

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 October 2011 (20.10.2011)

(10) International Publication Number
WO 2011/127992 A1

(51) International Patent Classification:
G06Q 10/00 (2006.01) *G06Q 30/00* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2010/059048

(22) International Filing Date:
25 June 2010 (25.06.2010)

(25) Filing Language:
English

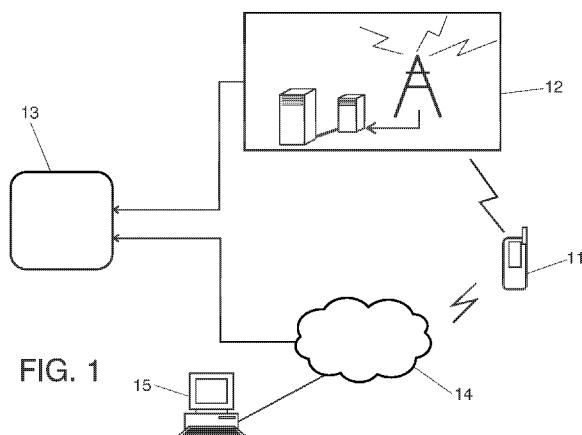
(26) Publication Language:
English

(30) Priority Data:
P201030543 15 April 2010 (15.04.2010) ES

(71) Applicant (for all designated States except US): TELEFONICA, S.A. [ES/ES]; Gran Vía, 28, E-28013 Madrid (ES).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHERUBINI, Mauro [IT/ES]; Gran Vía, 28, E-28013 Madrid (ES). OLIVER RAMIREZ, Nuria [ES/ES]; Gran Vía, 28, E-28013 Madrid (ES).


(74) Agent: CARPINTERO LOPEZ, Francisco; HERRERO & ASOCIADOS, S.L., C/Alcalá 35, E-28014 Madrid (ES).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM FOR FACILITATING EXCHANGE OF ITEMS IN A NETWORK

(57) Abstract: Method and system for defining a route between a first user and a second user having respective mobile devices. A communication is established between a backend server (13) and a plurality of mobile devices (11) belonging to a respective user of a cellular phone network (12). The mobile devices (11) capture geographical position information and send it towards said backend server (13); said backend server (13) receives geographical position information from the plurality of mobile devices (11) and infers thereof geo-temporal mobility patterns related to each mobile device; said backend server (13) receives information from the cellular phone network (12) about originated and terminated calls of the plurality of mobile devices (11) and constructs thereof call graphs of each mobile device, said call graph comprising frequently used numbers and from where the calls are initiated and terminated; said backend server (13) receives a route definition request between two mobile devices respectively associated with the first user and the second user; said backend server (13) analyzes the geo-temporal mobility patterns of the mobile devices associated with the first and second users and the remaining mobile devices included in their call graphs for defining thereto a route between the first and second users; said backend server (13) establishes the route between the first and second users and notifies the route to all mobile devices involved in the route.

WO 2011/127992 A1

**METHOD AND SYSTEM FOR FACILITATING EXCHANGE OF ITEMS IN A
NETWORK**

DESCRIPTION

5

TECHNICAL FIELD

10 The present invention relates to a mobile communication system. More particularly, the present invention relates to a system for the delivery of items in an exchange platform.

