
(19) United States
US 20160087788A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0087788 A1
Braksator et al. (43) Pub. Date: Mar. 24, 2016

(54) CALCULATING STATE OF (52) U.S. Cl.
CRYPTOGRAPHC OBJECTS AND CPC H04L 9/002 (2013.01); G06F 17/30867
GENERATING SEARCH FILTER FOR (2013.01)
QUERYING CRYPTOGRAPHIC OBJECTS

(71) Applicant: International Business Machines (57) ABSTRACT
Corporation, Armonk, NY (US)

(72) Inventors: Mark J. Braksator, Corona, CA (US);
Bruce A. Rich, Cedar Park, TX (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(21) Appl. No.: 14/294,257

(22) Filed: Jun. 3, 2014

Related U.S. Application Data
(63) Continuation of application No. 12/963,184, filed on

Dec. 8, 2010, now Pat. No. 8,788,545.

Publication Classification

(51) Int. Cl.
H04L 9/00 (2006.01)
G06F 7/30 (2006.01)

(4.

16

18 -

NEWORK

SORAGE

Mechanisms are provided for calculating state of crypto
graphic objects and generating search filters for querying
cryptographic objects based on the given state or on the given
combination of unique states. The mechanism to calculate a
state of a cryptographic object allows an application or sys
tem to resolve the current state of any cryptographic object
with the following set of state altering date values: initial date,
activation date, deactivation date, compromise date, and
destroy date. A processing module may retrieve the state
meta-data and calculate the current state of a given crypto
graphic object. The current state may be, for example, one of
the following: unknown, pre-active, active, deactivated, com
promised, destroyed, and destroyed-compromised. The
mechanism to generate a search filter may generate a search
query language (SQL) search filter to query for cryptographic
objects using the state altering date values stored for each
object.

CEN

Patent Application Publication Mar. 24, 2016 Sheet 1 of 8 US 2016/0087788A1

NEWORK

F.G.

2O6 PROCESSING 2
UN(S)

2. 22 8 26 236

GRAF-CS Y AN AO
processor F NBMCH F MORY AAFTER SO

24
A. 238

BS
SBFCH

NEWORK
DISK CD-ROM ||

226 23) 22 232 34 2. 222 EA

S3 AND
OR

KEYBOAR i. CE || AND OUSE || MODEM || ROM
DEVCES PORS ADAPER

Patent Application Publication Mar. 24, 2016 Sheet 2 of 8 US 2016/0087788A1

CENT

SERVER

NERFACE

SERVICE

MANAGER

F.G. af
DESTROYE)

AC/AON is DEACWAN i?
REACED REACHE

ACWE DEACVAE

COPROSE

PRE-ACVE DESROYED
COPROSE)

US 2016/0087788A1

{}{}

Mar. 24, 2016 Sheet 3 of 8 Patent Application Publication

Patent Application Publication

* Method calculates a current state for the given crytogaphic object

Mar. 24, 2016 Sheet 4 of 8

OR EAC SEARC CRERA
EAENT

OCAEARORATE SC.
CONDON OGC

ARENO SQ.. CORRESPONNG
O SEARC CREERA. EEEN

SNGA OGCA AN
OERAOR

NEXT SEARCH CRERA
ENT

* Egara is co - Cyptographic object
* para now - current time
* if et Fr. integer value represerting a state of the cryptographic iject where
* } : NKNOWN,
* as PRE ACTIVE,
* 2 : ACTWE,
* 3: DEAC WAED,
* 4 = COMPRCMSE),
* 5 = }ESTROYEE,
* 6 = DESTROYED COMPROfAiSEO

praic static is getState(Cryptographic{bject cob, late ow)
Date initiati e Cob.initialate;
Date activation D : Cobi activation Eate:
Date destroy is coldestroyiate;
Date compromisei. It Cob, compromiseiate;
Date deactivation is colodeactivation late;

US 2016/0087788A1

Patent Application Publication Mar. 24, 2016 Sheet 5 of 8 US 2016/0087788A1

FIG 7B
if (destroy is si)

if object has beer destroyed
it see if it was destroyed-Con profilised
if (copromise) is tui)

if destroy.getfire) >is compromise getired)) {
fi state is DESTROYED COAPROMSED
et és

if state is ESROYE
retir,

if (compromise is: i) {
i State S CORSE
fet: 4;

if (deactivation is :)
if (deactivation D.getime() <- now getTime()) {

if ste is EACAE
retir, 3.

if (activation car tui)
finitiai i n)

it state is PRE ACTIVE
Fe: S: ,

ess {
if (activation getime) sac row getTiye ()

if State is ACWE
Fei's 2,

eise {
it state is PRE ACTIVE
resis ;

it state is UNKNOWN
fair C

Patent Application Publication Mar. 24, 2016 Sheet 6 of 8 US 2016/0087788A1

F.G. 8A
ph

* \iethod generates a SQL search filter to search for cryptographic
* objects using given state values, which wii be translated to SQ.. using
a set of state attering dates and current tirine.

