

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : H04M 1/00	A1	(11) International Publication Number: WO 98/57476 (43) International Publication Date: 17 December 1998 (17.12.98)
(21) International Application Number: PCT/US98/12269		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 12 June 1998 (12.06.98)		
(30) Priority Data: 08/873,674 12 June 1997 (12.06.97) US		
(71) Applicant: CP CLARE CORPORATION [US/US]; 78 Cherry Hill Drive, Beverly, MA 01915 (US).		
(72) Inventor: GAMBUZZA, Michael, J.; 4 Longfellow Place #2602, Boston, MA 02114 (US).		
(74) Agents: KUSMER, Toby, H. et al.; Lappin & Kusmer LLP, Two Hundred State Street, Boston, MA 02109 (US).		

(54) Title: ISOLATION AMPLIFIER WITH HOOK SWITCH CONTROL

(57) Abstract

An isolation amplifier circuit with hook switch control (24) includes first (14) and second (32) amplifier stages optically isolated from and coupled to each other. A biasing circuit (26) is optically coupled to the amplifier to provide a switchable prebias to the amplifier to allow the amplifier to process bipolar voltage signals. A hook switch circuit (22) is coupled to the biasing circuit such that as the bias condition is switched, the hook switch is opened or closed. The same optical coupling circuitry (18) can be used to couple the first and second amplifier stages and to couple the biasing circuit to the hook switch circuit.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ISOLATION AMPLIFIER WITH HOOK SWITCH CONTROL

1 Background of the Invention

2

3 Telephone interface devices such as modems and the like are typically used to
4 couple a telephone line to a user device such as a computer. In general, these devices
5 typically include a device interface for connection to the computer and a telephone line
6 interface for connection to the telephone line. The telephone line interface typically
7 includes a circuit of the type commonly referred to as a data access arrangement (DAA),
8 which transmits and receives various telephone line signals and otherwise provides the
9 standard required telephone line interface.

10 The circuitry in the interface device can include an isolation amplifier circuit which
11 receives signals from the computer and couples them to the telephone line while providing
12 the required isolation between the user device and the telephone line. The amplifier circuit
13 can include first and second amplification stages optically isolated from and coupled to
14 each other. In typical fashion, the first stage of the amplifier drives an optically emitting
15 element such as a light-emitting diode (LED) which is optically coupled to a photosensitive
16 element such as a photodiode in the second amplifier stage. A reflective dome is typically
17 located over the LED and the photodiode to provide the optical coupling.

18 Typically, the signal coupled from the user device to the first amplifier stage is a
19 bipolar signal, that is, its level swings between positive and negative voltages. To enable
20 the isolation amplifier to accommodate the bipolar signal without clipping it, the interface
21 device typically includes a prebiasing circuit which continuously applies a DC prebias
22 voltage to the amplifier to raise the DC level of the amplifier such that the bipolar input
23 signals can be processed.

24 Interface devices can also include switching circuitry, commonly referred to as a
25 "hook switch", which closes a connection to the telephone line in an "off-hook" condition
26 such that current is permitted to flow between the public switched telephone network
27 (PSTN) and the user device. In the "on-hook" condition, the hook switch is open to

1 prevent current flow to the PSTN. A conventional hook switch circuit includes a relay
2 controlled by the user device via a control signal which when activated closes the relay to
3 make the connection with the telephone line and which when deactivated opens the relay.

4 In some prior systems, the hook switch control signal is optically isolated from the
5 hook switch itself. The control signal activates an optical emitting device such as an LED
6 which is optically coupled to a photosensitive device such as a phototransistor or
7 photodiode. When the hook switch signal is activated, the photodiode is switched to an
8 off-hook state to close the hook switch and thereby connect to the telephone line.

9 U.S. Patent number 5,555,293 to Krause describes an exemplary DAA telephone
10 interface device illustrative of a typical prior art interface configuration. The DAA
11 described in the '293 patent includes an isolation amplifier having optically coupled stages
12 used to transfer signals between the telephone line and subscriber equipment. The device
13 also includes a separate hook switch circuit driven by an off-hook control line. The off-
14 hook control is optically coupled to the hook switch circuit which includes a pair of FET
15 devices. The '293 patent is therefore illustrative of prior art systems which utilize
16 individual and independent circuitry to provide line signal isolation/amplification and hook
17 switch control.

18 Hence, prior art telephone interface devices, e.g., DAAs, can include a large
19 amount of circuitry to implement and control the interface between the user device, e.g.,
20 modem, computer, and the telephone network. Such hardware-intensive systems can be
21 quite expensive; therefore, reduction in the number of electronic components in such
22 systems can be important in reducing overall size and cost.