DESCRIPTION OF THE PRIOR ART

15 Because of their importance, the basic laws governing human motions have been studied in a plethora of domains: urban planning [Horner, M.W. & O'Kelly, M.E.S. Embedding economies of scale concepts for hub networks design. *J. Transp. Geogr.* 9, 255-265 (2001)], traffic forecasting [Kitamura, R., Chen, C., Pendyala, R.M. & Narayanan, R. Micro-simulation of daily activity travel patterns for travel demand forecasting. *Transportation* 27, 25-51 (2000)], and the spread of biological [Colizza, V., Barrat, A., Barthélémy, M., Valleron, A.-J. & Vespignani, A. Modelling the worldwide spread of pandemic influenza: baseline case and containment interventions. *PLoS Medicine* 4, 95-110 (2007); Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and control of epidemics in a globalized world, *Proc. Natl. Acad. Sci. USA* 101, 15124-15129 (2004)] and software viruses for mobile devices [Kleinberg, J. The wireless epidemic. *Nature* 449, 287-288 (2007)]. With the aim of 20 modelling the spread of influenza, Brockmann and colleagues [Brockmann, D., Hufnagel, L. and Geisel, T. The scaling laws of human travel. *Nature* 439 (2006)] studied human travels using trajectories of about half million one-dollar bills in the United States, (collecting the dataset using the bill tracking system 25 www.whereisgeorge.com – last retrieved February 2010). Stochastic combinatorial optimization algorithms have been applied successfully to logistic applications of vehicle routing with time windows [Bent, R. & Van Hentenryck, P. A two-stage hybrid local search for the vehicle routing problem with time windows. *Transportation Science* 38, 4, 515-530 (2004)], thus highlighting its complexity. To date little work 30

uses stochastic information for dynamic vehicle routing. An individual's behaviour over a specific day can be approximated by models that can accurately analyse, predict and cluster multimodal data from that individual and communities within the social network of a population, [N. Eagle, A. Pentland, "Eigenbehaviors:identifying structure in routine", Behavioral Ecology and Sociobiology, vol63, may 2009].

There exist several examples of web portals that support exchange of goods or services. "EasySwap" (<http://easyswap.org/> - last retrieved February 2010) is a notable example of service that promotes the well being of the users by encouraging them to make unused goods, services and capabilities available to others. The limit of this kind of services is that they rely on the users to route the object from the lender to the borrower. There are many other examples on the Internet of barter exchange: "u-exchange" (<http://www.u-exchange.com> – last retrieved February 2010), "freecycle" (<http://www.freecycle.org> – last retrieved February 2010- , "trade to save" (<http://www.tradetosave.co.nz/> - last retrieved February 2010), just to name a few. Existing solutions rely on the users to decide when and how to route the item from the lender to the borrower. In the case in which the parties decide to rely on a parcel service, the cost of the service might exceed the cost of the item. In the majority of the circumstances, the transfer of good of small value might be simply not practical and completely unsupported by current solutions for bargain exchanges.

SUMMARY OF THE INVENTION

In order to overcome the above mentioned drawbacks, a method and system for establishing a route is defined. for the optimization of a delivery route by applying stochastic combinatorial optimization to human mobility patterns as inferred from call detail records (CDR) and location information. Besides, involvement of other peers in the exchange is considered based on the social network constructed from these CDRs information.

In a first aspect, a method for defining a route between a first user and a second user having respective mobile devices is disclosed. The method establishes communication between a backend server and a plurality of mobile devices, each of

5 said mobile devices belonging to a user of a cellular phone network. The method comprises: said plurality of mobile devices capturing geographical position information and sending said geographical position information towards said backend server; said backend server receiving geographical position information from the plurality of mobile devices and inferring thereof geo-temporal mobility patterns related to each mobile device; said backend server receiving information from the cellular phone network about originated and terminated calls of the plurality of mobile devices and constructing thereof call graphs of each mobile device, said call graph comprising frequently used numbers and from where the calls are initiated and terminated; said backend server receiving a route definition request between two mobile devices belonging to the plurality of mobile devices, said two mobile devices being respectively associated to said first user and said second user; said backend server analysing said geo-temporal mobility patterns of said mobile devices associated to said first and second users and geo-temporal mobility patterns of the remaining mobile devices, belonging to the plurality of mobile devices and included in their call graphs for defining thereto a route between the first and second users; said backend server establishing the route between the first and second users and notifying said route to all mobile devices, belonging to the plurality of mobile devices, involved in said route.

20

Preferably, the geo-temporal mobility patterns comprise frequently visited locations, time spent on said locations and recurrence of said visits.

