US 20160087788A1

a2y Patent Application Publication o) Pub. No.: US 2016/0087788 A1

a9 United States

Braksator et al. 43) Pub. Date: Mar. 24, 2016
(54) CALCULATING STATE OF (52) US.CL
CRYPTOGRAPHIC OBJECTS AND CPC ... HO4L 9/002 (2013.01); GO6F 17/30867
GENERATING SEARCH FILTER FOR (2013.01)
QUERYING CRYPTOGRAPHIC OBJECTS
(71) Applicant: International Business Machines (57) ABSTRACT

Corporation, Armonk, NY (US)

(72) Inventors: Mark J. Braksator, Corona, CA (US);
Bruce A. Rich, Cedar Park, TX (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(21) Appl. No.: 14/294,257
(22) Filed: Jun. 3,2014

Related U.S. Application Data

(63) Continuation of application No. 12/963,184, filed on
Dec. 8, 2010, now Pat. No. 8,788,545.

Publication Classification

(51) Int.CL
HO4L 9/00 (2006.01)
GOGF 1730 (2006.01)
102
104

1

108

(T

SERVER

108 -

NETWORK

STORAGE

Mechanisms are provided for calculating state of crypto-
graphic objects and generating search filters for querying
cryptographic objects based on the given state or on the given
combination of unique states. The mechanism to calculate a
state of a cryptographic object allows an application or sys-
tem to resolve the current state of any cryptographic object
with the following set of state altering date values: initial date,
activation date, deactivation date, compromise date, and
destroy date. A processing module may retrieve the state
meta-data and calculate the current state of a given crypto-
graphic object. The current state may be, for example, one of
the following: unknown, pre-active, active, deactivated, com-
promised, destroyed, and destroyed-compromised. The
mechanism to generate a search filter may generate a search
query language (SQL) search filter to query for cryptographic
objects using the state altering date values stored for each
object.

160

'J

—h

Patent Application Publication = Mar. 24,2016 Sheet 1 of 8 US 2016/0087788 A1

100

NETWORK

114

FiG 1
206~_| PROCESSING 290
UNIT(S)
240 202 708 216 236
¢ % / /
GRAPHICS o MAIN AUDIO
prOCESSOR 1 NEMCH =0 mevory ADAPTER Si0
204
240 N 238
T BUS
15 SBACH
USB AND KEYBOARD
WOR R
DiSK | | CD-ROM ?‘f%k";?é‘g OTHER gg’/i%g AND MOUSE | | mopem | | rom
- ’ PORTS v ADAPTER
228 230 212 232 234 220 222 224

FIG. 2

Patent Application Publication = Mar. 24,2016 Sheet 2 of 8 US 2016/0087788 A1

302 304 306 308
BN N BN LN
JAVA GENERIC KMiP ADUIN
CLIENT CLIENT CLIENT
CLIENT N 1 1 /‘\
SERVER 312 314 316 399 304
INTERFACE | VKS JKS KMIP GUi ol
\] /v/" /
R s . ar ADMIN
SERVICE 352N KLS 334~ scrvice
- 347 T T Taes
A N
MANAGER OM e » DM le » EPM
DATA 350 "op | FIG. 3
N——
FIG. 4
»| DESTROYED
F-y
ACTIVATION TIME DEACTIVATION TIME)
REACHED REACHED
‘ DESTROYED
. ; N » JAT
— » PRE-ACTIVE ACTIVE DEACTIVATED COMPROMISED

A

A 4

: COMPROMISED

US 2016/0087788 Al

QESINOMINCD JIAOMLSEa
NHNLaH

W
W
1 n¥s 1
NAMONYNA N L3 JALLOY-Td NHNLTY IALLOY NHNLTY
X
z6e™ “azs
_ AECEIR . TMON => 31v0
- ON NOILYAILDY 534
g v7s
2 0ES £138 3190
- NOLLYALLOY. " gan : X
S
< QILYALLOVAG NHNL3Y QIACHISAC NHNLTY
R 7y = | =3 X
0zs | ois
S LMON => 310
NOLVAILOYAD SIA | (ESINOMANOD NHENLIY ON
“le

Patent Application Publication

L1345 31Y0 AR IR

A

NOILVALLOVE(Q ASINOHINOD

gi5 45

N

§ DId

ARSI I
ASIHOHINOD

S3A

AT
ADMHLSET

Patent Application Publication = Mar. 24,2016 Sheet 4 of 8 US 2016/0087788 A1

602 4
7 FOR EACH SEARCH CRETERaA_
ELEMENT
604 v
{ OCATE APPROPRIATE SQL
CONDITION LOGIC
608 v

APPEND SQL CORRESPONDING
TQ SEARCH CRITERIA ELEMENT
USING A LOGICAL AND
OPERATOR

%A v
NEXT SEARCH CRITERIA

\ ELEMENT Y,

[ax]

END

FIG. 7.

e
/

* Methed calculates a current state for the given cryptographic object
* @param cobj - cryplographic object

* @param now - current ime

" @return Integer value representing a state of the cryptographic object where
T 0= UNKNGWN,

*1=PRE_ACTIVE,

* 2= ACTIVE,

* 3= DEACTIVATED,

T4 = COMPROMISED,

* 5= DESTROYED,

* 6 = DESTROYED _COMPROMISED

public static in? getState{CryplographicObiect cobj, Date now) {
Date initiald = cobj.initialDats;
Date activationD = cobj.activationDate;
Date dastroyD = cobj destroyDats;
Date compromisel = cobj.compromiseDate;
Date deactivationD = cobj.deactivationDate;

