wo 20187200862 A1 | 0E 0000 O O T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = O 0 0
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 2018/200862 Al

01 November 2018 (01.11.2018) WIPOI|PCT

(51) International Patent Classification: (72) Inventor: SHARANGPANI, Harshvardhan; 10251
HO4N 19/40 (2014.01) HO3M 7/30 (2006.01) Magdalena Road, Los Altos Hills, California 94024 (US).
(21) International Application Number: (74) Agent: SAHASRABUDDHE, Laxman; Park, Vaughan,
PCT/US2018/029636 Fleming & Dowler LLP, 2820 Fifth Street, Davis, Califor-
nia 95618 (US).

(22) International Filing Date:

26 April 2018 (26.04.2018) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA,CH,CL,CN,CO, CR,CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(25) Filing Language: English

(30) Priority Data:

62/491,864 28 April 2017 (28.04.2017) UsS KR,KW,KZ,LA,LC, LK, LR, LS, LU, LY, MA, MD, ME,
(71) Applicant: ASCAVA, INC. [US/US]; 10251 Magdalena MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
Road, Los Altos Hills, California 94024 (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: LOSSLESS REDUCTION OF DATA BY USING A PRIME DATA SIEVE AND PERFORMING MULTIDIMENSIONAL
SEARCH AND CONTENT-ASSOCIATIVE RETRIEVAL ON DATA THAT HAS BEEN LOSSLESSLY REDUCED USING A
PRIME DATA SIEVE

1/9502 Stream of Video Data Fetrievai Requests
| e
Hearter] Data Hezder| Dita ‘\ P .
I N -
1903
2
1004 Prime Data Sisve 1311
' Parser & Factorizer »
\ jpzxiract moving- picture daia ol POE
vidizo daty, and extiad ames Fom— POE 2
from moving picture data)
——
I-framas as =
Condidate Elaments 1908
I o
e Content -
Rt Associative —— 12
POE i 1812
—1 Mapper =
1910 s POES
2 ——) Resonsiitutor
Deriver 0
Cendidale Element > Derive {Reiieved Frime Dais Eferienis) L. i
Reduced Date " —
¢ - b PO Reconstituled
Data
Data Distilation™ Apparatus or Data Reduction Apparaius
203 . . " . 1913
"% Distilled Video Data Retrieved Data Output = Video Data :
Z i Z
T TN : | AR
i i renceio PDE | + H Header| GCata Header | Data 3
| itulion_Prograrn_t i |
\ Header | i \\] i

B \\m
Refersnce Deilvative
to PO

PDE = Prime Data Slement

(57) Abstract: Input data can be losslessly reduced by using a data structure that organizes prime data elements based on their contents.
Alternatively, the data structure can organize prime data elements based on the contents of a name that is derived from the prime data
elements. Specifically, video data can be losslessly reduced by (1) using the data structure to identify a set of prime data elements, and
(2) using the set of prime data elements to losslessly reduce intra-frames. The input data can be dynamically partitioned based on the
memory usage of components of the data structure. Parcels can be created based on the partitions to facilitate archiving and movement
of the data. The losslessly reduced data can be stored using a set of distilled files and a set of prime data element files.

[Continued on next page]

WO 2018/200862 A1 {10000 0 0 ORI

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

5

10

15

20

25

30

35

WO 2018/200862 PCT/US2018/029636

LOSSLESS REDUCTION OF DATA BY USING A PRIME
DATA SIEVE AND PERFORMING
MULTIDIMENSIONAL SEARCH AND CONTENT-
ASSOCIATIVE RETRIEVAL ON DATA THAT HAS
BEEN LOSSLESSLY REDUCED USING A PRIME DATA
SIEVE

Inventor: Harshvardhan Sharangpani

BACKGROUND
Technical Field

[0001] This disclosure relates to data storage, retrieval, and communication. More
specifically, this disclosure relates to performing multidimensional search and content-associative

retrieval on data that has been losslessly reduced using a prime data sieve.

Related Art

[0002] The modern information age is marked by the creation, capture, and analysis of
enormous amounts of data. New data is generated from diverse sources, examples of which
include purchase transaction records, corporate and government records and communications,
email, social media posts, digital pictures and videos, machine logs, signals from embedded
devices, digital sensors, cellular phone global positioning satellites, space satellites, scientific
computing, and the grand challenge sciences. Data is generated in diverse formats, and much of
it is unstructured and unsuited for entry into traditional databases. Businesses, governments, and
individuals generate data at an unprecedented rate and struggle to store, analyze, and
communicate this data. Tens of billions of dollars are spent annually on purchases of storage
systems to hold the accumulating data. Similarly large amounts are spent on computer systems to
process the data.

[0003] In most modern computer and storage systems, data is accommodated and
deployed across multiple tiers of storage, organized as a storage hierarchy. The data that is
needed to be accessed often and quickly is placed in the fastest albeit most expensive tier, while
the bulk of the data (including copies for backup) is preferably stored in the densest and cheapest

storage medium. The fastest and most expensive tier of data storage is the computer system’s

10

15

20

25

30

WO 2018/200862 2 PCT/US2018/029636

volatile random access memory or RAM, residing in close proximity to the microprocessor core,
and offering the lowest latency and the highest bandwidth for random access of data.
Progressively denser and cheaper but slower tiers (with progressively higher latency and lower
bandwidth of random access) include non-volatile solid state memory or flash storage, hard disk
drives (HDDs), and finally tape drives.

[0004] In order to more effectively store and process the growing data, the computer
industry continues to make improvements to the density and speed of the data storage medium
and to the processing power of computers. However, the increase in the volume of data far
outstrips the improvement in capacity and density of the computing and data storage systems.
Statistics from the data storage industry in 2014 reveal that new data created and captured in the
past couple of years comprises a majority of the data ever captured in the world. The amount of
data created in the world to date is estimated to exceed multiple zettabytes (a zettabyte is 10°'
bytes). The massive increase in the data places great demands on data storage, computing, and
communication systems that must store, process, and communicate this data reliably. This
motivates the increased use of lossless data reduction or compression techniques to compact the
data so that it can be stored at reduced cost, and likewise processed and communicated
efficiently.

[0005] A variety of lossless data reduction or compression techniques have emerged and
evolved over the years. These techniques examine the data to look for some form of redundancy
in the data and exploit that redundancy to realize a reduction of the data footprint without any
loss of information. For a given technique that looks to exploit a specific form of redundancy in
the data, the degree of data reduction achieved depends upon how frequently that specific form of
redundancy is found in the data. It is desirable that a data reduction technique be able to flexibly
discover and exploit any available redundancy in the data. Since data originates from a wide
variety of sources and environments and in a variety of formats, there is great interest in the
development and adoption of universal lossless data reduction techniques to handle this diverse
data. A universal data reduction technique is one which requires no prior knowledge of the input
data other than the alphabet; hence, it can be applied generally to any and all data without
needing to know beforehand the structure and statistical distribution characteristics of the data.

[0006] Goodness metrics that can be used to compare different implementations of data
compression techniques include the degree of data reduction achieved on the target datasets, the
efficiency with which the compression or reduction is achieved, and the efficiency with which the
data is decompressed and retrieved for further use. The efficiency metrics assess the performance

and cost-effectiveness of the solution. Performance metrics include the throughput or ingest rate

10

15

20

25

30

WO 2018/200862 PCT/US2018/029636
at which new data can be consumed and reduced, the latency or time required to reduce the input
data, the throughput or rate at which the data can be decompressed and retrieved, and the latency
or time required to decompress and retrieve the data. Cost metrics include the cost of any
dedicated hardware components required, such as the microprocessor cores or the microprocessor
utilization (central processing unit utilization), the amount of dedicated scratch memory and
memory bandwidth, as well as the number of accesses and bandwidth required from the various
tiers of storage that hold the data. Note that reducing the footprint of the data while
simultaneously providing efficient and speedy compression as well as decompression and
retrieval has the benefit not only of reducing the overall cost to store and communicate the data
but also of efficiently enabling subsequent processing of the data.

[0007] Many of the universal data compression techniques currently being used in the
industry derive from the Lempel-Ziv compression method developed in 1977 by Abraham
Lempel and Jacob Ziv — see e.g., Jacob Ziv and Abraham Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE transactions on information theory, Vol. IT-23, No. 3, May
1977. This method became the basis for enabling efficient data transmission via the Internet.
The Lempel-Ziv methods (named LZ77, LZ78 and their variants) reduce the data footprint by
replacing repeated occurrences of a string with a reference to a previous occurrence seen within a
sliding window of a sequentially presented input data stream. On consuming a fresh string from
a given block of data from the input data stream, these techniques search through all strings
previously seen within the current and previous blocks up to the length of the window. If the
fresh string is a duplicate, it is replaced by a backward reference to the original string. If the
number of bytes eliminated by the duplicate string is larger than the number of bytes required for
the backward reference, a reduction of the data has been achieved. To search through all strings
seen in the window, and to provide maximal string matching, implementations of these
techniques employ a variety of schemes, including iterative scanning and building a temporary
bookkeeping structure that contains a dictionary of all the strings seen in the window. Upon
consuming new bytes of input to assemble a fresh string, these techniques either scan through all
the bytes in the existing window, or make references to the dictionary of strings (followed by
some computation) to decide whether a duplicate has been found and to replace it with a
backward reference (or, alternatively, to decide whether an addition needs to be made to the
dictionary).

[0008] The Lempel-Ziv compression method is often accompanied by a second
optimization applied to the data, in which source symbols are dynamically re-encoded based upon

their frequency or probability of occurrence in the data block being compressed, often employing

10

15

20

25

30

WO 2018/200862 4 PCT/US2018/029636

a variable-width encoding scheme so that shorter length codes are used for the more frequent
symbols, thus leading to a reduction of the data. For an example of such an entropy-based re-
encoding method, see David A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE - Institute of Radio Engineers, Sep. 1952, pp. 1098-
1101. This technique is referred to as Huffman re-encoding, and typically needs a first pass
through the data to compute the frequencies and a second pass to actually encode the data.
Several variations along this theme are also in use.

[0009] One example that uses these techniques is a scheme known as “Deflate” which
combines the Lempel-Ziv LZ77 compression method with Huffman re-encoding. Deflate
provides a compressed stream data format specification that specifies a method for representing a
sequence of bytes as a (usually shorter) sequence of bits, and a method for packing the latter bit
sequences into bytes. The Deflate scheme was originally designed by Phillip W. Katz of
PKWARE, Inc. for the PKZIP archiving utility. See e.g., “String searcher, and compressor using
same,” Phillip W. Katz, U.S. Patent 5,051,745, Sep. 24, 1991. U.S. Patent 5,051,745 describes a
method for searching a vector of symbols (the window) for a predetermined target string (the
input string). The solution employs a pointer array with a pointer to each of the symbols in the
window, and uses a method of hashing to filter the possible locations in the window that are
required to be searched for an identical copy of the input string. This is followed by scanning and
string matching at those locations.

[0010] The Deflate scheme is implemented in the zlib library for data compression. Zlib
is a software library that is a key component of several software platforms such as Linux, Mac
OS X, 108, and a variety of gaming consoles. The zIib library provides Deflate compression and
decompression code for use by zip (file archiving), gzip (single file compression), png (Portable
Network Graphics format for losslessly compressed images), and many other applications. Zlib
is now widely used for data transmission and storage. Most HTTP transactions by servers and
browsers compress and decompress the data using zlib. Similar implementations are increasingly
being used by data storage systems.

[0011] A paper entitled “High Performance ZLIB Compression on Intel® Architecture
Processors,” that was published by Intel Corp. in April 2014 characterizes the compression and
performance of an optimized version of the zIlib library running on a contemporary Intel
processor (Core 17 4770 processor, 3.4 GHz, 8 MB cache) and operating upon the Calgary corpus
of data. The Deflate format used in zlib sets the minimum string length for matching to be 3
characters, the maximum length of the match to be 256 characters, and the size of the window to

be 32 kilobytes. The implementation provides controls for 9 levels of optimization, with level 9

10

15

20

25

30

WO 2018/200862 PCT/US2018/029636
providing the highest compression but using the most computation and performing the most
exhaustive matching of strings, and level 1 being the fastest level and employing greedy string
matching. The paper reports a compression ratio of 51% using the zlib level 1 (fastest level)
using a single-threaded processor and spending an average of 17.66 clocks/byte of input data. At
a clock frequency of 3.4 GHz, this implies an ingest rate of 192 MB/sec while using up a single
microprocessor core. The report also describes how the performance rapidly drops to an ingest
rate of 38 MB/sec (average of 88.1 clocks/byte) using optimization level 6 for a modest gain in
compression, and to an ingest rate of 16 MB/sec (average of 209.5 clocks/byte) using
optimization level 9.

[0012] Existing data compression solutions typically operate at ingest rates ranging from
10 MB/sec to 200 MB/sec using a single processor core on contemporary microprocessors. To
further boost the ingest rate, multiple cores are employed, or the window size is reduced. Even
further improvements to the ingest rate are achieved using custom hardware accelerators, albeit at
increased cost.

[0013] Existing data compression methods described above are effective at exploiting
fine-grained redundancy at the level of short strings and symbols in a local window typically the
size of a single message or file or perhaps a few files. These methods have serious limitations
and drawbacks when they are used in applications that operate on large or extremely large
datasets and that require high rates of data ingestion and data retrieval.

[0014] One important limitation is that practical implementations of these methods can
exploit redundancy efficiently only within a local window. While these implementations can
accept arbitrarily long input streams of data, efficiency dictates that a limit be placed on the size
of the window across which fine-grained redundancy is to be discovered. These methods are
highly compute-intensive and need frequent and speedy access to all the data in the window.
String matching and lookups of the various bookkeeping structures are triggered upon consuming
each fresh byte (or few bytes) of input data that creates a fresh input string. In order to achieve
desired ingest rates, the window and associated machinery for string matching must reside mostly
in the processor cache subsystem, which in practice places a constraint on the window size.

[0015] For example, to achieve an ingest rate of 200 MB/sec on a single processor core,
the available time budget on average per ingested byte (inclusive of all data accesses and
compute) is 5 ns., which means 17 clocks using a contemporary processor with operating
frequency of 3.4 GHz. This budget accommodates accesses to on-chip caches (which take a
handful of cycles) followed by some string matching. Current processors have on-chip caches of

several megabytes of capacity. An access to main memory takes over 200 cycles (~70 ns.), so

10

15

20

25

30

WO 2018/200862 6 PCT/US2018/029636

larger windows residing mostly in memory will further slow the ingest rate. Also, as the window
size increases, and the distance to a duplicate string increases, so does the cost to specify the
length of backward references, thus encouraging only longer strings to be searched across the
wider scope for duplication.

[0016] On most contemporary data storage systems, the footprint of the data stored across
the various tiers of the storage hierarchy is several orders of magnitude larger than the memory
capacity in the system. For example, while a system could provide hundreds of gigabytes of
memory, the data footprint of the active data residing in flash storage could be in the tens of
terabytes, and the total data in the storage system could be in the range of hundreds of terabytes to
multiple petabytes. Also, the achievable throughput of data accesses to subsequent tiers of
storage drops by an order of magnitude or more for each successive tier. When the sliding
window gets so large that it can no longer fit in memory, these techniques get throttled by the
significantly lower bandwidth and higher latency of random IO (Input or Output operations)
access to the next levels of data storage.

[0017] For example, consider a file or a page of 4 kilobytes of incoming data that can be
assembled from existing data by making references to, say, 100 strings of average length of 40
bytes that already exist in the data and are spread across a 256 terabyte footprint. Each reference
would cost 6 bytes to specify its address and 1 byte for string length while promising to save 40
bytes. Although the page described in this example can be compressed by more than fivefold, the
ingest rate for this page would be limited by the 100 or more IO accesses to the storage system
needed to fetch and verify the 100 duplicate strings (even if one could perfectly and cheaply
predict where these strings reside). A storage system that offers 250,000 random IO accesses/sec
(which means bandwidth of 1 GB/sec of random accesses to pages of 4 KB) could compress only
2,500 such pages of 4 KB size per second for an ingest rate of a mere 10 MB/sec while using up
all the bandwidth of the storage system, rendering it unavailable as a storage system.

