Title: MAGNETICALLY LOADED COMPOSITE ROTORS AND TAPES USED IN THE PRODUCTION THEREOF

Abstract: A method of making a magnetically loaded pre-impregnated tape uses a drum (1) that is heated and which is associated with a heated bath (2) containing a thermo-plastic resin solution. A fibre tape material (4) is fed onto the drum (1) and, just prior to the fibre tape material meeting the periphery of the drum, the fibre tape material (4) is impregnated with an isotropic magnetic particle material (6) to form the pre-impregnated tape (8). The pre-impregnated tape may be fed to a heating station where it is bonded with a thermoplastic resin impregnated fibre tow to produce a magnetically loaded composite tape.

FIG. 1
MAGNETICALLY LOADED COMPOSITE ROTORS AND TAPES USED IN THE PRODUCTION THEREOF

This invention relates to a magnetically loaded composite (MLC) rotor, to tapes used in the production thereof, and to apparatus for manufacturing said rotor and tapes.

MLC rotors, sometimes referred to a flywheels, may be used in electric motors/generators that are rotated at high speed, in excess of 30,000 r.p.m., to act as energy stores and/or motors. The rotors are able to act as a motor or a generator in dependence upon whether energy is applied to, or extracted from, an electrical coil on a stator used in conjunction with the rotor. The use of an MLC rotor has the advantage that discrete magnets, which would fly off at high speed, are not required.


The known method of producing an MLC rotor is to wind dry glass fibre tows and a slurry made up of powdered magnetic material, such as anisotropic NdFeB, and a thermo-setting resin. The method is to progressively feed the slurry onto a mandrel to produce a layer of the slurry, whilst at the same time wind a layer of dry glass fibre tow onto the slurry layer with an open structure. The openings in the open structure are filled with slurry so that the glass fibre tow traps a layer of MLC slurry, squeezing it to produce the required resin level. The excess resin in the MLC slurry is used to impregnate the glass fibre tow to produce the desired structure. The wound structure is then gelled and cured whilst rotating on the mandrel. Such a method is described in WO-A-94/06193.

The known method of manufacturing the MLC rotor relies on the mobility of the resin and the NdFeB’s powder slurry to flow in order to produce the required structure. The ability to flow prevents the adoption of procedures required to enable gains in remanence flux associated with current anisotropic NdFeB particulates to be gained because the particulate tends to clump around the poles of the orientation
magnets. Such clumping causes imbalance which is detrimental in a high speed rotor/flywheel and can lead to the destruction of the rotor and stator assembly.

The present invention seeks to at least partially mitigate the foregoing difficulty.

According to a first aspect of this invention there is provided a first feature of a method of making a magnetically loaded pre-impregnated tape, including thermoplastic resin–impregnated fibres doped with magnetic particles, said method including the steps of impregnating a fibre tape material with a thermoplastic resin solution, and with a solvent-doped anisotropic magnetic particle material.

Conveniently, the anisotropic magnetic material has nano-sized particles.

Preferably, the impregnation is provided by passing the fibre tape material over heated transport means arranged to transport the thermoplastic resin solution from a heated bath.

Advantageously, the heated bath contains the thermoplastic resin solution and one of polyetheretherketone (PEEK) and polyetherimide (PEI) heated to a temperature of 60°C to 100°C.

Preferably, the fibre tape is made of glass fibre, carbon fibre, Kevlar™ (polyamide), plastics, aluminium, boron, nylon polyolefin, or mixtures thereof.

Preferably, the magnetic particles are formed of nano-sized NdFeB particles, or, alternatively, iron, nickel, cobalt, and ferrite, and compounds thereof.

Advantageously, the solvent-doped magnetic particle material is provided from a feed that includes NdFeB particles, a solvent, and PEEK or PEI.

Preferably, the transport means is a heated drum heated to a temperature of 60°C to 100°C.

Advantageously, the thickness of the thermoplastic resin solution and the tape formed by combining the fibre tape material and the thermoplastic resin solution is controlled by doctor plate means associated with said heated drum.

Advantageously, after passing the doctor plate means, the thickness of the tape is further controlled by passage between roller means which also aid in removing excess solvent.

