(54) 发明名称
显示设备、控制设备和控制方法

(57) 摘要
本发明涉及显示设备、控制设备和控制方法。该显示设备包括：检测单元，用于检测该显示设备是纵向还是横向；检测单元，用于从多个图像数据中检测到的方向对应的方向的图像数据；显示单元；以及控制单元，用于在该显示单元上显示与检测到的图像数据有关的图像。
1. 一种显示设备，包括：
检测部件，用于检测所述显示设备是纵向还是横向；
检索部件，用于从多个图像数据中检索与检测到的方向对应的图像数据；
显示单元；以及
控制部件，用于在所述显示单元上显示与检索到的图像数据有关的图像。

2. 根据权利要求 1 所述的显示设备，其特征在于，如果所述检测部件检测到改变了所述显示设备的方向，则所述控制部件改变显示的图像。

3. 根据权利要求 1 或 2 所述的显示设备，其特征在于，所述控制部件显示与检索到的多个图像数据中的一个图像数据有关的图像，并且如果发出了用以切换要显示的图像的指令，则所述控制部件显示与检索到的多个图像数据中的另一个图像数据有关的图像。

4. 根据权利要求 1 或 2 所述的显示设备，其特征在于，所述控制部件显示与检索到的相同方向上的多个图像数据有关的缩小图像的列表。

5. 根据权利要求 1 所述的显示设备，其特征在于，所述检索部件生成包括纵向图像数据的纵向列表和包括横向图像数据的横向列表，并且如果所述显示设备为纵向，则所述控制部件显示与所述纵向列表中指定的图像数据有关的图像，如果所述显示设备为横向，则所述控制部件显示与所述横向列表中指定的图像数据有关的图像。

6. 根据权利要求 5 所述的显示设备，其特征在于，如果当在所述显示设备上显示与所述横向列表中指定的图像数据有关的图像时发出了用以切换图像的方向的指令，则所述控制部件显示与所述纵向列表中指定的图像数据有关的图像。

7. 根据权利要求 1 所述的显示设备，其特征在于，如果所述检测部件检测到改变了所述显示设备的方向，则所述控制部件显示与在改变方向之前正显示的图像的方向不同的方向上的图像。

8. 根据权利要求 1 所述的显示设备，其特征在于，如果在显示纵向图像时所述显示设备为横向，则代替该纵向图像，所述控制部件显示横向图像；如果在显示横向图像时所述显示设备为纵向，则代替该横向图像，所述控制部件显示纵向图像。

9. 根据权利要求 1 所述的显示设备，其特征在于，还包括设置部件，所述控制部件用于设置下面的显示模式，用于显示与在改变所述显示设备的方向时正显示的图像的方向不同的方向上的图像的显示模式，以及用于即使改变了所述显示设备的方向也在不改变正在显示的图像的情况下显示该正显示的图像的显示模式。

10. 一种显示设备，包括：
检测部件，用于检测所述显示设备是纵向还是横向；
分类部件，用于将多个图像数据分类成纵向图像数据和横向图像数据；
显示单元；以及
控制部件，用于根据所述检测部件检测到的方向，选择由所述分类部件获得的纵向图像数据和横向图像数据的其中之一，并在所述显示单元上显示与所选择的图像数据有关的图像。

11. 根据权利要求 10 所述的显示设备，其特征在于，如果所述检测部件检测到所述显示设备为纵向，则所述控制部件选择所述纵向图像数据；如果所述检测部件检测到所述显示设备为横向，则所述控制部件选择所述横向图像数据。
12. 据权利要求 10 所述的显示设备，其特征在于，如果在正显示纵向图像时所述显示设备为横向，则所述控制部件选择所述横向图像数据，以代替该纵向图像显示与所选择的横向图像数据有关的图像；如果在正显示横向图像时所述显示设备为纵向，则所述控制部件选择所述纵向图像数据，以代替该横向图像显示与所选择的纵向图像数据有关的图像。

13. 据权利要求 10～12 中任一项所述的显示设备，其特征在于，所述分类部件生成包括所述纵向图像数据的纵向列表和包括所述横向图像数据的横向列表，并且如果所述检测部件检测到所述显示设备为纵向，则所述控制部件显示与所述纵向列表中指定的图像数据有关的图像；如果所述检测部件检测到所述显示设备为横向，则所述控制部件显示与所述横向列表中指定的图像数据有关的图像。

14. 一种用于显示与存储在存储介质中的图像数据有关的图像的设备，其中，分别判断存储在所述存储介质中的多个图像数据的方向，从而如果改变了所述设备的纵向方向，则基于所述判断的结果，显示与在改变方向之前正显示的图像的方向不同的方向上的图像。

15. 一种用于在显示设备上显示与图像数据有关的图像的控制设备，所述控制设备包括：

检测部件，用于检测所述显示设备是纵向还是横向；
检索部件，用于从多个图像数据中检索与所述检测部件检测到的方向对应的图像数据；以及
控制部件，用于根据所述检测部件检测到的方向，在所述显示设备上显示与检索到的图像数据有关的图像。

16. 据权利要求 15 所述的控制设备，其特征在于，所述检测部件基于从所述显示设备发送来的信息，检测所述显示设备的方向。

17. 一种包括显示单元的设备的控制方法，其中，所述显示单元用于显示图像，所述控制方法包括：

检测所述设备是纵向还是横向；
从多个图像数据中检索与检测到的方向对应的图像数据；以及
在所述显示单元上显示与检索到的图像数据有关的图像。

18. 一种包括显示单元的显示设备的控制方法，其中，所述显示单元用于显示图像，所述控制方法包括：

检测所述显示设备是纵向还是横向；
将多个图像数据分类成纵向图像数据和横向图像数据；以及
根据检测到的方向，选择通过所述分类所获得的纵向图像数据和横向图像数据的其中之一，并且在所述显示单元上显示与所选择的图像数据有关的图像。
显示设备、控制设备和控制方法

技术领域
[0001] 本发明涉及一种显示设备，尤其涉及图像的显示控制。

背景技术
[0002] 移动电话或个人数字助理（PDA）等的一些信息终端被配置成显示存储卡读出的图像（参照日本特开2002-23914号公报）。近年来，被称为数字相框的显示设备也已被熟知，其中，该显示设备包括尺寸约5～10英寸的液晶面板和存储卡插槽，以读出存储在存储卡中的图像并且显示该图像。
[0003] 在这类设备中，可以容易地改变液晶面板等显示单元的纵/横方向。当改变显示单元的方向时，也改变显示的图像的方向。因此，这类设备通常具有用于改变显示的图像的功能。
[0004] 如上所述，如果通过PDA等显示图像时改变显示单元的方向，则用户可以改变显示的图像的方向。
[0005] 另一方面，这类设备中的一些设备可以使用存储在存储卡中的图像作为壁纸。如果显示单元在水平方向上长，并且用户可能想将其放置在水平方向上长的图像作为壁纸，则用户要检索适合于壁纸的方向上的图像。
[0006] 除此之外，如果用户希望显示与显示单元的方向对应的图像，则用户自己要检索并显示适合于显示单元的方向的图像。