[0018] Implementations of conventional compression methods with large window sizes
of the order of terabytes or petabytes will be starved by the reduced bandwidth of data access to
the storage system, and would be unacceptably slow. Hence, practical implementations of these
techniques efficiently discover and exploit redundancy only if it exists locally, on window sizes
that fit in the processor cache or system memory. If redundant data is separated either spatially or
temporally from incoming data by multiple terabytes, petabytes, or exabytes, these
implementations will be unable to discover the redundancy at acceptable speeds, being limited by

storage access bandwidth.

10

15

20

25

30

WO 2018/200862 PCT/US2018/029636

[0019] Another limitation of conventional methods is that they are not suited for random
access of data. Blocks of data spanning the entire window that was compressed need to be
decompressed before any chunk within any block can be accessed. This places a practical limit
on the size of the window. Additionally, operations (e.g., a search operation) that are
traditionally performed on uncompressed data cannot be efficiently performed on the compressed
data.

[0020] Yet another limitation of conventional methods (and, in particular, Lempel-Ziv
based methods) is that they search for redundancy only along one dimension — that of replacing
identical strings by backward references. A limitation of the Huffman re-encoding scheme is that
it needs two passes through the data, to calculate frequencies and then re-encode. This becomes
slow on larger blocks.

[0021] Data compression methods that detect long duplicate strings across a global store
of data often use a combination of digital fingerprinting and hashing schemes. This compression
process is referred to as data deduplication. The most basic technique of data deduplication
breaks up files into fixed-sized blocks and looks for duplicate blocks across the data repository.
If a copy of a file is created, each block in the first file will have a duplicate in the second file and
the duplicate can be replaced with a reference to the original block. To speed up matching of
potentially duplicate blocks, a method of hashing is employed. A hash function is a function that
converts a string into a numeric value, called its hash value. If two strings are equal, their hash
values are also equal. Hash functions map multiple strings to a given hash value, whereby long
strings can be reduced to a hash value of much shorter length. Matching of the hash values will
be much faster than matching of two long strings; hence, matching of the hash values is done
first, to filter possible strings that might be duplicates. If the hash value of the input string or
block matches a hash value of strings or blocks that exist in the repository, the input string can
then be compared with each string in the repository that has the same hash value to confirm the
existence of the duplicate.

[0022] Breaking up a file into fixed-sized blocks is simple and convenient, and fixed-
sized blocks are highly desirable in a high-performance storage system. However, this technique
has limitations in the amount of redundancy it can uncover, which means that these techniques
have low levels of compression. For example, if a copy of a first file is made to create a second
file, and if even a single byte of data is inserted into the second file, the alignment of all
downstream blocks will change, the hash value of each new block will be computed afresh, and

the data deduplication method will no longer find all the duplicates.

10

15

20

25

30

WO 2018/200862 8 PCT/US2018/029636

[0023] To address this limitation in data deduplication methods, the industry has adopted
the use of fingerprinting to synchronize and align data streams at locations of matching content.
This latter scheme leads to variable-sized blocks based on the fingerprints. Michael Rabin
showed how randomly chosen irreducible polynomials can be used to fingerprint a bit-string —
see e.g2., Michael O. Rabin, “Fingerprinting by Random Polynomials,” Center for Research in
Computing Technology, Harvard University, TR-15-81, 1981. In this scheme, a randomly chosen
prime number p is used to fingerprint a long character-string by computing the residue of that
string viewed as a large integer modulo p. This scheme requires performing integer arithmetic on
k-bit integers, where k = logx(p). Alternatively, a random irreducible prime polynomial of order &
can be used, and the fingerprint is then the polynomial representation of the data modulo the
prime polynomial.

[0024] This method of fingerprinting is used in data deduplication systems to identify
suitable locations at which to establish chunk boundaries, so that the system can look for
duplicates of these chunks in a global repository. Chunk boundaries can be set upon finding
fingerprints of specific values. As an example of such usage, a fingerprint can be calculated for
each and every 48-byte string in the input data (starting at the first byte of the input and then at
every successive byte thereafter), by employing a polynomial of order 32 or lower. One can then
examine the lower 13 bits of the 32-bit fingerprint, and set a breakpoint whenever the value of
those 13 bits is a pre-specified value (e.g., the value 1). For random data, the likelihood of the 13
bits having that particular value would be 1 in 2", so that such a breakpoint is likely to be
encountered approximately once every 8 KB, leading to variable-sized chunks of average size 8
KB. The breakpoints or chunk boundaries will effectively be aligned to fingerprints that depend
upon the content of the data. When no fingerprint is found for a long stretch, a breakpoint can be
forced at some pre-specified threshold, so that the system is certain to create chunks that are
shorter than a pre-specified size for the repository. See e.g., Athicha Muthitacharoen, Benjie
Chen, and David Mazieres, “A Low-bandwidth Network File System,” SOSP ‘01, Proceedings of
the eighteenth ACM symposium on Operating Systems Principles, 10/21/2001, pp. 174-187.

[0025] The Rabin-Karp string matching technique developed by Michael Rabin and
Richard Karp provided further improvements to the efficiency of fingerprinting and string
matching (see e.g., Michael O. Rabin and R. Karp, “Efficient Randomized Pattern-Matching
Algorithms,” IBM Jour. of Res. and Dev., vol. 31, 1987, pp. 249-260). Note that a
fingerprinting method that examines an m byte substring for its fingerprint can evaluate the
fingerprinting polynomial function in O(m) time. Since this method would need to be applied on

the substring starting at every byte of the, say, n byte input stream, the total effort required to

10

15

20

25

30

WO 2018/200862 ? PCT/US2018/029636

perform fingerprinting on the entire data stream would be O(nxm). Rabin-Karp identified a hash
function referred to as a Rolling Hash on which it is possible to compute the hash value of the
next substring from the previous one by doing only a constant number of operations,
independently of the length of the substring. Hence, after shifting one byte to the right, the
computation of the fingerprint on the new m byte string can be done incrementally. This reduces
the effort to compute the fingerprint to O(1), and the total effort for fingerprinting the entire data
stream to O(n), linear with the size of the data. This greatly speeds up computation and
identification of the fingerprints.

[0026] Typical data access and computational requirements for the above-described data
deduplication methods can be described as follows. For a given input, once fingerprinting is
completed to create a chunk, and after the hash value for the chunk is computed, these methods
first need one set of accesses to memory and subsequent tiers of storage to search and look up the
global hash table that keeps the hash values of all chunks in the repository. This would typically
need a first IO access to storage. Upon a match in the hash table, this is followed by a second set
of storage IOs (typically one, but could be more than one depending upon how many chunks with
the same hash value exist in the repository) to fetch the actual data chunks bearing the same hash
value. Lastly, byte-by-byte matching is performed to compare the input chunk to the fetched
potentially matching chunks to confirm and identify the duplicate. This is followed by a third
storage IO access (to the metadata space) for replacing the new duplicate block with a reference
to the original. If there is no match in the global hash table (or if no duplicate is found), the
system needs one IO to enter the new block into the repository and another IO to update the
global hash table to enter in the new hash value. Thus, for large datasets (where the metadata and
global hash table do not fit in memory, and hence need a storage 10 to access them) such systems
could need an average of three IOs per input chunk. Further improvements are possible by
employing a variety of filters so that misses in the global hash table can often be detected without
requiring the first storage IO to access the global hash table, thus reducing the number of 10s
needed to process some of the chunks down to two.

[0027] A storage system that offers 250,000 random IO accesses/sec (which means
bandwidth of 1 GB/sec of random accesses to pages of 4 KB) could ingest and deduplicate about
83,333 (250,000 divided by 3 10s per input chunk) input chunks of average size 4 KB per second,
enabling an ingest rate of 333 MB/sec while using up all the bandwidth of the storage system. If
only half of the bandwidth of the storage system is used (so that the other half is available for
accesses to the stored data), such a deduplication system could still deliver ingest rates of 166

MB/sec. These ingest rates (which are limited by I/O bandwidth) are achievable provided that

10

15

20

25

30

WO 2018/200862 10 PCT/US2018/029636

sufficient processing power is available in the system. Thus, given sufficient processing power,
data deduplication systems are able to find large duplicates of data across the global scope of the
data with an economy of IOs and deliver data reduction at ingest rates in the hundreds of
megabytes per second on contemporary storage systems.

[0028] Based on the above description, it should be clear that, while these deduplication
methods are effective at finding duplicates of long strings across a global scope, they are effective
mainly at finding large duplicates. If there are variations or modifications to the data at a finer
grain, the available redundancy will not be found using this method. This greatly reduces the
breadth of datasets across which these methods are useful. These methods have found use in
certain data storage systems and applications, e.g., regular backup of data, where the new data
being backed up has only a few files modified and the rest are all duplicates of the files that were
saved in the previous backup. Likewise, data deduplication based systems are often deployed in
environments where multiple exact copies of the data or code are made, such as in virtualized
environments in datacenters. However, as data evolves and is modified more generally or at a
finer grain, data deduplication based techniques lose their effectiveness.

[0029] Some approaches (usually employed in data backup applications) do not perform
the actual byte-by-byte comparison between the input data and the string whose hash value
matches that of the input. Such solutions rely on the low probability of a collision using strong
hash functions like the SHA-1. However, due to the finite non-zero probability of a collision
(where multiple different strings could map to the same hash value), such methods cannot be
considered to provide lossless data reduction, and would not, therefore, meet the high data-
integrity requirements of primary storage and communication.

[0030] Some approaches combine multiple existing data compression techniques.
Typically, in such a setup, the global data deduplication methods are applied to the data first.
Subsequently, on the deduplicated dataset, and employing a small window, the Lempel-Ziv string
compression methods combined with Huffman re-encoding are applied to achieve further data
reduction.

[0031] However, in spite of employing all hitherto-known techniques, there continues to
be a gap of several orders of magnitude between the needs of the growing and accumulating data
and what the world economy can affordably accommodate using the best available modern
storage systems. Given the extraordinary requirements of storage capacity demanded by the
growing data, there continues to be a need for improved ways to further reduce the footprint of
the data. There continues to be a need to develop methods that address the limitations of existing

techniques, or that exploit available redundancy in the data along dimensions that have not been

10

15

20

25

30

WO 2018/200862 1 PCT/US2018/029636

addressed by existing techniques. At the same time, it continues to be important to be able to
efficiently access and retrieve the data at an acceptable speed and at an acceptable cost of
processing. There also continues to be a need to be able to efficiently perform search operations
directly on the reduced data.

[0032] In summary, there continues to be a long-felt need for lossless data reduction
solutions that can exploit redundancy across large and extremely large datasets and provide high

rates of data ingestion, data search, and data retrieval.

SUMMARY

[0033] Embodiments described herein feature techniques and systems that can perform
lossless data reduction on large and extremely large datasets while providing high rates of data
ingestion and data retrieval, and that do not suffer from the drawbacks and limitations of existing
data compression systems.

[0034] Specifically, some embodiments can extract compressed moving-picture data and
compressed audio data from the video data. Next, the embodiments can extract intra-frames (I-
frames) from the compressed moving-picture data. The embodiments can then losslessly reduce
the I-frames to obtain losslessly-reduced I-frames. Losslessly reducing the I-frames can
comprise, for each I-frame, (1) identifying a first set of prime data elements by using the I-frame
to perform a first content-associative lookup on a data structure that organizes prime data
elements based on their contents, and (2) using the first set of prime data elements to losslessly
reduce the I-frame. The embodiments can additionally decompress the compressed audio data to
obtain a set of audio components. Next, for each audio component in the set of audio
components, the embodiments can (1) identify a second set of prime data elements by using the
audio component to perform a second content-associative lookup on the data structure that
organizes prime data elements based on their contents, and (2) use the second set of prime data
elements to losslessly reduce the audio component.

[0035] Some embodiments can initialize a data structure that is stored in a first memory
device and that is configured to organize prime data elements based on their contents. Next, the
embodiments can factorize input data into a sequence of candidate elements. For each candidate
element, the embodiments can (1) identify a set of prime data elements by using the candidate
element to perform a content-associative lookup on the data structure, and (2) losslessly reduce
the candidate element by using the set of prime data elements, wherein the candidate element is
added to the data structure as a new prime data element if the candidate element is not

sufficiently reduced in size. Next, the embodiments can store the losslessly reduced candidate

10

15

20

25

30

WO 2018/200862 12 PCT/US2018/029636

element in a second memory device. Upon detecting that a size of one or more components of
the data structure is greater than a threshold, the embodiments can (1) move one or more
components of the data structure to the second memory device, and (2) initialize the one or more
components of the data structure that were moved to the second memory device. A losslessly
reduced data lot can include (1) losslessly reduced candidate elements that were stored on the
second memory device between temporally adjacent initializations, and (2) components of the
data structure that were moved to the second memory device between the temporally adjacent
initializations. In a variation, the embodiments can create a set of parcels based on losslessly
reduced data lots stored on the second memory device, wherein the set of parcels facilitates
archival and movement of data from one computer to another computer.

[0036] Some embodiments can factorize input data into a sequence of candidate elements.
Next, for each candidate element, the embodiments can (1) split the candidate element into one
or more fields, (2) for each field, divide the field by a prime polynomial to obtain a
quotient-and-remainder pair, (3) determine a name based on one or more quotient-and-remainder
pairs, (4) identify a set of prime data elements by using the name to perform a content-associative
lookup on a data structure that organizes prime data elements based on contents of their
respective names, and (5) losslessly reduce the candidate element by using the set of prime data
elements.

[0037] Some embodiments can factorize input data into a sequence of candidate elements.
Next, for each candidate element, the embodiments can (1) identify a set of prime data elements
by using the candidate element to perform a content-associative lookup on a data structure that
organizes prime data elements based on their contents, and (2) losslessly reduce the candidate
element by using the set of prime data elements. The embodiments can then store losslessly
reduced candidate elements in a set of distilled files. Next, the embodiments can store the prime
data elements in a set of prime data element files. In some embodiments, each losslessly reduced
candidate element specifies, for each prime data element that was used to reduce the candidate
element, a prime data element file that contains the prime data element and an offset where the
prime data element can be found in the prime data element file. In some embodiments, each
distilled file stores a list of prime data element files that contain prime data elements that were
used to losslessly reduce candidate elements that are stored in the distilled file.

[0038] Using the set of prime data elements to losslessly reduce a data element (e.g., an
I-frame, an audio component, a candidate element, etc.) can comprise: (1) in response to
determining that a sum of (i) sizes of references to the set of prime data elements and (ii) a size of

a description of a reconstitution program is less than a threshold fraction of a size of the data

10

15

20

25

30

WO 2018/200862 13 PCT/US2018/029636

element, generating a first losslessly reduced representation of the data element, wherein the first
losslessly reduced representation includes a reference to each prime data element in the set of
prime data elements and a description of the reconstitution program; and (2) in response to
determining that the sum of (i) the sizes of the references to the set of prime data elements and
(i1) the size of the description of the reconstitution program is greater than or equal to the
threshold fraction of the size of the data element, adding the data element as a new prime data
element in the data structure, and generating a second losslessly reduced representation of the
data element, wherein the second losslessly reduced representation includes a reference to the
new prime data element. Note that the description of the reconstitution program can specify a
sequence of transformations which, when applied to the set of prime data elements (i.e., the one
or more prime data elements that were used to losslessly reduce the data element), results in the

data element.