23

24 **Summary of the Invention**

25 The present invention is directed to a interface circuit and method for providing an
26 interface between a telephone line and a user telephone device such as a modem and/or a
27 host computer. The circuit of the invention includes an isolation amplifier circuit which is
28 coupled between the user telephone device and the telephone line and couples signals
29 between the telephone device and the telephone line. A biasing means is coupled to the
30 amplifier circuit to bias or "prebias" the amplifier circuit such that it can process bipolar
31 variations in signals. The biasing means is switchable such that it can be switched between

1 a biased state in which a prebias is applied to the amplifier circuit and an unbiased state in
2 which the prebias is not applied to the amplifier circuit. The interface circuit also includes
3 a hook switch circuit which controls connection of the telephone device to the telephone
4 line. The hook switch is switchable between a connected state in which current can flow
5 between the telephone device and the telephone line and an unconnected state in which
6 current flow is interrupted. The interface circuit also includes means for coupling the
7 biasing means to the hook switch circuit such that as the biasing means is switched
8 between the biased state and the unbiased state, the hook switch switches between the
9 connected state and the unconnected state. Hence, the invention provides a telephone
10 interface circuit in which control of the hook switch also controls application of a prebias
11 to the amplifier and/or control of the amplifier prebias also controls the hook switch.

12 In one embodiment, the isolation amplifier circuit includes a first amplifier stage
13 and a second amplifier stage optically coupled to each other to provide the required DC
14 isolation between the telephone line and the user telephone device. The optical coupling
15 device includes an optical emitting device, such as an LED, under a reflective element such
16 as a reflective dome. As current flows through the LED, optical radiation is coupled by the
17 reflective dome to a first photosensitive device, such as a phototransistor or photodiode,
18 which is coupled to the first amplifier stage and a second photosensitive device coupled to
19 the second amplifier stage. The current flow through the LED also applies the DC prebias
20 to the amplifier to accommodate the bipolar nature of the signal being coupled to the
21 telephone line. The current flowing through the LED is controlled by a control signal
22 applied to a switch such as a transistor such that application of the prebias and coupling of
23 the first and second amplifier stages can be externally controlled.

24 In one embodiment, the hook switch circuit includes an optically sensitive device
25 such as a photodiode or phototransistor located in proximity to the same optically reflective
26 element used to couple the first and second amplifier stages. When the prebias signal is
27 activated to apply the prebias to the amplifier, optical radiation is also coupled from the
28 LED to the photosensitive device of the hook switch circuit. The hook switch closes such
29 that current flows in the telephone line. Hence, the control signal used to operate the
30 prebias switch also operates the hook switch such that when the hook switch is closed to
31 enter the off-hook state, the prebias is also applied to the amplifier circuit.

1 The interface circuit of the invention combines activation of the prebias and hook
2 switch functions into a single operation. In one embodiment, this is accomplished by
3 forming multiple optically coupled circuits under the same optically reflective dome.
4 Specifically, in one embodiment, the optically sensitive devices for the first and second
5 amplifier stages and the hook switch circuit and the LED are all formed under the same
6 optically reflective dome.

7 The telephone interface circuit and method of the invention provide numerous
8 advantages over prior approaches. For example, by combining the amplifier prebias and
9 hook switch functions, the invention reduces circuit space and cost. A single optical
10 isolation/coupling device is used to provide optical isolation/coupling for the amplifier
11 stages as well as the hook switch control circuit. The use of a single optical coupling
12 device where multiple devices were conventionally used saves circuit space and expense,
13 which are extremely important in the competitive telecommunications hardware industry.

14 Also, the use of a switched prebias substantially reduces the overall power
15 consumption of the interface circuit. The prebias is only applied and, therefore, consuming
16 power when the interface is off-hook and in use. In prior systems, the prebias was applied
17 continuously, resulting in constant wasted power.

18

19 **Brief Description of the Drawings**

20 The foregoing and other objects, features and advantages of the invention will be
21 apparent from the more particular description of preferred embodiments of the invention,
22 as illustrated in the accompanying drawings in which like reference characters refer to the
23 same parts throughout the different views. The drawings are not necessarily to scale,
24 emphasis instead being placed upon illustrating the principles of the invention.

25 FIG. 1 is a schematic block diagram of one embodiment of the interface circuit of
26 the invention.

27 FIG. 2 is a detailed schematic circuit diagram of the interface circuit of FIG. 1.

28 FIG. 3 is a schematic plot of amplifier output voltage versus time in the off-hook
29 state with no transmit signal applied.

30 FIG. 4A is a schematic plot of an exemplary bipolar voltage signal as applied to the
31 circuit of the invention.

1 FIG. 4B is a schematic plot of amplifier output voltage versus time in the off-hook
2 state with the transmit signal of FIG. 4A applied to the amplifier.

3 FIG. 5 is a schematic plot of amplifier output voltage versus time for the on-hook
4 state.

5

6 **Detailed Description of the Preferred Embodiments**

7 FIG. 1 is a schematic block diagram which illustrates one embodiment of the
8 interface circuitry 10 of the invention. The circuitry 10 can perform functions of a DAA
9 and therefore provide an interface between a user device such as a computer and/or modem
10 and the public switched telephone network (PSTN), which is connected to the interface
11 circuitry 10 by a telephone line 12. The circuitry 10 provides for a transmit (Tx) mode in
12 which signals are transferred from the user device to the telephone line 12 and a receive
13 (Rx) mode in which signals are transferred from the telephone line 12 to the user device.