发明内容
[0007] 根据本发明的第一方面，一种显示设备，包括：检测部件，用于检测所述显示设备的纵向还是横向；检索部件，用于从多个图像数据中检索与检测到的方向对应的纵/横向方向的图像数据。显示单元，以及控制部件，用于在所述显示单元上显示与检索到的图像数据有关的图像。
[0008] 根据本发明的第二方面，一种显示设备，包括：检测部件，用于检测所述显示设备的纵向还是横向；分类部件，用于将多个图像数据分类成纵向图像数据和横向图像数据。显示单元，以及控制部件，用于根据所述检测部件检测到的方向，选择由所述分类部件所获得的纵向图像数据和横向图像数据的其中之一，并且在所述显示单元上显示与所选择的图像数据有关的图像。
[0009] 根据本发明的第三方面，一种用于显示与存储在存储介质中的图像数据有关的图像的设备，其中，分别判别存储在所述存储介质中多个图像数据的方向，从而如果改变了所述设备的纵向/横向，则基于所述判断的结果，显示与在改变方向之前所显示的图像的方向不同的方向上的图像。
[0010] 根据本发明的第四方面，一种用于在显示设备上显示与图像数据有关的图像的控制设备，所述控制设备包括：检测部件，用于检测所述显示设备是纵向还是横向；检索部件，用于从多个图像数据中检索与所述检测部件检测到的方向对应的纵/横向方向的图像数据；以
及控制部件，用于根据所述检测部件检测到的方向，在所述显示设备上显示与检索到的图像数据有关的图像。

[0011] 根据本发明的第五方面，一种包括显示单元的设备的控制方法，其中，所述显示单元用于显示图像，所述控制方法包括：检测所述设备是纵向还是横向；从多个图像数据中检索与检测到的方向对应的纵向的图像数据；以及在所述显示单元上显示与检索到的图像数据有关的图像。

[0012] 根据本发明的第六方面，一种包括显示单元的显示设备的控制方法，其中，所述显示单元用于显示图像，所述控制方法包括：检测所述显示设备是纵向还是横向；将多个图像数据分类为纵向图像数据和横向图像数据；根据检测到的方向，选择通过所述分类所获得的纵向图像数据和横向图像数据的其中之一，并在所述显示单元上显示与所选择的图像数据有关的图像。

[0013] 通过以下参考附图对典型实施例的详细说明，本发明的其它特征和方面将变得明显。

附图说明

[0014] 包含在说明书中并构成说明书一部分的附图示出了本发明的典型实施例、特征和方面，并与说明书一起用来解释本发明的原理。

[0015] 图 1A 和图 1B 显示根据本发明典型实施例的显示设备的外观；

[0016] 图 2 显示显示设备的结构；

[0017] 图 3 显示显示设备的操作的流程图；

[0018] 图 4 显示用于生成图像数据的处理的流程图；

[0019] 图 5 显示正常显示模式下的操作的流程图；

[0020] 图 6 显示切换显示模式下的操作的流程图；

[0021] 图 7 显示单一显示模式下的操作的流程图；

[0022] 图 8 显示列表显示模式下的操作的流程图；

[0023] 图 9 显示幻灯片放映模式下的操作的流程图；

[0024] 图 10A ～图 10E 显示显示画面的各种样式；

[0025] 图 11A ～图 11D 显示显示画面的各种样式；

[0026] 图 12 显示本发明典型实施例中的显示系统的外观；

[0027] 图 13 显示显示控制设备的结构；

[0028] 图 14 显示显示控制设备的操作的流程图；

[0029] 图 15 显示连接确认处理中的操作的流程图；

[0030] 图 16 显示装置信息获取处理中的操作的流程图；

[0031] 图 17 显示单一显示模式下的操作的流程图。

具体实施方式

[0032] 下面将参考附图详细说明本发明的各种典型实施例、特征和方面。

[0033] 图 1A 和图 1B 显示根据本发明典型实施例的显示设备 100 的外观的图。如图 1A 和图 1B 所示，显示设备 100 可以安装有对于面对显示设备 100 的用户而言分别为纵向和横
向的壳体 100a。具体地，当以图 1a 所示的状态安装显示设备 100 时，包括液晶面板等的显示单元 106 的垂直长度大于该显示单元 106 的水平长度。将该状态称为纵向状态。当以图 1b 所示的状态安装显示设备 100 时，显示单元 106 的水平长度大于该显示设备 106 的垂直长度。将该状态称为横向状态。显微设备 100 包括用户自由安装和 / 或拆卸存储卡等存储介质 M 用的插槽等的机构。读出存储在存储介质 M 中的静止图像数据和运动图像数据等图像数据，并将与所读出的图像数据有关的图像显示在显示单元 106 上。显示设备 100 包括重力传感器 107。重力传感器 107 检测显示设备 100 的纵 / 横方向。如下所述，根据检测到的方向控制显示画面。

图 2 为示出显示设备 100 的内部结构的功能框图。

在图 2 中，控制单元 101 控制显示设备 100 的操作。读取单元 102 从存储卡等存储介质 M 中读出静止图像数据和运动图像数据。尽管在本典型实施例中，将说明在从存储介质 M 读出静止图像数据并进行显示时所进行的处理，但是同样可以取代成运动图像数据。图像处理单元 103 包括用于对从存储介质 M 读出的图像数据进行解码并增大信息量的解码器。图像处理单元 103 进行用于改变解码后的图像数据的大小的处理等的各种图像处理。

操作单元 104 包括电源开关、用于切换模式的模式开关和用于切换要显示的图像的开关等各种操作开关。在本典型实施例中，显示设备 100 包括用于操作显示设备 100 的远程控制器。操作单元 104 包括远程控制器和用于从远程控制器接收命令的接收单元。显示控制单元 105 生成显示的图像数据，并将所生成的图像数据显示在显示单元 106 上。显示单元 106 包括尺寸约几英寸的液晶面板。根据来自显示控制单元 105 的显示图像数据，在显示单元 106 上显示图像。重力传感器 107 由已知检测显示设备 100 的纵 / 横方向，并且向控制单元 101 通知该方向。更具体地，重力传感器 107 判断显示设备 100 是纵向还是横向，并且向控制单元 101 通知显示设备 100 的方向。

存储器 108 包括闪存和硬盘等半导体存储器，并且存储从存储介质 M 读出的图像数据。控制单元 101 将各种信息存储在存储器 108 中。在各块之间通过数据总线 109 发送和接收各种数据。

然后将说明显示设备 100 的操作。图 3 是示出显示设备 100 的操作的流程图。通过用于控制各控制单元 101 进行图 3 所示的处理。

在步骤 S301，控制单元 101 使重力传感器 107 检测接通电源时显示设备 100 的方向。在步骤 S302，控制单元 101 根据显示设备 100 的方向，如下所述那样使图像处理单元 103 生成显示图像数据，并将图像显示在显示单元 106 上。在步骤 S303，当正在显示图像并且重力传感器 107 检测到显示设备 100 的方向已改变时，控制单元 101 判断用户是否改变了显示设备 100 的方向。

如果改变了显示设备 100 的方向（步骤 S303 为“是”），则处理返回至步骤 S301。如果没有改变显示设备 100 的方向（步骤 S303 为“否”），则在步骤 S304，控制单元 101 判断用户是否操作了操作单元 104 以发出切换显示模式的指令。

显示设备 100 具有正常显示模式和切换显示模式。正常显示模式是指用于根据显示设备 100 的方向自动改变图像的方向和大小并显示该图像的模式。
例如，如果显示设备 100 是横置的，并且在显示单元 106 上显示横置图像，则如图 10A 所示，显示横置图像 1001。当显示设备 100 在该状态下为纵向时，如图 10B 所示显示纵向图像 1002。纵向图像 1002 不便于观看。