BRIEF DESCRIPTION OF THE FIGURES

[0039] FIG. 1A illustrates methods and apparatuses for data reduction that factorize input
data into elements and derive these from Prime Data Elements resident in a Prime Data Sieve in
accordance with some embodiments described herein.

[0040] FIGs. 1B-1G illustrate variations of the methods and apparatuses illustrated in
FIG. 1A in accordance with some embodiments described herein.

[0041] FIG. 1H presents an example of a format and a specification describing the
structure of the Distilled Data in accordance with some embodiments described herein.

[0042] FIGs. 11 through 1P illustrate the conceptual transformation of Input Data into the
losslessly reduced form for the variations of the methods and apparatuses for data reduction
shown in FIG. 1A through FIG. 1G.

[0043] FIG. 2 illustrates a process for data reduction by factorizing input data into
elements and deriving these elements from Prime Data Elements residing in a Prime Data Sieve
in accordance with some embodiments described herein.

[0044] FIGs. 3A, 3B, 3C, 3D, and 3E illustrate different data organization systems that
may be used to organize Prime Data Elements based on their Name in accordance with some
embodiments described herein.

[0045] FIG. 3F presents a self-describing tree node data structure in accordance with
some embodiments described herein.

[0046] FIG. 3G presents a self-describing leaf node data structure in accordance with

some embodiments described herein.

10

15

20

25

30

WO 2018/200862 14 PCT/US2018/029636

[0047] FIG. 3H presents a self-describing leaf node data structure that includes the
Navigation Lookahead field in accordance with some embodiments described herein.

[0048] FIG. 4 shows an example of how 256TB of prime data may be organized in tree
form, and presents how the tree may be laid out in memory and storage in accordance with some
embodiments described herein.

[0049] FIGs. SA-5C illustrate an actual example of how data can be organized using
embodiments described herein.

[0050] FIGs. 6A-6C show how tree data structures can be used for content-associative
mappers described in reference to FIGs. 1A-1C, respectively, in accordance with some
embodiments described herein.

[0051] FIG. 7A provides an example of the transformations that could be specified in the
Reconstitution Program in accordance with some embodiments described herein.

[0052] FIG.7B shows examples of the results of Candidate Elements being derived from
Prime Data Elements in accordance with some embodiments described herein.

[0053] FIGs. 8A-8E illustrate how data reduction can be performed by factorizing input
data into fixed sized elements and organizing the elements in a tree data structure that was
described in reference to FIG.s 3D and 3E in accordance with some embodiments described
herein.

[0054] FIGs. 9A-9C illustrate an example of the Data Distillation™ scheme based on the
system shown in FIG. 1C in accordance with some embodiments described herein.

[0055] FIG. 10A provides an example of how transformations specified in the
Reconstitution Program are applied to a Prime Data Element to yield a Derivative Element in
accordance with some embodiments described herein.

[0056] FIGs. 10B-10C illustrate data retrieval processes in accordance with some
embodiments described herein.

[0057] FIG. 11A-11G illustrate systems that include a Data Distillation™ mechanism
(which can be implemented using software, hardware, or a combination thereof) in accordance
with some embodiments described herein.

[0058] FIG. 11H shows how the Data Distillation™ apparatus may interface with a
sample general purpose computing platform in accordance with some embodiments described
herein.

[0059] FIG. 111 illustrates how the Data Distillation™ apparatus may be used for data
reduction in a block processing storage system.

[0060] FIGs. 12A-12B show the use of the Data Distillation™ apparatus for the

10

15

20

25

30

WO 2018/200862 15 PCT/US2018/029636

communication of data across a bandwidth constrained communication medium in accordance
with some embodiments described herein.

[0061] FIGs. 12C-12K illustrate the various components of the reduced data produced by
the Data Distillation™ apparatus for various usage models in accordance with some
embodiments described herein.

[0062] FIGs. 12L-R illustrate how the Distillation process can be deployed and executed
on distributed systems to be able to accommodate significantly larger datasets at very high ingest
rates in accordance with some embodiments described herein.

[0063] FIGs. 13-17 illustrate how multidimensional search and data retrieval can be
performed on the reduced data in accordance with some embodiments described herein.

[0064] FIGs. 18A-B show a block diagram for an Encoder and Decoder for compression
and decompression of audio data according to the MPEG 1, Layer 3 Standard (also referred to as
MP3).

[0065] FIG. 18C shows how the Data Distillation apparatus first shown in FIG. 1A can be
enhanced to perform data reduction on MP3 data.

[0066] FIG. 19 shows how the Data Distillation apparatus first shown in FIG. 1A can be

enhanced to perform data reduction on video data.

DETAILED DESCRIPTION

[0067] The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodiments will be readily apparent to
those skilled in the art, and the general principles defined herein may be applied to other
embodiments and applications without departing from the spirit and scope of the present
invention. Thus, the present invention is not limited to the embodiments shown, but is to be
accorded the widest scope consistent with the principles and features disclosed herein. In this
disclosure, when a phrase uses the term “and/or” with a set of entities, the phrase covers all
possible combinations of the set of entities unless specified otherwise. For example, the phrase
“X, Y, and/or Z” covers the following seven combinations: “X only,” “Y only,” “Z only,” “X and

Y, butnotZ,” “X and Z, but not Y,” “Y and Z, but not X,” and “X, Y, and Z..”

Efficient lossless reduction of data using a prime data sieve

[0068] In some embodiments described herein, data is organized and stored to efficiently

uncover and exploit redundancy globally across the entire dataset. An input data stream is broken

10

15

20

25

30

WO 2018/200862 16 PCT/US2018/029636

up into constituent pieces or chunks called elements, and redundancy among the elements is
detected and exploited at a grain finer than the element itself, thus reducing the overall footprint
of stored data. A set of elements called Prime Data Elements are identified and used as common
and shared building blocks for the dataset, and stored in a structure referred to as the Prime Data
Store or Prime Data Sieve. A Prime Data Element is simply a sequence of bits, bytes, or digits of
a certain size. Prime Data Elements can be either fixed-sized or variable-sized, depending upon
the implementation. Other constituent elements of the input data are derived from Prime Data
Elements and are referred to as Derivative Elements. Thus, input data is factorized into Prime
Data Elements and Derivative Elements.

[0069] The Prime Data Sieve orders and organizes the Prime Data Elements so that the
Prime Data Sieve can be searched and accessed in a content-associative manner. Given some
input content, with some restrictions, the Prime Data Sieve can be queried to retrieve Prime Data
Elements containing that content. Given an input element, the Prime Data Sieve can be searched,
using the value of the element, or the values of certain fields in the element, to quickly provide
either one or a small set of Prime Data Elements from which the input element can be derived
with minimal storage required to specify the derivation. In some embodiments, the elements in
the Prime Data Sieve are organized in tree form. A Derivative Element is derived from a Prime
Data Element by performing transformations on it, such transformations being specified in a
Reconstitution Program, which describes how to generate the Derivative Element from one or
more Prime Data Elements. A Distance Threshold specifies a limit on the size of the stored
footprint of a Derivative Element. This threshold effectively specifies the maximum allowable
distance of Derivative Elements from Prime Data Elements, and also places a limit on the size of
the Reconstitution Program that can be used to generate a Derivative Element.

[0070] Retrieval of derivative data is accomplished by executing the Reconstitution
Program on the one or more Prime Data Elements specified by the derivation.

[0071] In this disclosure, the above-described universal lossless data reduction technique
may be referred to as a Data Distillation™ process. It performs a function similar to distillation in
chemistry — separating a mixture into its constituent elements. The Prime Data Sieve is also
referred to as the Sieve or the Data Distillation™ Sieve or the Prime Data Store.

[0072] In this scheme, the input data stream is factorized into a sequence of elements,
each element being either a Prime Data Element or a Derivative Element which derives from one
or more Prime Data Elements. Each element is transformed into a losslessly reduced
representation which, in the case of a Prime Data Element includes a reference to the Prime Data

Element, and in the case of a Derivative Element includes references to the one or more Prime

10

15

20

25

30

WO 2018/200862 17 PCT/US2018/029636

Data Elements involved in the derivation, and a description of the Reconstitution Program. Thus
the input data stream is factorized into a sequence of elements that are in the losslessly reduced
representation. This sequence of elements (appearing in the losslessly reduced representation) is
referred to as a distilled data stream or distilled data. The sequence of elements in the distilled
data has a one-to-one correspondence to the sequence of elements in the input data, i.e., the n™
element in the sequence of elements in the distilled data corresponds to the n™ element in the
sequence of elements in the input data.

[0073] The universal lossless data reduction technique described in this disclosure
receives an input data stream and converts it into the combination of a distilled data stream and a
Prime Data Sieve, such that the sum of the footprints of the distilled data stream and the Prime
Data Sieve is usually smaller than the footprint of the input data stream. In this disclosure, the
distilled data stream and the Prime Data Sieve are collectively called the losslessly reduced data,
and will also be referred to interchangeably as the “reduced data stream” or “reduced data” or
“Reduced Data”. Likewise, for the sequence of elements that is produced by the lossless data
reduction techniques described in this disclosure, and that appear in the losslessly reduced format,

b3

the following terms are used interchangeably: “reduced output data stream,” “reduced output
data”, “distilled data stream,” “distilled data”, and “Distilled Data.”

[0074] FIG. 1A illustrates methods and apparatuses for data reduction that factorize
input data into elements and derive these from Prime Data Elements resident in a Prime Data
Sieve in accordance with some embodiments described herein. This figure illustrates an overall
block diagram of the data reduction or Data Distillation™ methods and apparatuses and provides
an overview of the functional components, structures, and operations. The components and/or
operations illustrated in FIG. 1A may be realized using software, hardware, or a combination
thereof.

[0075] A sequence of bytes is received from an input data stream and presented as Input
Data 102 to Data Reduction Apparatus 103, also referred to as the Data Distillation™ Apparatus.

Parser & Factorizer 104 parses the incoming data and breaks it into chunks or candidate
elements. The Factorizer decides where in the input stream to insert breaks to slice up the stream
into candidate elements. Once two consecutive breaks in the data have been identified, a
Candidate Element 105 is created by the Parser and Factorizer and presented to Prime Data Sieve
106, also referred to as the Data Distillation™ Sieve.

[0076] Data Distillation™ Sieve or Prime Data Sieve 106 contains all the Prime Data
Elements (labelled as PDEs in FIG. 1A), and orders and organizes them based upon their value or

content. The Sieve provides support for two kinds of access. First, each of the Prime Data

10

15

20

25

30

WO 2018/200862 18 PCT/US2018/029636

Elements can be directly accessed via a reference to the location where the Prime Data Element
resides in the Sieve. Second, elements can be accessed in a content-associative manner by using
Content-Associative Mapper 121, which could be implemented in software, hardware, or a
combination thereof. This second form of access to the Sieve is an important feature that is used
by the disclosed embodiments either to identify a Prime Data Element that exactly matches a
Candidate Element 105, or to identify Prime Data Elements from which the candidate element
can be derived. Specifically, given a candidate element, e.g., Candidate Element 105, the Prime
Data Sieve 106 can be searched (based upon the value of the Candidate Element 105, or based
upon the value of certain fields in the Candidate Element 105), to quickly provide one or a small
set of Prime Data Elements 107 from which the candidate element can be derived with minimal
storage needed to specify the derivation.

[0077] The Sieve or Prime Data Sieve 106 can be initialized with a set of Prime Data
Elements whose values are spread across the data space. Alternatively, the Sieve can start out
empty, and Prime Data Elements can be added to it dynamically as data is ingested, in accordance
with the Data Distillation™ process described herein in reference to FIGs. 1A-C and FIG. 2.

[0078] Deriver 110 receives the Candidate Element 105 and the retrieved Prime Data
Elements suitable for derivation 107 (which are content associatively retrieved from the Prime
Data Sieve 106), determines whether or not the Candidate Element 105 can be derived from one
or more of these Prime Data Elements, generates Reduced Data Components 115 (comprised of
references to the relevant Prime Data Elements and the Reconstitution Program), and provides
updates 114 to the Prime Data Sieve. If the candidate element is a duplicate of a retrieved Prime
Data Element, the Deriver places into the Distilled Data 108 a reference (or pointer) to the Prime
Data Element located in the Prime Data Sieve, and also an indicator that this is a Prime Data
Element. If no duplicate is found, the Deriver expresses the candidate element as the result of
one or more transformations performed on one or more retrieved Prime Data Elements, where the
sequence of transformations is collectively referred to as the Reconstitution Program, e.g.,
Reconstitution Program 119A. Each derivation may require its own unique program to be
constructed by the Deriver. The Reconstitution Program specifies transformations such as
insertions, deletions, replacements, concatenations, arithmetic, and logical operations that can be
applied to the Prime Data Elements. Provided the footprint of the Derivative Element (calculated
as the size of the Reconstitution Program plus the size of the references to the required Prime
Data Elements) is within a certain specified Distance Threshold with respect to the candidate
element (to enable data reduction), the candidate element is reformulated as a Derivative Element

and replaced by the combination of the Reconstitution Program and references to the relevant

10

15

20

25

30

WO 2018/200862 19 PCT/US2018/029636

Prime Data Element (or elements) — these form the Reduced Data Components 115 in this case.
If the threshold is exceeded, or if no suitable Prime Data Element was retrieved from the Prime
Data Sieve, the Prime Data Sieve may be instructed to install the candidate as a fresh Prime Data
Element. In this case, the Deriver places into the distilled data a reference to the newly added
Prime Data Element, and also an indicator that this is a Prime Data Element.

[0079] A request for Retrieval of data (e.g., Retrieval Requests 109) can be in the form of
either a reference to a location in the Prime Data Sieve containing a Prime Data Element, or in
the case of a derivative, a combination of such a reference to a Prime Data Element and an
associated Reconstitution Program (or in the case of a derivative based on multiple Prime Data
Elements, a combination of the references to multiple Prime Data Elements and an associated
Reconstitution Program). Using the one or more references to Prime Data Elements in the Prime
Data Sieve, Retriever 111 can access the Prime Data Sieve to fetch the one or more Prime Data
Elements and provide the one or more Prime Data Elements as well as the Reconstitution
Program to Reconstitutor 112, which executes the transformations (specified in the
Reconstitution Program) on the one or more Prime Data Elements to generate the Reconstituted
Data 116 (which is the data that was requested) and deliver it to the Retrieved Data Output 113 in
response to the data retrieval request.

[0080] In a variation of this embodiment, the Prime Data Elements may be stored in the
Sieve in compressed form (using techniques known in the prior art, including Huffman Coding
and Lempel Ziv methods) and decompressed when needed. This has the advantage of reducing
the overall footprint of the Prime Data Sieve. The only constraint is that Content Associative
Mapper 121 must continue to provide Content Associative Access to the Prime Data Elements as
before.

[0081] FIGs. 1B and 1C illustrate variations of the methods and apparatuses illustrated in
FIG. 1A in accordance with some embodiments described herein. In FIG. 1B, Reconstitution
Programs may be stored in the Prime Data Sieve and treated like Prime Data Elements. A
reference or pointer 119B to the Reconstitution Program is provided in Distilled Data 108 instead
of providing the Reconstitution Program 119A itself. Further data reduction is achieved if the
Reconstitution Program is shared by other derivatives, and if the reference or pointer to the
Reconstitution Program (plus any metadata that is required to distinguish between a
Reconstitution Program and a reference to a Reconstitution Program) requires less storage space
than the Reconstitution Program itself.