25

In a preferred embodiment, the plurality of mobile devices send geographical position information to the backend server comprising cell-ID information and GPS coordinates.

30

The backend server preferably uses call detail records of said plurality of mobile devices in order to collect called phone numbers in originated calls and caller phone numbers in terminated calls.

The backend server defines the route by performing at least one of the following operations: minimizing the number of mobile devices involved in the route;

minimizing the time to reach the final destination; giving priority to locations with the maximum probability that two users will be present for the same period of time.

5 The users of the cellular phone network preferably interact with the backend server through a web-based application that allows them to input a route definition request. In a preferred embodiment, the web-based application is accessed either from a desk-top based browser or from a mobile device.

10 In another aspect, a system for defining a route between a first user and a second user, having respective mobile devices, is described. It comprising: a plurality of mobile devices, each of said mobile devices belonging to a user of a cellular phone network, said mobile devices being configured for capturing and transmitting regularly geographical position information; and a backend server configured for: receiving geographical position information from said plurality of mobile devices and inferring thereof geo-temporal mobility patterns related to each mobile device; receiving from the cellular phone network information about originated and terminated calls of the plurality of mobile devices and constructing thereof call graphs of each mobile device, said call graph comprising frequently used numbers and from where the calls are initiated and terminated; receiving a route definition 15 request between two mobile devices belonging to the plurality of mobile devices, said two mobile devices being respectively associated to said first and second users; analysing geo-temporal mobility patterns related to said mobile devices associated to said first and second users and geo-temporal mobility patterns of the remaining mobile devices belonging to the plurality of mobile devices and included in their call graphs for defining thereto a route between the first user and the second user; establishing the route between said first and second users and notifying said route to all mobile devices, belonging to the plurality of mobile devices, involved in said route.

20 25 30 The geo-temporal mobility patterns preferably comprise frequently visited locations, time spent on said locations and recurrence of said visits.

The plurality of mobile devices preferably comprises a software application that sends location information to the backend server comprising cell-ID information and GPS coordinates.

5 The backend server (13) preferably uses call detail records of said plurality of mobile devices in order to collect called phone numbers in originated calls and phone numbers of the initiating caller in terminated calls.

10 The backend server preferably comprises: a data logger configured for collecting information from said plurality of mobile devices and from the cellular phone network; a data storage repository for storing the information received from the plurality of mobile devices and from the cellular phone network (12) through the data logger; a classifier configured for analysing the location information collected by the data logger and determining the frequently visited locations of each mobile device belonging to said plurality of mobile devices, the time spent on said locations and the recurrence of said visits; a social network analyser configured for analysing information from the data logger regarding called phone numbers by the mobile device as well as phone numbers from where the mobile device terminated calls are initiated and constructing a call graph of most frequently used numbers corresponding to other service users; a user profile repository for storing information from the classifier and the social network analyser corresponding to all users; a logistic planner configured for using profiles of users comprising geo-temporal mobility patterns information as well as information on the used numbers call graph of said first and second users to define a route from the geographical locations normally visited by the first user to the geographical locations normally visited by the second user, performing a multidimensional optimization; a notifier which is informed by the logistic planner about the defined route and informs the users involved in said route of the times and locations at which the users must meet. The logistic planner preferably defines the route by performing at least one of the following operations: minimizing the number of mobile devices involved in the route; minimizing the time to reach the final destination; giving priority to locations with the maximum probability that two users will be present for the same period of time.

In summary, a method and system for establishing a route is described. Stochastic combinatorial optimization is applied to human mobility patterns as inferred from call detail records (CDR) and location information. Besides, involvement of other users or peers in the exchange of an item is considered, based on the social network constructed from these CDRs information.

5

BRIEF DESCRIPTION OF THE DRAWINGS

To complete the description and in order to provide for a better understanding of the invention, a set of drawings is provided. Said drawings form an integral part of the description and illustrate a preferred embodiment of the invention, which should not be interpreted as restricting the scope of the invention, but rather as an example of how the invention can be embodied. The drawings comprise the following figures:

10 15 Figure 1 is a general scenario of the communication method and system comprising all elements involved.