14 The transmit isolation amplifier includes a first amplifier stage 14 and a second
15 amplifier stage 16 which are optically isolated from and coupled to each other by an optical
16 coupling circuit or optocoupler 18. A transmit signal from the user device is received at
17 the first amplifier stage 14 on Tx line 37 and is amplified or otherwise processed by the
18 first amplifier stage 14 and coupled by optocoupler 18 to the second amplifier stage 16.
19 The amplified transmit signal from the second stage 16 is coupled to a hybrid interface
20 circuit 20 which serves as a 2-to-4 wire converter and then through a hook switch 22
21 which, when closed by the hook switch control line 24, passes the transmit signal to
22 telephone line 12.

23 The 2-to-4 wire converter 20 allows the circuitry 10 and user device to operate in a
24 transmit/receive configuration using the standard 2-wire tip and ring telephone line 12.
25 Each of the transmit and receive modes utilizes two wires and the 2-to-4 wire converter
26 switches the two standard tip and ring telephone lines between transmit and receive
27 circuitry depending on the operational mode of the interface.

28 The amplifier prebias is applied to the amplifier via the optocoupler 18 through line
29 26. When the Off-Hook/Prebias control signal on control line 28 is activated, the prebias
30 is applied to the amplifier. In addition, activation of the Off-Hook/Prebias signal
31 commands the interface circuitry 10 to an off-hook state via the hook switch control line

1 24. When the hook switch control line 24 is active, the hook switch 22 is closed such that
2 current can flow in the telephone line 12 between the PSTN and the user device.
3 Therefore, a single control line 28 is used to both apply the prebias to the isolation
4 amplifier and control the hook condition of the interface circuitry 10 and, specifically, the
5 hook switch 22. When the control line 28 is deactivated, the prebias is removed from the
6 isolation amplifier circuit and the hook switch 22 is opened such that current is not
7 permitted to flow to and from the telephone line 12.

8 The receive portion of the circuitry is similar to the transmit portion except for the
9 prebias and hook switch control. The receive isolation amplifier includes a first amplifier
10 stage 30 coupled to a second amplifier stage 32 by an optical coupling circuit or
11 optocoupler 34. Signals from the PSTN are routed from the telephone line 12, through the
12 hook switch 22 and 2-to-4 wire converter 20 along line 36 to the receive circuitry. The
13 amplified received signal is transferred to the user device via line 38.

14 FIG. 2 is a more detailed schematic diagram of one embodiment of the interface
15 circuitry 10 of the present invention. The isolation amplifier circuit of the invention can
16 include resistors R1, R2, and R3, amplifiers 50 and 58 and the optical coupling circuitry
17 52, which can include an LED 53 and photosensitive transistors or photodiodes 55 and 56.
18 The isolation amplifier is a unipolar photovoltaic amplifier. The input signal applied at the
19 Tx terminal at line 37 is, in general, a bipolar sinusoidal waveform which crosses above
20 and below ground. Because the amplifier is powered by a single-ended power supply V_{CC} ,
21 a prebias is applied to the amplifier to prevent clipping of the signal at ground. The output
22 voltage V of the composite amplifier circuit on line 82, is given by:

$$V = (K3)(R3) \left[\frac{V_{CC}}{R2} + \frac{V_0 \sin \omega t}{R1} \right] \quad (1) ;$$

23 where V_0 is the peak voltage applied to the input of the amplifier 50, and

$$K3 = \frac{K2}{K1} \quad ;$$

24 where $K1$ is the current transfer ratio of the LED 53 current to the photogenerated
25 current developed by photodiode 55; and

1 K2 is the current transfer ratio of the LED 53 current to the photogenerated current
 2 developed by photodiode 56.

3 Since the input signal V_0 traverses above and below ground, and since a unipolar
 4 power supply V_{CC} is used, the prebias is applied to the amplifier such that the amplifier
 5 output V at line 82 is set to a DC quiescent output voltage V_Q at a level above ground and
 6 below V_{CC} such that the input signal on line 37 is not clipped by the single-ended amplifier
 7 50. V_Q can typically be set to $V_{CC}/2$.

8 To illustrate, where no transmit signal is applied at the Tx terminal, that is, where
 9 $V_0 = 0$, and assuming that the overall transfer gain $K3=1$, then Equation 1 reduces to:

$$V = V_{CC} \left[\frac{R3}{R2} \right] \quad (2).$$

10 So, for example, if $V_{CC} = 5$ volts and $V_Q = 2.5$ volts, then the ratio $R3/R2 = 1/2$. Choosing
 11 resistors $R3$ and $R2$ in accordance with the required $1/2$ ratio will result in a quiescent
 12 output voltage V_Q at the desired level of 2.5 volts.

