方面测量传感器的温度峰值，如其大概在汽车启动时出现，不会造成电路基板和在其上方设置的温度敏感构件的过度加热。

此外有利的是，压入触点的应用使一个特别简单的和此外电路基板在测量传感器上可逆的安装成为可能。

所述测量传感器本身可以有利地设计为简单的金属条。一与该金属条相连接的测量装置测定一与流过金属条电流的物理值，大概由电流引起的磁场或加热。一种特别简易且可靠的电流测量方法在于，设置金属条的一部分作为测量电阻，并在那里探测下降的电压。

附图说明
接下来借助于附图示出且更详细地说明本发明的实施例。
其中：
图 1：蓄电池电流传感器的剖面图；
图 2：在图 1 中示出的蓄电池电流传感器的俯视图；
图 3：图 1 中局部的放大图；
图 4：图中示出局部的侧视图；
图 5：连接元件的两个视图。
具体实施方式

图 1 中以剖视图示出了按本发明构成的蓄电池电流传感器。该蓄电池电流传感器具有测量传感器 1，其具有有通过金属条形成的测量电阻 1a，该电阻在其中间区域具有塑料包封件 3，该塑料包封件形成外壳 2 的一部分。外壳 2 具有作为另一外壳部分的外壳覆盖件 9，该外壳覆盖件具有塑料包封件 3，优选地通过激光焊接连接，并且其具有作为插塞连接器 4 部件的成型插头笼（Steckerkorb）。

测量电阻 1a 在其末端部分上具有简单的圆柱形的成型件 11，连接元件 5、6 可绕其中轴线旋转地设置。在该连接元件 5、6 的相对位置相对于测量传感器固定之后其位置通过连接位置的共同挤压锁定。

如图 2 所示的，第一电连接元件 5 设计为蓄电池电极接线柱 8，其具有用于在圆柱形或圆锥形蓄电池电极处连接的环形接线柱元件。

第二电连接元件 6，其可以设计为螺栓、插接或卡接连接器，实现与图中未示出汽车电缆的电连接和机械连接。因此整个蓄电池电流流经测量电阻 1a，其中设置在塑料外壳内的测量电路装置测定在测量电阻 1a 包封部分处的电压降。

一与通过电阻 1a 的电流的测量信号可以在插塞连接器 4 处接收，该插塞连接器成型在外壳 2 的覆盖件 9 上。

因为连接元件 5、6 经由圆柱形的成型件 11 首先可转动的与测量传感器 1 相连接，连接元件 5、6 相对于测量传感器的定位可以非常柔性地适应于各种对于汽车特殊的给定条件。此外也可以根据要求地设置适应于汽车特殊的连接元件，无需对测量传感器 1 进行结构的改
变。由此在不同汽车上的蓄电池电流传感器的特别简单和低成本的匹配是不可能的。在连接元件 5、6 完成定位以后在连接元件 5、6 和测量传感器之间可转动的连接例如通过连接元件的共同挤压达到最终有效地固定。

图 3 以剖视图示出蓄电池传感器的细节。在其圆柱形的成型件 11 之间测量传感器 1 整体式地形成条状的测量电阻 1a，在该电阻处电压相对于蓄电池电流成比例地下降，该电压由测量电路装置来测定。在图中示出地测量电路装置的构件在此设置在电路基板 10 上，电路基板可以是印制电路板或者陶瓷基板。测量电路装置经过在测量电阻 1a 和电路基板 10 之间的连接元件 7 获得要被测定的测量传感器 1 的测量信号。

就如从图 4 中特别清晰地得知，为此设置四个连接元件 7，所述连接元件将测量电阻 1a 和电路基板 10 电连接和机械连接。连接元件 7 这里设计为直角折弯的金属部件，由该金属部件各个连接部分 13 紧固地例如经过钎焊连接或者优选地经过熔焊连接与测量电阻 1a 相连接。连接元件 7 的与电路基板 10 相连接的部分设计为压入触点 12，该压入触点通过导电边缘区域投入到电路基板的间隙 15 内。

由此设置在电路基板 10 上的测量电路装置由测量电阻 1a 获得要测定的电压。有利的是，可能在压入触点 12 和电路基板 10 的连接区域上产生的微小的接触电阻对于测量结果是忽略不计的，因为在测量电阻 1a 上的电压降优选地通过高欧姆测量电路装置进行测定。

在运行中通过测量电阻 1a 以及测量传感器 1 的交替的温度发生变化的热膨胀由于连接件 7 的弹性特性不会导致在与电路基板 10 的连接中的机械应力。

图 5 以两个视图放大地示出连接件 7。插入到电路基板 10 的间隙 15 中的压入触点 12 具有环外形且由于其弹性特性其能够在横向平衡测量电阻 1（参照图 4）热膨胀。连接件 7 的在压入触点 12 和连接部分 13 之间的至少定的弹性区域 14 平衡了在测量传感器 1 的纵向上的热敏长度变化。
不言而喻地，本发明的实施方案不仅仅局限在该实施例上。因此
例如也有如下实施例是可能的，在该实施例中连接件紧固地与电路基
板连接且弹性地与测量电阻连接。同样地也可以考虑如下实施例，在
该实施例中连接件的两边设有弹性的压入触点。
附图标记清单

<table>
<thead>
<tr>
<th>数字</th>
<th>标记</th>
<th>中文描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>测量传感器</td>
<td>测量传感器</td>
</tr>
<tr>
<td>1a</td>
<td>测量电阻</td>
<td>测量电阻</td>
</tr>
<tr>
<td>2</td>
<td>外壳</td>
<td>外壳</td>
</tr>
<tr>
<td>3</td>
<td>塑料包封件</td>
<td>塑料包封件</td>
</tr>
<tr>
<td>4</td>
<td>插塞连接器</td>
<td>插塞连接器</td>
</tr>
<tr>
<td>5</td>
<td>（第一）连接元件</td>
<td>（第一）连接元件</td>
</tr>
<tr>
<td>6</td>
<td>（第二）连接元件</td>
<td>（第二）连接元件</td>
</tr>
<tr>
<td>7</td>
<td>连接件</td>
<td>连接件</td>
</tr>
<tr>
<td>8</td>
<td>蓄电池电极接线柱</td>
<td>蓄电池电极接线柱</td>
</tr>
<tr>
<td>9</td>
<td>外壳覆盖件</td>
<td>外壳覆盖件</td>
</tr>
<tr>
<td>10</td>
<td>电路基板</td>
<td>电路基板</td>
</tr>
<tr>
<td>11</td>
<td>成型件</td>
<td>成型件</td>
</tr>
<tr>
<td>12</td>
<td>压入触点</td>
<td>压入触点</td>
</tr>
<tr>
<td>13</td>
<td>连接部分</td>
<td>连接部分</td>
</tr>
<tr>
<td>14</td>
<td>弹簧区域</td>
<td>弹簧区域</td>
</tr>
<tr>
<td>15</td>
<td>间隙</td>
<td>间隙</td>
</tr>
</tbody>
</table>