在这种情况下，如图 10C 所示，自动显示其方向改变并且大小进一步根据显示单元 106 的水平长度而缩小的横置图像 1003。

另一方面，切换显示模式是指用于自动检索与显示设备 100 的方向对应的纵向的图像并显示检索到的图像的模式。在切换显示模式下，如上所述，当在显示图像时改变显示设备 100 的方向时，将当前正在显示的图像自动切换成与切换之前的显示设备 100 的方向对应的纵向的图像。

如果发出了由以在正常显示模式和切换显示模式之间切换显示模式的指令（步骤 S304 为“是”），则处理返回至步骤 S302。在步骤 S302，根据切换之后所设置的显示模式生成要显示的图像数据。如果未发出用以切换显示模式的指令（步骤 S304 为“否”），则在步骤 S305，控制单元 101 判断是否发出了用以断开电源的指令。

如果未发出用以断开电源的指令（步骤 S305 为“否”），则处理返回至步骤 S302。如果发出了用以断开电源的指令（步骤 S305 为“是”），则断开显示设备 100 的电源，以终止该处理。

然后将说明显示数据生成处理。图 4 是示出显示数据生成处理的流程图。通过控制各单元的控制单元 101 进行图 4 所示的处理，并且在接通显示设备 100 的电源时，重复进行该处理。

在步骤 S401，控制单元 101 首先判断显示模式被设置成正常显示模式还是切换显示模式。如果设置了正常显示模式，则在步骤 S402，进行正常显示模式处理。如果设置了切换显示模式，则在步骤 S403，进行切换显示模式处理。

图 5 是示出步骤 S402 中的正常显示模式处理的流程图。同样通过用于控制各单元的控制单元 101 进行图 5 所示的处理。在本典型实施例中，正常显示模式和切换显示模式各自具有三种模式，即用于在一个显示画面上显示一个图像的单一显示模式、用于显示预定数量的缩小图像的列表显示模式，以及幻灯片放映模式。用户可以通过操作操作单元 104 设置并切换这三种模式中的任一个。在本典型实施例中，如上所述，将说明从存储介质 M 读出静止图像数据并进行显示的情况。

在步骤 S501，控制单元 101 判断是否设置了这三种显示模式中的单一显示模式。如果设置了单一显示模式（步骤 S501 为“是”），则在步骤 S502，控制单元 101 指定存储在存储介质 M 中的静止图像数据中的一个作为要显示的静止图像。将多个静止图像数据与预定文件系统相对应的文件格式存储在存储介质 M 中。读取单元 102 从存储介质 M 读出与各静止图像数据有关的管理信息，并且在请求信息指定要读出的静止图像数据。

尽管根据与管理信息中所包括的存储日期有关的信息指定在最早日期时所存储的静止图像数据，但是还可以根据其它条件来指定要读出的静止图像数据。如果之前已显示了来自存储介质 M 的静止图像数据，则将最后显示的静止图像存储在存储器 108 中，指定并读出该静止图像。如上所述，如果选择了在列表显示模式下所显示的缩小图像中的一个，并且发出了用于切换成单一显示模式的指令，则将与在列表显示画面上选择的缩小图像相对应的静止图像数据指定为要显示的静止图像。
如果指定了要读出的静止图像数据，则在步骤 S503，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据。控制单元 101 使图像处理单元 103 对所读出的静止图像数据进行解码，并将解码后的静止图像数据暂且存储在存储器 108 中。在步骤 S504，控制单元 101 判断该静止图像数据的方向，并且使图像处理单元 103 基于该静止图像数据的方向和显示设备 100 的方向生成显示图像数据。

将说明用于判断静止图像数据的方向的处理。根据文件系统，向存储各静止图像数据的文件添加与上下/左右方向有关的属性信息。例如，如果静止图像数据为 JPEG（联合图像专家组）格式，则使用如 Exif（可交换图像文件格式）信息所存储的方向标签作为属性信息。方向标签是表示从哪一静止图像数据开始并且以哪一方向存储该静止图像数据的信息。可以参考该信息判断图像数据的上下/左右方向。

除此之外，可以基于与静止图像数据的垂直和水平尺寸（像素数）有关的信息判断各静止图像数据的上下/左右方向。用户可以指定各图像的上下/左右方向，并且与各静止图像数据相关的存储与所指定的方向有关的信息，以判断图像的方向。控制单元 101 通过这些方法判断存储在存储介质 M 中的各图像数据的方向。

将这样生成的显示图像数据发送至显示控制单元 105，并且在显示单元 106 上显示图像。在步骤 S505，控制单元 101 判断用户是否在正显示图像时操作了操作单元 104，以发出用于切换至随后的画面的指令。

如果发出了切换用指令（步骤 S505 为“是”），则在步骤 S508，控制单元 101 指定当前正显示的静止图像随后的静止图像。然后，返回至步骤 S503。如果未发出切换用指令（步骤 S505 为“否”），则在步骤 S506，控制单元 101 判断显示设备 100 的方向是否改变。

如果改变了显示设备 100 的方向（步骤 S506 为“是”），则如上所述，由于要改变正显示的图像的大小和方向，因而处理返回至步骤 S504。在步骤 S504，控制单元 101 根据图像的方向和显示设备 100 的方向，再次生成显示图像数据。如果显示设备 100 的方向没有改变（步骤 S506 为“否”），则在步骤 S507，控制单元 101 判断用户是否操作了操作单元 104，以发出用以显示显示模式切换成其它显示模式的切换显示模式，列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S507 为“是”），则处理退出图 5 所示的流程。

如果未设置单一显示模式（步骤 S501 为“否”），则在步骤 S509，控制单元 101 判断是否设置了列表显示模式。如果设置了列表显示模式（步骤 S509 为“是”），则在步骤 S510，控制单元 101 从存储在存储介质 M 中的静止图像数据中指定要显示的 n 个（n 为 2 以上的整数）图像的静止图像数据作为列表。在本典型实施例中，例如，在列表显示模式下，在一个显示画面上显示六个图像的静止图像数据的缩小图像。尽管如在单一显示模式中那样首先指定在最早日期时存储的静止图像数据，但是本发明不局限于此。

在步骤 S511，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的六个图像的静止图像数据，并且使图像处理单元 103 对该静止图像数据进行解码。在步骤 S512，控制单元 101 确定各静止图像数据的方向，并且基于静止图像数据的方向和显示设备 100 的方向，使图像处理单元 103 生成列表显示图像数据。此时，与缩小图像一起显示用于选择缩小图像中的一个的光标。
[0062] 图 10E 所示在显示设备 100 为纵向时在正常显示模式下如何显示列表显示画面 1004。如图 10E 所示，在列表显示画面 1004 上显示六个列表图像，即纵向缩小图像 1004a、1004b、1004c 和 1004f 以及横向缩小图像 1004d 和 1004e。根据纵向缩小图像的水平宽度缩小横向缩小图像 1004d 和 1004e 的水平宽度。

[0063] 为了用户选择缩小图像中的一个，显示光标 1005。当用户操作操作单元 104 来移动光标 1005 以选择缩小图像中的一个并在这种状态下发出再现用指令时，显示模式被切换成单一显示模式。如图 10A 或图 10C 所示，在单一显示模式下显示所选择的图像。