13 The quiescent output voltage V_Q is created by the current injected into the node 91
 14 at the non-inverting node of amplifier 50, which causes an LED current I_f to flow. A
 15 resulting photocurrent I_1 of magnitude equal to that of I_f flows out of the node 91 such that
 16 the node 91 remains at virtual ground. Mathematically, $I_1 = (I_f)(K1)$. The LED 53 output
 17 light also impinges on photodiode 56 to cause a current I_2 to flow at the non-inverting node
 18 of the amplifier 58. This results in an output voltage $V = (I_2)(R3)$ at 82.

19 Hence, when the Off-Hook/Prebias signal is active (low), transistor 54 conducts
 20 current I_f such that LED 53 emits light. The light is reflected by a reflective dome at the
 21 optocoupler 52 to photodiodes 55 and 56 such that the amplifier stages 50 and 58 are
 22 coupled across optocoupler 52 to provide the output voltage V at line 82. With no signal
 23 applied at the Tx input, the prebias is applied such that only the DC quiescent voltage V_Q
 24 appears at line 82. However, when a transmit signal is applied, the output voltage V at line
 25 82 is modulated as defined by Equation 1.

26 The output signal at 82 is coupled to circuitry 60 which serves the function of a 2-
 27 to-4 wire converter, which allows the transmit and receive functions of the circuit of the
 28 invention to be implemented in four lines connected through the 2-to-4 wire converter 60

1 to a standard 2-wire PSTN. The transmit signal is coupled via line 84 to a PNP Darlington
2 transistor pair 62 which serves as the hook switch. When the Darlington pair 62 is
3 activated via line 86 into saturation such that it conducts current, the output signal on line
4 84 is coupled through the diode bridge circuit 64 to the tip and ring lines of the telephone
5 line 12.

6 As shown in FIG. 2, in one embodiment of the invention, the Darlington pair hook
7 switch 62 is operated via a control line 86, the state of which is controlled by current
8 through phototransistor 57 in the optical coupling circuit 52. The phototransistor 57 is
9 located under the same reflective dome used for LED 53 and photodiodes 55 and 56 such
10 that current through LED 53 is coupled to all three devices, 55, 56 and 57 at the same time.
11 As described above, when the Off-Hook/Prebias signal is activated (low) and current I_f
12 flows through LED 53, amplifier stages 50 and 58 are coupled together. In addition,
13 phototransistor 57 is also simultaneously actuated such that the Darlington pair 62
14 conducts current, that is, the hook switch 62 is closed to allow current to flow through the
15 telephone line 12. The circuit 66 is a gyrator circuit or electronic inductor which has a low
16 DC resistance and high AC impedance to draw current from the telephone line.

17 The receive circuitry of the interface device 10 includes resistors R7 and R8,
18 amplifiers 68 and 80, power supply circuit 78 and optical coupling circuitry 70 which
19 includes an LED 72 and photodiodes 74 and 76 and an optically reflective dome. Input
20 signals received on the tip and ring lines of the telephone line 12 are connected across the
21 diode bridge 64 through the Darlington pair hook switch 62 to the 2-to-4 wire converter 60
22 via line 84. The circuitry 60 routes the incoming signal to the receive circuitry. The first
23 stage of amplification provided by amplifier 68 drives the LED 72 which is powered
24 through power supply circuitry 78. The circuitry 78 provides regulated power to the
25 receive circuitry using the raw power from the telephone line 12. The modulated input
26 signal is provided to the receive circuitry on line 81. The signal modulates the output of
27 LED 72 via amplifier 68 and resistor R8. The input signal is coupled through the optical
28 coupler 70 via the reflective dome to the photodiode 76 which transmits the signal to
29 amplifier 80. The processed receive signal is coupled via line 38 to the user device or
30 modem for processing.

1 FIGs. 3-5 contain voltage-versus-time plots which illustrate the various operating
2 conditions of the interface circuit 10 of the invention. The plots assume that $V_{CC} = 5$ volts
3 and that $K3 = 1$.

4 FIG. 3 is a plot of the voltage V at line 82 in the state in which no input transmit
5 signal is applied at Tx, that is, where $V_0 = 0$. It also shows the situation where the interface
6 circuit is in the off-hook condition. In this case, the output voltage V at line 82 is constant
7 over time at $V = V_Q$, the quiescent DC output voltage.

8 FIG. 4A is a plot of an exemplary time varying signal applied at the Tx input. In
9 general, the input signal is a bipolar voltage signal having an amplitude of V_0 . That is, as
10 shown in FIG. 4A, the signal voltage varies over time between positive (above 0 volts) and
11 negative (below 0 volts) values.

12 FIG. 4B illustrates the situation in which the interface circuit of the invention is off-
13 hook and the bipolar voltage signal of FIG. 4A having peak amplitude V_0 is applied at the
14 Tx input. The voltage V at line 82 is a time-varying voltage signal which varies around a
15 biased DC value of V_Q .