Patent Application Publication = Mar. 24,2016 Sheet S of 8 US 2016/0087788 A1

FiG. 7B

if (destroyD 1= null) {
object has been destroved
i see if it was destroyed-compromised
if (compromiseD = null) {
if (destrovD.getTime{) »= compromiseD.getTime()) {
/i state is DESTROYED COMPROMISED

return 6,
}
}
/f state is DESTROYED
return 5;

kS

i {compromisel = null) {
i state is COMPROMISED

return 4;
Y

if {deactivationDD = null) {
if (deactivationD.getTime(} <= now.getTime(}} {
1 state is DEACTIVATED
return 3;
}
}
if (activationD == nuil) {
H{initialD 1= null) {
1l state is PRE_ACTIVE
refurn 1;
}
}else {
i (activationD.getTimea() <= now.gsiTimsa(}) {
/f state is ACTIVE
return 2;
}else {
/ state is PRE_ACTIVE
return 1;

}
H

1 state is UNKNOWN
raturn 0;

Patent Application Publication = Mar. 24,2016 Sheet 6 of 8 US 2016/0087788 A1

FIG. 84

/‘#*

* Method generates a S8QL search filter to search for cryptographic
* objects using given state values, which will be translated {o SQL using
* a set of state altering dates and current time.
* @param stateValues
* - combination of unique intager values to use in the search
*wherg each value is ong of the following: 1= PRE_ACTIVE, 2=
* ACTIVE, 3 = DEACTIVATED, 4 = COMPROMISED, 5= DESTROVED 6 =
* DESTROYED COMPROMISED
* @param tableAlias
* - Name or alias of the {able containing the cryptographic
* object data
= ghreturn SAOL search fiitar to use in WHERE clause of SELECT staternent.
* Method will return emply string when no siates are given
“interpretation of the empty String is left to the calling code.
*j
public static String generateStateSQL{Integer]] stateValues,
String tabieAlias) {
COLUMN names
final String ACTIVATIONDATE_COLUMN _NAME = "ACTIVATIONDATE",
final String BESTROYDATE_COLUMN_NAME = "DESTROYDATE",
final String COMPROMISERATE _COLUMN_NAME = "COMPROMISEDATES
final String DEACTIVATIONDATE_COLUMN_NAME =
"DEACTIVATIONDATE",
StringBuffer sirBuff = new StringBuffer(};
Timestamp nowTS = new Timestamp{new Date).getTime());
i (tableAlias = null} {
tableAlias = tableAlias.irim();
H
if (tableAlias |= null &5 tableAlias.length{) > 0){
tabledlias =" " + tableAlias + "%}
lelse{
tableAlias = ™
i
for (int state : stateValues) {
if (state==0) {
/f Do not search for objects with unknown stats
continue;
}
boglean closeParenth = false;
if (strBuffiength) > 0} {
strBuff.append{" OR (");
closeParenth = {rue;

Patent Application Publication = Mar. 24,2016 Sheet 7 of 8 US 2016/0087788 A1

FIG. 8B

if (state == 1) {
il state is PRE_ACTIVE
if (strBuffiength() > 03 {
strBuff.append(” AND ™),

}
strbuff.append (™ {{" + tableAliss +
ACTIVATIONDATE_COLUMN_NAME + " IS NULL) "y
strBuff.append(” OR (" + tablsAlias
+ ACTIVATIONDATE COLUMN NAME+">" +
nowisS + "3)
}else if (state == 2} {
{i state is ACTIVE
if (strBufliength(} > 0) {
strBuff.append(” AND ™},
i
strBuff.append(” (" + tableAlias +
ACTIVATIONDATE COLUMN NAME
= M now TS + MY,
strBuff.append(™ AND (" + tableAlias +
DESTROYDATE_COLUMN_NAME
+ IS NULLY ™Y,
strBuff.append(” AND (" + tableAlias
+ COMPROMISEDATE _COLUMN_NAME +°
1S NULLY'Y
strBuff.append(” AND ({" + tableAlias
+ DEACTIVATIONDATE COLUMN _NAME + "
ISNULL)OR ™+ " (" + tabieAlias +
DEACTIVATIONDATE _COLUMN_NAME
+ "8 NOT NULL AND " + tableAlias
+ DEACTIVATIONDATE _COLUMN_NAME +*
>= " nowTS + 0"

/f state is COMPROMISED

if (strBuffiength(} ») {
strBuff. append{” AND “};

}

strBuff.append(” " + tahledlias +
COMPROMISEDATE _CCLUMN_NAME
+ 'S NOT NULL)Y "),

strBuff.append(” AND (" + tableAlias +
DESTROYDATE COLUMN NAME
+ IS NULLY ™Y,

Patent Application Publication = Mar. 24,2016 Sheet 8 of 8 US 2016/0087788 A1

FiG. 8C

} else if (state == B} {

/i state is DESTROYED,;

if {strBuff.iength() > 0} {
strButf append(” AND ™),

}

strBuff.append(” (" + tableAlias +
DESTROYDATE_COLUMN_NAME
+ IS NOT NULLY ™)

strBuff.append(” AND {" + tableAlias
+ COMPROMISEDATE_COLUMN_NAME + " IS NULL)
ll\-