Conveniently, excess solvent is also removed by heating means and the excess solvent is extracted for recovery.
According to a second feature of said first aspect of this invention there is provided an apparatus for performing the aforesaid first feature including heated drum means traversing a heated bath arranged to contain a thermplastic resin solution, feed means arranged to feed a fibre tape material to said drum means, and feed nozzle means arranged to supply a solvent-doped magnetic particle material to said drum means to impregnate the thermoplastic solution.

Advantageously, doctor plate means are arranged in proximity to the drum means to control the thickness of the thermoplastic resin material and the magnetically impregnated thermoplastic solution.

Conveniently, heating and extractor means are provided to remove excess solvent.

According to a third feature of said first aspect of this invention there is provided a magnetically loaded pre-impregnated thermoplastic tape made in accordance with the method the first feature of said first aspect of this invention.

According to a first feature of a second aspect of this invention there is provided a method of making a magnetically loaded composite tape including the steps of feeding a thermoplastic resin impregnated fibre tow to a heating station, feeding an anisotropic magnetically loaded pre-impregnated tape to said heating station, applying heat at said heating station to bond the tow and the tape so as to produce the magnetically loaded composite tape.

Preferably heat at the heating station is provided by one of laser means and hot nitrogen means.

Conveniently, the laser means is one of pulsed or continuously driven to provide a temperature sufficient to bond the tow and the tape at a temperature, for example, in the range 350°C - 400°C.

Advantageously, the speed at which the tow and the tape are fed is in the range of 0.1 – 1 m/s.

Preferably, the heating station includes a heating mandrel to form the composite tape into a desired shape.

In an embodiment, conveniently, the heating station includes a rotatably driven, heated mandrel and a compaction roller associated with the mandrel, said tow
and tape being fed to pass between the compaction roller and the mandrel, wherein the tape is, advantageously, wound around the mandrel for subsequent utilisation.

Advantageously, the mandrel is heated to a temperature in the range 120° - 200°C.

Preferably, the mandrel has a magnetic field embedded therein to provide the anisotropic magnetic loaded pre-impregnated tape with a desired magnetic configuration.

Conveniently, the mandrel is configured with an even number of magnets to produce, for example, six pole pairs comprising twelve magnets.

Advantageously, the magnets are arranged in an arc so that as the radius of the tape increases about the mandrel, the poles in the magnetically loaded pre-impregnated tape are substantially aligned.

According to a second feature of the second aspect, there is provided an apparatus for performing the first feature of the second aspect.

According to a third feature of the second aspect of this invention, there is provided a magnetically loaded composite tape made in accordance with the first feature of the second aspect of this invention.

Thermoplastic resin is a polymer that turns to a liquid when heated and freezes to a glassy state when sufficiently cooled. Thermoplastic polymer tapes differ from thermosetting polymers used in MLC rotor construction in the prior art in that they can be re-melted and re-moulded. On of the advantages of using a thermoplastic matrix over the thermosetting matrix of the prior art is that the magnetic particle material’s mobility is limited during fabrication so that the clumping effect due to the particles moving and concentrating over the field’s poles is substantially reduced.

This is due to the matrix being liquid in a very small location and for a very short time at the heating station during fabrication.

According to a third aspect of this invention, there is provided a method of making a rotor including the steps of performing the first features of the first and second aspects, winding the magnetically loaded pre-impregnated tape upon a magnetically energised mandrel to align the anisotropic magnetic particle material prior to magnetisation with a desired magnetic configuration.
In a feature of the third aspect, there is provided a rotor made in accordance with the third aspect.

According to a fourth aspect of this invention, there is provided a mandrel for winding a magnetically loaded composite tape, said mandrel being made of a paramagnetic material and including a configuration of magnetic pole pairs arranged thereon so as to align magnetic particles in said tape.

 Preferably, the mandrel is substantially cylindrical with alternating pole pairs being arranged adjacent radially inner and outer surfaces of said cylinder.

 Advantageously, the mandrel is arranged to be heated by heating means, such as hot air.

 Conveniently, the mandrel is arranged to be rotated by a winding machine.

 The mandrel of this invention may be designed to have a magnetic field embedded into it which is the same configuration as that required of the final component. By adopting such an apparatus with anisotropic magnetic particle material, the magnetic regimes of the particles produce a stronger magnetic pattern when the rotor is subsequently magnetised for utilisation.