[0082] In FIG. 1B, Reconstitution Programs may be treated and accessed just like Prime

Data Elements, and, stored in the Prime Data Sieve as Prime Data Elements, thereby allowing

10

15

20

25

30

WO 2018/200862 20 PCT/US2018/029636

content-associative search and retrieval of the Reconstitution Programs from the Prime Data
Sieve. During the derivation process to create a Derivative Element, once Deriver 110
determines the Reconstitution Program needed for the derivation, it can then determine whether
or not this candidate Reconstitution Program is already present in the Prime Data Sieve, or
whether this candidate Reconstitution Program can be derived from another entry that already
exists in the Prime Data Sieve. If the candidate Reconstitution Program is already present in the
Prime Data Sieve, then Deriver 110 can determine the reference to the pre-existing entry and
include the reference in Distilled Data 108. If the candidate Reconstitution Program can be
derived from an existing entry already resident in the Prime Data Sieve, the Deriver can deliver a
derivative or reformulation of the candidate Reconstitution Program to the Distilled Data, i.e., the
Deriver places into the Distilled Data a reference to the entry that pre-exists in the Prime Data
Sieve along with an incremental Reconstitution Program that derives the candidate
Reconstitution Program from the pre-existing entry. If the candidate Reconstitution Program is
neither present in the Prime Data Sieve nor derivable from entries in the Prime Data Sieve, then
Deriver 110 can add the Reconstitution Program to the Prime Data Sieve (the operation that adds
a Reconstitution Program to the sieve may return the reference to the newly added entry), and
include the reference to the Reconstitution Program in Distilled Data 108.

[0083] FIG. 1C presents a variation of the methods and apparatuses illustrated in FIG. 1B
in accordance with some embodiments described herein. Specifically, the mechanism in FIG. 1C
that is used to store and query Reconstitution Programs is similar to the mechanism that is used to
store and query Prime Data Elements, but the Reconstitution Programs are maintained in a
structure (called the Prime Reconstitution Program Sieve) separate from that containing the
Prime Data Elements. Entries in such a structure are referred to as Prime Reconstitution
Programs (labelled as PRPs in FIG.1C). Recall that Prime Data Sieve 106 included content-
associative mapper 121 that supported fast content-associative lookup operations. The
embodiment illustrated in FIG. 1C includes Content-Associative Mapper 122 which is similar to
Content-Associative Mapper 121. In FIG. 1C, Content-Associative Mapper 122 and Content-
Associative Mapper 121 have been shown to be part of the Prime Data Sieve or Prime Data Store
106. In other embodiments, content-associative mapper 122 and the Reconstitution Programs
may be stored separately from the Prime Data Sieve or Prime Data Store 106 in a structure called
the Prime Reconstitution Program Sieve.

[0084] In a variation of this embodiment, the Prime Data Elements may be stored in the
Sieve in compressed form (using techniques known in the prior art, including Huffman Coding

and Lempel Ziv methods) and decompressed when needed. Likewise, Prime Reconstitution

10

15

20

25

30

WO 2018/200862 21 PCT/US2018/029636

Programs may be stored in the Prime Reconstitution Program Sieve in compressed form (using
techniques known in the prior art, including Huffman Coding and Lempel Ziv methods) and
decompressed when needed. This has the advantage of reducing the overall footprint of the Prime
Data Sieve and Prime Reconstitution Program Sieve. The only constraint is that Content
Associative Mappers 121 and 122 must continue to provide Content Associative Access to the
Prime Data Elements and Prime Reconstitution Programs as before.

[0085] FIG. 1D presents a variation of the methods and apparatuses illustrated in FIG. 1A
in accordance with some embodiments described herein. Specifically, in the embodiment
described in FIG. 1D, Prime Data Elements are stored inline in the Distilled Data. Prime Data
Sieve or Prime Data Store 106 continues to provide content-associative access to the Prime Data
Elements, and continues to logically contain the Prime Data Elements. It maintains references or
links to the Prime Data Elements that are located inline in the Distilled Data. For example, in
FIG. 1D, Prime Data Element 130 is located inline in Distilled Data 108. Prime Data Sieve or
Prime Data Store 106 maintains a Reference 131 to Prime Data Element 130. Once again, in this
setup, the losslessly reduced representation of a Derivative Element will contain a reference to
the required Prime Data Element. During data retrieval, Retriever 111 will fetch the required
Prime Data Element from where it is located.

[0086] FIG. 1E presents a variation of the methods and apparatuses illustrated in FIG.
1D in accordance with some embodiments described herein. Specifically, in the embodiment
described in FIG. 1E, just like in the setup illustrated in FIG.1B, Reconstitution Programs may be
derived from other Prime Reconstitution Programs, and specified as an Incremental
Reconstitution Program plus a reference to a Prime Reconstitution Program. Such Prime
Reconstitution Programs are treated like Prime Data Elements and logically installed in the Prime
Data Sieve. Furthermore, in this setup, both Prime Data Elements and Prime Reconstitution
Programs are stored inline in the Distilled Data. Prime Data Sieve or Prime Data Store 106
continues to provide content-associative access to the Prime Data Elements and the Prime
Reconstitution Programs, and continues to logically contain these Prime Data Elements and
Prime Reconstitution Programs while maintaining references or links to where they are located
inline in the Distilled Data. For example, in FIG. 1E, Prime Data Element 130 is located inline in
Distilled Data 108. Also in FIG. 1E, Prime Reconstitution Program 132 is located inline in
Distilled Data. Prime Data Sieve or Prime Data Store 106 maintains a Reference 131 (which is
Reference_to_PDE i) to Prime Data Element 130 (which is PDE_1i), and a Reference 133 (which
is Reference_to_PDE_j) to the Prime Reconstitution Program 132 (which is

Prime_Recon_Program_1). Once again, in this setup, the losslessly reduced representation of a

10

15

20

25

30

WO 2018/200862 22 PCT/US2018/029636

Derivative Element will contain a reference to the required Prime Data Element and required
Prime Reconstitution Program. During data retrieval, Retriever 111 will fetch the required
components from where they are located in the corresponding Distilled Data.

[0087] FIG. 1F presents a variation of the methods and apparatuses illustrated in FIG. 1E
in accordance with some embodiments described herein. Specifically, in the embodiment
described in FIG. 1F, just like in the setup illustrated in FIG.1C, Prime Data Sieve 108 contains
separate mappers — Content Associative Mapper 121 for the Prime Data Elements and Content
Associative Mapper 122 for the Prime Reconstitution Programs.

[0088] FIG. 1G presents a more generalized variation of the methods and apparatuses
illustrated in FIG. 1A through FIG. 1F. Specifically, in the embodiment described in FIG. 1G,
Prime Data Elements may be located either in the Prime Data Sieve or inline in the Distilled
Data. Some Prime Data Elements may be located in the Prime Data Sieve while others are
located inline in the Distilled Data. Likewise, Prime Reconstitution Programs may be located
either in the Prime Data Sieve or inline in the Distilled Data. Some Prime Reconstitution
Programs may be located in the Prime Data Sieve while others are located inline in the Distilled
Data. The Prime Data Sieve logically contains all the Prime Data Elements and Prime
Reconstitution Programs and in the case where the Prime Data Element or the Prime
Reconstitution Program is located inline in the Distilled Data, the Prime Data Sieve furnishes the
reference to its location.

[0089] The foregoing descriptions of methods and apparatuses for data reduction that
factorize input data into elements and derive these from Prime Data Elements resident in a Prime
Data Sieve have been presented only for purposes of illustration and description. They are not
intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly,
many modifications and variations will be apparent to practitioners skilled in the art.

[0090] FIG. 1H presents an example of a format and a specification describing the
structure of the Distilled Data 119A in FIG.s 1A-G of the method and apparatus for the Data
Distillation™ process in accordance with some embodiments described herein. Since the Data
Distillation™ process factorizes input data into Prime Data Elements and Derivative Elements,
the format for the losslessly reduced representation of the data identifies these elements and
describes the various components of these elements in the Distilled Data. The self-describing
format identifies each Element in the Distilled Data, indicates whether it is a Prime Data Element
or a Derivative Element, and describes the various components of the Element, namely,
references to one or more Prime Data Elements installed in the Sieve, a reference to a

Reconstitution Program installed in the Prime Data Sieve (as in 119B of FIG. 1B) or a reference

10

15

20

25

30

WO 2018/200862 23 PCT/US2018/029636

to a Reconstitution Program stored in a Prime Reconstitution Program (PRP) Sieve (as in 119C
of FIG. 1C), and in-lined Reconstitution Programs (RPs). The Prime Reconstitution Program
(PRP) Sieve is also referred to interchangeably as a Prime Reconstitution Program (PRP) Store.
The format in FIG. 1H has provisions to specify a derivation by executing a Reconstitution
Program on multiple Prime Data Elements, with the sizes of the Derivative Element and each of
the Prime Data Elements being independently specifiable. The format in FIG. 1H also has
provision to specify a Prime Data Element which is located inline in the Distilled Data rather than
located within the Prime Data Sieve. This is specified by Opcode encoding 7 which specifies that
the type of Element is a Prime Data Element that is located Inline in the Distilled Data. The
Distilled Data is stored in the data storage system using this format. Data in this format is
consumed by the Data Retriever 111, so that the various components of the data can be fetched
and subsequently reconstituted.

[0091] FIGS. 11 through 1P illustrate the conceptual transformation of Input Data into the
losslessly reduced form for the variations of the methods and apparatuses for data reduction
shown in FIG. 1A through FIG. 1G. FIG. 11 illustrates how a stream of Input Data is factorized
into candidate elements, and subsequently candidate elements are deemed to be either Prime Data
Elements or Derivative Elements. Lastly, the data is transformed into the losslessly reduced form.
FIG.s 11 through 1N show variations of the losslessly reduced form for the various embodiments.

[0092] FIG. 11 and FIG 1J show examples of the losslessly reduced form of the data
produced by the methods and apparatuses illustrated in FIG. 1A. The losslessly reduced form in
FIG. 1I includes the Content Associative Mapper and is the form that enables continuous further
ingestion of data and reduction of this data against the existing Prime Data Elements, Meanwhile
the losslessly reduced form in FIG. 1J no longer retains the Content Associative Mapper, leading
to a smaller footprint of the data. FIG. 1K and FIG 1L show examples of the losslessly reduced
form of the data produced by the methods and apparatuses illustrated in FIG. 1C. The losslessly
reduced form in FIG. 1K includes the Content Associative Mappers and is the form that enables
continuous further ingestion of data and reduction of this data against the existing Prime Data
Elements and Prime Reconstitution Programs, Meanwhile the losslessly reduced form in FIG. 1L
no longer retains the Content Associative Mappers, leading to a smaller footprint of the data.

[0093] FIG. 1M and FIG 1N show examples of the losslessly reduced form of the data
produced by the methods and apparatuses illustrated in FIG. 1F, where Prime Data Elements and
Prime Reconstitution Programs are located inline in the Distilled Data. The losslessly reduced
form in FIG. 1M includes the Content Associative Mappers and is the form that enables

continuous further ingestion of data and reduction of this data against the existing Prime Data

10

15

20

25

30

WO 2018/200862 24 PCT/US2018/029636

Elements and Prime Reconstitution Programs, Meanwhile the losslessly reduced form in FIG. IN
no longer retains the Content Associative Mappers, leading to a smaller footprint of the data.
FIG. 10 and FIG 1P show examples of the losslessly reduced form of the data produced by the
methods and apparatuses illustrated in FIG. 1G, where Prime Data Elements and Prime
Reconstitution Programs may be located either inline in the Distilled Data or in the Prime Data
Sieve. The losslessly reduced form in FIG. 10 includes the Content Associative Mappers and is
the form that enables continuous further ingestion of data and reduction of this data against the
existing Prime Data Elements and Prime Reconstitution Programs, Meanwhile the losslessly
reduced form in FIG. 1P no longer retains the Content Associative Mappers, leading to a smaller
footprint of the data.

[0094] In variations of the embodiments shown in FIGs. 1A through P, the various
components of the Reduced Data may be further reduced or compressed using techniques known
in the prior art (such as Huffman Coding, and Lempel Ziv methods) and stored in this
compressed form. These components can be subsequently decompressed when they are needed
for use in the Data Distillation Apparatus. This has the benefit of further reducing the overall
footprint of the data.

[0095] FIG. 2 illustrates a process for data reduction by factorizing input data into
elements and deriving these elements from Prime Data Elements residing in a Prime Data Sieve
in accordance with some embodiments described herein. As input data arrives, it can be parsed
and factorized or broken up into a series of candidate elements (operation 202). The next
candidate element is consumed from the input (operation 204), and a content-associative lookup
of the Prime Data Sieve is performed based on the content of the candidate element to see if there
are any suitable elements from which the candidate element can be derived (operation 206). If
the Prime Data Sieve does not find any such elements (“No” branch of operation 208), the
candidate element will be allocated and entered into the Sieve as a new Prime Data Element, and
the entry in the distilled data created for the candidate element will be a reference to the newly
created Prime Data Element (operation 216). If the content-associative lookup of the Prime Data
Sieve does yield one or more suitable elements from which the candidate may potentially be
derived (“Yes” branch of operation 208), analysis and computation is performed on the retrieved
Prime Data Elements to derive the candidate element from them. Note that in some
embodiments only metadata for the suitable Prime Data Elements is fetched first and analysis is
performed on the metadata, with the suitable Prime Data Elements being subsequently fetched
only if deemed useful (in these embodiments the metadata for a Prime Data Element provides

some information about the content of the Prime Data Element, thereby allowing the system to

10

15

20

25

30

WO 2018/200862 25 PCT/US2018/029636

quickly rule out matches or assess derivability based on the metadata). In other embodiments, the
Prime Data Sieve retrieves the Prime Data Elements directly (i.e., without first retrieving the
metadata to analyze the metadata before retrieving the Prime Data Element) so analysis and
computation is performed on the retrieved Prime Data Elements.

[0096] A first check is performed to see if the candidate is a duplicate of any of these
elements (operation 210). This check can be sped up using any suitable hashing technique. If the
candidate is identical to a Prime Data Element retrieved from the Prime Data Sieve (“Yes”
branch of operation 210), the entry in the distilled data created for the candidate element is
replaced by a reference to this Prime Data Element and an indication that this entry is a Prime
Data Element (operation 220). If no duplicate is found (“No” branch of operation 210), the
entries retrieved from the Prime Data Sieve based on the candidate element are regarded as
entries from which the candidate element is potentially derivable. The following is an important,
novel, and non-obvious feature of the Prime Data Sieve: when a duplicate is not found in the
Prime Data Sieve, the Prime Data Sieve can return Prime Data Elements that, although not
identical to the candidate element, are elements from which the candidate element may
potentially be derived by applying one or more transformations to the Prime Data Element(s).
The process can then perform analysis and computation to derive the candidate element from
either the most suitable Prime Data Element or a set of suitable Prime Data Elements (operation
212). In some embodiments, the derivation expresses the candidate element as the result of
transformations performed on the one or more Prime Data Elements, such transformations being
collectively referred to as the Reconstitution Program. Each derivation may require its own
unique program to be constructed. In addition to constructing the Reconstitution Program, the
process can also compute a distance metric that generally indicates a level of storage resources
and/or computational resources that are required to store the reformulation of the candidate
element and to reconstitute the candidate element from the reformulation. In some embodiments,
the footprint of the Derivative Element is used as a measure of the distance of the candidate from
the Prime Data Element(s) — specifically, a Distance metric can be defined as the sum of the size
of the Reconstitution Program plus the size of the references to the one or more Prime Data
Elements involved in the derivation. The derivation with the shortest Distance can be chosen.
The Distance for this derivation is compared with a Distance Threshold (operation 214), and if
the Distance does not exceed the Distance Threshold, the derivation is accepted (“Yes” branch of
operation 214). In order to yield data reduction, the Distance Threshold must always be less than
the size of the candidate element. For example, the Distance Threshold may be set to 50% of the

size of the candidate element, so that a derivative will only be accepted if its footprint is less than

10

15

20

25

30

WO 2018/200862 26 PCT/US2018/029636

or equal to half the footprint of the candidate element, thereby ensuring a reduction of 2x or
greater for each candidate element for which a suitable derivation exists. The Distance Threshold
can be a predetermined percentage or fraction, either based on user-specified input or chosen by
the system. The Distance Threshold may be determined by the system based on static or dynamic
parameters of the system. Once the derivation is accepted, the candidate element is reformulated
and replaced by the combination of the Reconstitution Program and references to the one or more
Prime Data Elements. The entry in the distilled data created for the candidate element is replaced
by the derivation, i.e., it is replaced by an indication that this is a derivative element, along with
the Reconstitution Program plus references to the one or more Prime Data Elements involved in
the derivation (operation 218). On the other hand, if the Distance for the best derivation exceeds
the Distance Threshold (“No” branch of operation 214), none of the possible derivatives will be
accepted. In that case, the candidate element may be allocated and entered into the Sieve as a
new Prime Data Element, and the entry in the distilled data created for the candidate element will
be a reference to the newly created Prime Data Element along with an indication that this is a
Prime Data Element (operation 216).