[0064] 图 10D 所示当显示设备 100 为横向时在正常显示模式下如何显示列表显示画面 1006。如图 10D 所示，在列表显示画面 1006 上显示六个列表图像，即纵向缩小图像 1006a、1006b、1006c 和 1006f 以及横向缩小图像 1006d 和 1006e。根据纵向缩小图像的水平宽度缩小横向缩小图像 1006d 和 1006e 的水平宽度。

[0065] 在步骤 S513，控制单元 101 判断在这样显示了列表显示画面之后用户是否发出了用以切换显示画面的指令。如果发出了用以切换显示画面的指令（步骤 S513 为“是”），则在步骤 S516，控制单元 101 指定在随后的列表显示画面上要显示的静止图像。然后，处理返回至步骤 S511。如果未发出用以切换显示画面的指令（步骤 S513 为“否”），则在步骤 S514，控制单元 101 判断显示设备 100 的方向是否改变。

[0066] 如果改变了显示设备 100 的方向（步骤 S514 为“是”），则处理返回至步骤 S512。在步骤 S512，控制单元 101 再次生成列表显示图像数据。如果显示设备 100 的方向没有改变（步骤 S514 为“否”），则在步骤 S515，控制单元 101 判断用户是否操作了操作单元 104 以发出用以将显示模式切换成其它显示模式即切换显示模式、列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S515 为“是”），则处理退出图 5 所示的流程。

[0067] 如果未设置列表显示模式（步骤 S509 为“否”），则在步骤 S517，控制单元 101 判断为设置了幻灯片放映模式，以指定存储在存储介质 M 中的静止图像数据中的一个作为首先要显示的静止图像。此时所指定的静止图像数据与单一显示模式下的静止图像数据相同。如果指定了要读出的静止图像数据，则在步骤 S518，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据。控制单元 101 使图像处理单元 103 对所读出的静止图像数据进行解码，并将解码后的静止图像数据暂且存储在存储器 108 中。在步骤 S519，控制单元 101 判断静止图像数据的方向，且基于静止图像数据的方向和显示设备 100 的方向，使图像处理单元 103 生成显示图像数据。

[0068] 在幻灯片放映模式下，每过去预定时间段，自动切换要显示的图像。因此，在显示了第一个图像之后，自有的计数器工作，以计数从显示了该图像开始过去的时间段。在步骤 S520，控制单元 101 判断是否基于计数器的值生成了显示图像的切换定时。

[0069] 如果生成了显示图像的切换定时（步骤 S520 为“是”），则在步骤 S524，控制单元 101 指定当前正在显示的静止图像随后的静止图像。然后，处理返回至步骤 S518。如果未生成显示图像的切换定时（步骤 S520 为“否”），则在步骤 S521，控制单元 101 判断显示设备 100 的方向是否改变。

[0070] 如果改变了显示设备 100 的方向（步骤 S521 为“是”），则由于要改变正在显示的图像的大小和方向，因而处理返回至步骤 S519。在步骤 S519，控制单元 101 根据图像的方向
和显示设备 100 的方向，再次生成显示图像数据。如果显示设备 100 的方向没有改变（步骤 S521 为“否”），则在步骤 S522，控制单元 101 判断用户是否操作了操作单元 104 以发出用以停止幻灯片放映的指令。

【0071】如果发出了用于停止幻灯片放映的指令（步骤 S522 为“是”），则在步骤 S525，控制单元 101 将显示模式切换为列表显示模式。然后，处理退出图 5 所示的流程。如果未发出用以停止幻灯片放映的指令（步骤 S522 为“否”），则在步骤 S523，控制单元 101 判断是否发出了用于切换显示模式的指令。如果显示模式切换成其它显示模式，列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用于切换显示模式的指令（步骤 S523 为“是”），则处理退出图 5 所示的流程。

【0072】然后将参考图 6～9 所示的流程图说明切换显示模式处理。图 6 是示出步骤 S403 中的切换显示模式处理的流程图。通过用于控制显示单元的控制单元 101 进行图 6～9 任一中的处理。

【0073】在步骤 S601，控制单元 101 首先判断是否已生成了静止图像数据中的纵向静止图像数据和横向静止图像数据的列表。如果未生成列表（步骤 S601 为“否”），则控制单元 101 判断与静止图像数据有关的属性信息，判断存储在存储介质 M 中的静止图像数据是纵向还是横向。作为该判断的结果，控制单元 101 将静止图像数据分类为纵向静止图像数据和横向静止图像数据。在步骤 S602，控制单元 101 生成纵向静止图像数据的列表和横向静止图像数据的列表，并将列表存储在存储器 108 中。

【0074】每一列表均包括能够指定相应静止图像数据的识别信息，例如，静止图像数据的文件名。每一列表包括按照存储静止图像数据的顺序与相应静止图像数据有关的信息。如果在步骤 S602 将每一列表存储在了存储器 108 中，则处理进入步骤 S603。

【0075】在步骤 S603，控制单元 101 判断是否设置了单显示模式。如果设置了单显示模式（步骤 S603 为“是”），则在步骤 S604，进行单显示模式处理。如果未设置单显示模式（步骤 S603 为“否”），则在步骤 S605，判断是否设置了列表显示模式。如果设置了列表显示模式（步骤 S605 为“是”），则在步骤 S606，进行列表显示模式处理。如果设置了幻灯片放映模式（步骤 S605 为“否”），则在步骤 S607，进行幻灯片放映模式处理。

【0076】图 7 是示出步骤 S604 中的单显示模式处理的流程图。

【0077】在步骤 S701，控制单元 101 首先检测显示设备 100 的方向。如果显示设备 100 是纵向的，则在步骤 S702，控制单元 101 判断在存储在存储器 108 中的纵向图像列表中是否包含静止图像。如果在该列表中没有包含静止图像（步骤 S702 为“否”），则在步骤 S716，控制单元 101 在显示单元 106 上显示表示未存储纵向静止图像并且不能进行显示的警告画面。然后，处理退出图 7 所示的流程。

【0078】如果在纵向图像列表中包括静止图像（步骤 S702 为“是”），则在步骤 S703，控制单元 101 从纵向图像列表中指定要显示的静止图像。此时，如果选择了在列表显示模式下所显示的缩小图像中的一并，且发出了用于切换成单显示模式的指令，则控制单元 101 将与在列表显示画面上所选择的缩小图像相对应的静止图像数据指定为要显示的静止图像。

【0079】在步骤 S704，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像
数据，并且使图像处理单元 103 生成显示图像数据。

[0080] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据和显示设备 100 两者均为纵向，因而不改变所显示的静止图像的方向。根据显示单元 106 的像素数改变所读出的静止图像数据的像素数（大小），以生成显示图像数据。

[0081] 将这样生成的显示图像数据发送至显示控制单元 105，并将图显示于显示单元 106 上，在步骤 S705，控制单元 101 判定在正显示该图像时用户是否操作了操作单元 104 以发出用于切换成随后的图像的指令。

[0082] 如果发出了切换用指令（步骤 S705 为“是”），则在步骤 S708，控制单元 101 在纵向图像列表中所包括的静止图像中指定随后的静止图像。然后，处理返回至步骤 S704。在步骤 S708，指定纵向图像列表中的最后一个静止图像，然后指定第一个静止图像。如果未发出切换用指令（步骤 S705 为“否”），则在步骤 S706，控制单元 101 判定显示设备 100 的方向是否改变。