Figure 2 is a block diagram of the backend server according to the invention.

20 Corresponding numerals and symbols in the different figures refer to corresponding parts unless otherwise indicated.

DESCRIPTION OF THE PREFERRED EMBODIMENT

25 This disclosure relates to a communication method and system for defining a route within an exchange platform where people lend each other items of preferably small value (such as ski boots or a star-shaped screwdriver). Items are exchanged for free, no real money is involved. Items are insured by credit card and are transported by the owners or by carriers (owner's friend or acquaintance in a social network).

30 Participants in the program are not required to change their daily routines in order to deliver the items.

As it is shown in figure 1, the system comprises a plurality of mobile devices 11 belonging to a cellular mobile network 12 and a backend server 13. Each mobile

device 11 captures regularly the position of a user and this information together with his/her social interactions (destination and origin of voice calls, SMSs, MMSs, etc) is received by the backend server 13 which uses it for inferring spatio-temporal mobility patterns. In the case of delivery of a shared item, the system computes the optimized times at which the item can be passed onto a next person. The user is reminded and alerted through the mobile device 11.

The system comprises a backend server 13 that constantly logs the geographical position of the user. This is achieved combining two different strategies: the first technique that can be applied is to access to the user call detail records (CDR) and therefore simply collect anonymous information on the numbers s/he calls and from where the calls are initiated; the second technique comprises installing a software application in the plurality of mobile devices 11 the users use that sends location information to the backend server 13 (i.e., Cell-ID information and/or GPS coordinates). Preferably both strategies are used, although alternatively only one can be used.

In addition, the users of the system interact with the backend server 13 through a web-based front-end 14 that allows them to input the items they intend to lend to other friends, choose items they intend to borrow from other friends, and modify their profile information. The web-based front-end 14 can be accessed both from a desktop-based browser 15 and from the browser of the mobile device 11.

The backend server 13 achieves different functions. In figure 2 the modules of the backend server 13 are shown. First the backend server 13 collects all the call detail records (CDR) provided by the mobile cellular network as well as the location information of the mobile device through a data logger 21 and stores it in a data storage repository 22. After an extensive period of collection, a classifier 23 parses this information and determines the location of residence of the user, the location in which s/he typically spend workdays (i.e., work location), and the locations of the city in which the user performs recurring activities during the week (e.g., the gym). Additionally, the backend server 13 comprises a social network analyser 24. Given the call history, the social network analyzer 24 constructs the call graph of the most frequently called numbers corresponding to potential family members, friends, and

acquaintances. The outputs of the classifier 23 and of the social network analyzer 24 are stored into a user profile 25 that is used by the logistic planner 26, explained below.

5 The logistic planner 26 takes care of executing logistic assignments as dictated by users' choices in the web-based frontend. Thus, the logistic planner 26 determines how to route an item from a first user (the lending-peer) to a second user (the borrowing-peer). It has access to the geo-temporal patterns of the lending-peer and the borrowing-peer through the classifier 23. But, in addition, it has access also to 10 the geo-temporal patterns of other users or peers comprised in the lending and borrowing peers' social networks as phone numbers and call detail record information on these peers is passed through the social network analyser 24. Therefore, it performs a multidimensional optimization to route the item from the 15 geographical locations normally visited by the lending-peer to the geographical locations normally visited by the borrowing-peer. The logistic planner 26 takes advantage of the locations normally visited by the other peers in the social network corresponding to other users of the system and operates at least one of the following optimizations:

20

- minimizes the number of hops that the item has to travel for reaching the borrowing-peer;
- minimizes the time that it will take to reach the final destination;
- prefers locations with the maximum probability that two peers will be present for the same period of time.