* parai state Wales
* - Combination of unique integer values to se in the search
where each waiue is one of the following: . . PRE ACTWE, 2:
*ACWE, 3 - ACTWAE), 4 = CC v FROWSE, 5 at DESTROYE), 6 st
* DESTROYED COMPROMISEE)
* Gaia; tableAlias
* - Na?rie oralias of the table COrtaining the Cryptographic
* object data
* retarr SQL search fitter to use in WHERE clause of SELECT staterinent.
" isthod wii retur epty sting when to states are giver
interpretation of the eripty Sting is left to the cairig code.

x i

polic static String generateStateSQi (integer statewatues,
String tabie Aias)
if CCN raises
finai String ACTIVATONDATE COL AAN NAME = "ACTIVAT ONDATE";
fina String DESTROYDATE COLUMN NAME: "DESTROYATE";
finai String COMPROMSEDATE COLUMN NAFAE = "COAAPROMiSEEDATE";
finai String DEACTIVATIONEATE CO. MN NAME c
"DEACIWATON DATE";
String Buffer stresuff: few String 3Liffer();
in estan; now Sir rew intesian few Date), get inte());

if (tableAlias it: ; } {
tableAlias a tableAlias, if (),

if (tableAias a a && taileAlias.iength() > 0) {
tableAlias it " " + taleA3S -- ".",

taleaias it ".

for (it state : statewaiues) {
if state r)

if o not search for objects with unknown state
Eise,

cea (tioseraferti is faise;
if (strisuff, ength() > 0) {

strisuff.apperdi" OR (");
close arenth it trie;

Patent Application Publication Mar. 24, 2016 Sheet 7 of 8 US 2016/0087788A1

FIG. 8B

if (state r) {
it state is PRE ACTIVE
if (strisuffiength() > 0) {

struff append ("AND");

struff.append{" (" + taileAias +
ACTIVATONDATE COJAAN NAME +" S N L.) "):

st 3 if apped." OR (" + tableAlias
+ ACTIVATONAE COJAAN NAME + ">" +
now S + ")));

eise if state r 2)
fi State is ACWE
if (st Buffiength() > 0)

struff append ("AN");

stiff.apped " (" + tabieAlias +
ACTIVATIONATE COLUMN NAVE
+ "<: " + nowTS -- " "):

st Eufi.append" AND (" + tableAias --
DESTROYBATE COEJMN NAAAE
+" IS NUL)");

struff appendi" AND ("+ tableAias
+ COMPROMISEEDATE COL MN NAVE --"
S N.J. i.)";

stuff append" AND (" + tableAlias
+ EACTWATCNDATE COLLAN NAME + "
S N_i) OR" + " (" + tableAlias +
EACTIVATONDATE COLLAiN NAME

-- " S C N AN: " -- taleAirS
+ EACTIVATORDATE CO. Livini NAME + "
>: " + now S + ")));

eise if (state to 4} {
if Sais is CC. R.S.E
if (strisuffiength() >) {

struff append" AND");

strisuff apperd" (" + taleAlias +
COvipROASEATE CO.j \in NAAAE
-- " S \OT NUL.)");

st 3 if apped" AND (" + tableAlias -
DESTROYDATE COUAN NAME
+" S N ...");

Patent Application Publication Mar. 24, 2016 Sheet 8 of 8 US 2016/0087788A1

F.G. 8C

eise if (state r 5} {
fi state is DESTROYE,
if (strisuffiength() > 0) {

stres if appard ("AND");

strisuff, append (" " -- tableAlias :
DESTROYDAE COJAAN NAME
+" IS NOT NULt }").

stri3 if apperd ("ANE {" + tableAlias
+ COMPROMSEDATE COLUMN NAME +" S Nit...)
ty

eise if (state to 6} {
fi state is DESTROYED COMPROVISED
if (struff.iength() >) {

st Bufi append ("AN");

struff append (" (" + tainie Alias +
COMPROMISEATE COL MN NAME
+" S NOT NUL)");

st Buff apped" AN: " + tableAlias -
DESTROYDATE COUAAN NAME
+" IS NOT N.J.)"):

eise if (state car 3) {
if state is EAC WATED:
if (strisuffiergth() > 0)

strBuff append ("AN");

struff apped" (" + taileAlias +
DEACTIVATO NOATE COLUMN NAME
+" IS NOT N...";

st Buff apped" AND " + tableAlias
+ DEACTIVATIONATE COUMN NAVE -- "<: " +
now TS + " "):

if (closeparenti} {
struff append ("}").

return struff..toString();