5
i else if (state == 6} {
state is DESTROYED _COMPROMISED
i (strBuff.iength{) » £} {
strBuff.append (" AND ")

strBuff.append(” (" + tableAlias +
COMPROMISEDATE COLUMN_NAME
+ IS NOT NULLY ")

strBuff.append(” AND {" + tableAlias +
DESTROYDATE COLUMN _NAME
+ " IS NOT NULL) ™)

} eise if (slate == 3} {

/i state is DEACTIVATED;

i (strbufflength{} > 0) {
strBuff append(® AND ");

i

strBuff append(” (" + tableAlias +
DEACTIVATIONDATE _COLUMN _NAME
+ IS NOT NULL) ')

strBuff. append(™ AND {" + tableAlias
+ DEACTIVATIONDATE_COLUMN_NAME + "<= " +
nowTs + "'y,

i (closeParenth) {
strBuff.append(™ "};
1
3
}

return strBulf.toString();

US 2016/0087788 Al

CALCULATING STATE OF
CRYPTOGRAPHIC OBJECTS AND
GENERATING SEARCH FILTER FOR
QUERYING CRYPTOGRAPHIC OBJECTS

BACKGROUND

[0001] The present application relates generally to an
improved data processing apparatus and method and more
specifically to mechanisms for calculating state of crypto-
graphic objects and generating search filters for querying
cryptographic objects based on the given state or on the given
combination of unique states,

[0002] Cryptography is used to service many information-
technology systems, ranging from encrypting data on storage
and establishing virtual private networks to protecting com-
munication with mobile devices and using certificates for
e-commerce over the Internet. All uses of cryptography rely
onthe proper keys being present. Key management deals with
the lifecycle of cryptographic keys, with operations for cre-
ating, importing, storing, reading, updating, exporting, and
deleting keys, and with distributing keys before they are used
in cryptographic functions. An important aspect is to manage
the attributes of keys that govern their usage and their relation
to other keys.

[0003] The lifecycle of any cryptographic object, such as a
cryptographic key, involves state transitions. Some of these
state transitions happen automatically with the passage of
time and some are triggered by the keepers of the crypto-
graphic object. Knowing the most up-to-date state of a cryp-
tographic object is required for applications that manage
cryptographic objects to make correct decisions about the
future disposition of the object or the new state’s impact on
the object’s current use. Consequently, applications that man-
age cryptographic objects must be able to search for crypto-
graphic objects in a certain state or combination of unique
states.

SUMMARY

[0004] In one illustrative embodiment, a method, in a data
processing system, is provided for managing cryptographic
objects. The method comprises storing a set of state altering
date values in state meta-data associated with a cryptographic
object in a data store, retrieving the set of state altering date
values from the data store, and determining a state of the
cryptographic object based on the set of state altering date
values.

[0005] In other illustrative embodiments, a computer pro-
gram product comprising a computer useable or readable
medium having a computer readable program is provided.
The computer readable program, when executed on a com-
puting device, causes the computing device to perform vari-
ous ones, and combinations of, the operations outlined above
with regard to the method illustrative embodiment.

[0006] In yet another illustrative embodiment, a system/
apparatus is provided. The systenm/apparatus may comprise
one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions
which, when executed by the one or more processors, cause
the one or more processors to perform various ones, and
combinations of, the operations outlined above with regard to
the method illustrative embodiment.

[0007] These and other features and advantages of the
present invention will be described in, or will become appar-

Mar. 24, 2016

ent to those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0008] The invention, as well as a preferred mode of use
and further objectives and advantages thereof, will best be
understood by reference to the following detailed description
of illustrative embodiments when read in conjunction with
the accompanying drawings, wherein:

[0009] FIG. 1 depicts a pictorial representation of an
example distributed data processing system in which aspects
of the illustrative embodiments may be implemented;

[0010] FIG. 2 is a block diagram of an example data pro-
cessing system in which aspects of the illustrative embodi-
ments may be implemented;

[0011] FIG. 3 depicts example architecture of a key life-
cycle management system in accordance with an illustrative
embodiment;

[0012] FIG. 4 depicts state transitions for cryptographic
objects in accordance with an illustrative embodiment;
[0013] FIG. 5 is a flowchart illustrating operation of a
mechanism for determining the state of a cryptographic
object in accordance with an illustrative embodiment;
[0014] FIG. 6 is a flowchart illustrating operation of a
mechanism for generating a search filter to query for crypto-
graphic objects using the state altering date values stored for
each object in accordance with an illustrative embodiment;
[0015] FIGS.7A and 7B depict code for an example imple-
mentation of a state calculator mechanism in accordance with
an illustrative embodiment; and

[0016] FIGS.8A-8C depict code for an example implemen-
tation of a mechanism to generate structured query language
(SQL) code to search cryptographic objects based on a state
or combination of unique states in accordance with an illus-
trative embodiment.

DETAILED DESCRIPTION

[0017] The illustrative embodiments provide a mechanism
for calculating state of cryptographic objects and generating
search filters for querying cryptographic objects based on the
given state or on the given combination of unique states. The
illustrative embodiments comprise a mechanism to calculate
a state of a cryptographic object and a mechanism to generate
asearch filter to query for cryptographic objects using a single
state or a combination of state values logically ORed together.
[0018] The mechanism to calculate a state of a crypto-
graphic object allows an application or system to resolve the
current state of any cryptographic object with the following
set of state altering date values: initial date, activation date,
deactivation date, compromise date, and destroy date. The
system stores these date values in a persistent data store for
each managed cryptographic object as state meta-data. A
processing module may retrieve the state meta-data and cal-
culate the current state of a given cryptographic object. The
current state may be, for example, one of the following:
unknown, pre-active, active, deactivated, compromised,
destroyed, and destroyed-compromised.