[0097] Finally, the process can check if there are any additional candidate elements
(operation 222), and return to operation 204 if there are more candidate elements (“Yes” branch
of operation 222), or terminate the process if there are no more candidate elements (“No” branch
of operation 222).

[0098] A variety of methods can be employed to perform operation 202 in FIG. 2, i.e., to
parse the incoming data and break it into candidate elements. The factorization algorithm needs
to decide where in the byte stream to insert breaks to slice up the stream into candidate elements.

Possible techniques include (but are not limited to) breaking up the stream into fixed-sized
blocks (such as pages of 4096 bytes), or applying a method of fingerprinting (such as techniques
that apply random prime polynomials to substrings of the input stream) to locate in the data
stream suitable fingerprints that become the boundaries of elements (this technique could lead to
variable-sized elements), or parsing of the input to detect headers or some pre-declared structure
and delineating elements based on this structure. The input could be parsed to detect certain
structure that is declared through a schema. The input could be parsed to detect the existence of
pre-declared patterns, grammars, or regular expressions in the data. Once two consecutive breaks
in the data have been identified, a candidate element is created (the candidate element is the data
that is located between the two consecutive breaks) and presented to the Prime Data Sieve for
content-associative lookup. If variable-sized elements are created, the length of the candidate

element needs to be specified and carried as metadata along with the candidate element.

10

15

20

25

30

WO 2018/200862 27 PCT/US2018/029636

[0099] One important function of the Prime Data Sieve is to provide content-associative
lookup based upon a candidate element presented to it, and to quickly provide one or a small set
of Prime Data Elements from which a candidate element can be derived with minimal storage
needed to specify the derivation. This is a difficult problem given a large dataset. Given
terabytes of data, even with kilobyte-sized elements, there are billions of elements to search and
choose from. The problem is even more severe on larger datasets. It becomes important to
organize and order the elements using a suitable technique and then detect similarities and
derivability within that organization of the elements, to be able to quickly provide a small set of
suitable Prime Data Elements.

[00100] The entries in the Sieve could be ordered based upon the value of each
element (i.e., Prime Data Element), so that all entries could be arranged by value in ascending or
descending order. Alternatively, they could be ordered along a principal axis that is based upon
the value of certain fields in the element, followed by subordinate axes that use the rest of the
content of the element. In this context, a field is a set of contiguous bytes from the content of the
element. Fields could be located by applying a method of fingerprinting to the contents of the
element so that the location of a fingerprint identifies the location of a field. Alternatively,
certain fixed offsets inside the content of the element could be chosen to locate a field. Other
methods could also be employed to locate a field, including, but not limited to, parsing the
element to detect certain declared structure, and locating fields within that structure.

[00101] In yet another form of organization, certain fields or combinations of fields
within the element could be considered as dimensions, so that a concatenation of these
dimensions followed by the rest of the content of each element could be used to order and
organize the data elements. In general, the correspondence or mapping between fields and
dimensions can be arbitrarily complex. For example, in some embodiments exactly one field
may map to exactly one dimension. In other embodiments, a combination of multiple fields, e.g.,
F1, F2, and F3, may map to a dimension. The combining of fields may be achieved either by
concatenating the two fields or by applying any other suitable function to them. The important
requirement is that the arrangement of fields, dimensions, and the rest of the content of an
element that is used to organize elements must enable all Prime Data Elements to be uniquely
identified by their content and ordered in the Sieve.

[00102] In yet another embodiment, a certain suitable function (such as an
algebraic or arithmetic transformation) can be applied to the element, where the function has the
property that the result of the function uniquely identifies each element. In one such embodiment,

each element is divided by a prime polynomial or some chosen number or value and the result of

10

15

20

25

30

WO 2018/200862 28 PCT/US2018/029636

the division (which comprises the quotient and remainder pair) is taken as the function used to
organize and order the element in the prime data sieve. For example, the bits comprising the
remainder can form the leading bytes of the result of the function followed by the bits comprising
the quotient. Or alternatively, the bits comprising the quotient can be used to form the leading
bytes of the result of the function followed by the bits comprising the remainder. For a given
divisor used to divide the input element, the quotient and remainder pair will uniquely identify
the element, and hence this pair can be used to form the result of the function that is used to
organize and order the element in the prime data sieve. By applying this function to each element,
prime data elements can be organized in the sieve based on the result of function. The function
will still uniquely identify each prime data element and will provide an alternate method to sort
and organize the prime data elements in the prime data sieve.

[00103] In yet another embodiment, a certain suitable function (such as an
algebraic or arithmetic transformation) can be applied to each field of the element, where the
function has the property that the result of the function uniquely identifies that field. For example,
a function such as division by a suitable polynomial or number or value may be executed on
successive fields or successive portions of the content of each element, so that the concatenation
of the results of the successive functions may be used to order and organize the element in the
prime data sieve. Note that, on each field, a different polynomial may be used for division. Each
function will furnish a suitably ordered concatenation of the bits from the quotient and remainder
emitted by the division operation for that portion or field. Each prime data element can be
ordered and organized in the sieve by using this concatenation of functions that are applied to the
fields of the element. The concatenation of functions will still uniquely identify each prime data
element and will provides an alternate method to sort and organize the prime data elements in the
prime data sieve.

[00104] In some embodiments, the contents of an element can be represented as an
expression as follows: Element = Head .* sigl .* sig2 .* ... sigl.*... sigN .* Tail, where
“Head” is a sequence of bytes comprising the leading bytes of the element, “Tail” is a sequence
of bytes comprising the concluding bytes of the element, and “sigl”, “sig2”, “sigl”, and “sigN”
are various signatures or patterns or regular expressions or sequences of bytes of certain lengths
within the body of the content of the element that characterize the element. The expression *“.*”
between the various signatures is the wildcard expression, i.e., it is the regular expression
notation that allows any number of intervening bytes of any value other than the signature that
follows the expression “.*”. In some embodiments, the N-tuple (sigl, sig2, ... sigl,... sigN) is

referred to as the Skeletal Data Structure or the Skeleton of the element, and can be regarded as a

10

15

20

25

30

WO 2018/200862 29 PCT/US2018/029636

reduced and essential subset or essence of the element. In other embodiments, the (N+2)-tuple
(Head, sigl, sig2, ... sigl,... sigN, Tail) is referred to as the Skeletal Data Structure or the
Skeleton of the element. Alternatively, an N+1 tuple may be employed that includes either the
Head or the Tail along with the rest of the signatures.

[00105] A method of fingerprinting can be applied to the content of the element to
determine the locations of the various components (or signatures) of the Skeletal Data Structure
within the content of the element. Alternatively, certain fixed offsets inside the content of the
element could be chosen to locate a component. Other methods could also be employed to locate
a component of the Skeletal Data Structure, including, but not limited to, parsing the element to
detect certain declared structure, and locating components within that structure. Prime Data
Elements can be ordered in the Sieve based on their Skeletal Data Structure. In other words, the
various components of the Skeletal Data Structure of the element can be considered as
Dimensions, so that a concatenation of these dimensions followed by the rest of the content of
each element could be used to order and organize the Prime Data Elements in the Sieve.

[00106] Some embodiments factorize the input data into candidate elements, where
the size of each candidate element is substantially larger than the size of a reference needed to
access all such elements in the global dataset. One observation about data that is broken into
such data chunks (and that is being accessed in a content-associative fashion) is that the actual
data is very sparse with respect to the total possible values that the data chunk can specify. For
example, consider a 1 zettabyte dataset. One needs about 70 bits to address every byte in the
dataset. At a chunk size of 128 bytes (1024 bits), there are approximately 2% chunks in the 1
zettabyte dataset, so that one needs 63 bits (fewer than 8 bytes) to address all of the chunks. Note

that an element or chunk of 1024 bits could have one of 2'%%*

possible values, while the number
of actual values of the given chunks in the dataset is at most 2% (if all the chunks are distinct).
This indicates that the actual data is extremely sparse with respect to the number of values that
can be reached or named by the content of an element. This enables use of a tree structure, which
is well-suited for organizing very sparse data in a manner that enables efficient content-based
lookups, allows new elements to be efficiently added to the tree structure, and is cost-effective in
terms of the incremental storage needed for the tree structure itself. Although there are only 26
distinct chunks in the 1 zettabyte dataset, thus requiring only 63 differentiating bits of
information to tell them apart, the relevant differentiating bits might be spread across the entire
1024 bits of the element and occur at different locations for each element. Therefore, to fully

differentiate all the elements, it is insufficient to examine only a fixed 63 bits from the content,

but rather the entire content of the element needs to participate in the sorting of the elements,

10

15

20

25

30

WO 2018/200862 30 PCT/US2018/029636

especially in a solution that provides true content-associative access to any and every element in
the dataset. In the Data Distillation™ framework, it is desirable to be able to detect derivability
within the framework used to order and organize the data. Keeping all of the above in mind, a
tree structure based upon the content (which progressively differentiates the data as more of the
content is examined) is a suitable organization to order and differentiate all the elements in the
factorized dataset. Such a structure provides numerous intermediate levels of subtrees which can
be treated as groupings of derivable elements or groupings of elements with similar properties of
derivability. Such a structure can be hierarchically augmented with metadata characterizing each
subtree or with metadata characterizing each element of data. Such a structure can effectively
communicate the composition of the entire data it contains, including the density, proximity, and
distribution of actual values in the data.

[00107] Some embodiments organize the Prime Data Elements in the Sieve in tree
form. Each Prime Data Element has a distinct “Name” which is constructed from the entire
content of the Prime Data Element. This Name is designed to be sufficient to uniquely identify
the Prime Data Element and to differentiate it with respect to all other elements in the tree. There
are several ways in which the Name can be constructed from the content of the Prime Data
Element. The Name may be simply comprised of all the bytes of the Prime Data Element, with
these bytes appearing in the Name in the same order as they exist in the Prime Data Element. In
another embodiment, certain fields or combinations of fields referred to as Dimensions (where
fields and dimensions are as described earlier) are used to form the leading bytes of the Name,
with the rest of the content of the Prime Data Element forming the rest of the Name, so that the
entire content of the Prime Data Element is participating to create the complete and unique Name
of the element. In yet another embodiment, the fields of the Skeletal Data Structure of the
element are chosen as Dimensions (where fields and dimensions are as described earlier), and are
used to form the leading bytes of the Name, with the rest of the content of the Prime Data
Element forming the rest of the Name, so that the entire content of the Prime Data Element is
participating to create the complete and unique Name of the element.

[00108] In some embodiments, the Name for the element can be computed by
performing algebraic or arithmetic transformations on the element while retaining the property
that each name uniquely identifies each element. In one such embodiment, each element is
divided by a prime polynomial or some chosen number or value and the result of the division
(which is the quotient and remainder pair) is used to form the Name of the element. For example,
the bits comprising the remainder can form the leading bytes of the Name followed by the bits

comprising the quotient. Or alternatively, the bits comprising quotient can be used to form the

10

15

20

25

30

WO 2018/200862 31 PCT/US2018/029636

leading bytes of the Name followed by the bits comprising the remainder. For a given divisor
used to divide the input element, the quotient and remainder pair will uniquely identify the
element, and hence this pair can be used to form the Name of each element. Using this
formulation of the Name, prime data elements can be organized in the sieve based on their
Names. The Name will still uniquely identify each prime data element and will provide an
alternate method to sort and organize the prime data elements in the prime data sieve.

[00109] In another embodiment, a variation of this method of generating a Name
(which involves division and extracting quotient/remainder pairs) may be employed, where
division by a suitable polynomial or number or value may be executed on successive fields or
successive portions of the content of each element, yielding successive portions of the Name for
each element (each portion being a suitably ordered concatenation of the bits from the quotient
and remainder emitted by the division operation for that portion or field). Note that, on each field,
a different polynomial may be used for division. Using this formulation of the Name, prime data
elements can be organized in the sieve based on their Names. The Name will still uniquely
identify each prime data element and will provides an alternate method to sort and organize the
prime data elements in the prime data sieve.

[00110] The Name of each Prime Data Element is used to order and organize the
Prime Data Elements in the tree. For most practical datasets, even those that are very large in
size (such as a 1 zettabyte dataset, comprised of 2% elements of, say, 4 KB size), it is expected
that a small subset of the bytes of the Name will often serve to sort and order the majority of the
Prime Data Elements in the tree.

[00111] FIGs. 3A, 3B, 3C, 3D, and 3E illustrate different data organization systems
that may be used to organize Prime Data Elements based on their Name in accordance with some
embodiments described herein.

[00112] FIG. 3A shows a trie data structure in which Prime Data Elements are
organized into progressively smaller groups based on the values of successive bytes from the
Name of each Prime Data Element. In the example shown in FIG. 3A, each Prime Data Element
has a distinct Name which is constructed from the entire content of the Prime Data Element, and
this Name is simply comprised of all the bytes of the Prime Data Element, with these bytes
appearing in the Name in the same order as they exist in the Prime Data Element. The root node
of the trie represents all the Prime Data Elements. Other nodes of the trie represent subsets or
groups of Prime Data Elements. Starting at the root node or 1* level of the trie (labelled as Root
302 in FIG. 3A), Prime Data Elements are grouped into subtrees based upon the value of the most

significant byte of their Name (labelled as N1 in FIG. 3A). All Prime Data Elements with the

10

15

20

25

30

WO 2018/200862 32 PCT/US2018/029636

same value in the most significant byte of their Name will be grouped together into a common
subtree, and a link denoted by that value will exist from the root node to a node representing that
subtree. For example, in FIG. 3A, Node 303 represents a subtree or group of Prime Data
Elements that each have the same value 2 in their most significant byte N1 of their respective
Names. In FIG. 3A, this group includes Prime Data Elements 305, 306, and 307.

[00113] At the second level of the trie, the second most significant byte of the
Name of each Prime Data Element is used to further divide each group of the Prime Data
Elements into smaller subgroups. For example, in FIG. 3A, the group of Prime Data Elements
represented by Node 303 is further subdivided into subgroups using the second most significant
byte N2. Node 304 represents the subgroup of Prime Data Elements which have the value 2 in
their most significant byte N1, and also the value 1 in their second most significant byte N2 of
their respective Names. This subgroup includes Prime Data Elements 305 and 306.

[00114] The process of subdivision continues at each level of the trie creating links
from a parent node to each child node, where a child node represents a subset of the Prime Data
Elements represented by the parent node. This process continues until there are only individual
Prime Data Elements at the leaves of the trie. A leaf node represents a group of leaves. In FIG.
3A, Node 304 is a leaf node. The group of Prime Data Elements represented by Node 304
comprises Prime Data Elements 305 and 306. In FIG. 3A, this group is further subdivided into
individual Prime Data Elements 305 and 306 using the third most significant byte of their Names.

The value of N3 = 3 leads to Prime Data Elements 305, while the value N3 = 5 leads to Prime
Data Element 306. In this example, out of their complete Names, only 3 significant bytes are
sufficient to fully identify Prime Data Elements 305 and 306. Likewise, only two significant
bytes from the Name are sufficient to identify Prime Data Element 307.