US 2016/0087788 A1

CALCULATING STATE OF
CRYPTOGRAPHC OBJECTS AND
GENERATING SEARCH FILTER FOR

QUERYING CRYPTOGRAPHIC OBJECTS

BACKGROUND

0001. The present application relates generally to an
improved data processing apparatus and method and more
specifically to mechanisms for calculating state of crypto
graphic objects and generating search filters for querying
cryptographic objects based on the given state or on the given
combination of unique states,
0002 Cryptography is used to service many information
technology Systems, ranging from encrypting data on storage
and establishing virtual private networks to protecting com
munication with mobile devices and using certificates for
e-commerce over the Internet. All uses of cryptography rely
on the proper keys being present. Key management deals with
the lifecycle of cryptographic keys, with operations for cre
ating, importing, storing, reading, updating, exporting, and
deleting keys, and with distributing keys before they are used
in cryptographic functions. An important aspect is to manage
the attributes of keys that govern their usage and their relation
to other keys.
0003. The lifecycle of any cryptographic object, such as a
cryptographic key, involves State transitions. Some of these
state transitions happen automatically with the passage of
time and some are triggered by the keepers of the crypto
graphic object. Knowing the most up-to-date state of a cryp
tographic object is required for applications that manage
cryptographic objects to make correct decisions about the
future disposition of the object or the new state's impact on
the objects current use. Consequently, applications that man
age cryptographic objects must be able to search for crypto
graphic objects in a certain state or combination of unique
States.

SUMMARY

0004. In one illustrative embodiment, a method, in a data
processing system, is provided for managing cryptographic
objects. The method comprises storing a set of state altering
date values in state meta-data associated with a cryptographic
object in a data store, retrieving the set of state altering date
values from the data store, and determining a state of the
cryptographic object based on the set of State altering date
values.
0005. In other illustrative embodiments, a computer pro
gram product comprising a computer useable or readable
medium having a computer readable program is provided.
The computer readable program, when executed on a com
puting device, causes the computing device to perform Vari
ous ones, and combinations of the operations outlined above
with regard to the method illustrative embodiment.
0006. In yet another illustrative embodiment, a system/
apparatus is provided. The system/apparatus may comprise
one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions
which, when executed by the one or more processors, cause
the one or more processors to perform various ones, and
combinations of the operations outlined above with regard to
the method illustrative embodiment.
0007. These and other features and advantages of the
present invention will be described in, or will become appar

Mar. 24, 2016

ent to those of ordinary skill in the artin view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0008. The invention, as well as a preferred mode of use
and further objectives and advantages thereof, will best be
understood by reference to the following detailed description
of illustrative embodiments when read in conjunction with
the accompanying drawings, wherein:
0009 FIG. 1 depicts a pictorial representation of an
example distributed data processing system in which aspects
of the illustrative embodiments may be implemented;
0010 FIG. 2 is a block diagram of an example data pro
cessing system in which aspects of the illustrative embodi
ments may be implemented;
0011 FIG. 3 depicts example architecture of a key life
cycle management system in accordance with an illustrative
embodiment;
0012 FIG. 4 depicts state transitions for cryptographic
objects in accordance with an illustrative embodiment;
0013 FIG. 5 is a flowchart illustrating operation of a
mechanism for determining the state of a cryptographic
object in accordance with an illustrative embodiment;
0014 FIG. 6 is a flowchart illustrating operation of a
mechanism for generating a search filter to query for crypto
graphic objects using the state altering date values stored for
each object in accordance with an illustrative embodiment;
(0015 FIGS. 7A and 7B depict code for an example imple
mentation of a state calculator mechanism in accordance with
an illustrative embodiment; and
0016 FIGS. 8A-8C depict code for an example implemen
tation of a mechanism to generate structured query language
(SQL) code to search cryptographic objects based on a state
or combination of unique states in accordance with an illus
trative embodiment.

DETAILED DESCRIPTION

0017. The illustrative embodiments provide a mechanism
for calculating state of cryptographic objects and generating
search filters for querying cryptographic objects based on the
given state or on the given combination of unique states. The
illustrative embodiments comprise a mechanism to calculate
a state of a cryptographic object and a mechanism to generate
a search filter to query for cryptographic objects using a single
state or a combination of state values logically ORed together.
0018. The mechanism to calculate a state of a crypto
graphic object allows an application or system to resolve the
current state of any cryptographic object with the following
set of state altering date values: initial date, activation date,
deactivation date, compromise date, and destroy date. The
system stores these date values in a persistent data store for
each managed cryptographic object as State meta-data. A
processing module may retrieve the state meta-data and cal
culate the current state of a given cryptographic object. The
current state may be, for example, one of the following:
unknown, pre-active, active, deactivated, compromised,
destroyed, and destroyed-compromised.
0019. The mechanism to generate a search filter may gen
erate a search query language (SQL) search filter to query for
cryptographic objects using the State altering date values
stored for each object. This mechanism requires that a SQL