25 Preferably, the three optimizations are performed.

Once identified and established the optimal route, the logistic planner communicates 30 it to the notifier 27, which takes responsibility to inform the users or peers involved into the transfer of the item about the times and locations at which the item has to be transferred from one peer to the next.

An advantage of this method and system for defining a route is to allow delivery of items between friends without any involvement of any parcel service and money to

pay the delivery of the goods. The users of the system are not asked to change their daily routines to deliver the items and no extra energy is wasted to transport them to their final destinations and back to its owner.

5 Thus, a route is established between two users, through which items can be swapped with dramatic benefits for the environment and personal finance of the involved parties.

10

CLAIMS

1. A method for defining a route between a first user and a second user having respective mobile devices, said method establishing communication between a backend server (13) and a plurality of mobile devices (11), each of said mobile devices belonging to a user of a cellular phone network (12), the method comprising:

5 a. said plurality of mobile devices (11) capturing geographical position information and sending said geographical position information towards said backend server (13);

10 b. said backend server (13) receiving geographical position information from the plurality of mobile devices (11) and inferring therefrom geo-temporal mobility patterns related to each mobile device;

15 c. said backend server (13) receiving information from the cellular phone network (12) about originated and terminated calls of the plurality of mobile devices (11) and constructing therefrom call graphs of each mobile device, said call graph comprising frequently used numbers and from where the calls are initiated and terminated;

20 d. said backend server (13) receiving a route definition request between two mobile devices belonging to the plurality of mobile devices (11), said two mobile devices being respectively associated to said first user and said second user;

25 e. said backend server (13) analysing said geo-temporal mobility patterns of said mobile devices associated to said first and second users and geo-temporal mobility patterns of the remaining mobile devices, belonging to the plurality of mobile devices (11) and included in their call graphs for defining thereto a route between the first and second users;

30 f. said backend server (13) establishing the route between the first and second users and notifying said route to all mobile devices, belonging to the plurality of mobile devices (11), involved in said route.

2. The method of claim 1, wherein said geo-temporal mobility patterns comprise frequently visited locations, time spent on said locations and recurrence of said visits.

5 3. The method of either claim 1 or 2, wherein said plurality of mobile devices (11) send geographical position information to the backend server (13) comprising cell-ID information and GPS coordinates.

10 4. The method of any preceding claim, wherein said backend server (13) uses call detail records of said plurality of mobile devices (11) in order to collect called phone numbers in originated calls and caller phone numbers in terminated calls.

15 5. The method of any preceding claim, wherein said backend server (13) defines the route by performing at least one of the following operations:

- a. minimizing the number of mobile devices involved in the route;
- b. minimizing the time to reach the final destination;
- c. giving priority to locations with the maximum probability that two users will be present for the same period of time;

20 6. The method of any preceding claim, wherein said users of the cellular phone network interact with the backend server through a web-based application (14) that allows them to input a route definition request.

25 7. The method of claim 6, wherein said web-based application (14) is accessed either from a desk-top based browser (15) or from a mobile device (11).

8. A system for defining a route between a first user and a second user, having respective mobile devices, the system comprising:

- a. a plurality of mobile devices (11), each of said mobile devices belonging to a user of a cellular phone network, said mobile devices being configured for capturing and transmitting regularly geographical position information,
- b. and a backend server (13) configured for:

- i. receiving geographical position information from said plurality of mobile devices (11) and inferring thereof geo-temporal mobility patterns related to each mobile device,
- ii. receiving from the cellular phone network (12) information about originated and terminated calls of the plurality of mobile devices (11) and constructing thereof call graphs of each mobile device, said call graph comprising frequently used numbers and from where the calls are initiated and terminated;
- iii. receiving a route definition request between two mobile devices belonging to the plurality of mobile devices (11), said two mobile devices being respectively associated to said first and second users,
- iv. analysing geo-temporal mobility patterns related to said mobile devices associated to said first and second users and geo-temporal mobility patterns of the remaining mobile devices belonging to the plurality of mobile devices (11) and included in their call graphs for defining thereto a route between the first user and the second user,
- v. establishing the route between said first and second users and notifying said route to all mobile devices, belonging to the plurality of mobile devices (11), involved in said route.