[00115] This example illustrates how, in the given mix of Prime Data Elements,
only a subset of the bytes of the Name serves to identify Prime Data Elements in the tree, and the
entire Name is not needed to arrive at a unique Prime Data Element. Also, Prime Data Elements
or groups of Prime Data Elements might each require a different number of significant bytes to be
able to uniquely identify them. Thus, the depth of the trie from the root node to a Prime Data
Element could vary from one Prime Data Element to another. Furthermore, in the trie, each node
might have a different number of links descending to subtrees below.

[00116] In such a trie, each node has a name comprised of the sequence of bytes
that specifies how to reach this node. For example, the name for Node 304 is “21”. Also, the

subset of bytes from the Name of the element that uniquely identifies the element in the current

10

15

20

25

30

WO 2018/200862 33 PCT/US2018/029636

distribution of elements in the tree is the “Path” to this Prime Data Element from the root node.
For example, in FIG. 3A, Path 301 with a value of 213 identifies Prime Data Elements 305.

[00117] The trie structure described here may create deep trees (i.e., trees that have
many levels) since every differentiating byte of the Name of an element in the tree adds one level
of depth to the trie.

[00118] Note that the tree data structures in FIGs. 3A-3E have been drawn from
left to right. Therefore, as we move from the left side of the figure to the right side of the figure,
we move from higher levels of the tree to lower levels of the tree. Below a given node (i.e.,
toward the right of a given node in FIGs. 3A-3E), for any child selected by a certain value of the
differentiating byte from the Name, all elements resident in the subtrees below that child will
have the same value in that corresponding byte in the Name of the element.

[00119] We now describe a method for content-associative lookup of the trie
structure, given an input candidate element. This method involves navigation of the trie structure
using the Name of the candidate element, followed by subsequent analysis and screening to
decide what to return as the result of the overall content-associative lookup. In other words, the
trie navigation process returns a first outcome, and then analysis and screening is performed on
that outcome to determine the result of the overall content-associative lookup.

[00120] To begin the trie navigation process, the value of the most significant byte
from the Name of the candidate element will be used to select a link (denoted by that value) from
the root node to a subsequent node representing a subtree of Prime Data Elements with that same
value in the most significant byte of their Names. Proceeding from this node, the second byte
from the Name of the candidate element is examined and the link denoted by that value is
selected, thus advancing one level deeper (or lower) into the trie and selecting a smaller subgroup
of Prime Data Elements that now share with the candidate element at least two significant bytes
from their Names. This process continues until a single Prime Data Element is reached or until
none of the links match the value of the corresponding byte from the Name of the candidate
element. Under either of these conditions, the tree navigation process terminates. If a single
Prime Data Element is reached, it may be returned as the outcome of the trie navigation process.
If not, one alternative is to report a “miss”. Another alternative is to return multiple Prime Data
Elements that are in the subtree that is rooted at the node where the navigation terminated.

[00121] Once the trie navigation process has terminated, other criteria and
requirements may be used to analyze and screen the outcome of the trie navigation process to
determine what should be returned as the result of the content-associative lookup. For example,

when either a single Prime Data Element or multiple Prime Data Elements are returned by the trie

10

15

20

25

30

WO 2018/200862 34 PCT/US2018/029636

navigation process, there could be an additional requirement that they share a certain minimum
number of bytes with the Name of the candidate element before qualifying to be returned as the
result of the content-associative lookup (otherwise the content-associative lookup returns a miss).
Another example of a screening requirement could be that, if the trie navigation process
terminates without reaching a single Prime Data Element so that multiple Prime Data elements
(rooted at the node where the trie navigation terminated) are returned as the outcome of the trie
navigation process, then these multiple Prime Data Elements will qualify to be returned as the
result of the overall content-associative lookup only if the number of these elements is fewer than
a certain specified limit (otherwise the content-associative lookup returns a miss). Combinations
of multiple requirements may be employed to determine the result of the content-associative
lookup. In this manner, the lookup process will either report a “miss” or return a single Prime
Data Element, or if not a single Prime Data Element, then a set of Prime Data Elements that are
likely to be good starting points for deriving the candidate element.

[00122] FIGs. 3B-3E described below relate to variations and modifications to the
tree data structure illustrated in FIG. 3A. Although these variations provide improvements and
advantages over the trie data structure illustrated in FIG. 3A, the process for navigating the data
structure is similar to the process described above in reference to FIG. 3A. That is, after the tree
navigation for the tree data structures shown in FIGs. 3B-3E terminates, and subsequent analysis
and screening is performed to determine the result of the overall content-associative lookup, the
overall process either returns a miss, a single Prime Data Element, or a set of Prime Data
Elements that are likely to be good starting points for deriving the candidate element.

[00123] FIG. 3B illustrates another data organization system that may be used to
organize Prime Data Elements based on their Name. In the example shown in FIG. 3B, each
Prime Data Element has a distinct Name, which is constructed from the entire content of the
Prime Data Element, and this Name is simply comprised of all the bytes of the Prime Data
Element, with these bytes appearing in the Name in the same order as they exist in the Prime
Data Element. FIG. 3B shows a more compact structure where a single link employs multiple
bytes (rather than the single byte used in the trie in FIG. 3A) from the Name of the Prime Data
Elements in the subtree below to create subdivisions or the next level of groupings. The links
from parent nodes to child nodes are now denoted by multiple bytes. Further, from any given
parent node, each link might employ a different number of bytes to differentiate and identify the
subtree associated with that link. For example, in FIG. 3B, the link from the root node to Node
308 1s differentiated by using 4 bytes (N1N2N3N4 = 9845) from the Name, while the link from the
root node to Node 309 is differentiated by using 3 bytes (N;NoN3 = 347) from the Name.

10

15

20

25

30

WO 2018/200862 35 PCT/US2018/029636

[00124] Note that, during tree navigation (using content from a given candidate
element), upon arriving at any parent node in the tree, the tree navigation process needs to ensure
that sufficient bytes from the Name of the candidate element are examined to unambiguously
decide which link to choose. To choose a given link, the bytes from the Name of the candidate
must match all the bytes that denote the transition to that particular link. Once again, in such a
tree, each node of the tree has a name comprised of the sequence of bytes that specifies how to
reach this node. For example, the name of node 309 can be “347” because it represents a group
of Prime Data Elements (e.g., elements 311 and 312) with the 3 leading bytes of their Names
being “347”. Upon a lookup of the tree using a candidate element with the leading 3 bytes of the
Name being 347, this data pattern causes the tree navigation process to reach node 309 as shown
in FIG. 3B. Once again, the subset of bytes from the Name of the element that uniquely identifies
the element in the current mix of elements in the tree is the “Path” to this Prime Data Element
from the root node. For example, in FIG. 3B, the sequence of bytes 3475 leads to Prime Data
Element 312, and uniquely identifies Prime Data Element 312 in the mix of Prime Data Elements
shown in that example.

[00125] For diverse and sparse data, the tree structure in FIG. 3B can prove more
flexible and compact than the trie structure of FIG. 3A.

[00126] FIG. 3C illustrates another data organization system that may be used to
organize Prime Data Elements based on their Name. In the example shown in FIG. 3C, each
Prime Data Element has a distinct Name, which is constructed from the entire content of the
Prime Data Element, and this Name is simply comprised of all the bytes of the Prime Data
Element, with these bytes appearing in the Name in the same order as they exist in the Prime
Data Element. FIG. 3C shows another variation (to the organization described in FIG. 3B) that
further compacts the tree and groups elements in a subtree by using regular expressions (where
necessary and/or useful) to specify the values from the Name of Prime Data Elements that lead to
the various links. The use of regular expressions allows an efficient grouping of elements that
share the same expression on corresponding bytes under the same subtree; this can then be
followed by a more local disambiguation of distinct Prime Data Elements within the subtree.
Also, the use of the regular expressions allows a more compact way to describe the values of
bytes needed to map the element to any subtree below. This further reduces the number of bytes
needed to specify the tree. For example, regular expression 318 specifies a pattern of 28
consecutive “Fs; if this link is followed during tree navigation, we may reach element 314,
which includes pattern 320 that has 28 consecutive “F’’s as per regular expression 318. Likewise,

the path that reaches element 316 has a link or branch that uses a regular expression that specifies

10

15

20

25

30

WO 2018/200862 36 PCT/US2018/029636

a pattern with 16 consecutive “0”s. For such a tree, the tree navigation process needs to detect
and execute such regular expressions in order to determine which link to choose.

[00127] FIG. 3D illustrates another data organization system that may be used to
organize Prime Data Elements based on their Name. In the example shown in FIG. 3D, each
Prime Data Element has a distinct Name, which is constructed from the entire content of the
Prime Data Element. A method of fingerprinting is applied to each element to identify locations
of fields that contain content that evaluates to a chosen fingerprint. A field at the location of the
first fingerprint found in the element is treated as a Dimension and a certain number of bytes (say,
x bytes, where x is significantly smaller than the number of bytes in the element) from this field
are extracted and used as the leading bytes of the Name of the Element, with the rest of the bytes
of the Name being comprised of the rest of the bytes of the Prime Data Element and appearing in
the same cyclic order as they exist in the Prime Data Element. This Name is used to organize the
Prime Data Elements in the tree. In this example, when no fingerprint is detected in an element,
the Name is formulated by simply using all the bytes of the element in the order in which they
exist in the element. A separate subtree (denoted by an indication that no fingerprints were
found) holds and organizes all such elements based upon their Names.

[00128] For example, as shown in FIG. 3D, a fingerprinting technique can be
applied to Element 338 (which contains t bytes of data viz. B;B,Bs ... By) to obtain fingerprint
location “Fingerprint 17 at byte B;,; which identifies the field which will be chosen as
“Dimension 1.” Next, x bytes from the location identified by “Fingerprint 1 can be extracted to
form “Dimension 1" and these x bytes can be used as the leading bytes NN, ... Ny of the Name
of each element in FIG. 3D. Subsequently, the rest of the t — x bytes from element 338 (starting
from Bi.x+1, and later wrapping around to B;B»Bs ... B;) are concatenated and used as the rest of

the bytes Nx;1 Ny ... N; of the Name. When no fingerprints are found in the element, the Name

N N,.....N;is simply B1B,B;...B; from Element 338. Prime Data Elements are sorted and
organized in the tree using their Names. For example, Prime Data Element (PDE) 330 is
identified and reached after traversing two levels of the tree using the Path 13654...06, where the
bytes 13654...0 are N; Nj.....N which are the bytes from Dimension 1. A separate subtree at
Node 335, arrived at from the root along link 334 (denoted by an indication that no fingerprints
were found) holds and organizes all Prime Data Elements whose content did not evaluate to the
chosen fingerprint. Thus, in this organization, some links, e.g., link 336, may organize elements

using a Name that is comprised of the bytes of the element appearing in the same order as in the

10

15

20

25

30

WO 2018/200862 31 PCT/US2018/029636

element, while other links, e.g., link 340, may organize elements using a Name that is formulated
using fingerprints.

[00129] Upon receiving a candidate element, the process applies the same
technique described above to determine the Name of the candidate element, and uses this Name
to navigate the tree for a content-associative lookup. Thus, the same and consistent treatment is
applied to Prime Data Elements (upon their installation into the tree) and candidate elements
(upon receiving them from the Parser & Factorizer) in order to create their Names. The tree
navigation process uses the Name of the candidate element to navigate the tree. In this
embodiment, if no fingerprint is found in the candidate element, the tree navigation process
navigates down the subtree that organizes and contains Prime Data Elements whose content did
not evaluate to the fingerprint.

[00130] FIG. 3E illustrates another data organization system that may be used to
organize Prime Data Elements based on their Name. In the example shown in FIG. 3E, each
Prime Data Element has a distinct Name, which is constructed from the entire content of the
Prime Data Element. A method of fingerprinting is applied to each element to identify locations
of fields that contain content that evaluates to either of two fingerprints. The field at the location
of the first occurrence of the first fingerprint (Fingerprintl in FIG. 3E) in the element is treated as
a first Dimension (Dimension 1), and the field located at the first occurrence of the second
fingerprint (Fingerprint2 in FIG. 3E) is treated as a second Dimension (Dimension 2). The use of
fingerprinting to look for two distinct fingerprints on an element leads to four possible scenarios:

(1) both fingerprints are found in the element, (2) fingerprintl is found but fingerprint 2 is not
found, (3) fingerprint 2 is found but fingerprint 1 is not found, and (4) no fingerprints are found.
Prime Data Elements can be grouped into 4 subtrees corresponding to each of the scenarios. In
FIG. 3E, “FP1” denotes the presence of Fingerprintl, “FP2” denotes the presence of Fingerprint2,
“~FP1” denotes the absence of Fingerprintl, and “~FP2” denotes the absence of Fingerprint2.

[00131] For each of the 4 scenarios, the Name of an element is created as follows:
(1) When both fingerprints are found, x bytes from the location identified by “Fingerprint 1" can
be extracted to form “Dimension 1” and y bytes from the location identified by “Fingerprint 2”

can be extracted to form “Dimension 2” and these x+y bytes can be used as the leading bytes
NiN;....Nx,y of the Name of each such element in FIG. 3E. Subsequently, the rest of the t —
(x+y) bytes from element 348 are extracted in cyclic fashion (starting after the bytes from the first
dimension) and concatenated and used as the rest of the bytes Nxyy41 Nxiy42 ... N¢ of the Name.

(2) When fingerprint 1 is found but not fingerprint 2, x bytes from the location identified by

“Fingerprint 17 can be extracted to form the leading dimension, and these x bytes can be used as

10

15

20

25

30

WO 2018/200862 38 PCT/US2018/029636

the leading bytes NiN; ... Ny of the Name of each such element. Subsequently, the rest of the t —
x bytes from element 348 (starting from Bj,x41, and later wrapping around to B;B,Bs... Bj) are

concatenated and used as the rest of the bytes Ny,1 Nyi2 ... N of the Name. (3) When fingerprint
2 is found but not fingerprint 1, y bytes from the location identified by “Fingerprint 2" can be
extracted to form the leading dimension, and these y bytes can be used as the leading bytes N;N»

... Nyof the Name of each such element. Subsequently, the rest of the t —y bytes from element
348 (starting from Bj,y41, and later wrapping around to B;B2Bj ... Bj) are concatenated and used
as the rest of the bytes Nyy1 Nyyo ... N¢ of the Name. (4) When no fingerprints are found in the

element, the Name N; N».....Nis simply B;B:Bs...B; from element 348. Thus, a separate subtree

exists for each of these 4 scenarios. The process to extract Name (N;N>N3 ...Ny) for element 348

can be summarized for the four scenarios as follows:

(D both Fingerprintl and Fingerprint2 found:

N; - Ny € Bii1 — Bix = x bytes from Dimension 1

Nx+1 — Nxiy € Bji1 — Bjiy =y bytes from Dimension 2

Nyiye1 .. Ny =Rest of the bytes (from the Candidate Element of size t bytes) =
Bitxr1Bii2Bisxss - BiBjyr1Bjiyi2Bjiyss ... BB1B2Bs ... B;

2) Fingerprintl found, Fingerprint2 not found:

N; - Ny € Bii1 — Bix = x bytes from Dimension 1

Nxi1 .- Ny = Rest of the bytes (from the Candidate Element of size t bytes) =
Bix+1Birx2Bisxs3 ... BB1B2Bs ... B

3) Fingerprint2 found, Fingerprintl not found:

N; — Ny € Bj;; — Bj,y =y bytes from Dimension 2

Ny+1 .. N¢=Rest of the bytes (from the Candidate Element of size t bytes) =
Bjiy+1Bjiy+2Bjiya3 ... BB1B2B3 ... B;

@ No fingerprints found:
Nl - Nx é Bl - Bt

[00132] Upon receiving a candidate element, the process applies the same

technique described above to determine the Name of the candidate element. In this embodiment,

10

15

20

25

30

WO 2018/200862 39 PCT/US2018/029636

the 4 methods of Name construction described above (depending upon whether fingerprint 1 and
fingerprint 2 are found or not) are applied to the candidate element just as they were to Prime
Data Elements when they were entered into the Sieve. Thus, the same and consistent treatment is
applied to Prime Data Elements (upon their installation into the tree) and to candidate elements
(upon receiving them from the Parser & Factorizer) in order to create their Names. The tree
navigation process uses the Name of the candidate element to navigate the tree for a content-
associative lookup.