[0019] The mechanism to generate a search filter may gen-
erate a search query language (SQL) search filter to query for
cryptographic objects using the state altering date values
stored for each object. This mechanism requires that a SQL

US 2016/0087788 Al

based data store be used to persist the cryptographic object’s
data and that there is code in place that is capable of persisting
cryptographic objects’ meta-data as well as looking it up by
its primary key from the data store. The SQL generated by this
mechanism may be used in the WHERE clause of a SELECT
statement, which when executed, returns objects that are in
the given state or objects that are in any state in the given
combination of unique states.

[0020] The set of possible states are expected to vary
depending on the domain, or even within a domain. With the
mechanisms of the illustrative embodiments, the set of pos-
sible states may vary, and the mechanisms may return an
appropriate state regardless of the domain.

[0021] Thus, the illustrative embodiments may be utilized
in many different types of data processing environments
including a distributed data processing environment, a single
data processing device, or the like. In order to provide a
context for the description of the specific elements and func-
tionality of the illustrative embodiments, FIGS. 1 and 2 are
provided hereafter as example environments in which aspects
of the illustrative embodiments may be implemented. While
the description following FIGS. 1 and 2 will focus primarily
on a single data processing device implementation, this is
only an example and is not intended to state or imply any
limitation with regard to the features of the present invention.
To the contrary, the illustrative embodiments are intended to
include distributed data processing environments.

[0022] With reference now to the figures and in particular
with reference to FIGS. 1 and 2, example diagrams of data
processing environments are provided in which illustrative
embodiments of the present invention may be implemented. It
should be appreciated that FIGS. 1 and 2 are only examples
and are not intended to assert or imply any limitation with
regard to the environments in which aspects or embodiments
of the present invention may be implemented. Many modifi-
cations to the depicted environments may be made without
departing from the spirit and scope of the present invention.
[0023] FIG. 1 depicts a pictorial representation of an
example distributed data processing system in which aspects
of'the illustrative embodiments may be implemented. Distrib-
uted data processing system 100 may include a network of
computers in which aspects of the illustrative embodiments
may be implemented. The distributed data processing system
100 contains at least one network 102, which is the medium
used to provide communication links between various
devices and computers connected together within distributed
data processing system 100. The network 102 may include
connections, such as wire, wireless communication links, or
fiber optic cables.

[0024] In the depicted example, server 104 and server 106
are connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot tiles, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed data
processing system 100 may include additional servers, cli-
ents, and other devices not shown.

[0025] Inthe depicted example, distributed data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)

Mar. 24, 2016

suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, intranet, a local area
network (LAN), a wide area network (WAN), or the like. As
stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

[0026] FIG. 2 is a block diagram of an example data pro-
cessing system in which aspects of the illustrative embodi-
ments may be implemented. Data processing system 200 is an
example of a computer, such as client 110 in FIG. 1, in which
computer usable code or instructions implementing the pro-
cesses for illustrative embodiments of the present invention
may be located.

[0027] Inthedepicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

[0028] In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (RDD) 226, CD-ROM
drive 230, universal serial bus (USB) ports and other commu-
nication ports 232, and PCI/PCle devices 234 connect to
SB/ICH 204 through bus 238 and bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, white PCle does not. ROM 224 may be, for
example, a flash basic input/output system (BIOS).

[0029] HDD 226 and CD-ROM drive 230 connect to
SB/ICH 2(4 through bus 240. HDD 226 and CD-ROM drive
230 may use, for example, an integrated drive electronics
(IDE) or serial advanced technology attachment (SATA)
interface. Super /O (SIO) device 236 may be connected to
SB/ICH 204.

[0030] An operating system runs on processing unit 206.
The operating system coordinates and provides control of
various components within the data processing system 200 in
FIG. 2. As a client, the operating system may be a commer-
cially available operating system such as Microsoft® Win-
dows® 7 (Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other countries,
orboth). An object-oriented programming system, such as the
Java™ programming system, may runin conjunction with the
operating system and provides calls to the operating system
from Java™ programs or applications executing on data pro-
cessing system 200 (Java is a trademark of Oracle and/or its
affiliates in the United States, other countries, or both).
[0031] As a server, data processing system 200 may be, for
example, an IBM® eServer™ System p® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system (eServer, Sys-

US 2016/0087788 Al

tem p, and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both while LINUX is a trademark of Linus Torvalds in the
United States, other countries, or both). Data processing sys-
tem 200 may be a symmetric multiprocessor (SMP) system
including a plurality of processors in processing unit 206.
Alternatively, a single processor system may be employed.
[0032] Instructions for the operating system, the object-
oriented programming system, and applications or programs
are located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

[0033] A bus system, such as bus 238 or bus 240 as shown
in FIG. 2, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of com-
munication fabric or architecture that provides for a transfer
of data between different components or devices attached to
the fabric or architecture. A communication unit, such as
modem 222 or network adapter 212 of FIG. 2, may include
one or more devices used to transmit and receive data. A
memory may be, for example, main memory 208, ROM 224,
or a cache such as found in NB/MCH 202 in FIG. 2.