US 2016/0087788 A1

based data store be used to persist the cryptographic objects
data and that there is code in place that is capable of persisting
cryptographic objects meta-data as well as looking it up by
its primary key from the data store. The SQL generated by this
mechanism may be used in the WHERE clause of a SELECT
statement, which when executed, returns objects that are in
the given state or objects that are in any state in the given
combination of unique states.
0020. The set of possible states are expected to vary
depending on the domain, or even within a domain. With the
mechanisms of the illustrative embodiments, the set of pos
sible states may vary, and the mechanisms may return an
appropriate state regardless of the domain.
0021. Thus, the illustrative embodiments may be utilized
in many different types of data processing environments
including a distributed data processing environment, a single
data processing device, or the like. In order to provide a
context for the description of the specific elements and func
tionality of the illustrative embodiments, FIGS. 1 and 2 are
provided hereafter as example environments in which aspects
of the illustrative embodiments may be implemented. While
the description following FIGS. 1 and 2 will focus primarily
on a single data processing device implementation, this is
only an example and is not intended to state or imply any
limitation with regard to the features of the present invention.
To the contrary, the illustrative embodiments are intended to
include distributed data processing environments.
0022. With reference now to the figures and in particular
with reference to FIGS. 1 and 2, example diagrams of data
processing environments are provided in which illustrative
embodiments of the present invention may be implemented. It
should be appreciated that FIGS. 1 and 2 are only examples
and are not intended to assert or imply any limitation with
regard to the environments in which aspects or embodiments
of the present invention may be implemented. Many modifi
cations to the depicted environments may be made without
departing from the spirit and scope of the present invention.
0023 FIG. 1 depicts a pictorial representation of an
example distributed data processing system in which aspects
of the illustrative embodiments may be implemented. Distrib
uted data processing system 100 may include a network of
computers in which aspects of the illustrative embodiments
may be implemented. The distributed data processing system
100 contains at least one network 102, which is the medium
used to provide communication links between various
devices and computers connected together within distributed
data processing system 100. The network 102 may include
connections, such as wire, wireless communication links, or
fiber optic cables.
0024. In the depicted example, server 104 and server 106
are connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot tiles, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed data
processing system 100 may include additional servers, cli
ents, and other devices not shown.
0025. In the depicted example, distributed data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)

Mar. 24, 2016

Suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu
cational and other computer systems that route data and mes
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, intranet, a local area
network (LAN), a wide area network (WAN), or the like. As
stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.
0026 FIG. 2 is a block diagram of an example data pro
cessing system in which aspects of the illustrative embodi
ments may be implemented. Data processing system 200 is an
example of a computer, such as client 110 in FIG. 1, in which
computer usable code or instructions implementing the pro
cesses for illustrative embodiments of the present invention
may be located.
0027. In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and southbridge and
input/output (I/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).
0028. In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (RDD) 226, CD-ROM
drive 230, universal serial bus (USB) ports and other commu
nication ports 232, and PCI/PCIe devices 234 connect to
SB/ICH204 through bus 238 and bus 240. PCI/PCIe devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, white PCIe does not. ROM 224 may be, for
example, a flash basic input/output system (BIOS).
0029 HDD 226 and CD-ROM drive 230 connect to
SB/ICH2(4 through bus 240. HDD 226 and CD-ROM drive
230 may use, for example, an integrated drive electronics
(IDE) or serial advanced technology attachment (SATA)
interface. Super I/O (SIO) device 236 may be connected to
SBFICH2O4.
0030. An operating system runs on processing unit 206.
The operating system coordinates and provides control of
various components within the data processing system 200 in
FIG. 2. As a client, the operating system may be a commer
cially available operating system such as Microsoft(R) Win
dows(R 7 (Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other countries,
or both). An object-oriented programming system, such as the
JavaTM programming system, may run in conjunction with the
operating system and provides calls to the operating system
from JavaTM programs or applications executing on data pro
cessing system 200 (Java is a trademark of Oracle and/or its
affiliates in the United States, other countries, or both).
0031. As a server, data processing system 200 may be, for
example, an IBM(R) eServer'TM System p(R) computer system,
running the Advanced Interactive Executive (AIX(R) operat
ing system or the LINUXOR) operating system (eServer, Sys

US 2016/0087788 A1

tem p, and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both while LINUX is a trademark of Linus Torvalds in the
United States, other countries, or both). Data processing sys
tem 200 may be a symmetric multiprocessor (SMP) system
including a plurality of processors in processing unit 206.
Alternatively, a single processor system may be employed.
0032. Instructions for the operating system, the object
oriented programming system, and applications or programs
are located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.
0033. A bus system, such as bus 238 or bus 240 as shown
in FIG. 2, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of com
munication fabric or architecture that provides for a transfer
of data between different components or devices attached to
the fabric or architecture. A communication unit, such as
modem 222 or network adapter 212 of FIG. 2, may include
one or more devices used to transmit and receive data. A
memory may be, for example, main memory 208, ROM 224,
or a cache Such as found in NB/MCH 202 in FIG. 2.
0034. Those of ordinary skill in the art will appreciate that
the hardware in FIGS. 1 and 2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.
0035 Moreover, the data processing system 200 may take
the form of any of a number of different data processing
systems including client computing devices, server comput
ing devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro
cessing system 200 may be a portable computing device
which is configured with flash memory to provide non-vola
tile memory for storing operating system files and/or user
generated data, for example. Essentially, data processing sys
tem 200 may be any known or later developed data processing
system without architectural limitation.
0036 Returning to FIG. 1, storage 108 may store crypto
graphic objects, such as cryptographic keys and certificates.
Servers 104,106 and/or clients 110, 112, 114 may run cryp
tographic object managing applications, such as key lifecycle
management (KLM) systems. Alternatively, or in addition,
servers 104,106 and/or clients 110, 112, 114 may implement
protocols, such as key management interoperability protocol
(KMIP) to exchange information between KLM applications.
0037 FIG. 3 depicts example architecture of a key life
cycle management system in accordance with an illustrative
embodiment. The key lifecycle management (KLM) system
may be implemented in a server, such as a Web server. The
KLM system server may interact with the clients through
several types of interfaces. Administrators may use a different
interface than the clients to access the server. The server itself