20

9. The system of claim 8, wherein said geo-temporal mobility patterns comprise frequently visited locations, time spent on said locations and recurrence of said visits.

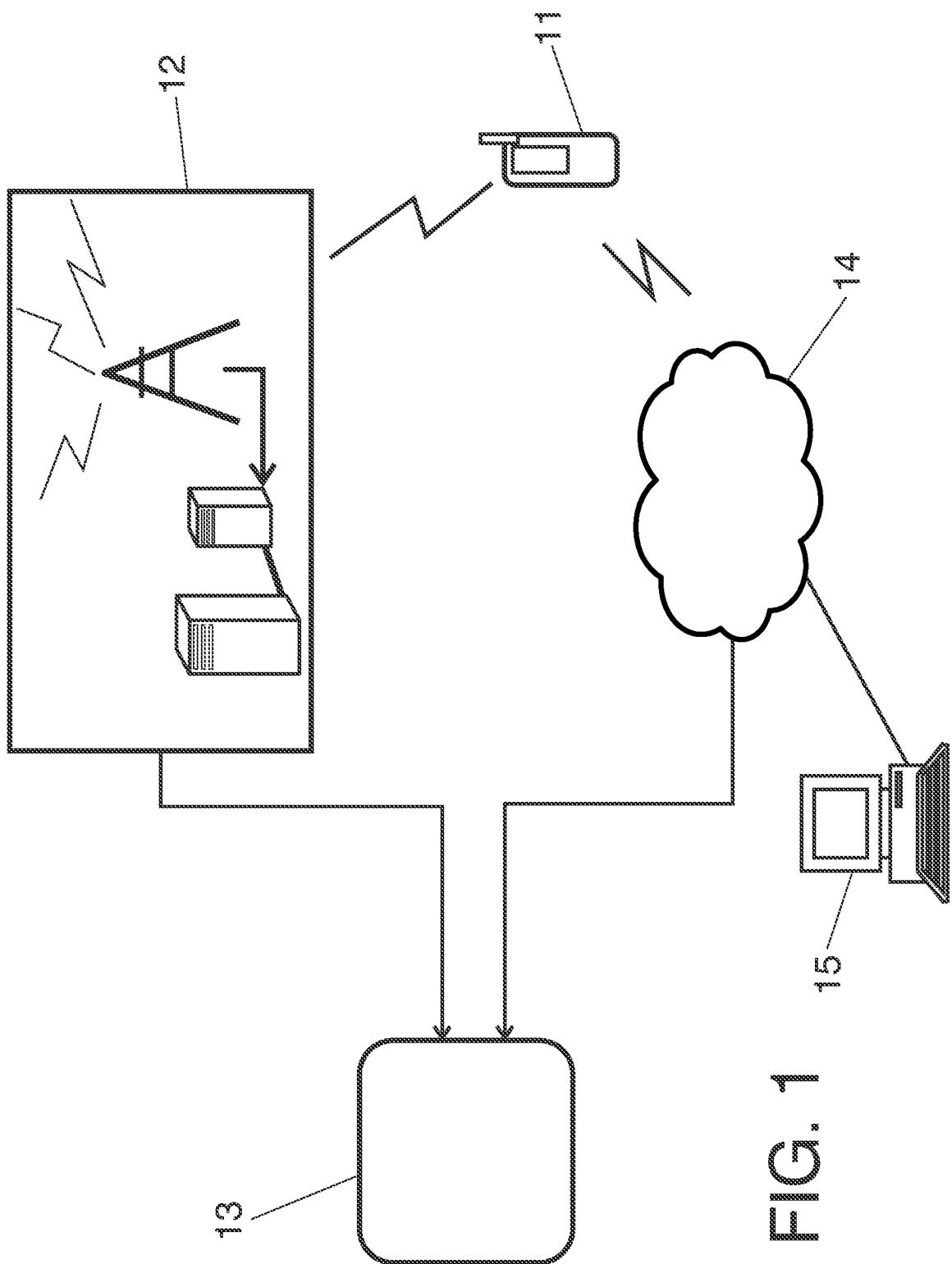
25

10. The system of either claim 8 or 9, wherein said plurality of mobile devices (11) comprise a software application that sends location information to the backend server (13) comprising cell-ID information and GPS coordinates.