[0034] Those of ordinary skill in the art will appreciate that
the hardware in FIGS. 1 and 2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

[0035] Moreover, the data processing system 200 may take
the form of any of a number of different data processing
systems including client computing devices, server comput-
ing devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device
which is configured with flash memory to provide non-vola-
tile memory for storing operating system files and/or user-
generated data, for example. Essentially, data processing sys-
tem 200 may be any known or later developed data processing
system without architectural limitation.

[0036] Returning to FIG. 1, storage 108 may store crypto-
graphic objects, such as cryptographic keys and certificates.
Servers 104, 106 and/or clients 110, 112, 114 may run cryp-
tographic object managing applications, such as key lifecycle
management (KLM) systems. Alternatively, or in addition,
servers 104, 106 and/or clients 110, 112, 114 may implement
protocols, such as key management interoperability protocol
(KMIP) to exchange information between KILM applications.
[0037] FIG. 3 depicts example architecture of a key life-
cycle management system in accordance with an illustrative
embodiment. The key lifecycle management (KL.M) system
may be implemented in a server, such as a Web server. The
KLM system server may interact with the clients through
several types of interfaces. Administrators may use a different
interface than the clients to access the server. The server itself

Mar. 24, 2016

is structured in four layers, including a data layer, a manager
layer, a service layer, and an interface layer.

[0038] The data layer stores all information in a persistent
database (DB) 350. Internally, DB 350 accesses a standard
structured query language (SQL) database through a Java™
database connectivity (JDBC™) interface. JDBC is a trade-
mark of Oracle and/or its affiliates in the United States, other
countries, or both. DB 350 stores meta-data about crypto-
graphic objects as well as the cryptographic objects them-
selves.

[0039] The manager layer of the KLM system contains
three components that provide low-level functionalities:
object manager (OM) 342, deployment manager (DM) 344,
and endpoint manager (EPM) 346. OM 342 provides a simple
interface to manipulate the cryptographic objects in DB 350.
OM 342 can add new objects and read, modify, search, and
delete them in DB 350.

[0040] DM 344 takes care of administering deployments
and deployment bundles. A deployment is an association
between an object and an endpoint in the sense that the KLM
system provisions the object for use in cryptographic opera-
tions by the endpoint. The deployment policy realized by DM
344 dictates when and under which condition a deployed
object finally becomes available to an endpoint through an
interface. A deployment bundle is a set of deployments,
which are grouped to support a given application.

[0041] EPM 346 controls the endpoints in the interface
layer of the server, registering them in the KLLM system,
potentially creating new file-backed Java™ keystore (JKS)
endpoints, and listening to protocol ports to which KMIP
clients connect. EPM 346 unifies the different types of end-
points towards the rest of the server.

[0042] The service layer provides two modules: key life-
cycle service (KLS) 332, which is used by endpoints and by
an administrator, and admin service 334, which is only
accessed by the administrator. KLS 332 represents the core of
the server. KLLS 332 implements all operations related to
cryptographic objects that are available to endpoints and to
users, drives automated deployment and lifecycle operations
in conjunction with DM 334, and enforces access control.
KLS 332 can distinguish between different users, the princi-
pals that access it; every invocation of an operation occurs in
the context of a session, which represents a user that has been
securely authenticated by the KI.M system.

[0043] The admin service 334 controls the allocation of
endpoints and deployments through EPM 346 and DM 344,
respectively. Access to its operations also occurs in the con-
text of'a session, but s restricted to users with the correspond-
ing permission. The admin service 334 also allows archive
and recovery operations for individual keys and for the whole
database 350. Both modules, KLLS 332 and admin service
334, generate audit events.

[0044] In the interface layer, three types of endpoint inter-
faces interact with the clients. The virtual keystore (VKS)
interface 312 emulates the provider of a Java™ keystore for
Java™ client 302, for applications that are hosted by the same
application server as the KLM system. Java™ client 302
reads and writes keys via VKS 312 by issuing the “get” and
“set” operations of the Java™ keystore interface. VKS 312 is
apull-style synchronous interface, i.e., KLS 332 can forward
client calls to VKS 312 directly to OM 342 and DM 344.
[0045] The Java™ keystore (JKS) interface 314 accesses a
named Java™ keystore as a client. A Java™ keystore is usu-
ally passive and its default implementation is a file, but

US 2016/0087788 Al

depending on the installed Java™ cryptography extension
(ICE) provider, many different entities, such as generic client
304, may receive key material through the JKS interface 314.
In particular, generic client 304 need not be implemented in
the Java™ programming language. JKS interface 314 is a
push-style asynchronous interface, because KLS calls the
Java™ keystore interface and clients may retrieve keys from
JKS at a later time.

[0046] A protocol interface 316 provides an implementa-
tion of the key management interoperability protocol
(KMIP). KMIP is mostly a client-to-server protocol that
offers rich functionality to manipulate cryptographic objects.
Many of its operations can be forwarded directly to KLS 332,
but other operations are realized by an adapter module (not
shown) inside the KMIP interface 316. Ignoring the optional
server-to-client operations in KMIP, the protocol interface is
again pull-style and synchronous, similar to VKS interface
312. KMIP clients 306 connecting through KMIP interface
316 need not be implemented in the Java™ programming
language.

[0047] For the two keystore-based interfaces, EPM 346
statically configures the user with which KLS 332 is
accessed. For the protocol-based interface, it is possible to
take the user from the client context. For the pull-style inter-
faces, access control occurs when the client calls KLLS 332;
for the push-style JKS interface 314, on the other hand, access
control must be enforced at the time when the deployment
occurs.