 The invention will now be described, by way of example, with reference to the accompanying drawings, in which:

 Figure 1 shows an apparatus for making a magnetically loaded pre-impregnated tape in accordance with the first aspect of this invention;

 Figure 2 shows an apparatus for manufacturing a magnetically loaded composite tape in accordance with the second aspect of this invention, and

 Figure 3 shows a mandrel in accordance with the fourth aspect of this invention.

 In the Figures, like reference numerals denote like parts.

 The apparatus shown in Figure 1 for manufacturing a magnetically loaded pre-impregnated tape has a drum 1 driven by a motor (not shown), the drum being heated by any suitable source, such as electrical elements or hot air, to a temperature of 60°C to 100°C. The drum 1 is associated with a bath 2 which is heated to a temperature of 60°C to 100°C by any suitable means, such as electrical elements or hot air. The bath is arranged to contain a thermoplastic resin solution, such as epoxy resin, a solvent
and polyetheretherketone (PEEK), or polyetherimide (PEI) in proportions required to
give the desired resin content for the application.

So as to control the thickness of the material in the bath 2 that is transported
about the drum 1, there is provided a doctor blade 3, radially arranged adjacent the
outer periphery of the drum.

Fibre tape material 4, such as glass fibre, or carbon fibre tape, or Kevlar™
polyamide), plastics or aluminium tape, boron, nylon, polyolefin, or combinations
thereof, or any other suitable known fibres, is fed from a source (not shown) about a
feed roller 5 to the drum 1 just prior to a location on the periphery of the drum where
a slurry of nano-sized magnetic particles, such as NdFeB particles, solvent and
polyetheretherketone (PEEK) or polyetherimide (PEI), is provided from a feed nozzle
6. The slurry may contain 30% to 45% by volume magnetic particle material. Other
magnetic materials that may be used are iron, nickel, cobalt, or alloys thereof. The
magnetic material may, alternatively, be made of ferrite, e.g. barium ferrite, or other
rare-earth elements, such as cobalt-samarium. A slurry doctor plate 7 radially
arranged adjacent the drum periphery is used to control the thickness of the combined
resin, fibre and magnetic particle slurry, the slurry adhering to the thermoplastic tape
on one side and edges. Upon leaving the drum 1, the magnetically loaded pre-
impregnated tape 8 that is, thus, formed, is passed between squeeze rollers 9, 10 into a
heated tunnel 11 before exiting through an outlet 12 of the tunnel. The tunnel is
heated to a temperature of 100°C - 150°C. The tunnel 11 forms part of a housing 13
within which the components 1 – 10 are located. The housing 13 has an inlet 14
connected to a supply of hot nitrogen 15 at a temperature of 100°C. Heaters 16,
located around the tunnel in combination with the hot nitrogen 12, are arranged to
drive off excess solvent from the tape 8 and the excess solvent is removed from
housing outlet 17, as shown by arrow headed line 18 to be fed to a solvent recovery
plant (not shown). The pre-imregnated tape 8 is then passed through a set of heated
calendering rollers (not shown) to produce a flat tape.

The apparatus shown in Figure 2 is used to manufacture a magnetically loaded
composite tape using thermoplastic tapes. A cylindrical mandrel 20 is driven by a
motor (not shown) to provide thermoplastic tapes (described hereinafter) at a speed in
the range 0.5 – 1m/s and the mandrel is heated by a convenient source (not shown),

30
which may provide the internal portion of the cylinder with hot air, shown by arrow headed line 21. The source (not shown) may be electrically heated. The mandrel 20 is connected to be mounted on a winding machine (not shown), the mandrel being arranged to be rotated in the direction shown by arrow headed line 22. A thermoplastic resin impregnated tow 24 is fed over pre-tensioning rollers 25, 26, 27 to a compaction and guide roller 28 locating at a heating station 29. The heating station 29 is supplied with heating energy from a laser 30 which may be a 2KW laser providing pulsed or continuous energy at a temperature of 350°C to 400°C at the heating station 29. Also supplied to the heating station 29 is the magnetically loaded pre-impregnated tape 8, which is fed over tensioning rollers 31, 32. Although the invention has been described using just one thermoplastic resin impregnated fibre tow 24 and one anisotropic magnetically loaded pre-impregnated tape 8, it is to be understood that the invention is not limited thereto and the number of tapes utilised may be varied in accordance with the construction of MLC composite tape required.