30

11. The system of any of claims 8-10, wherein said backend server (13) uses call detail records of said plurality of mobile devices (11) in order to collect called phone numbers in originated calls and phone numbers of the initiating caller in terminated calls.

12. The system of any of claims 8-11, wherein said backend server (13) comprises:


- 5 a. a data logger (21) configured for collecting information from said plurality of mobile devices (11) and from the cellular phone network (12);
- b. a data storage repository (22) for storing the information received from the plurality of mobile devices (11) and from the cellular phone network (12) through the data logger (21);
- 10 c. a classifier (23) configured for analysing the location information collected by the data logger (21) and determining the frequently visited locations of each mobile device belonging to said plurality of mobile devices (11), the time spent on said locations and the recurrence of said visits;
- 15 d. a social network analyser (24) configured for analysing information from the data logger (21) regarding called phone numbers by the mobile device as well as phone numbers from where the mobile device terminated calls are initiated and constructing a call graph of most frequently used numbers corresponding to other service users;
- e. a user profile repository (25) for storing information from the classifier (23) and the social network analyser (24) corresponding to all users;
- 20 f. a logistic planner (26) configured for using profiles of users comprising geo-temporal mobility patterns information as well as information on the used numbers call graph of said first and second users to define a route from the geographical locations normally visited by the first user to the geographical locations normally visited by the second user, performing a multidimensional optimization;
- 25 g. a notifier (27) which is informed by the logistic planner about the defined route and informs the users involved in said route of the times and locations at which the users must meet.

30 13. The system of claim 12, wherein said logistic planner (26) defines the route by performing at least one of the following operations:

- a. minimizing the number of mobile devices involved in the route;
- b. minimizing the time to reach the final destination;

- c. giving priority to locations with the maximum probability that two users will be present for the same period of time.