[0048] Administrators 308 access the KLM system through
a Web-based graphical user interface (GUI) 322 or through a
command line interface (CLI) 324. The GUI 322 and CL.1 324
both provide operations to deal with endpoints and to manage
deployments. Note that clients who access the system through
one of the endpoint interfaces cannot deploy cryptographic
objects in the KLM system.

[0049] In accordance with an illustrative embodiment,
rather than cryptographic objects comprising an associated
state, cryptographic objects store state meta-data that allows
the KLLM system to resolve the current state. The state meta-
data may comprise a set of state altering date values, includ-
ing the following: initial date, activation date, deactivation
date, compromise date, and destroy date. The KLLM system
stores this state meta-data in association with cryptographic
objects in DB 350. The components of the KLLM system, such
as object manager (OM) 342, key lifecycle service (KLS)
332, virtual keystore (VKS) interface 312, Java™ keystore
(JKS) interface 314, and key management interoperability
protocol (KMIP) interface 316, may retrieve the state meta-
data and calculate the current state of the objects.

[0050] FIG. 4 depicts state transitions for cryptographic
objects in accordance with an illustrative embodiment. The
lifecycle of a cryptographic object begins in a pre-active state,
where it is not to be used for any cryptographic operation.
When the current time is equal to the activation date/time for
the cryptographic object, which is stored in the state meta-
data in accordance with the illustrative embodiment, the state
of the cryptographic object progresses to an active state,
where it may be used to protect and process data. Then, when
the current time is equal to the deactivation date/time for the
cryptographic object in the state meta-data, the state of the
cryptographic object progresses to a deactivated state, where
it may at most be used to handle data that has already been
processed (may verify data already signed, or decrypt

Mar. 24, 2016

already-encrypted data, and even then usually only with an
administrative override, as “deactivated” is supposed to mean
“no longer active”).

[0051] State transitions may be triggered directly by modi-
fications to the lifecycle-relevant attributes, such as the acti-
vation time and deactivation time, or indirectly as a side-
effect of operations. For example, the cryptographic object
may transition from the pre-active state to the destroyed state
responsive to a destroy operation. In accordance with the
illustrative embodiment, the destroy operation causes a
destroy date to be written to the state meta-data rather but does
not cause a state to be written to the cryptographic object. The
KLM system determines the state of the cryptographic object
based on the information in the state meta-data.

[0052] Therefore, if the cryptographic object’s state meta-
data has a destroy date set, then the object is destroyed. The
cryptographic object may also transition to the destroyed
state from the deactivated state, as shown in FIG. 4.

[0053] Inaddition, a compromise operation causes a com-
promise date to be set in the state meta-data, which results in
the cryptographic object transitioning to the compromised
state, which may occur from the pre-active, active, or deacti-
vated state. Furthermore, a cryptographic object may have a
combination of compromised and destroyed states. That is, a
destroyed cryptographic object is found to be compromised,
then the compromised operation results in the state meta-data
having both a destroyed date/time and a compromised date/
time set. Similarly, if the destroy operation is performed on a
compromised object, then the state meta-data will have both
a destroyed date/time and a compromised date/time set. In
these cases, the cryptographic object is in a destroyed-com-
promised state.

[0054] While FIG. 4 depicts a set of known states for a
particular example, the set of possible states is expected to
vary depending on the domain, or even within a domain. With
the mechanisms of the illustrative embodiments, the set of
possible states may vary, and the mechanisms may return an
appropriate state regardless of the domain.

[0055] As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method, or
computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

[0056] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, device, or any suitable combi-
nation of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM) an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-

US 2016/0087788 Al

pact disc read-only memory (CDROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0057] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0058] Computer code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.
[0059] Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).
[0060] Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to the illustrative embodiments of
the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0061] These computer program instructions may also be
stored in a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions that imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

[0062] The computer program instructions may also be
loaded onto a computer, other programmable data processing

Mar. 24, 2016

apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus, or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0063] FIG. 5 is a flowchart illustrating operation of a
mechanism for determining the state of a cryptographic
object in accordance with an illustrative embodiment. Opera-
tion begins, and the mechanism determines whether a destroy
date is set for the cryptographic object (block 502). If a
destroy date is set, the mechanism determines whether a
compromise date is set in the state meta-data for the crypto-
graphic object (block 504). If the destroy date is set in block
502 and the compromise date is set in block 504, then the
mechanism determines whether the destroy date is greater
than or equal to the compromise date (block 506). If the
destroy date is greater than or equal to the compromise date,
the mechanism returns a state of “destroyed compromised”
(block 508), and operation ends. However, once a crypto-
graphic object has been destroyed, the mechanism may not
mark the cryptographic object as compromised. Therefore, if
the destroy date is not greater than or equal to the compromise
date in block 506, the mechanism may return astute of
“destroyed” (block 510), and operation ends. In an alternative
embodiment, the mechanism may return a state of
“destroyed_compromised” in either case,

[0064] If the destroy date is set in block 502 and the com-
promise date is not set in block 504, then the mechanism
returns a state of “destroyed” (block 5(0), and operation ends.
Returning to block 502, if the destroy date is not set, the
mechanism determines whether the compromise date is set
(block 512). If the destroy date is not set in block 502 and the
compromise date is set in block 512, then the mechanism
returns a state of “compromised” (block 514), and operation
ends,

[0065] Ifthe compromise date is not set in block 512, then
the mechanism determines whether the deactivation date is
set (block 516). If the deactivation date is set, the mechanism
determines whether the deactivation date is less than or equal
to the current time (block 518). If the deactivation date is less
than or equal to the current time, the mechanism returns a
state of “deactivated” (block 520), and operation ends.
[0066] If the deactivation date is not set in block 516 or is
not less than or equal to the current time in block 518, the
mechanism determines whether the activation date is set
(block 522). If the activation date is set, the mechanism deter-
mines whether the activation date is less than or equal to the
current time (block 524). If the activation date is less than or
equal to the current time, the mechanism returns a state of
“active” (block 526), and operation ends. Ifthe activation date
is not less than or equal to the current time in block 524, the
mechanism returns a state of “pre-active” (block 528), and
operation ends.