16 FIG. 5 is a plot of the voltage V at line 82 in the state in which the system is on-
17 hook, that is, where the Off-Hook/Prebias signal is in a deactivated (high) state such that
18 no current I_f flows through LED 53. In this condition, the amplifier stages 50 and 58 are
19 isolated from each other and no prebias is applied to the circuit. As a result, the signal V at
20 line 82 is a constant level of 0 volts.

21 While this invention has been particularly shown and described with references to
22 preferred embodiments thereof, it will be understood by those skilled in the art that various
23 changes in form and details may be made therein without departing from the spirit and
24 scope of the invention as defined in the following claims.

CLAIMS

1 1. An interface circuit for providing an interface between a telephone device and a
2 telephone line comprising:

3 an amplifier circuit coupled between the telephone device and the telephone
4 line for coupling a signal between the telephone device and the telephone line;

5 biasing means coupled to the amplifier circuit for biasing the amplifier
6 circuit such that the amplifier circuit can process bipolar signals, the biasing means
7 being switchable between a biased state and an unbiased state;

8 a hook switch circuit for controlling connection of the telephone device to
9 the telephone line, the hook switch circuit being switchable between a connected
10 state and an unconnected state; and

11 means for coupling the biasing means to the hook switch circuit such that as
12 the biasing means is switched between the biased state and the unbiased state, the
13 hook switch switches between the connected state and the unconnected state.

1 2. The interface circuit of claim 1 further comprising optical coupling means for
2 optically coupling the biasing means to the hook switch circuit.

1 3. The interface circuit of claim 2 wherein the optical coupling means comprises an
2 optically reflective element for reflecting optical radiation.

1 4. The interface circuit of claim 3 wherein the optical coupling means further
2 comprises a plurality of photosensitive devices for receiving reflected optical
3 radiation from the optically reflective element, one of said photosensitive devices
4 being coupled to the hook switch circuit and another of said photosensitive devices
5 being coupled to the amplifier circuit.

1 5. The interface circuit of claim 1 wherein the amplifier circuit comprises a first
2 amplifier stage coupled to a second amplifier stage .

1 6. The interface circuit of claim 5 further comprising means for optically coupling the
2 first amplifier stage to the second amplifier stage.

1 7. The interface circuit of claim 6 wherein the means for optically coupling the first
2 amplifier stage to the second amplifier stage optically couples the biasing means to
3 the hook switch circuit.

1 8. The interface circuit of claim 5 further comprising an optically reflective element
2 for optically coupling the first amplifier stage to the second amplifier stage.

1 9. The interface circuit of claim 8 wherein the hook switch circuit comprises an
2 optically sensitive device optically coupled to the optically reflective element to
3 control switching of the hook switch circuit.

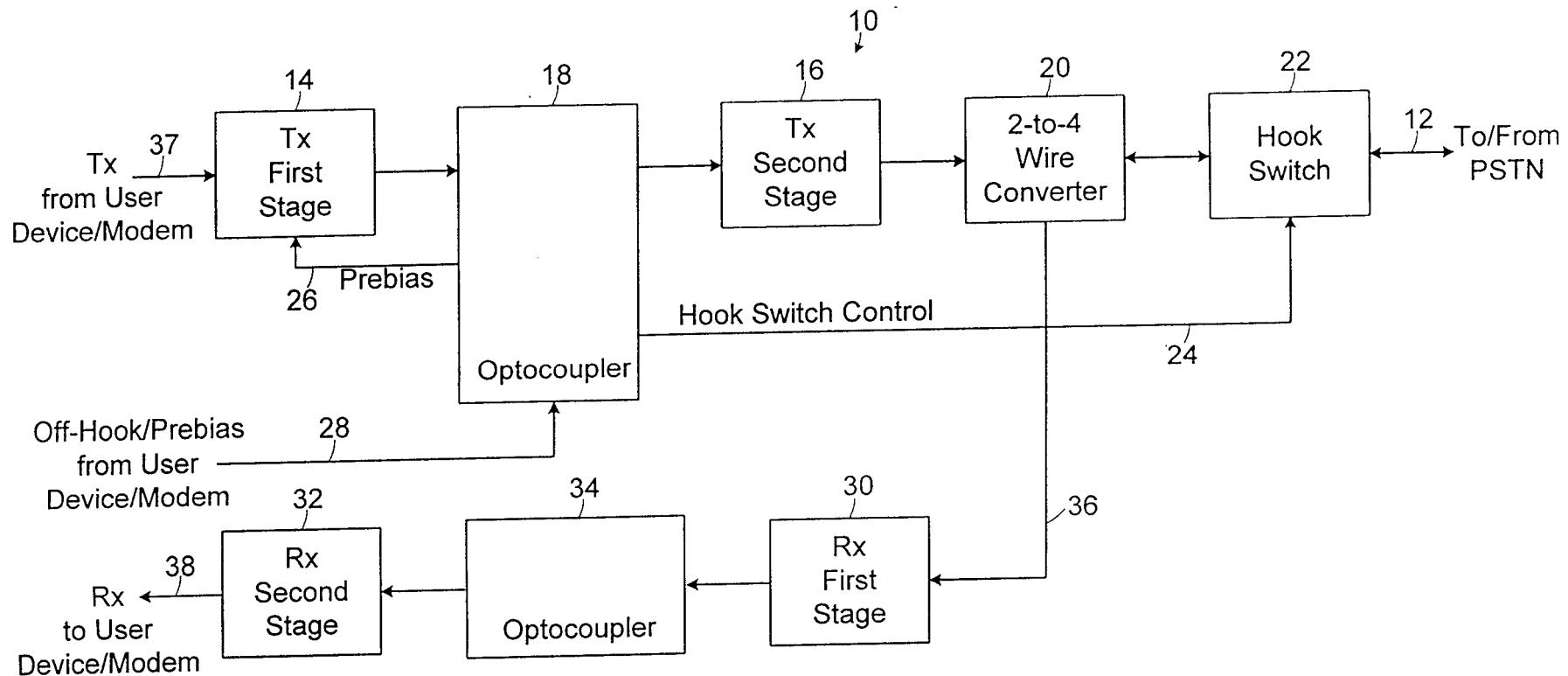
1 10. The interface circuit of claim 1 wherein the telephone device is a modem.