[00133] If the content-associative lookup is successful, it will yield Prime Data
Elements that have the same patterns at the locations of the specific dimensions as the candidate
element. For example, if both fingerprints are found in the candidate element, the tree navigation
process will take it down link 354 of the tree, starting from the root node. If the candidate
element has the pattern “99 ... 3” as ‘Dimension 17 and the pattern “7 ... 5 as ‘Dimension 27,
the tree navigation process will arrive at Node 334. This reaches a subtree containing two Prime
Data Elements (PDE 352 and PDE 353), which are likely targets for the derivation. Additional
analysis and screening is performed (by first examining the metadata, and if needed, by
subsequently fetching and examining the actual Prime Data Elements) to determine which Prime
Data Element is best suited for the derivation. Thus, embodiments described herein identify a
variety of tree structures that can be used in the Sieve. Combinations of such structures or
variations thereof could be employed to organize the Prime Data Elements. Some embodiments
organize the Prime Data Elements in tree form, wherein the entire content of the element is used
as the Name of the element. However, the sequence in which bytes appear in the Name of the
element is not necessarily the sequence in which the bytes appear in the element. Certain fields
of the element are extracted as dimensions and used to form the leading bytes of the Name, and
the rest of the bytes of the element make up the rest of the Name. Using these Names, the
elements are ordered in the Sieve in tree form. The leading digits of the Name are used to
differentiate the higher branches (or links) of the tree, and the rest of the digits are used to
progressively differentiate all branches (or links) of the tree. Each node of the tree could have a
different number of links emanating from that node. Also, each link from a node could be
differentiated and denoted by a different number of bytes, and the description of these bytes could
be accomplished through use of regular expressions and other powerful ways to express their
specification. All these features lead to a compact tree structure. At the leaf nodes of the tree
reside references to individual Prime Data Elements.

[00134] In one embodiment, a method of fingerprinting can be applied to the bytes

comprising the Prime Data Element. A number of bytes residing at the location identified by the

10

15

20

25

30

WO 2018/200862 40 PCT/US2018/029636

fingerprint can be used to make up a component of the element Name. One or more components
could be combined to provide a dimension. Multiple fingerprints could be used to identify
multiple dimensions. These dimensions are concatenated and used as the leading bytes of the
Name of the element, with the rest of the bytes of the element comprising the rest of the Name of
the element. Since the dimensions are located at positions identified by fingerprints, it increases
the likelihood that the Name is being formed from consistent content from each element.
Elements that have the same value of content at the fields located by the fingerprint will be
grouped together along the same leg of the tree. In this fashion, similar elements will be grouped
together in the tree data structure. Elements with no fingerprints found in them can be grouped
together in a separate subtree, using an alternative formulation of their Names.

[00135] In one embodiment, a method of fingerprinting can be applied to the
content of the element to determine the locations of the various components (or signatures) of the
Skeletal Data Structure (described earlier) within the content of the element. Alternatively,
certain fixed offsets inside the content of the element could be chosen to locate a component.
Other methods could also be employed to locate a component of the Skeletal Data Structure of
the element, including, but not limited to, parsing the element to detect certain declared structure,
and locating components within that structure. The various components of the Skeletal Data
Structure of the element can be considered as Dimensions, so that a concatenation of these
dimensions followed by the rest of the content of each element is used to create the Name of each
element. The Name is used to order and organize the Prime Data Elements in the tree.

[00136] In another embodiment, the element is parsed in order to detect certain
structure in the element. Certain fields in this structure are identified as dimensions. Multiple
such dimensions are concatenated and used as the leading bytes of the Name, with the rest of the
bytes of the element comprising the rest of the Name of the element. Since the dimensions are
located at positions identified by parsing the element and detecting its structure, it increases the
likelihood that the Name is being formed from consistent content from each element. Elements
that have the same value of content at the fields located by the parsing will be grouped together
along the same leg of the tree. In this fashion, once again, similar elements will be grouped
together in the tree data structure.

[00137] In some embodiments, each node in the tree data structure contains a self-
describing specification. Tree nodes have one or more children. Each child entry contains
information on the differentiating bytes on the link to the child, and a reference to the child node.
A child node may be a tree node or leaf node. FIG. 3F presents a self-describing tree node data

structure in accordance with some embodiments described herein. The tree node data structure

10

15

20

25

30

WO 2018/200862 41 PCT/US2018/029636

shown in FIG. 3F specifies (A) information pertaining to the Path from the root node to this tree
node, including all or a subset of the following components: the actual sequence of bytes from
the Name to reach this tree node, the number of bytes of the Name consumed to reach this node
from the root node, an indication whether this number of bytes consumed is greater than some
pre-specified threshold, and other metadata that describes the Path to this node and is useful for
the content-associative search of the tree as well as for decisions relating to the construction of
the tree, (B) the number of children the node has, and (C) for each child (wherein each child
corresponds to a branch of the tree) it specifies (1) Child ID, (2) number of differentiating bytes
needed from the succeeding bytes of the Name in order to transition down this link of the tree, (3)
the specification for the actual value of the bytes from the Name that take it down this link, and
(4) a reference to the child node.

[00138] FIG. 3G presents a self-describing leaf node data structure in accordance
with some embodiments described herein. Leaf nodes have one or more children. Each child is
the link to a Prime Data Element. Each child entry contains information on the differentiating
bytes on the link to the Prime Data Element, a reference to the Prime Data Element, count of
Duplicates & Derivatives and other metadata about the Prime Data Element. The leaf node data
structure shown in FIG. 3G specifies (A) information pertaining to the Path from the root node to
this leaf node, including all or a subset of the following components: the actual sequence of
bytes from the Name to reach this leaf node, the number of bytes of the Name consumed to reach
this node from the root node, an indication whether this number of bytes consumed is greater than
some pre-specified threshold, and other metadata that describes the Path to this node and is useful
for the content-associative search of the tree as well as for decisions relating to the construction
of the tree, (B) the number of children the node has, and (C) for each child (wherein each child
corresponds to a Prime Data Element under the leaf node) it specifies (1) Child ID, (2) number of
differentiating bytes needed from the succeeding bytes of the Name in order to transition down
this link of the tree to a Prime Data Element, (3) the specification for the actual value of the bytes
from the Name that take it down this leg, (4) a reference to the Prime Data Element that
terminates the tree on this path of the tree, (5) a count of how many duplicates and derivatives are
pointing to this Prime Data Element (this is used to ascertain whether an entry can be deleted
from the Sieve upon a deletion of data in the storage system), and (6) other metadata for the
Prime Data Element including Size of Prime Data Element, etc.

[00139] In order to increase the efficiency with which fresh Prime Data Elements
get installed into the tree, some embodiments incorporate an additional field into the leaf node

data structure for each Prime Data Element that is kept at the leaf node of the tree. Note that

10

15

20

25

30

WO 2018/200862 42 PCT/US2018/029636

when a fresh element has to be inserted into the tree, additional bytes of the Name or content of
each of the Prime Data Elements in the subtree in question might be needed in order to decide
where in the subtree to insert the fresh element, or whether to trigger a further partitioning of the
subtree. The need for these additional bytes could require fetching several of the Prime Data
Elements in question in order to extract the relevant differentiating bytes for each of these
elements with respect to the fresh element. In order to reduce and optimize (and, in most cases,
fully eliminate) the number of IOs needed for this task, the data structure in the leaf node includes
a certain number of additional bytes from the Name of each Prime Data Element under that leaf
node. These additional bytes are referred to as Navigation Lookahead bytes, and assist in sorting
the Prime Data Elements with respect to a fresh incoming element. The Navigation Lookahead
bytes for a given Prime Data Element are installed into the leaf node structure upon installation of
the Prime Data Element into the Sieve. The number of bytes to be retained for this purpose could
be chosen statically or dynamically using a variety of criteria, including the depth of the subtree
involved and the density of Prime Data Elements in that subtree. For example, for Prime Data
Elements being installed at shallow levels of the tree, the solution may add a longer Navigation
Lookahead Field than for Prime Data Elements residing in a very deep tree. Also, when a fresh
element is being installed into the Sieve, and if there are already many Prime Data Elements in
the existing target subtree (with increased likelihood of an imminent repartitioning), then
additional Navigation Lookahead bytes could be retained for the fresh Prime Data Element when
it is being installed into the subtree.

[00140] FIG. 3H presents the leaf node data structure for a leaf node that includes
the Navigation Lookahead field. This data structure specifies (A) information pertaining to the
Path from the root node to this leaf node, including all or a subset of the following components:
the actual sequence of bytes from the Name to reach this leaf node, the number of bytes of the
Name consumed to reach this node from the root node, an indication whether this number of
bytes consumed is greater than some pre-specified threshold, and other metadata that describes
the Path to this node and is useful for the content-associative search of the tree as well as for
decisions relating to the construction of the tree, (B) the number of children the node has, and (C)
for each child (wherein each child corresponds to a Prime Data Element under the leaf node) it
specifies (1) Child ID, (2) number of differentiating bytes needed from the succeeding bytes of
the Name in order to transition down this link of the tree to a Prime Data Element, (3) the
specification for the actual value of the bytes that take it down this leg, (4) a reference to the
Prime Data Element that terminates the tree on this path of the tree, (5) the Navigation

Lookahead fields that specify how many bytes of Navigation Lookahead are retained for the

10

15

20

25

30

WO 2018/200862 43 PCT/US2018/029636

Prime Data Element, as well as the actual values of those bytes, (6) a count of how many
duplicates and derivatives are pointing to this Prime Data Element (this is used to ascertain
whether an entry can be deleted from the Sieve upon a deletion of data in the storage system), and
(7) other metadata for the Prime Data Element including size of Prime Data Element, etc.

[00141] In some embodiments, the various branches of the tree are used to map the
various data elements into groups or ranges formed by interpreting the differentiating bytes along
a link leading to a child subtree as a range delimiter. All elements in that child subtree will be
such that the values of the corresponding bytes in the element will be less than or equal to the
values for the differentiating bytes specified for the link to the particular child subtree. Thus each
subtree will now represent a group of elements whose values fall within a specific range. Within
a given subtree, each subsequent level of the tree will progressively divide the set of elements
into smaller ranges. This embodiment provides a different interpretation to the components of
the self-describing tree node structure shown in FIG. 3F. The N children in FIG. 3F are ordered
by value of their differentiating bytes in the tree node data structure and represent an ordered
sequence of non-overlapping ranges. For N nodes, there are N+1 ranges — the lowest or 1% range
comprises of values less than or equal to the smallest entry and the N+1th range comprises of
values greater than the Nth entry. The N+1th range will be treated as out of range, so that the N
links lead to N subtrees or ranges below.

[00142] For example, in FIG. 3F, Child 1 defines the lowest range and uses 6 bytes
(of value abef12d6743a) to differentiate its range — the range for Child 1 is from 00000000 to
abefl2d6743a. If the corresponding 6 bytes of the candidate element fall within this range,
inclusive of the end values, the link for this child will be chosen. If the corresponding 6 leading
bytes of the candidate element are larger than the range delimiter abef£12d6743a, Child 1 will
not be selected. To examine whether the candidate falls within the range for Child 2, two
conditions must be satisfied — firstly the candidate must be outside the range for the immediately
preceding child (Child 1 in this example), and secondly the corresponding bytes in its Name must
be less than or equal to the range delimiter for Child 2. In this example, the range delimiter for
Child 2 is described by 2 bytes of value dcfa. Hence the 2 corresponding bytes for the
candidate element must be less than or equal to dcfa. Using this method, the candidate
element and all the children in the tree node can be examined to check which of the N+1 ranges
the candidate element falls in. For the example shown in FIG. 3F, a miss condition will be
detected if the 4 corresponding bytes of the Name of the candidate element are greater than the

value of the differentiating bytes for the link for Child N, which is £3231929.

10

15

20

25

30

WO 2018/200862 44 PCT/US2018/029636

[00143] The tree navigation process can be modified to accommodate this new
range node. Upon arriving at a range node, to choose a given link emanating from that node, the
bytes from the Name of the candidate must fall within the range defined for that particular link.
If the value of the bytes from the Name of the candidate is larger than the value of the
corresponding bytes in all the links, the candidate element falls outside of all ranges spanned by
the subtree below - in this case (referred to as an “out of range condition™) a miss condition is
detected and the tree navigation process terminates. If the leading bytes of the Name of the
candidate element fall within the range determined by the corresponding differentiating bytes
along a link leading to the child subtree, tree navigation continues to that subtree below. Unless it
terminates due to an “out of range condition”, tree navigation can progressively continue deeper
down the tree until it reaches a leaf node data structure.

[00144] This kind of range node can be employed in the tree structure in
conjunction with the trie nodes described in FIG.s 3A-3E. In some embodiments, a certain
number of levels of upper nodes of the tree structure can be trie nodes with tree traversal being
based on exact matches between the leading bytes of the Name of the candidate element and the
corresponding bytes along a link of the tree. Subsequent nodes can be range nodes with tree
traversal dictated by the range in which the corresponding bytes of the Name of the candidate
element falls. Upon termination of the tree navigation process, as described earlier in this
document, a variety of criteria can be used to decide what to return as the result of the overall
content associative lookup.

[00145] The foregoing descriptions of methods and apparatuses for representing
and using tree nodes and leaf nodes have been presented only for purposes of illustration and
description. They are not intended to be exhaustive or to limit the present invention to the forms
disclosed. Accordingly, many modifications and variations will be apparent to practitioners
skilled in the art.

[00146] Upon being presented a candidate element as input, the tree node and leaf
node structures described above can be traversed and a content-associative lookup of the tree can
be performed based upon the content of the candidate element. The Name of the candidate
element will be constructed from the bytes of the candidate element just as the Name of a Prime
Data Element was constructed from the content of the Prime Data Element when it was installed
in the Sieve. Given an input candidate element, the method for content-associative lookup of the
tree involves navigation of the tree structure using the Name of the candidate element, followed
by subsequent analysis and screening to decide what to return as the result of the overall content-

associative lookup. In other words, the tree navigation process returns a first outcome, and then

10

15

20

25

30

WO 2018/200862 435 PCT/US2018/029636

analysis and screening is performed on that outcome to determine the result of the overall
content-associative lookup.

[00147] If there are any Prime Data Elements with the same leading bytes of Name
as the candidate (or bytes such that they fall within the same range), the tree will identify that
subset of Prime Data Elements in the form of a subtree of elements denoted by a link. In general,
each tree node or leaf node can store information that enables the tree navigation process to
determine which outgoing link, if any, is to be selected to navigate to the next lower level in the
tree based upon the corresponding bytes of the Name of the input element, and the identity of the
node that is reached when the tree is navigated along the selected link. If each node contains this
information, then the tree navigation process can recursively navigate down each level in the tree
until no matches are found (at which point the tree navigation process can return a set of Prime
Data Elements that exists in the subtree rooted at the current node) or a Prime Data Element is
reached (at which point the tree navigation process can return the Prime Data Element and any
associated metadata).