Mar. 24, 2016

is structured in four layers, including a data layer, a manager
layer, a service layer, and an interface layer.
0038. The data layer stores all information in a persistent
database (DB) 350. Internally, DB 350 accesses a standard
structured query language (SQL) database through a JavaTM
database connectivity (JDBCTM) interface. JDBC is a trade
mark of Oracle and/or its affiliates in the United States, other
countries, or both. DB 350 stores meta-data about crypto
graphic objects as well as the cryptographic objects them
selves.
0039. The manager layer of the KLM system contains
three components that provide low-level functionalities:
object manager (OM) 342, deployment manager (DM) 344,
and endpoint manager (EPM)346. OM342 provides a simple
interface to manipulate the cryptographic objects in DB350.
OM342 can add new objects and read, modify, search, and
delete them in DB 350.
0040 DM 344 takes care of administering deployments
and deployment bundles. A deployment is an association
between an object and an endpoint in the sense that the KLM
system provisions the object for use in cryptographic opera
tions by the endpoint. The deployment policy realized by DM
344 dictates when and under which condition a deployed
object finally becomes available to an endpoint through an
interface. A deployment bundle is a set of deployments,
which are grouped to Support a given application.
0041. EPM 346 controls the endpoints in the interface
layer of the server, registering them in the KLM system,
potentially creating new file-backed JavaTM keystore (JKS)
endpoints, and listening to protocol ports to which KMIP
clients connect. EPM 346 unifies the different types of end
points towards the rest of the server.
0042. The service layer provides two modules: key life
cycle service (KLS) 332, which is used by endpoints and by
an administrator, and admin service 334, which is only
accessed by the administrator. KLS332 represents the core of
the server. KLS 332 implements all operations related to
cryptographic objects that are available to endpoints and to
users, drives automated deployment and lifecycle operations
in conjunction with DM 334, and enforces access control.
KLS332 can distinguish between different users, the princi
pals that access it; every invocation of an operation occurs in
the context of a session, which represents a user that has been
securely authenticated by the KLM system.
0043. The admin service 334 controls the allocation of
endpoints and deployments through EPM 346 and DM 344,
respectively. Access to its operations also occurs in the con
text of a session, but is restricted to users with the correspond
ing permission. The admin service 334 also allows archive
and recovery operations for individual keys and for the whole
database 350. Both modules, KLS 332 and admin service
334, generate audit events.
0044. In the interface layer, three types of endpoint inter
faces interact with the clients. The virtual keystore (VKS)
interface 312 emulates the provider of a JavaTM keystore for
JavaTM client 302, for applications that are hosted by the same
application server as the KLM system. JavaTM client 302
reads and writes keys via VKS 312 by issuing the “get and
“set” operations of the JavaTM keystore interface. VKS 312 is
a pull-style synchronous interface, i.e., KLS332 can forward
client calls to VKS 312 directly to OM342 and DM 344.
0045. The JavaTM keystore (JKS) interface 314 accesses a
named JavaTM keystore as a client. A JavaTM keystore is usu
ally passive and its default implementation is a file, but

US 2016/0087788 A1

depending on the installed JavaTM cryptography extension
(JCE) provider, many different entities, such as generic client
304, may receive key material through the JKS interface 314.
In particular, generic client 304 need not be implemented in
the JavaTM programming language. JKS interface 314 is a
push-style asynchronous interface, because KLS calls the
JavaTM keystore interface and clients may retrieve keys from
JKS at a later time.

0046. A protocol interface 316 provides an implementa
tion of the key management interoperability protocol
(KMIP). KMIP is mostly a client-to-server protocol that
offers rich functionality to manipulate cryptographic objects.
Many of its operations can be forwarded directly to KLS332,
but other operations are realized by an adapter module (not
shown) inside the KMIP interface 316. Ignoring the optional
server-to-client operations in KMIP, the protocol interface is
again pull-style and synchronous, similar to VKS interface
312. KMIP clients 306 connecting through KMIP interface
316 need not be implemented in the JavaTM programming
language.
0047. For the two keystore-based interfaces, EPM 346
statically configures the user with which KLS 332 is
accessed. For the protocol-based interface, it is possible to
take the user from the client context. For the pull-style inter
faces, access control occurs when the client calls KLS 332;
for the push-style JKS interface 314, on the other hand, access
control must be enforced at the time when the deployment
OCCU.S.