1/2

2/2

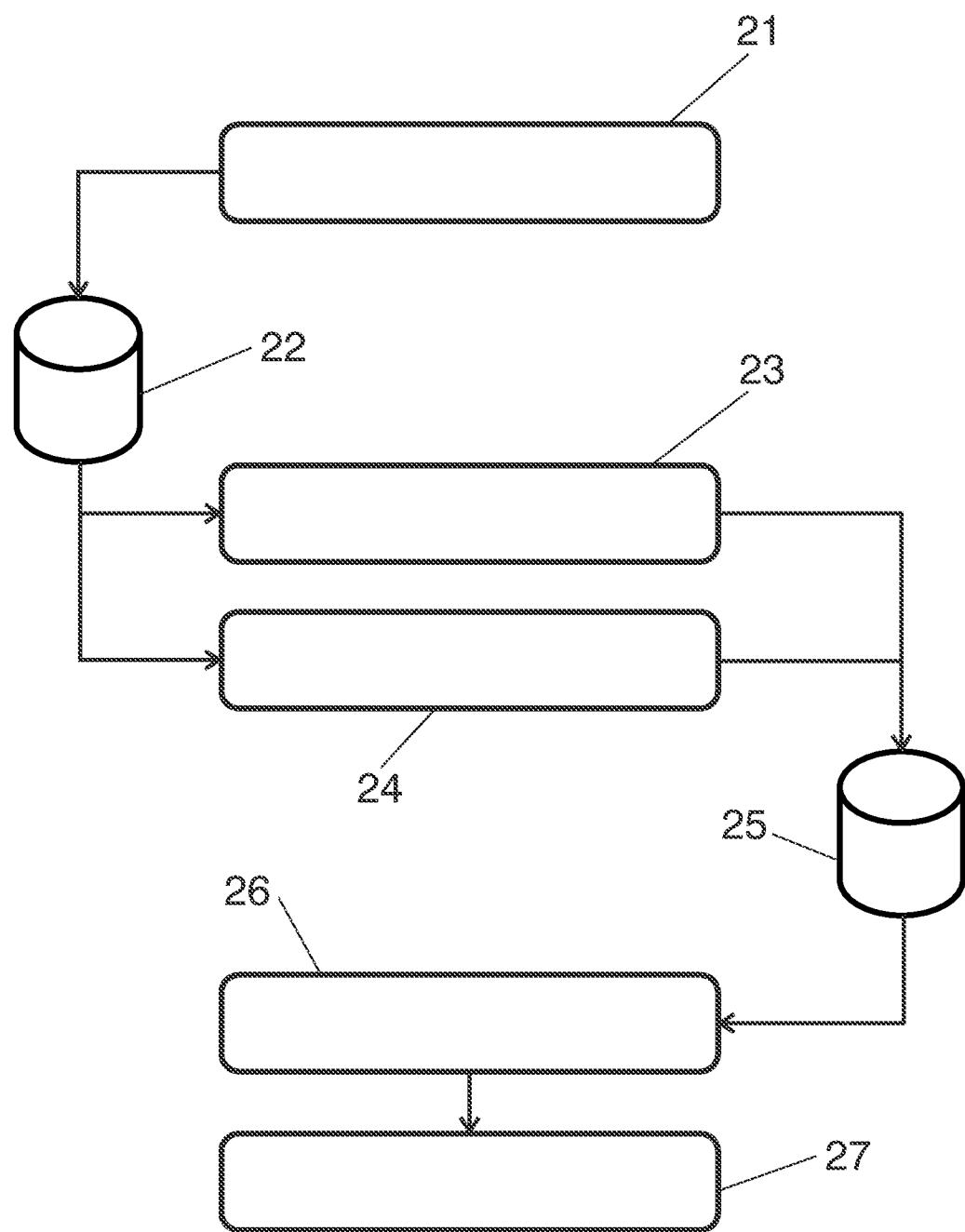


FIG. 2

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2010/059048

A. CLASSIFICATION OF SUBJECT MATTER
INV. G06Q10/00 G06Q30/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06Q H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2005 114566 A (NEC ELECTRONICS CORP) 28 April 2005 (2005-04-28) * abstract -----	1-13
X	US 2008/102856 A1 (FORTESCUE MURRAY BLAKE [GB] ET AL) 1 May 2008 (2008-05-01) * abstract paragraphs [0001], [0004], [108]; claim 18 -----	1-13
X	US 2005/204379 A1 (YAMAMORI OSAMU [JP]) 15 September 2005 (2005-09-15) * abstract paragraphs [0006], [0046] -----	1-13
X	US 2006/079247 A1 (RITTER RUDOLF [CH]) 13 April 2006 (2006-04-13) paragraphs [0022], [0082]; claims 8,9 -----	1-13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 March 2011

21/03/2011

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Laub, Christoph

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2010/059048

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
JP 2005114566	A	28-04-2005	JP	4312569 B2		12-08-2009
US 2008102856	A1	01-05-2008	CN	101573993 A		04-11-2009
			EP	2084617 A1		05-08-2009
			JP	2010508770 T		18-03-2010
			KR	20090077079 A		14-07-2009
			WO	2008054882 A1		08-05-2008
US 2005204379	A1	15-09-2005	CN	1668103 A		14-09-2005
			EP	1587320 A2		19-10-2005
			JP	2005260728 A		22-09-2005
			KR	20060044309 A		16-05-2006
US 2006079247	A1	13-04-2006	EP	1640891 A1		29-03-2006