[0083] 如果改变了显示设备 100 的方向（步骤 S706 为“是”），则由于此时显示横向图像列表中所包括的静止图像，因而处理返回至步骤 S701。如果显示设备 100 的方向没有改变（步骤 S706 为“否”），则在步骤 S707，控制单元 101 判定用户是否操作了操作单元 104 以发出用于将显示模式切换成其它显示模式即正常显示模式、列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S707 为“是”），则处理退出图 7 所示的流程。

[0084] 如果在步骤 S701 中显示设备 100 是横向的，则在步骤 S709，控制单元 101 判定在存储在存储器 108 中的横向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S709 为“否”），则在步骤 S716，控制单元 101 在显示单元 106 上显示表示未存储横向静止图像并且不能进行显示的警告画面。

[0085] 如果在存储在存储器 108 中的横向图像列表中包括静止图像（步骤 S709 为“是”），则在步骤 S710，控制单元 101 从横向图像列表中指定第一个静止图像。在步骤 S711，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

[0086] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据和显示设备 100 两者为横向，因而不改变所显示的静止图像的方向。根据显示单元 106 的像素数改变所读出的静止图像数据的像素数（大小），以生成显示图像数据。

[0087] 将这样生成的显示图像数据发送至显示控制单元 105，并且将图像显示于显示单元 106 上。在步骤 S712，控制单元 101 判定在正显示该图像时用户是否操作了操作单元 104 以发出用于切换成随后的图像的指令。

[0088] 如果发出了切换用指令（步骤 S712 为“是”），则在步骤 S715，控制单元 101 在横向图像列表中所包括的静止图像中指定随后的静止图像。然后，处理返回至步骤 S711。如果未发出切换用指令（步骤 S712 为“否”），则在步骤 S713，控制单元 101 判定显示设备 100 的方向是否改变。

[0089] 如果改变了显示设备 100 的方向（步骤 S713 为“是”），则由于此时显示纵向图像
列表中所包括的静止图像，因而处理返回至步骤 S701。如果显示设备 100 的方向没有改变（步骤 S713 为 “否”），则在步骤 S714，控制单元 101 判断用户是否操作了操作单元 104 以发出用以将显示模式切换成其它显示模式即正常显示模式、列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S714 为 “是”），则处理退出图 7 所示的流程。

[0090] 图 11A～11D 所示出在切换显示模式下通过单一显示模式处理如何显示图像。图 11A 所示出在显示设备 100 为横向时所显示的横向图像 1101，并且图 11B 所示出在显示设备 100 为纵向时所显示的纵向图像 1102。

[0091] 图 8 是示出步骤 S606 中的列表显示模式处理的流程图。

[0092] 在步骤 S801，控制单元 101 首先检测显示设备 100 的方向。如果显示设备 100 为纵向，则在步骤 S802，控制单元 101 判断在存储在存储器 108 中的纵向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S802 为 “否”），则在步骤 S816，控制单元 101 在显示单元 106 上显示表示没有存储纵向静止图像并且不能进行显示的警告画面。

[0093] 如果在存储在存储器 108 中的纵向图像列表中包括静止图像（步骤 S802 为 “是”），则在步骤 S803，控制单元 101 根据该列表所包括的顺序，从纵向图像列表指定要显示的静止图像。在一个列表显示画面上显示六个图像的缩小图像。

[0094] 在步骤 S804，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。与缩小图像一起显示用于选择缩小图像中的一个的光标。由于所指定的静止图像数据和显示设备 100 两者均为纵向，因而不改变要显示的静止图像的方向。根据列表显示画面的大小（像素数）改变所读出的静止图像数据的大小，以生成列表显示图像数据。

[0095] 将这样生成的列表显示图像数据发送至显示控制单元 105，并且在显示单元 106 上显示图像。在步骤 S805，控制单元 101 判断在正显示该图像时用户是否操作了操作单元 104 以发出用以切换显示画面的指令。

[0096] 如果发出了用以切换显示画面的指令（步骤 S805 为 “是”），则在步骤 S808，控制单元 101 在纵向图像列表中所包括的静止图像中指定接着要显示的六个静止图像。然后，处理返回至步骤 S804。如果未发出用以切换显示画面的指令（步骤 S805 为 “否”），则在步骤 S806，控制单元 101 判断显示设备 100 的方向是否改变。

[0097] 如果改变了显示设备 100 的方向（步骤 S806 为 “是”），则由于此时显示横向图像列表中所包括的静止图像，因而处理返回至步骤 S801。如果显示设备 100 的方向没有改变（步骤 S806 为 “否”），则在步骤 S807，控制单元 101 判断用户是否操作了操作单元 104 以发出用以将显示模式切换成其它显示模式即正常显示模式、单一显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S807 为 “是”），则处理退出图 8 所示的流程。

[0098] 如果在步骤 S801 中显示设备 100 为横向，则在步骤 S809，控制单元 101 判断在存储在存储器 108 中的横向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S809 为 “否”），则在步骤 S816，控制单元 101 在显示单元 106 上显示表示未存储
横向静止图像并且不能再进行显示的警告画面。然后，处理退出图 8 所示的流程。

如果在存储在存储器 108 中的横向图像列表中包括静止图像（步骤 S809 为“是”），则在步骤 S810, 控制单元 101 根据横向图像列表指定要显示的静止图像。在步骤 S811, 控制单元 101 的数据获取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。与缩小图像一起显示。用于选择图像显示中的一个的光标。由于所指定的静止图像数据和显示设备 100 两者均为横向，因而改变要显示的静止图像的方向。根据列表显示画面的大小（像素数）改变所读出的静止图像数据的大小，以生成列表显示图像数据。

将这样生成的列表显示图像数据发送至显示控制单元 105，并且在显示单元 106 上显示图像。在步骤 S812, 控制单元 101 判断在正显示该图像时用户是否操作了操作单元 104 以发出用以切换成随后的显示画面的指令。

如果发出了切换用指令（步骤 S812 为“是”），则在步骤 S815, 控制单元 101 在横向图像列表中所包括的静止图像中指定接着要显示的六个静止图像。然后，处理返回至步骤 S811。如果未发出切换用指令（步骤 S812 为“否”），则在步骤 S813, 控制单元 101 判断显示设备 100 的方向不同是否改变。

如果改变了显示设备 100 的方向（步骤 S813 为“是”），则由于此时显示纵向图像列表中所包括的静止图像，因而处理返回至步骤 S801。如果显示设备 100 的方向没有改变（步骤 S813 为“否”），则在步骤 S814, 控制单元 101 判断用户是否操作了操作单元 104 以发出用以显示模式切换成其它显示模式即正常显示模式、列表显示模式和幻灯片放映模式中的任何一个的指令。如果发出了用以切换显示模式的指令（步骤 S814 为“是”），则处理退出图 8 所示的流程。

图 11C 示出在显示设备 100 为纵向时在切换显示模式下如何显示列表显示画面 1103。如图 11C 所示，在列表显示画面 1103 上显示六组纵向显示图像 1103a ～ 1103f。在切换显示模式下，当显示设备 100 为纵向时，自动检索并显示纵向图像。

为了用户选择缩小图像中的一个，显示光标 1104。当用户操作操作单元 104 来移动光标 1104 以选择缩小图像中的一个，并且在这种状态下发出再现用指令时，将显示模式切换成单一显示模式。如图 11B 所示，在单一显示模式下显示所选择的纵向图像。

图 11D 示出在显示设备 100 为横向时在切换显示模式下如何显示列表显示画面 1105。如图 11D 所示，在列表显示画面 1105 上显示六组横向显示图像 1105a ～ 1105f。在切换显示模式下，当显示设备 100 为横向时，自动检索并显示横向图像。