1 11. The interface circuit of claim 1 wherein the telephone device is a computer.

1 12. The interface circuit of claim 1 wherein the interface circuit is a data access
2 arrangement (DAA).

1 13. An isolation amplifier comprising:
2 a first amplifier stage;
3 a second amplifier stage;
4 biasing means coupled to the amplifier circuit for biasing the amplifier
5 circuit such that the amplifier circuit can process bipolar signals, the biasing means
6 being switchable between a biased state and an unbiased state;
7 a switchable signal output circuit for providing a switchable signal output,
8 the switchable signal output circuit being coupled to the biasing means such that as
9 the biasing means is switched between the biased state and the unbiased state, the
10 switchable signal output switches between a first state and a second state; and

optical coupling means for optically coupling the first amplifier stage to the second amplifier stage and optically coupling the biasing means to the switchable signal output circuit.


14. The isolation amplifier of claim 13 wherein the optical coupling means comprises:
an optically reflective element for reflecting optical radiation; and
a plurality of photosensitive devices for receiving reflected optical radiation
from the optically reflective element, one of said photosensitive devices being
coupled to the hook switch circuit and another of said photosensitive devices being
coupled to one of the first and second amplifier stages.

15. The isolation amplifier of claim 13 wherein the isolation amplifier couples a
telephone line to a telephone device and processes signals between the telephone
line and the telephone device.

16. The isolation amplifier of claim 15 wherein the switchable signal output controls a
hook switch which controls connection of the telephone device to the telephone
line.

17. A method of providing an interface between a telephone device and a telephone
line comprising:
coupling an amplifier circuit between the telephone device and the
telephone line to couple a signal between the telephone device and the telephone
line;
coupling a biasing circuit to the amplifier circuit to bias the amplifier circuit
to enable the amplifier circuit to process a bipolar signal, the biasing circuit being
switchable between a biased state and an unbiased state;
providing a hook switch circuit for controlling connection of the telephone
device to the telephone line, the hook switch circuit being switchable between a
connected state and an unconnected state; and

coupling the biasing circuit to the hook switch circuit such that as the biasing circuit is switched between the biased state and the unbiased state, the hook switch circuit switches between the connected state and the unconnected state.