0048 Administrators 308 access the KLM system through
a Web-based graphical user interface (GUI) 322 or through a
command line interface (CLI)324. The GUI322 and CLI324
both provide operations to deal with endpoints and to manage
deployments. Note that clients who access the system through
one of the endpoint interfaces cannot deploy cryptographic
objects in the KLM system.
0049. In accordance with an illustrative embodiment,
rather than cryptographic objects comprising an associated
state, cryptographic objects store state meta-data that allows
the KLM system to resolve the current state. The state meta
data may comprise a set of state altering date values, includ
ing the following: initial date, activation date, deactivation
date, compromise date, and destroy date. The KLM System
stores this state meta-data in association with cryptographic
objects in DB350. The components of the KLM system, such
as object manager (OM) 342, key lifecycle service (KLS)
332, virtual keystore (VKS) interface 312, JavaTM keystore
(JKS) interface 314, and key management interoperability
protocol (KMIP) interface 316, may retrieve the state meta
data and calculate the current state of the objects.
0050 FIG. 4 depicts state transitions for cryptographic
objects in accordance with an illustrative embodiment. The
lifecycle of a cryptographic object begins in a pre-active state,
where it is not to be used for any cryptographic operation.
When the current time is equal to the activation date/time for
the cryptographic object, which is stored in the state meta
data in accordance with the illustrative embodiment, the state
of the cryptographic object progresses to an active state,
where it may be used to protect and process data. Then, when
the current time is equal to the deactivation date/time for the
cryptographic object in the state meta-data, the state of the
cryptographic object progresses to a deactivated State, where
it may at most be used to handle data that has already been
processed (may verify data already signed, or decrypt

Mar. 24, 2016

already-encrypted data, and even then usually only with an
administrative override, as “deactivated” is Supposed to mean
“no longer active”).
0051 State transitions may be triggered directly by modi
fications to the lifecycle-relevant attributes, such as the acti
Vation time and deactivation time, or indirectly as a side
effect of operations. For example, the cryptographic object
may transition from the pre-active state to the destroyed State
responsive to a destroy operation. In accordance with the
illustrative embodiment, the destroy operation causes a
destroy date to be written to the state meta-data rather but does
not cause a state to be written to the cryptographic object. The
KLM system determines the state of the cryptographic object
based on the information in the state meta-data.
0.052 Therefore, if the cryptographic object’s state meta
data has a destroy date set, then the object is destroyed. The
cryptographic object may also transition to the destroyed
state from the deactivated state, as shown in FIG. 4.
0053. In addition, a compromise operation causes a com
promise date to be set in the state meta-data, which results in
the cryptographic object transitioning to the compromised
state, which may occur from the pre-active, active, or deacti
vated State. Furthermore, a cryptographic object may have a
combination of compromised and destroyed States. That is, a
destroyed cryptographic object is found to be compromised,
then the compromised operation results in the state meta-data
having both a destroyed date/time and a compromised date/
time set. Similarly, if the destroy operation is performed on a
compromised object, then the state meta-data will have both
a destroyed date/time and a compromised date/time set. In
these cases, the cryptographic object is in a destroyed-com
promised State.
0054 While FIG. 4 depicts a set of known states for a
particular example, the set of possible states is expected to
vary depending on the domain, or even within a domain. With
the mechanisms of the illustrative embodiments, the set of
possible states may vary, and the mechanisms may return an
appropriate state regardless of the domain.
0055 As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method, or
computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.
0056. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, device, or any Suitable combi
nation of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM) an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com

US 2016/0087788 A1

pact disc read-only memory (CDROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0057. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0058 Computer code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.
0059 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language Such as JavaM,
SmalltalkTM, C++, or the like, and conventional procedural
programming languages, such as the 'C' programming lan
guage or similar programming languages. The program code
may execute entirely on the user's computer, partly on the
user's computer, as a stand-alone software package, partly on
the user's computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce
nario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).
0060 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to the illustrative embodiments of
the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0061 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions that imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0062. The computer program instructions may also be
loaded onto a computer, other programmable data processing

Mar. 24, 2016

apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus, or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0063 FIG. 5 is a flowchart illustrating operation of a
mechanism for determining the state of a cryptographic
object in accordance with an illustrative embodiment. Opera
tion begins, and the mechanism determines whether a destroy
date is set for the cryptographic object (block 502). If a
destroy date is set, the mechanism determines whether a
compromise date is set in the state meta-data for the crypto
graphic object (block 504). If the destroy date is set in block
502 and the compromise date is set in block 504, then the
mechanism determines whether the destroy date is greater
than or equal to the compromise date (block 506). If the
destroy date is greater than or equal to the compromise date,
the mechanism returns a state of “destroyed compromised
(block 508), and operation ends. However, once a crypto
graphic object has been destroyed, the mechanism may not
mark the cryptographic object as compromised. Therefore, if
the destroy date is not greater than or equal to the compromise
date in block 506, the mechanism may return astute of
“destroyed’ (block 510), and operation ends. In an alternative
embodiment, the mechanism may return a state of
"destroyed compromised in either case,
0064. If the destroy date is set in block 502 and the com
promise date is not set in block 504, then the mechanism
returns a state of “destroyed’ (block 5(0), and operation ends.
Returning to block 502, if the destroy date is not set, the
mechanism determines whether the compromise date is set
(block 512). If the destroy date is not set in block 502 and the
compromise date is set in block 512, then the mechanism
returns a state of “compromised’ (block 514), and operation
ends,
0065. If the compromise date is not set in block 512, then
the mechanism determines whether the deactivation date is
set (block 516). If the deactivation date is set, the mechanism
determines whether the deactivation date is less than or equal
to the current time (block 518). If the deactivation date is less
than or equal to the current time, the mechanism returns a
state of “deactivated’ (block 520), and operation ends.
0066. If the deactivation date is not set in block 516 or is
not less than or equal to the current time in block 518, the
mechanism determines whether the activation date is set
(block.522). If the activation date is set, the mechanism deter
mines whether the activation date is less than or equal to the
current time (block 524). If the activation date is less than or
equal to the current time, the mechanism returns a state of
“active’ (block526), and operation ends. If the activation date
is not less than or equal to the current time in block 524, the
mechanism returns a state of “pre-active’ (block 528), and
operation ends.
0067. If the activation date is not set in block 522, the
mechanism determines whether an initial date is set (block
530). If the initial date is set, the mechanism returns a state of
“pre-active’ (block 528); otherwise, the mechanism returns a
state of “unknown (block 532), as the state cannot be deter
mined because the State meta-data does not have any dates.
Thereafter, operation ends. The logic in the server always sets
an initial date, so in an alternative embodiment, the mecha
nism may not perform the determination in block 530, which