为了用户选择缩小图像中的一个，显示光标 1106。当用户操作操作单元 104 来移动光标 1106 以选择缩小图像中的一个，并且在这种状态下发出再现用指令时，将显示模式切换成单一显示模式。如图 11A 所示，在单一显示模式下显示所选择的横向图像。

然后将说明幻灯片放映模式。图 9 是示出步骤 S607 中的幻灯片放映模式处理的流程图。

在步骤 S601, 控制单元 101 首先检测显示设备 100 的方向。如果显示设备 100 为纵向，则在步骤 S602, 控制单元 101 判断在存储在存储器 108 中的纵向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S902 为“否”），则在步骤 S920, 控制
单元 101 在显示单元 106 上显示表示未存储纵向静止图像并且不能进行显示的警告画面。然后，处理退出图 9 所示的流程。

[0110] 如果在存储在存储器 108 中的纵向图像列表中包括静止图像（步骤 S902 为“是”），则在步骤 S903，控制单元 101 从纵向图像列表指定要显示的静止图像。此时所指定的静止图像与显示单元的显示图像相同。

[0111] 在步骤 S904，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

[0112] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据和显示设备 100 两者均为纵向，因而不改变要显示的静止图像的方向。根据显示单元 106 的大小（像素数）改变所读出的静止图像数据的大小，以生成显示图像数据。

[0113] 在幻灯片放映模式下，每过去预定时间段，自动切换要显示的图像。因此，在显示了第一个图像之后，自有的计数器工作，以计数从显示了该图像开始过去的时间段。在步骤 S905，控制单元 101 基于计数器的值判断是否生成了显示图像的切换定时。

[0114] 如果生成了显示图像的切换定时（步骤 S905 为“是”），则在步骤 S908，控制单元 101 从纵向图像列表指定随后的静止图像。然后，处理返回至步骤 S904。如果未生成显示图像的切换定时（步骤 S905 为“否”），则在步骤 S906，控制单元 101 判断是否发出了用以停止幻灯片放映的指令。

[0115] 如果发出了用以停止幻灯片放映的指令（步骤 S906 为“是”），则在步骤 S907，控制单元 101 停止幻灯片放映，并且将显示模式切换成列表显示模式。然后，处理退出图 9 所示的流程。如果未发出用以停止幻灯片放映的指令（步骤 S906 为“否”），则在步骤 S909，控制单元 101 判断在幻灯片放映模式期间显示设备 100 的方向是否改变。

[0116] 如果改变了显示设备 100 的方向（步骤 S909 为“是”），则在步骤 S907，控制单元 101 停止幻灯片放映，并且将显示模式切换成列表显示模式。然后，处理返回至步骤 S904。如果改变了显示设备 100 的方向没有改变（步骤 S909 为“否”），则在步骤 S910，控制单元 101 判断用户是否操作了操作单元 104 以发出用以切换显示模式的指令。

[0117] 如果未发出用以切换显示模式的指令（步骤 S910 为“否”），则处理返回至步骤 S904。如果发出了用以切换显示模式的指令（步骤 S910 为“是”），则处理退出图 9 所示的流程。

[0118] 如果在步骤 S901 中显示设备 100 为横向，则在步骤 S911，控制单元 101 判定在存储在存储器 108 中的横向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S911 为“否”），则在步骤 S920，控制单元 101 在显示单元 106 上显示表示未存储横向静止图像并且不能进行显示的警告画面。然后，处理退出图 9 所示的流程。

[0119] 如果存储在存储器 108 中的横向图像列表中包括静止图像（步骤 S911 为“是”），则在步骤 S912，控制单元 101 从横向图像列表指定要显示的静止图像。在步骤 S913，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

[0120] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据和显示设备 100 两者均为横向，因而不改变要显示的
静止图像的方向。根据显示单元 106 的大小（像素数）改变所读出的静止图像数据的大小，以生成显示图像数据。在步骤 S914, 控制单元 101 判断是否生成了显示图像的切定时。

[0121] 如果生成了显示图像的切定时（步骤 S914 为 “是”），则在步骤 S917, 控制单元 101 从横向图像列表指定随后的静止图像。然后，处理返回至步骤 S913。如果未生成显示图像的切定时（步骤 S914 为 “否”），则在步骤 S915, 控制单元 101 判定是否发出了用以停止幻灯片放映的指令。如果发出了用以停止幻灯片放映的指令（步骤 S915 为 “是”），则在步骤 S916, 控制单元 101 停止幻灯片放映，并且将显示模式切换成列表显示模式。然后，处理退出图 9 所示的流程。

[0122] 如果未发出用以停止幻灯片放映的指令（步骤 S915 为 “否”），则在步骤 S918, 控制单元 101 判断在幻灯片放映模式期间显示设备 100 的方向是否改变。

[0123] 如果改变了显示设备 100 的方向（步骤 S918 为 “是”），则在步骤 S916, 控制单元 101 停止幻灯片放映，并且将显示模式切换成列表显示模式。然后，处理退出图 9 所示的流程。如果显示设备 100 的方向没有改变（步骤 S918 为 “否”），则在步骤 S919, 控制单元 101 判定用户是否操作了操作单元 104 以发出用以切换显示模式的指令。

[0124] 如果未发出用以切换显示模式的指令（步骤 S919 为 “否”），则处理返回至步骤 S913。如果发出了用以切换显示模式的指令（步骤 S919 为 “是”），则处理退出图 9 所示的流程。

[0125] 在本典型实施例中，在正常显示模式下，控制单元 101 根据显示设备的方向和要显示的图像的改变改要显示的图像的大小，并显示该图像。

[0126] 另一方面，在切换显示模式下，控制单元 101 在存储在存储介质 M 中的图像中自动选择或检索与显示设备的方向对应的方向的图像，并且显示所选择或检索到的图像。例如，如果显示设备为横向，则检索并显示横向图像。

[0127] 因此，用户可以简单地检索并显示与显示设备的方向相同的方向上的图像。

[0128] 在本典型实施例中，在切换显示模式下，当显示设备为纵向时，显示纵向图像列表中的图像，并且当显示设备为横向时，显示横向图像列表中的图像。例如，即使显示设备为纵向，用户也能够显示纵向图像列表中的图像。

[0129] 更具体地，当操作单元设置用于发出纵向 / 横向切换用指令的开关以在正显示纵向图像时发出纵向 / 横向切换用指令时，可以利用纵向的显示设备显示横向图像列表中的图像。除此之外，在单一显示画面、列表显示画面或幻灯片放映画面的一部分上显示纵向 / 横向切换用图标，用户选择该图标以发出显示用指令，从而可以显示与正显示的图像的方向不同的方向上的图像。

[0130] 当在纵向图像的列表显示画面上显示纵向 / 横向切换用图标并选择了该图标时，可以利用纵向的显示设备显示横向图像列表中的图像。

[0131] 图 17 是示出当在切换显示模式下正显示单一显示画面时发出用以切换显示图像的方向的指令时所进行的处理的流程图。通过用于控制各单元的控制单元 101 进行图 17 所示的处理。

[0132] 如果在正执行图 7 所示的单一显示模式时发出了用以切换显示图像的方向的指令，则该处理开始。

[0133] 在步骤 S1701, 控制单元 101 检测切换之后的显示图像的方向。如果显示图像为
纵向，则在步骤 S1702，控制单元 101 判断在存储在存储器 108 中的纵向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S1702 为“否”），则在步骤 S1716，控制单元 101 在显示单元 106 上显示表示未存储纵向静止图像并且不能进行显示的警告画面。然后，处理退出图 17 所示的流程。