1/4

FIG. 1

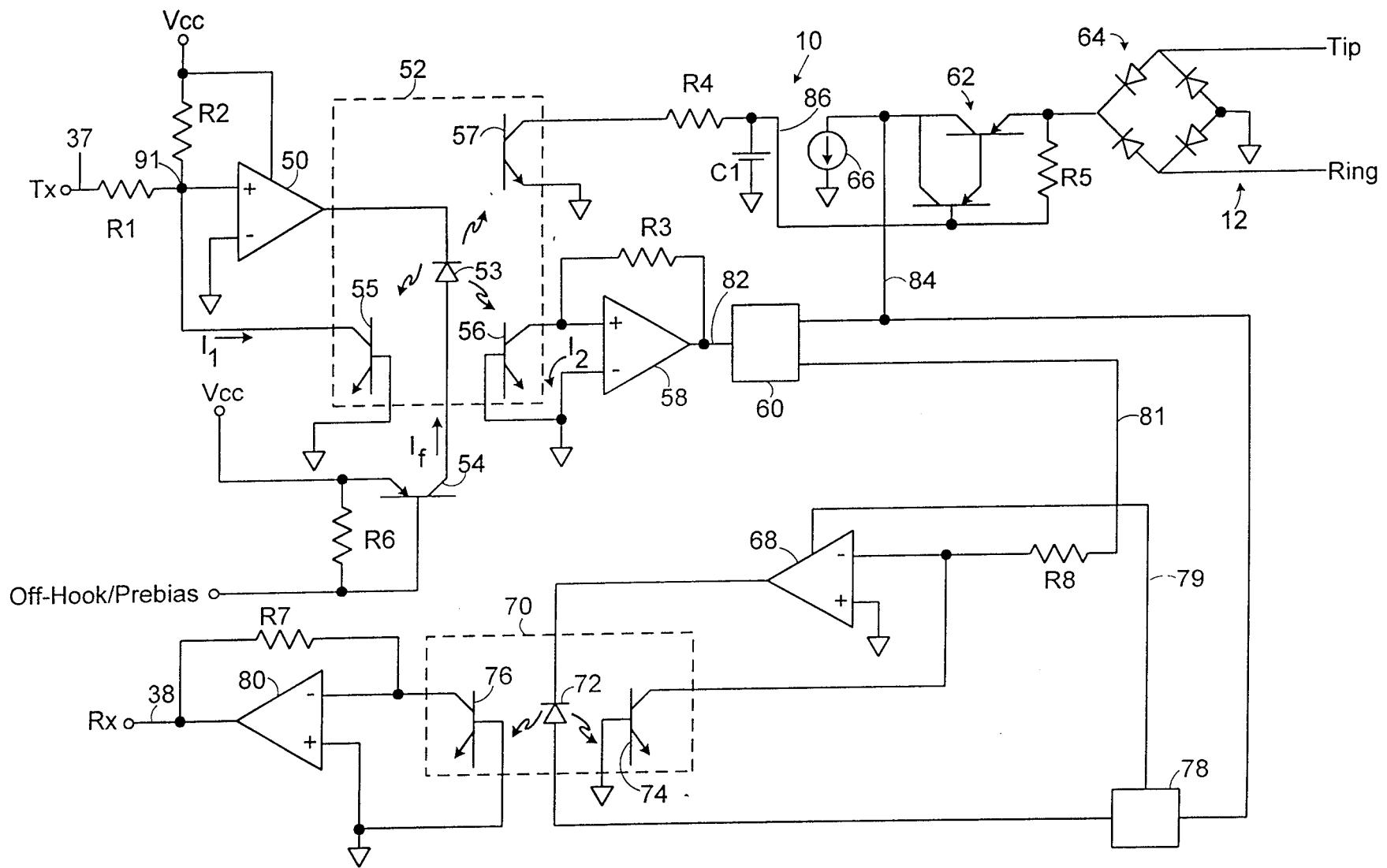
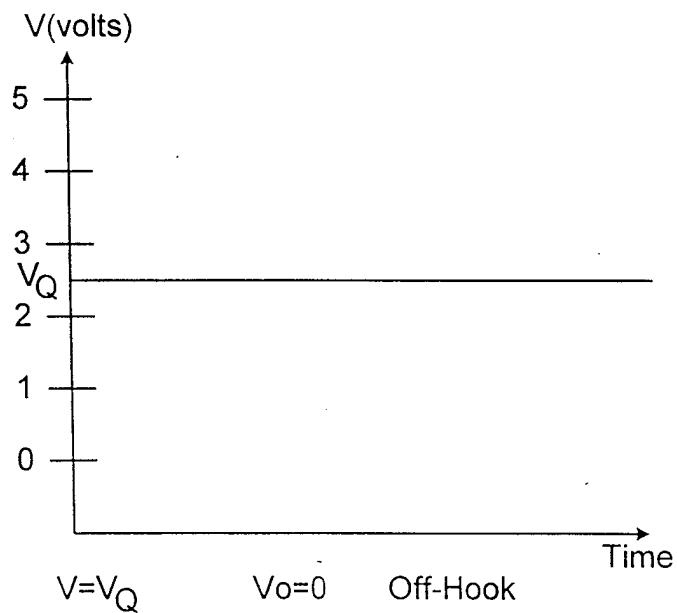
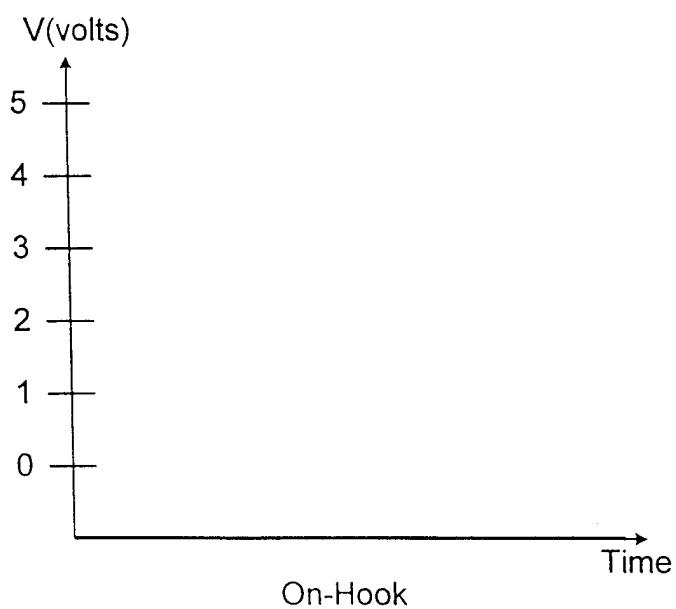
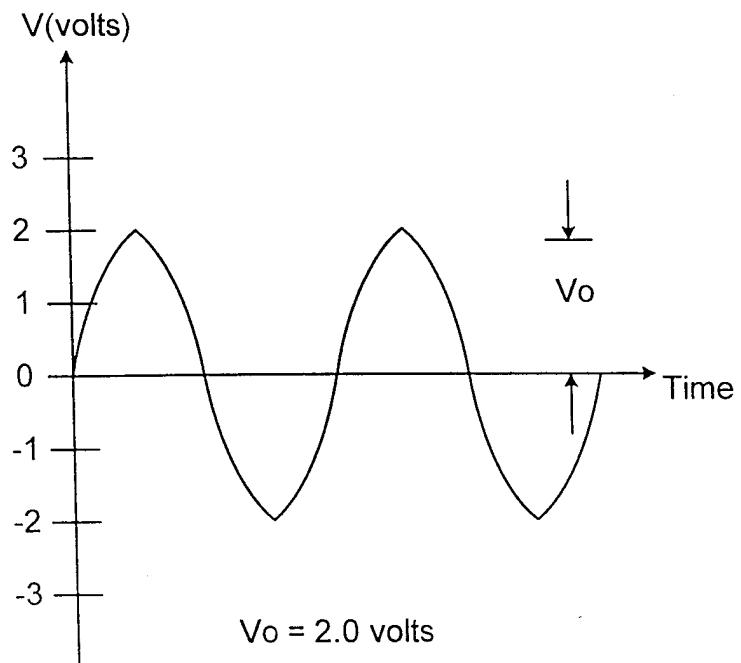