[0067] If the activation date is not set in block 522, the
mechanism determines whether an initial date is set (block
530). Ifthe initial date is set, the mechanism returns a state of
“pre-active” (block 528); otherwise, the mechanism returns a
state of “unknown” (block 532), as the state cannot be deter-
mined because the state meta-data does not have any dates.
Thereafter, operation ends. The logic in the server always sets
an initial date, so in an alternative embodiment, the mecha-
nism may not perform the determination in block 530, which

US 2016/0087788 Al

would result in the mechanism returning a state of “pre-
active” (block 528) if the activation date is not set in block
522.

[0068] FIG. 6 is a flowchart illustrating operation of a
mechanism for generating a search filter to query for crypto-
graphic objects using the state altering date values stored for
each object in accordance with an illustrative embodiment.
Operation begins, and for each search criteria element (block
602), the mechanism locates appropriate structured query
language (SQL) condition logic (block 604). The mechanism
appends the SQL corresponding to the search criteria element
using a logical AND operator (block 606). Then, the mecha-
nism considers the next search criteria element (block 608),
and returns to block 602 to repeat the loop for the next search
criteria element. If the mechanism has considered the last
search criteria element in block 608, then operation ends.
[0069] FIGS. 7A and 7B depict code for an example imple-
mentation of a state calculator mechanism in accordance with
an illustrative embodiment. The code in FIGS. 7A and 7B are
written in the Java™ programming language.

[0070] FIGS.8A-8C depict code for an example implemen-
tation of a mechanism to generate structured query language
(SQL) code to search cryptographic objects based on a state
or combination of unique states in accordance with an illus-
trative embodiment. The mechanism requires that a struc-
tured query language (SQL) based data store is used to persist
the cryptographic object’s data and that there is code in place
that is capable of persisting cryptographic object’s meta-data
as well as looking it up by its primary key from the data store.
The SQL schema defines columns that are to be used to store
the state altering dates:

ACTIVATIONDATE TIMESTAMP,
DEACTIVATIONDATE TIMESTAMP,
INITIALDATE TIMESTAMP NOT NULL,
DESTROYDATE TIMESTAMP,
COMPROMISEDATE TIMESTAMP

[0071] The SQL generated by the mechanism may be used
in the WHERE clause of a SELECT statement, which when
executed, returns objects that are in the given state or objects
that are in any state in the given combination of unique states.
[0072] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

Mar. 24, 2016

[0073] Thus, the illustrative embodiments provide mecha-
nisms for calculating state of cryptographic objects and gen-
erating search filters for querying cryptographic objects
based on the given state or on the given combination of unique
states. The illustrative embodiments comprise a mechanism
to calculate a state of a cryptographic object and a mechanism
to generate a search filter to query for cryptographic objects
using a single state or a combination of state values logically
ORed together.

[0074] The mechanism to calculate a state of a crypto-
graphic object allows an application or system to resolve the
current state of any cryptographic object with the following
set of state altering date values: initial date, activation date,
deactivation date, compromise date, and destroy date. The
system stores these date values in a persistent data store for
each managed cryptographic object as state meta-data. A
processing module may retrieve the state meta-data and cal-
culate the current state of a given cryptographic object. The
current state may be, for example, one of the following:
unknown, pre-active, active, deactivated, compromised,
destroyed, and destroyed-compromised.

[0075] The mechanism to generate a search filter may gen-
erate a search query language (SQL) search filter to query for
cryptographic objects using the state altering date values
stored for each object. This mechanism requires that a SQL
based data store be used to persist the cryptographic object’s
data and that there is code in place that is capable of persisting
cryptographic objects’ meta-data as well as looking it up by
its primary key from the data store. The SQL generated by this
mechanism may be used in the WHERE clause of a SELECT
statement, which when executed, returns objects that are in
the given state or objects that are in any state in the given
combination of unique states.

[0076] As noted above, it should be appreciated that the
illustrative embodiments may take the form of an entirety
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software ele-
ments. In one example embodiment, the mechanisms of the
illustrative embodiments are implemented in software or pro-
gram code, which includes but is not limited to firmware,
resident software, microcode, etc.