The magnetically loaded composite tape that is formed at the heating station 29 by bonding the tapes 8 and 24 is wound on the mandrel 20 to form a motor/generator rotor. The heating by the laser also assists in releasing stress in the tapes. After formation, stress relief is performed by heating in an oven to 300°C. Although described in the embodiment of Figure 2 as being formed on a cylindrical mandrel, it is to be understood that the bonded tape output from the heating station may be formed into any desired shape/configuration.

The advantage of using thermoplastic tapes over thermosetting tapes is that the magnetic particle material’s mobility is limited during fabrication because the matrix is liquid at the heating station at a very small location and for a very short time. Thus, the clumping effect, due to the magnetic particle material moving and concentrating over electrical field poles, is substantially reduced. Electrical field poles, is substantially reduced.

The composite tape preferably has the anisotropic NdFeB particulate material magnetic regimes aligned during the manufacturing process to produce a stronger magnetic pattern when the rotor is magnetised. As shown in Figure 3, a mandrel 40 of paramagnetic material, such as titanium, which is cylindrically shaped, is provided with equi-spaced electro-magnetic pole pairs 41, 42 arranged circumferentially and
radially therein with respect to circumferential surfaces of the cylinder. Thus, alternate north 41 and south 42 poles are arranged radially to the mandrel cylinder, each pole being interspaced by spacers, and the poles alternating around the cylinder periphery. There may be, for example, twelve poles, that is six pole pairs, arranged around the mandrel periphery, although only four pole pairs are shown in Figure 3 for ease of explanation. Although not shown, the titanium mandrel forms an outer cylinder and a there is a radially inner ferrous cylinder with the pole pairs located in an annulus between the inner and outer cylinders. In use, as the mandrel is turned, the electromagnets 41, 42 are pulsed to align the alternating north and south poles in the tape and the timing is arranged so that the north and south poles alternate with previously magnetised layers. By using a mandrel having a magnetic field embedded within it so as to have the same configuration required by the final component, the magnetic regimes of the anisotropic magnetic particles in the material align to produce a stronger magnet when the rotor is energised and by using a magnetised mandrel, a more even magnetic distribution is achieved. Additionally, the magnetic field in the mandrel assists in holding the tape in position before the laser melts the tape at the heating station 29. The magnets 41, 42 may be arranged in an arc so that, as the radius of the tape increases about the mandrel, the poles in the tape are substantially aligned.

The rotor thus formed is then subject to a stress reducing/annealing process in which the rotor is heated to approximately 250°C and then allowed to cool over a twelve hour period.

Although a stress reducing/annealing process is required when using a thermoplastic tape, there is no gelling or curing operation, as required when using thermosetting resin tapes, so that the manufacturing time is further reduced.

With the subject invention, there is no exothermal limit to the size of the rotor produced so that the production of very large diameter rotors is possible, which it is not with current thermosetting, wet, winding processes.
CLAIMS

1. A method of making a magnetically loaded pre-impregnated tape (8) having thermoplastic resin impregnated fibres doped with magnetic particles, said method including the steps of impregnating a fibre tape material (4) with a thermoplastic resin solution, and with a solvent-doped anisotropic magnetic particle material.

2. A method as claimed in claim 1, wherein the anisotropic magnetic material has nano-sized particles.

3. A method as claimed in claim 1 or 2, wherein the impregnation is provided by passing the fibre tape material (4) over heated transport means (1) arranged to transport the thermoplastic resin solution from a heated bath (2).

4. A method as claimed in claim 3, wherein the heated bath contains the thermoplastic resin solution and one of polyetheretherketone (PEEK) and polyetherimide (PEI) heated to a temperature of 60°C to 100°C.

5. A method as claimed in any preceding claim, wherein the fibre tape is made of glass fibre, carbon fibre, Kevlar™ (polyamid), plastics, aluminium, boron, nylon polyolefin, or mixtures thereof.

6. A method as claimed in any preceding claim, wherein the magnetic particles are formed of nano-sized NdFeB particles.

7. A method as claimed in any of claims 1 to 5, wherein the magnetic particles are formed of nano-sized particles of iron, nickel, cobalt, and ferrite, and compounds thereof.

8. A method as claimed in any preceding claim, wherein the solvent-doped anisotropic magnetic particle material is provided from a feed (6) that includes NdFeB particles, a solvent, and PEEK or PEI.
9. A method as claimed in claim 3, wherein the transport means is a heated drum heated to a temperature of 60°C to 100°C.