FIG. 2

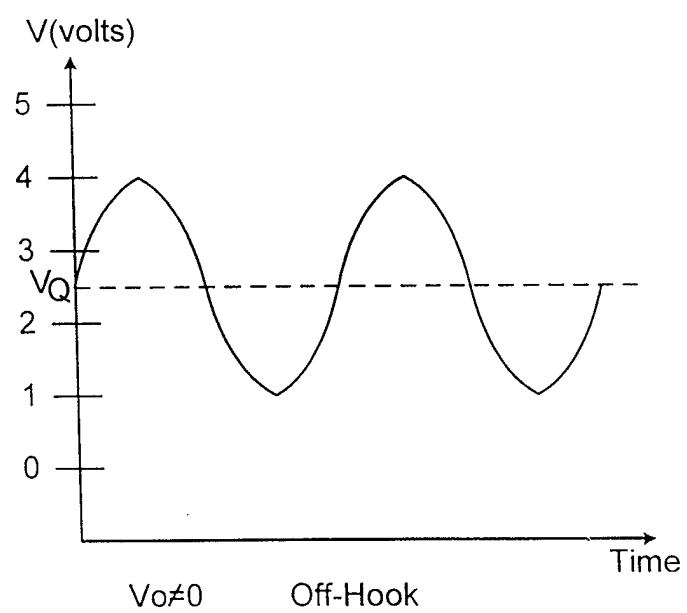

3/4

FIG. 3**FIG. 5**

4/4

FIG. 4A

FIG. 4B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/12269

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :HO4M 1/00

US CL :379/399, 395; 330/136

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 379/399, 395; 330/136

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, MAYA

search terms: data access arrangement, line interface circuits, opto-isolators, opto-coupling, photo-coupling, isolation amplif?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4,282,604 A (JEFFERSON) 4 Aug. 1981, col.4, lines 1-68, col.5, lines 1-53	13-16
Y	US 5,555,293 A (KRAUSE) 10 Sep. 1996, FIG.1, col.3, lines 1-5, col.4, lines 51-52	1-12, 17-18
Y	US 5,242,654 A (WILKISON et al) 14 Sep. 1993, FIG.2A, FIG.2B, col.3, lines 21-68	13-18
Y	US 3,772,514 A (SUNDERLAND) 13 Nov. 1973, FIG.3, col.6 lines 2-35	13-18
A	US 4,742,538 A (SZLAM) 3 May 1988, abstract, col.6, lines 15-29	1-8
A	US 5,438,210 A (WORLEY) 1 Aug. 1995, FIG.4, col.4, lines 18-37, col.57-68	1-11

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
11 AUGUST 1998

Date of mailing of the international search report

09 OCT 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

CHARLES APPIAH

Telephone No. (703) 305 4772

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/12269

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E,Y	US 5,774,541 A (KRAUSE), 30 Jun. 1998, FIG.1, col.2, lines 24-68, col.5, lines 3-64	1-18