[0077] A dataprocessing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0078] Input/output or I/O devices (including but not lim-
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
1/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems and Ethernet cards are just a
few of the currently available types of network adapters.
[0079] The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment

US 2016/0087788 Al

was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

1. A method, in a data processing system, for managing
cryptographic keys, the method comprising:
storing a set of state altering date values in state meta-data
of'each cryptographic key in a data store, wherein the set
of state altering date values comprises an initial date, an
activation date, and a deactivation date;
retrieving the set of state altering date values from the data
store for a given cryptographic key; and
determining a state of the given cryptographic key based on
a combination of the set of state altering date values,
wherein the set of state altering date values further com-
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:
responsive to the destroy date being set and the compro-
mise date not determining that the given cryptographic
key is in a destroyed state; and
responsive to the destroy date not being set and the com-
promise date being set, determining that the given cryp-
tographic key is in a compromised state.
2. (canceled)
3. The method of claim 1, wherein determining the state of
the given cryptographic key comprises:
responsive to the deactivation date being set and less than
or equal to a current time, determining that the given
cryptographic key is in a deactivated state;
responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;
responsive to the deactivation date not being set or greater
than the current and responsive to the activation date
being set and greater than the current time, determining
that the given cryptographic key is in a pre-active state;
and
responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date being set, deter-
mining that the given cryptographic key is in an active
state.
4. The method of claim 3, wherein determining the state of
the cryptographic key further comprises:
responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.
5. The method of claim 1, further comprising:
generating a search filter to query for cryptographic keys
using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.
6. The method of claim 5, wherein generating the search
filter to query for cryptographic keys comprises:
for each search criteria element, locating corresponding
search query condition logic and appending the corre-

Mar. 24, 2016

sponding search query logic to the search criteria ele-
ment using a logical AND operator.

7. A computer program product comprising a computer
readable storage medium having a computer readable pro-
gram stored therein, wherein the computer readable program,
when executed on a computing device, causes the computing
device to:

store a set of state altering date values in state meta-data of

each cryptographic key in a data store, wherein the set of
state altering date values comprises an initial date, an
activation date, and a deactivation date;

retrieve the set of state altering date values from the data

store for a given cryptographic key; and

determine a state of the given cryptographic key based on

a combination of the set of state altering date values,
wherein the set of state altering date values further com-
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:

responsive to the destroy date being set and the compro-

mise date not being set, determining that the given cryp-
tographic key is in a destroyed state; and

responsive to the destroy date not being set and the com-

promise date being set, determining that the given cryp-
tographic key is in a compromised state.

8. (canceled)

9. The computer program product of claim 7, wherein
determining the state of the given cryptographic key com-
prises:

responsive to the deactivation date being set and less than

or equal to a current time, determining that the given
cryptographic key is in a deactivated state;

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date being set and greater than the current time, deter-
mining that the given cryptographic key is in a pre-active
state; and

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date not being set and the initial date being set, deter-
mining that the given cryptographic key is in an active
state.

10. The computer program product of claim 9, wherein
determining the state of the given cryptographic key further
comprises:

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.

11. The computer program product of claim 7, wherein the
computer readable program further causes the computing
device to:

generate a search filter to query for cryptographic keys

using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.

US 2016/0087788 Al Mar. 24, 2016

date being set and less than or equal to the current time,
determining that the given cryptographic key is in an
active state;

12. The computer program product of claim 11, wherein
generating the search filter to query for cryptographic keys
comprises:

for each search criteria element, locating corresponding
search query condition logic and appending the corre-
sponding search query logic to the search criteria ele-
ment using a logical AND operator.

13. (canceled)

14. (canceled)

15. An apparatus, comprising:

a processor; and

a memory coupled to the processor, wherein the memory
comprises instructions which, when executed by the
processor, cause the processor to:

store a set of state altering date values in state meta-data of
each cryptographic key in a data store, wherein the set of
state altering date values comprises an initial date, an
activation date, and a deactivation date;

retrieve the set of state altering date values from the data
store for a given cryptographic key; and

determine a state of the given cryptographic key based on
a combination of the set of state altering date values,
wherein the set of state altering date values further com-
prises a compromise date and a destroy date, wherein
determining the state of the given cryptographic key
comprises:

responsive to the destroy date being set and the compro-
mise date not being set, determining that the given cryp-
tographic key is in a destroyed state; and

responsive to the destroy date not being set and the com-
promise date being set, determining that the given cryp-
tographic key is in a compromised state.

16. (canceled)

17. The apparatus of claim 15, wherein determining the

state of the given cryptographic key comprises:

responsive to the deactivation date being set and less than
or equal to a current time, determining that the given
cryptographic key is in a deactivated state;

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation

responsive to the deactivation date not being set or greater
than the current time and responsive to the activation
date being set and greater than the current time, deter-
mining that the given cryptographic key is in a pre-active
state; and

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date not being set and the initial date being set, deter-
mining that the given cryptographic key is in an active
state.

18. The apparatus of claim 17, wherein determining the
state of the given cryptographic key further comprises:

responsive to the deactivation date not being set or greater

than the current time and responsive to the activation
date not being set and the initial date not being set,
determining that the given cryptographic key is in an
unknown state.

19. The apparatus of claim 15, wherein the instructions
further cause the processor to:

generate a search filter to query for cryptographic keys

using the set of state altering date values stored for each
cryptographic key in the data store, wherein the search
filter returns cryptographic keys that are in a given state
or a combination of unique states.

20. The apparatus of claim 19, wherein generating the
search filter to query for cryptographic keys comprises:

for each search criteria element, locating corresponding

search query condition logic and appending the corre-
sponding search query logic to the search criteria ele-
ment using a logical AND operator.

21. The method of claim 1, wherein the set of state altering
date values further comprises a compromise date and a
destroy date.

22. The computer program product of claim 7, wherein the
set of state altering date values further comprises a compro-
mise date and a destroy date.

#* #* #* #* #*