10. A method as claimed in any preceding claim, wherein the thickness of the thermoplastic resin solution and the tape formed by combining the fibre tape material and the thermoplastic resin solution is controlled by doctor plate means (3,7) associated with said heated drum.

11. A method as claimed in claim 10, wherein after passing the doctor plate means, the thickness of the tape is further controlled by passage between roller means (9,10) which also aid in removing excess solvent.

12. A method as claimed in claim 11, wherein excess solvent is also removed by heating means (11-16) and the excess solvent is extracted for recovery.

13. An apparatus when performing the method of claims 1 to 12, includes heated drum means (1) traversing a heated bath (2) containing a thermoplastic resin solution, feed means (5) feeding a fibre tape material to said drum means, and feed nozzle means (6) supplying a solvent-doped magnetic particle material to said drum means to impregnate the thermoplastic solution.

14. An apparatus as claimed in claim 13, wherein doctor plate means are arranged in proximity to the drum means (3,7) to control the thickness of the thermoplastic resin material and the magnetically impregnated thermoplastic solution.

15. An apparatus as claimed in claim 13 or 14, wherein heating and extractor means (11-16) are provided to remove excess solvent.

16. A magnetically loaded pre-impregnated thermoplastic tape made in accordance with claims 1 to 12.
17. A method of making a magnetically loaded composite tape including the steps of feeding a thermoplastic resin impregnated fibre tow (24) to a heating station (29), feeding an anisotropic magnetically loaded pre-impregnated tape (8) to said heating station, applying heat at said heating station to bond the tow and the tape so as to produce the magnetically loaded composite tape.

18. A method as claimed in claim 17, wherein heat at the heating station is provided by one of laser means (30) and hot nitrogen means.

19. A method as claimed in claim 18, wherein the laser means is one of pulsed or continuously driven to provide a temperature sufficient to bond the tow and the tape at a temperature, for example, in the range 350°C - 400°C.

20. A method as claimed in any of claims 17 to 19, wherein the speed at which the tow and the tape are fed is in the range of 0.1 – 1 m/s.

21. A method as claimed in any of claims 17 to 20, wherein the heating station (29) includes a heating mandrel (20) to form the composite tape into a desired shape.

22. A method as claimed in any of claims 17 to 21, wherein the heating station (29) includes a rotatably driven, heated mandrel (20) and a compaction roller (28) associated with the mandrel, said tow and tape being fed to pass between the compaction roller and the mandrel, wherein the tape is, advantageously, wound around the mandrel for subsequent utilisation.

23. A method as claimed in claim 22, wherein the mandrel is heated to a temperature in the range 120° - 200°C.

24. A method as claimed in claim 22 or 23, wherein the mandrel has a magnetic field (41,42) embedded therein to provide the anisotropic magnetic loaded pre-impregnated tape with a desired magnetic configuration.
25. A method as claimed in claim 24, wherein the mandrel is configured with an even number of magnets (41,42) to produce, for example, six pole pairs comprising twelve magnets.

26. A method as claimed in claim 25, wherein the magnets (41,42) are arranged in an arc so that as the radius of the tape increases about the mandrel, the poles in the magnetically loaded pre-impregnated tape are substantially aligned.

27. A magnetically loaded composite tape made in accordance with the method of claims 17 to 26.

28. A method of making a rotor including the method steps of claims 1 to 12 and claims 17 to 26, including winding the magnetically loaded pre-impregnated tape upon a magnetically energised mandrel to align the anisotropic magnetic particle material prior to magnetisation with a desired magnetic configuration.

29. A rotor made in accordance with the method of claim 28.

30. A mandrel (40) for winding a magnetically loaded composite tape, said mandrel being made of paramagnetic material and including a configuration of magnetic pole pairs (41,42) arranged thereon so as to align magnetic particles in said tape.

31. A mandrel as claimed in claim 30, wherein the mandrel is substantially cylindrical with alternating pole pairs (41,42) being arranged adjacent radially inner and outer surfaces of said cylinder.

32. A mandrel as claimed in claim 30 or 31, wherein the mandrel is arranged to be heated by heating means (21), such as hot air.

33. A mandrel as claimed in any of claims 30 to 32, wherein the mandrel is arranged to be rotated by a winding machine.