US 2016/0087788 A1

would result in the mechanism returning a state of “pre
active’ (block 528) if the activation date is not set in block
522.
0068 FIG. 6 is a flowchart illustrating operation of a
mechanism for generating a search filter to query for crypto
graphic objects using the state altering date values stored for
each object in accordance with an illustrative embodiment.
Operation begins, and for each search criteria element (block
602), the mechanism locates appropriate structured query
language (SQL) condition logic (block 604). The mechanism
appends the SQL corresponding to the search criteria element
using a logical AND operator (block 606). Then, the mecha
nism considers the next search criteria element (block 608),
and returns to block 602 to repeat the loop for the next search
criteria element. If the mechanism has considered the last
search criteria element in block 608, then operation ends.
0069 FIGS. 7A and 7B depict code for an example imple
mentation of a state calculator mechanism in accordance with
an illustrative embodiment. The code in FIGS. 7A and 7B are
written in the JavaTM programming language.
0070 FIGS. 8A-8C depict code for an example implemen
tation of a mechanism to generate structured query language
(SQL) code to search cryptographic objects based on a state
or combination of unique states in accordance with an illus
trative embodiment. The mechanism requires that a struc
tured query language (SQL) based data store is used to persist
the cryptographic object’s data and that there is code in place
that is capable of persisting cryptographic object's meta-data
as well as looking it up by its primary key from the data store.
The SQL schema defines columns that are to be used to store
the state altering dates:

ACTIVATIONDATE TIMESTAMP,
DEACTIVATIONDATE TIMESTAMP,
INITIALDATE TIMESTAMP NOT NULL,
DESTROYDATE TIMESTAMP
COMPROMISEDATE TIMESTAMP

0071. The SQL generated by the mechanism may be used
in the WHERE clause of a SELECT statement, which when
executed, returns objects that are in the given state or objects
that are in any state in the given combination of unique states.
0072 The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.

Mar. 24, 2016

0073. Thus, the illustrative embodiments provide mecha
nisms for calculating state of cryptographic objects and gen
erating search filters for querying cryptographic objects
based on the given state or on the given combination of unique
states. The illustrative embodiments comprise a mechanism
to calculate a state of a cryptographic object and a mechanism
to generate a search filter to query for cryptographic objects
using a single state or a combination of state values logically
ORed together.
0074 The mechanism to calculate a state of a crypto
graphic object allows an application or system to resolve the
current state of any cryptographic object with the following
set of state altering date values: initial date, activation date,
deactivation date, compromise date, and destroy date. The
system stores these date values in a persistent data store for
each managed cryptographic object as State meta-data. A
processing module may retrieve the state meta-data and cal
culate the current state of a given cryptographic object. The
current state may be, for example, one of the following:
unknown, pre-active, active, deactivated, compromised,
destroyed, and destroyed-compromised.
0075. The mechanism to generate a search filter may gen
erate a search query language (SQL) search filter to query for
cryptographic objects using the State altering date values
stored for each object. This mechanism requires that a SQL
based data store be used to persist the cryptographic objects
data and that there is code in place that is capable of persisting
cryptographic objects meta-data as well as looking it up by
its primary key from the data store. The SQL generated by this
mechanism may be used in the WHERE clause of a SELECT
statement, which when executed, returns objects that are in
the given state or objects that are in any state in the given
combination of unique states.
0076. As noted above, it should be appreciated that the
illustrative embodiments may take the form of an entirety
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software ele
ments. In one example embodiment, the mechanisms of the
illustrative embodiments are implemented in software or pro
gram code, which includes but is not limited to firmware,
resident Software, microcode, etc.
0077. A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
0078 Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net
works. Modems, cable modems and Ethernet cards are just a
few of the currently available types of network adapters.
007.9 The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment

US 2016/0087788 A1

was chosen and described in order to best explain the prin
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
Suited to the particular use contemplated.