[0134] 如果在纵向图像列表中包括静止图像（步骤 S1702 为“是”），则在步骤 S1703，控制单元 101 从纵向图像列表指定要显示的静止图像。在步骤 S1704，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

[0135] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据为纵向并且显示设备 100 为横向，因而改变要显示的静止图像的方向。此外，根据显示单元 106 的像素数改变所读出的静止图像数据的像素数（大小），以生成显示图像数据。

[0136] 将这样生成的显示图像数据发送至显示控制单元 105，并且在显示单元 106 上显示图像。在步骤 S1705，控制单元 101 判断在正显示该图像时用户是否操作了操作单元 104 以发出用于切换成随后的图像的指令。

[0137] 如果发出了切换用指令（步骤 S1705 为“是”），则在步骤 S1708，控制单元 101 在纵向图像列表中所包括的静止图像中指定随后的静止图像。然后，处理返回至步骤 S1704。如果未发出切换用指令（步骤 S1705 为“否”），则在步骤 S1706，控制单元 101 判断是否发出了用以返回至切换显示模式的指令。在本典型实施例中，可以通过改变显示设备 100 的方向或者操作单元 104 来显示显示模式返回至切换显示模式。

[0138] 如果发出了用以回到至切换显示模式的指令（步骤 S1706 为“是”），则处理返回至图 7 所示的步骤 S701。如果未发出用以返回至切换显示模式的指令（步骤 S1706 为“否”），则在步骤 S1707，控制单元 101 判断用户是否操作了操作单元 104 以发出用以将显示模式切换成其它显示模式即正常显示模式、列表显示模式和幻灯片放映模式中的一项的指令。如果发出了用以切换显示模式的指令（步骤 S1707 为“是”），则处理器返回至图 17 所示的流程。

[0139] 如果显示图像为横向，则在步骤 S1709，控制单元 101 判断在存储在存储器 108 中的横向图像列表中是否包括静止图像。如果在该列表中没有包括静止图像（步骤 S1709 为“否”），则在步骤 S1716，控制单元 101 在显示单元 106 上显示表示未存储横向静止图像并且不能进行显示的警告画面。然后，处理退出图 17 所示的流程。

[0140] 如果在存储在存储器 108 中的横向图像列表中包括静止图像（步骤 S1709 为“是”），则在步骤 S1710，从横向图像列表指定第一个静止图像。在步骤 S1711，控制单元 101 使读取单元 102 从存储介质 M 读出所指定的静止图像数据，并且使图像处理单元 103 生成显示图像数据。

[0141] 图像处理单元 103 基于静止图像数据的方向和显示设备 100 的方向，生成显示图像数据。由于所指定的静止图像数据为横向并且显示设备 100 为纵向，因而改变要显示的静止图像的方向。此外，根据显示单元 106 的像素数改变所读出的静止图像数据的像素数（大小），以生成显示图像数据。

[0142] 将这样生成的显示图像数据发送至显示控制单元 105，并且在显示单元 106 上显示图像。在步骤 S1712，控制单元 101 判断在正显示该图像时用户是否操作了操作单元 104
以发出用于切换成随后的图像的指令。

[0143] 如果激活了切换用指令（步骤 S1712 为“是”），则在步骤 S1715，控制单元 101 在纵向图像列表中所包括的静止图像中指定随后的静止图像。然后，处理返回至步骤 S1711。如果未激活切换用指令（步骤 S1712 为“否”），则在步骤 S1713，控制单元 101 判断是否发出了用以返回至切换显示模式的指令。如果发出了用以返回至切换显示模式的指令（步骤 S1713 为“是”），则处理返回至图 7 所示的步骤 S701。

[0144] 如果未激活用以返回至切换显示模式的指令（步骤 S1713 为“否”），则在步骤 S1714，控制单元 101 判断是否发出了用以将显示模式切换成其它显示模式即正常显示模式、列表显示模式和幻灯片放映模式中的任一个的指令。如果发出了用以切换显示模式的指令（步骤 S1714 为“是”），则处理退出图 17 所示的流程。

[0145] 尽管在本典型实施例中从存储介质 M 读出图像数据，并且显示该图像数据，但是可以将存储在存储介质 M 中的图像数据中的由用户所指定的图像数据存储在存储器 108 中。在断开该设备的电源之后，存储存储器 108 中所存储的图像数据，并且即使没有安装存储介质 M，也能从存储器 108 读出并显示该图像数据。此时，可以检测存储在存储器 108 中的各图像数据的方向，以预先生成纵向图像列表和横向图像列表。

[0146] 如在从存储介质 M 读出图像数据并显示该图像数据时一样，这样使得能够从存储器 108 读出与显示设备 100 方向对应的纵向图像数据并显示该图像数据。

[0147] 然后将说明第二典型实施例。

[0148] 图 12 示出本发明第二典型实施例中的显示系统的结构。图 12 所示的显示系统包括显示设备 1200 和显示控制设备 1300。显示设备 1200 和显示控制设备 1300 通过高清晰度多媒体接口 (HDMI) 线缆 1400 相互连接。显示设备 1200 显示与从显示控制设备 1300 发送的显示图像数据有关的图像。显示设备 1200 中的显示单元 1201 可以围绕其中心处的轴 (未示出) 在箭头 1202 所示的方向上转动 90 度。这使得用户能够将显示单元 1201 的方向改变成横向和纵向中的任一个。

[0149] 显示控制设备 1300 通过 HDMI 线缆 1400 向显示设备 1200 发送显示图像数据，以控制显示操作。显示控制设备 1300 读出存储在存储卡 M 中的图像数据，并且如下所述，使用所读出的图像数据生成显示图像数据。

[0150] 图 13 是示出显示控制设备 1300 的内部结构的功能框图。

[0151] 在图 13 中，控制单元 1301 控制显示控制设备 1300 的操作。读取单元 1302 从存储卡等存储介质 M 读出静止图像数据和运动图像数据。尽管在本典型实施例中将说明在从存储介质 M 读出静止图像数据并进行显示时所进行的处理，但是同样可以显示运动图像数据。图像处理单元 1303 包括用于对从存储介质 M 读出的图像数据进行解码并增大信息量的解码器。图像处理单元 1303 进行用于改变解码后的图像数据的大小的处理等的各种图像处理。