1. A method, in a data processing system, for managing
cryptographic keys, the method comprising:

storing a set of state altering date values in state meta-data
of each cryptographic key in a data store, wherein the set
of state altering date values comprises an initial date, an
activation date, and a deactivation date;

retrieving the set of state altering date values from the data
store for a given cryptographic key; and

determining a state of the givencryptographic key based on
a combination of the set of state altering date values,
wherein the set of state altering date values further com
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:

responsive to the destroy date being set and the compro
mise date not determining that the given cryptographic
key is in a destroyed State; and

responsive to the destroy date not being set and the com
promise date being set, determining that the given cryp
tographic key is in a compromised state.

2. (canceled)
3. The method of claim 1, wherein determining the state of

the given cryptographic key comprises:
responsive to the deactivation date being set and less than

or equal to a current time, determining that the given
cryptographic key is in a deactivated State;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;

responsive to the deactivation date not being set or greater
than the current and responsive to the activation date
being set and greater than the current time, determining
that the given cryptographic key is in a pre-active state;
and

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date being set, deter
mining that the given cryptographic key is in an active
State.

4. The method of claim3, wherein determining the state of
the cryptographic key further comprises:

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.

5. The method of claim 1, further comprising:
generating a search filter to query for cryptographic keys

using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.

6. The method of claim 5, wherein generating the search
filter to query for cryptographic keys comprises:

for each search criteria element, locating corresponding
search query condition logic and appending the corre

Mar. 24, 2016

sponding search query logic to the search criteria ele
ment using a logical AND operator.

7. A computer program product comprising a computer
readable storage medium having a computer readable pro
gram stored therein, wherein the computer readable program,
when executed on a computing device, causes the computing
device to:

store a set of state altering date values in state meta-data of
each cryptographic key in a data store, wherein the set of
state altering date values comprises an initial date, an
activation date, and a deactivation date;

retrieve the set of state altering date values from the data
store for a given cryptographic key; and

determine a state of the given cryptographic key based on
a combination of the set of state altering date values,
wherein the set of state altering date values further com
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:

responsive to the destroy date being set and the compro
mise date not being set, determining that the given cryp
tographic key is in a destroyed State; and

responsive to the destroy date not being set and the com
promise date being set, determining that the given cryp
tographic key is in a compromised state.

8. (canceled)
9. The computer program product of claim 7, wherein

determining the state of the given cryptographic key com
prises:

responsive to the deactivation date being set and less than
or equal to a current time, determining that the given
cryptographic key is in a deactivated State;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and greater than the current time, deter
mining that the givencryptographic key is in a pre-active
state; and

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date being set, deter
mining that the given cryptographic key is in an active
State.

10. The computer program product of claim 9, wherein
determining the state of the given cryptographic key further
comprises:

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.

11. The computer program product of claim 7, wherein the
computer readable program further causes the computing
device to:

generate a search filter to query for cryptographic keys
using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.

US 2016/0087788 A1

12. The computer program product of claim 11, wherein
generating the search filter to query for cryptographic keys
comprises:

for each search criteria element, locating corresponding
search query condition logic and appending the corre
sponding search query logic to the search criteria ele
ment using a logical AND operator.

13. (canceled)
14. (canceled)
15. An apparatus, comprising:
a processor; and
a memory coupled to the processor, wherein the memory

comprises instructions which, when executed by the
processor, cause the processor to:

store a set of state altering date values in state meta-data of
each cryptographic key in a data store, wherein the set of
state altering date values comprises an initial date, an
activation date, and a deactivation date;

retrieve the set of state altering date values from the data
store for a given cryptographic key; and

determine a state of the given cryptographic key based on
a combination of the set of state altering date values,
wherein the set of state altering date values further com
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:

responsive to the destroy date being set and the compro
mise date not being set, determining that the given cryp
tographic key is in a destroyed State; and

responsive to the destroy date not being set and the com
promise date being set, determining that the given cryp
tographic key is in a compromised state.

16. (canceled)
17. The apparatus of claim 15, wherein determining the

state of the given cryptographic key comprises:
responsive to the deactivation date being set and less than

or equal to a current time, determining that the given
cryptographic key is in a deactivated State;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation

Mar. 24, 2016

date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and greater than the current time, deter
mining that the givencryptographic key is in a pre-active
state; and

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date being set, deter
mining that the given cryptographic key is in an active
State.

18. The apparatus of claim 17, wherein determining the
state of the given cryptographic key further comprises:

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.

19. The apparatus of claim 15, wherein the instructions
further cause the processor to:

generate a search filter to query for cryptographic keys
using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.

20. The apparatus of claim 19, wherein generating the
search filter to query for cryptographic keys comprises:

for each search criteria element, locating corresponding
search query condition logic and appending the corre
sponding search query logic to the search criteria ele
ment using a logical AND operator.

21. The method of claim 1, wherein the set of state altering
date values further comprises a compromise date and a
destroy date.

22. The computer program product of claim 7, wherein the
set of state altering date values further comprises a compro
mise date and a destroy date.

k k k k k