[0152] 操作单元 1304 包括电源开关、用于切换模式的模式开关和用于切换要显示的图像的开关等各种操作开关。在本典型实施例中，显示控制设备 1300 包括用于操作显示控制设备 1300 的远程控制器。操作单元 1304 包括远程控制器和用于从远程控制器接收命令的接收单元。通信单元 1305 通过 HDMI 线缆 1400 与显示设备 1200 连接，并且与显示设备 1200 通信图像数据等信息。
【0153】存储器 1306 包括闪存和硬盘等半导体存储器，并且存储从存储介质 M 读出的图像
data。控制单元 1301 将各种信息存储在存储器 1306 中。在各块之间通过数据总线 1307
发送数据和接收各种数据。
【0154】然后将说明显示控制设备 1300 的操作。图 14 是显示控制设备 1300 的操作
的流程图。通过用于控制各单元的控制单元 1301 进行图 14 所示的处理。
【0155】当操作单元 1304 接通电源时，该处理开始。在步骤 1401，控制单元 1301 首先询问
通信单元 1305 是否连接了显示设备 1200，以进行连接确认处理。在步骤 S1402，作为连接
确认处理的结果，控制单元 1301 确定是否连接了显示设备 1200。如果没有连接显示设备
1200（步骤 S1402 为“否”），则在步骤 S1407，将存储在存储器 1306 中的计数器值减小 1。
当接通电源时，控制单元 1301 对计数器值 n 设置初始值。在步骤 S1408，控制单元 1301 判
断计数器值 n 是否变成 0。如果计数器值变成 0（步骤 S1408 为“是”），则终止该处理。如
果计数器值 n 不是 0（步骤 S1408 为“否”），则在过去预定时间段之后，控制单元 1301 再次
对通信单元 1305 确定是否存在连接。
【0156】如果作为连接确认处理的结果，连接了显示设备 1200（步骤 S1402 为“是”），则在
步骤 S1403，控制单元 1301 将计数器值 n 返回成初始值，以进行用于获取与显示设备 1200
有关的装置信息的装置信息获取处理。在步骤 S1404，控制单元 1301 通过通信单元 1305 将
如下所述生成的显示图像数据发送至显示设备 1200，并且在获取了与显示设备 1200 有
关的装置信息之后，在显示设备 1200 上显示该图像数据。
【0157】然后，在步骤 S1405，控制单元 1301 判断显示设备 1200 的连接状态是否改变。如
果改变了显示设备 1200 的连接状态（步骤 S1405 为“是”），则处理返回至步骤 S1401。在
步骤 S1401，再次进行显示设备 1200 的连接确认处理。如果确认了该连接，则控制单元 1301
再次获取与所连接的显示设备 1200 有关的装置信息。
【0158】如果显示设备 1200 的连接状态没有改变（步骤 S1405 为“否”），则在步骤 S1406，
控制单元 1301 确定断开电源的指令（步骤 S1406 为“否”），则处理返回至步骤 S1403。在步骤 S1403，继续进行该
处理。如果发出了用以断开电源的指令（步骤 S1406 为“是”），则终止该处理。
【0159】然后将参考图 15 说明步骤 S1401 中的连接确认处理。
【0160】在步骤 S1501，控制单元 1301 首先通过通信单元 1305 向 HDMI 接口的电力线供应
电力，以使得该电力线上的电压变成 5 伏。然后，在步骤 S1502，控制单元 1301 确认 HDMI 接
口的热插拔检测（HPD）线上的电压是否是表示来自显示设备 1200 的连接应答信号的 5 伏。
如果控制单元 1301 检测到 HPD 线上的电压为 5 伏（步骤 S1502 为“是”），则在步骤 S1503，
通信单元 1305 判断为显示设备 1200 被连接至外部，并且将该判断通知给控制单元 1301。
如果控制单元 1301 检测到 HPD 线上的电压是 0 伏（步骤 S1502 为“否”），则在步骤 S1504，
通信单元 1305 判断为显示设备 1200 没有连接至外部。
【0161】然后将参考图 16 说明步骤 S1403 中的装置信息获取处理。
【0162】在步骤 S1601，控制单元 1301 首先对通信单元 1305 指定分配给扩展显示识别数
据（extended display identification data, EDID）存储器中的初始读取数据的地址，以
开始获取 EDID 存储器信息。在步骤 S1602，通信单元 1305 使用通过控制单元 1301 所指定
的地址发送请求，以获取显示设备 1200 中的 EDID 存储器信息并接收 EDID 存储器信息。将
所接收到的EDID存储器信息存储在存储器1306中。


[0164] 在本典型实施例中，在显示设备1200中，每当改变显示单元1201的方向时，重写EDID存储器信息中表示画面显示大小的信息。如果显示单元1201为纵向，并且例如是由垂直方向上的n个像素和水平方向上的m个像素（m > n）构成的，则将EDID存储器信息写为“垂直n×水平m”。另一方面，显示单元1201为横向，将EDID存储器信息重写为“垂直m×水平n”。每当改变显示单元1201的方向时，显示设备1200将HPD线上的电压从5伏暂且改变成0伏，并且再次返回至5伏。

[0165] 这使得在显示控制设备1300中每当在正连接显示设备1200时改变显示单元1201的方向时能够进行装置信息获取处理，以判断显示单元1201的方向。更具体地，如果HPD线上的电压变成0伏，则控制单元1301判断为改变了连接状态（步骤S1405为“是”）。然后，处理返回至步骤S1401。

[0166] 尽管在本典型实施例中，基于EDID存储器信息中表示画面显示大小的信息来判断连接的显示设备1200中的显示单元1201的纵向/横向，但是本发明不局限于此。例如，可以使用EDID存储器信息中的供应商依赖区域和扩展区域，向显示控制设备1300通知纵向/横向方向。

[0167] 如果这样检测到显示设备1200中的显示单元1201的方向，则根据显示单元1201的方向生成显示画面。用于生成显示画面的处理类似于图4所示的第一典型实施例中的处理，因此省略详细说明。在本典型实施例中，显示设备1200具有正常显示模式和切换显示模式。如图5所示，在正常显示模式下，根据显示单元1201的方向生成显示画面。如图6～9所示，在切换显示模式下，根据需要，从存储卡M读出与显示单元1201的方向对应的图像并且显示该图像。

[0168] 在本典型实施例中，在正常显示模式下，根据连接至外部的显示设备中的显示单元的纵向/横向方向和要显示的图像的方向改变显示单元的图像。由此显示该图像。

[0169] 另一方面，在切换显示模式下，自动选择或检索存储在存储介质中的图像中的与显示设备的方向对应的图像，并且显示该图像。例如，当显示设备中的显示单元为横向时，检索并显示横向图像。

[0170] 因此，用户可以简单地检索并显示与显示单元的方向相同的方向上的图像。

[0171] 尽管已经参考典型实施例说明了本发明，但是应该理解，本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释，以包含所有这类修改、等同结构和功能。
图 2
图 3
显示数据生成处理

显示模式？

正常显示

正常显示模式处理

切换显示模式处理

返回

图4
切换显示模式处理

生成了列表？

是

否

生成纵向图像数据的列表和横向图像数据的列表

单一显示模式？

是

否

单一显示模式处理

列表显示模式？

是

否

列表显示模式处理

幻灯片放映模式处理

返回

图 6
图 13
图 14
连接确认处理

向电力线供应5V电压

HPD线上的电压为5V？

是 → S1503
判断为连接了显示设备

否 → S1502

判断为未连接显示设备

返回
图 16

信息获取处理

指定地址EDID存储器
S1601

获取EDID信息
S1602

分析EDID信息
S1603

垂直长度 > 水平长度？
S1604

是
S1605 判断为显示单元为纵向

否
S1606 判断为显示单元为横向

返回
图 17

显示图像方向切换处理

S1701 显示图像的方向？

S1702 纵向

S1703 列表中包括静止图像？

S1704 从纵向图像列表指定图像

S1705 读出所指定的静止图像数据，并生成显示图像数据

S1706 切换显示模式？

S1707 切换显示模式？

S1708 否

S1709 否

S1710 列表中包括静止图像？

S1711 从横向图像列表指定图像

S1712 读出所指定的静止图像数据，并生成显示图像数据

S1713 否

S1714 否

S1715 是

S1716 是

显示警告

S1709 是

返回

至 S701

返回至切换显示模式？

至 S701