[00148] Once the tree navigation process has terminated, other criteria and
requirements may be used to analyze and screen the outcome of the tree navigation process to
determine what should be returned as the result of the overall content-associative lookup. First,
one could pick the Prime Data Element with the most number of leading bytes from the Name in
common with the candidate. Second, when either a single Prime Data Element or multiple Prime
Data Elements are returned by the tree navigation process, there could be an additional
requirement that they share a certain minimum number of bytes with the Name of the candidate
element before qualifying to be returned as the result of the content-associative lookup
(otherwise, the content-associative lookup returns a miss). Another example of a screening
requirement could be that, if the tree navigation process terminates without reaching a single
Prime Data Element so that multiple Prime Data elements (rooted at the node where the tree
navigation terminated) are returned as the outcome of the tree navigation process, then these
multiple Prime Data Elements will qualify to be returned as the result of the overall content-
associative lookup only if the number of these elements is fewer than a certain specified limit
such as 4-16 elements (otherwise, the content-associative lookup returns a miss). Combinations
of multiple requirements may be employed to determine the result of the content-associative
lookup. If multiple candidates still remain, one could examine Navigation Lookahead bytes and
also associated metadata to decide which Prime Data Elements are the most suitable. If still
unable to narrow the choice down to a single Prime Data Element, one could furnish multiple

Prime Data Elements to the Derive function. In this manner, the lookup process will either report

10

15

20

25

30

WO 2018/200862 46 PCT/US2018/029636

a “miss,” or return a single Prime Data Element, or if not a single Prime Data Element, then a set
of Prime Data Elements that are likely to be good starting points for deriving the candidate
element.

[00149] The tree needs to be designed for efficient content-associative access. A
well-balanced tree will provide a comparable depth of access for much of the data. It is expected
that the upper few levels of the tree will often be resident in the processor cache, the next few
levels in fast memory, and the subsequent levels in flash storage. For very large datasets, it is
possible that one or more levels need to reside in flash storage and even disk.

[00150] FIG. 4 shows an example of how 256 TB of prime data may be organized
in tree form, and presents how the tree may be laid out in memory and storage in accordance with
some embodiments described herein. Assuming an average fanout of 64 (which is 2% children
per node, the reference for a Prime Data Element can be accessed by reaching a leaf node data
structure (e.g., as described in FIG. 3H) which is resident at (on average) the 6th level of the tree
(i.e., after 5 link traversals or hops). So, such a structure at the 6th level of the tree, after 5 hops,
will reside alongside another 2°° such nodes, each with an average of 64 children (these children
are the references to the Prime Data Elements), thus accommodating approximately 64 billion
Prime Data Elements. At an element size of 4 KB, this accommodates 256 TB of Prime Data
Elements.

[00151] The tree can be laid out so that the 6 levels of the tree can be traversed as
follows: 3 levels residing in on-chip cache (containing approximately four thousand “upper level”
tree node data structures specifying transitions for links to approximately 256 K nodes), 2 levels
in memory (containing 16 million “middle level” tree node data structures specifying transitions
for links to 1 billion leaf nodes approximately), and the 6th level in flash storage
(accommodating a billion leaf node data structures). The 1 billion leaf node data structures
resident at this 6th level of the tree in flash storage furnish the references for the 64 billion Prime
Data Elements (on average 64 elements per leaf node).

[00152] In the example shown in FIG. 4, at the 4th and 5Sth levels, each node
devotes on average 16 bytes per element (1 byte for child ID, e.g., a 6-byte reference to the PDE,
plus a byte for byte count, plus 8 bytes on average to specify actual transition bytes as well as
some metadata). At the 6th level, each leaf node devotes on average 48 bytes per element (1 byte
for child ID, 1 byte for byte count, 8 bytes to specify actual transition bytes, 6-byte reference to
the Prime Data Element, 1 byte for count of derivatives off this Prime Data Element, 16 bytes of
Navigation Lookahead, 2 bytes for size of Prime Data Element, as well as 13 bytes of other

metadata), thus the total capacity in flash storage required for the tree (including the references to

10

15

20

25

30

WO 2018/200862 47 PCT/US2018/029636

the Prime Data Elements, and including any metadata) is about 3 Terabytes. The total capacity
required for the upper nodes of the tree is a smaller fraction of this size (since there are fewer
nodes, and fewer bytes are needed to specify the tighter reference to the children nodes, and less
metadata is required per node). In the example, the upper tree nodes devote on average 8 bytes
per element (1 byte for child ID, 1 byte for byte count, plus 3-4 bytes on average to specify actual
transition bytes, and 2-3 byte reference to the child node). Overall, in this example, a synthetic
dataset with 256 TB of prime data is sorted into one billion groups using 3 TB (or 1.17% of 256
TB) of additional apparatus.

[00153] In the example shown in FIG. 4, where 256 TB of prime data contains 64
billion Prime Data Elements of 4 KB each, one needs fewer than 5 bytes (or 36 bits) of address to
fully differentiate the 64 billion Prime Data Elements. From a content-associative standpoint, if
the mix of data is such that an average of 4 bytes of progressive Name are consumed at each of
the first 3 levels, and 8 bytes at each of the next 3 levels, a total of 36 bytes (288 bits) of Name
(on average) would differentiate all the 64 billion Prime Data Elements. These 36 bytes would be
less than 1% of the 4 KB that make up each element. If a Prime Data Element of 4 KB can be
identified by 1% (or even 5-10%) of its bytes, then the rest of the bytes (which make up the
majority of the bytes) could tolerate perturbations, and a candidate with such perturbations could
still reach this Prime Data Element and be considered for derivation from it.

[00154] Note that the number of bytes needed on any given link (to differentiate the
various subtrees below) will be governed by the actual data in the mix of elements that comprise
the dataset. Likewise, the number of links out of a given node will also vary with the data. The
self-describing tree node and leaf node data structures will declare the actual number and the
values of the bytes needed for each link, as well as the number of links emanating from any node.

[00155] Further controls can be placed to limit the amount of cache, memory, and
storage devoted at the various levels of the tree, to sort the input into as many differentiated
groups as possible, within the allocated budget of incremental storage. To handle situations
where there are densities and pockets of data that require very deep subtrees to fully differentiate
the elements, such densities could be handled efficiently by grouping a larger set of related
elements into a flat group at a certain depth (e.g. the 6™ level) of the tree and performing a
streamlined search and derivation upon these (by first examining the Navigation Lookahead and
metadata to determine the best Prime Data Element, or else (as a fallback) looking only for
duplicates rather than the full derivation that is afforded by the method for the rest of the data).
This would circumvent the creation of very deep trees. Another alternative is to allow deep trees

(with many levels) as long as these levels fit in available memory. The moment the deeper levels

10

15

20

25

30

WO 2018/200862 48 PCT/US2018/029636

spill out to flash or disk, steps can be taken to flatten the tree from that level onwards, to
minimize the latency that would otherwise be incurred by multiple successive accesses to deeper
levels of tree nodes stored in flash or disk,

[00156] It is expected that a relatively small fraction of the total bytes from the
Name of the element will often be sufficient to identify each Prime Data Element. Studies
performed on a variety of real world datasets using the embodiments described herein confirm
that a small subset of the bytes of a Prime Data Element serves to order the majority of the
elements to enable the solution. Thus, such a solution is efficient in terms of the amount of
storage that it requires for its operation.

[00157] In terms of accesses needed for the example from FIG. 4, once for every
incoming 4 KB chunk of input (or candidate element), the scheme will need the following
accesses to query the tree structure and reach a leaf node: three cache references, two memory
references (or perhaps multiple memory references), plus a single IO from flash storage to access
the leaf node data structure. This single IO from storage would fetch a 4 KB page which would
hold information for the leaf node data structure for a group of approximately 64 elements which
would include the 48 bytes devoted to the Prime Data Element in question. These 48 bytes
would include metadata on the Prime Data Element in question. This would conclude the tree
lookup process. Subsequently, the number of I0s needed would depend upon whether the
candidate element turns out to be a duplicate, a derivative, or a fresh Prime Data Element to be
installed in the Sieve.

[00158] A candidate element that is a duplicate of a Prime Data Element will need
1 1O to fetch the Prime Data Element in order to verify the duplicate. Once the duplicate is
verified, there will be one more 1O to update the metadata in the tree. Hence, ingestion of
duplicate elements will need two IOs after the tree lookup, for a total of 3 IOs.

[00159] A candidate element that fails the tree lookup and is neither a duplicate nor
a derivative requires 1 more IO to store the element as a new Prime Data Element in the Sieve,
and another 10 to update the metadata in the tree. Thus, ingestion of a candidate element that
fails the tree lookup will require 2 IOs after the tree lookup, leading to a total of 3 IOs. However,
for candidate elements where the tree lookup process terminates without needing a storage 10, a
total of only 2 IOs is needed for ingesting such candidate elements.

[00160] A candidate element that is a derivative (but not a duplicate) will first need
1 IO to fetch the Prime Data Element needed to compute the derivation. Since it is expected that
most often derivations will be off a single Prime Data Element (rather than multiple), only a

single IO will be needed to fetch the Prime Data Element. Subsequent to successful completion

10

15

20

25

30

WO 2018/200862 49 PCT/US2018/029636

of the derivation, 1 more IO will be needed to store the Reconstitution Program and the
derivation details in the entry created for the element in storage, and another IO to update the
metadata in the tree (such as counts, etc.) to reflect the new derivative. Hence, ingestion of a
candidate element that becomes a derivative requires 3 additional IOs after the first tree lookup
for a total of 4 1Os.

[00161] In summary, to ingest a candidate element and apply the Data
Distillation™ method to it (while exploiting redundancy globally across a very large dataset)
requires approximately 3 to 4 10s. Compared to what is needed by traditional data deduplication
techniques, this is typically just one more IO per candidate element, in return for which
redundancy can be exploited globally across the dataset at a grain that is finer than the element
itself.

[00162] A storage system that offers 250,000 random IO accesses/sec (which
means bandwidth of 1 GB/sec of random accesses to pages of 4 KB) could ingest and perform the
Data Distillation™ method on about 62,500 input chunks per second (250,000 divided by 4 10s
per input chunk of average size 4 KB each).This enables an ingest rate of 250 MB/sec while
using up all the bandwidth of the storage system. If only half of the bandwidth of the storage
system is used (so that the other half is available for accesses to the stored data), such a Data
Distillation™ system could still deliver ingest rates of 125 MB/sec. Thus, given sufficient
processing power, Data Distillation™ systems are able to exploit redundancy globally across the
dataset (at a grain that is finer than the element itself) with an economy of IOs and deliver data
reduction at ingest rates in the hundreds of megabytes per second on contemporary storage
systems.

[00163] Thus, as confirmed by the test results, embodiments described herein
achieve the complex task of searching for elements (from which an input element can be derived
with minimal storage needed to specify the derivation) from a massive store of data with an
economy of IO accesses and with minimal incremental storage needed for the apparatus. This
framework thus constructed makes it feasible to find elements suitable for derivation using a
smaller percentage of the total bytes of the element, leaving the bulk of the bytes available for
perturbation and derivation. An important insight that explains why this scheme works
effectively for much data is that the tree provides a wieldy, fine-grained structure that allows one
to locate the differentiating and distinguishing bytes that identify elements in the Sieve, and
although these bytes are each at different depths and positions in the data, they can be isolated

and stored efficiently in the tree structure.

10

15

20

25

30

WO 2018/200862 >0 PCT/US2018/029636

[00164] FIGs. SA-5C illustrate an actual example of how data can be organized
using embodiments described herein. FIG. 5A illustrates 512 bytes of input data, and the result
of factorization (e.g., the result of performing operation 202 in FIG. 2). In this example
fingerprinting is applied to determine breaks in the data, so that consecutive breaks identify
candidate elements. Alternating candidate elements have been shown using bold and regular
font. For example, the first candidate element is
“b8ac83d9dc7caf182f2e3{783a0ec69774bb50bbe1d3ef1ef8a82436ec43283
bc1c0f6a82¢19¢224b2219b2,” and the next candidate element is
“ac83d9619ae5571ad2bbec15d3e493eef62054b0
5b2dbcece933483a6d3daab3cb19567dedbe33e952a966c4913297191cf22aa3
1b98b9dcd0fb54a7f761415¢,” and so forth. The input in FIG. 5A is factorized into 12 variable-
sized candidate elements as shown. The leading bytes of each chunk are used to order and
organize elements in the Sieve. FIG. 5B illustrates how the 12 candidate elements shown in FIG.
5A can be organized as Prime Data Elements in the Sieve in tree form using their Names, and
using a tree structure described in FIG. 3B. Each element has a distinct Name, constructed from
the entire content of the element. In this example, since fingerprinting is applied to determine the
breaks between the 12 candidate elements, the leading bytes of each candidate element will
already be aligned to an anchor fingerprint; hence, the leading bytes of each Name will already
have been constructed from a first dimension of content anchored at this fingerprint. The leading
bytes of the Name organize the various elements. For example, if the first byte in the Name of
the element is equal to “0x22” then the top link is taken to select Prime Data Element #1. Note
that various links in FIG. 5B are differentiated using a varying number of bytes as explained in
reference to the tree data structure illustrated in FIG. 3B.

[00165] FIG. 5C illustrates how the 12 candidate elements shown in FIG. 5A can
be organized using a tree data structure described in reference to FIG. 3D. Fingerprinting is
further applied to the content of each element to identify a secondary fingerprint within the
content of the element. Bytes of content extracted from the location of the first fingerprint
(already existing at the boundary of each element) and second fingerprint are concatenated to
form the leading bytes of the Name, which are used to organize the elements. In other words,
the element Name is constructed as follows: bytes of data from two dimensions or fields (located
by an anchor fingerprint and a secondary fingerprint respectively) are concatenated to form the
leading bytes of the Name, followed by the rest of the bytes. As a consequence of this choice of
construction of the Name, a different sequence of bytes leads to the various Prime Data Elements

in FIG. 5C (vs. FIG. 5B). For example, to reach Prime Data Element #4, the tree navigation

10

15

20

25

30

WO 2018/200862 o1 PCT/US2018/029636

process first takes the link corresponding to “46093{9d” which are the leading bytes of the field at
the first dimension (i.e., the first fingerprint), and then takes the link corresponding to “c4” which
is the leading byte of the field located at the second dimension (i.e., the second fingerprint).

[00166] FIGs. 6A-6C show how tree data structures can be used for content-
associative mappers 121 and 122 described in reference to FIGs. 1A-1C, respectively, in
accordance with some embodiments described herein.

[00167] Once the difficult problem of finding suitable Prime Data Elements (from
which to attempt to derive the candidate element) has been solved, the problem is narrowed down
to examining one or a small subset of Prime Data Elements and optimally deriving the candidate
element from them with minimum storage needed to specify the derivation. Other objectives
include keeping the number of accesses to the storage system to a minimum, and keeping the
derivation time and the reconstitution time acceptable.

[00168] The Deriver must express the candidate element as the result of
transformations performed on the one or more Prime Data Elements, and must specify these
transformations as a Reconstitution Program which will be used to regenerate the derivative upon
data retrieval. Each derivation may require its own unique program to be constructed. The
function of the Deriver is to identify these transformations and create the Reconstitution Program
with the smallest footprint. A variety of transformations could be employed, including
arithmetic, algebraic, or logical operations performed upon the one or more Prime Data Elements
or upon specific fields of each Element. Additionally, one could use byte manipulation
transformations, such as the concatenation, insertion, replacement, and deletion of bytes in the
one or more Prime Data Elements.

[00169] FIG. 7A provides an example of the transformations that could be
specified in the Reconstitution Program in accordance with some embodiments described herein.

The vocabulary of transformations specified in this example includes arithmetic operations on
fields of specified length in the element, as well as insertions, deletions, appends, and
replacements of a declared length of bytes at specified offsets in the Prime Data Element. A
variety of techniques and operations could be employed by the Deriver to detect the similarities
and the differences between the candidate element and the one or more Prime Data Elements, and
to construct the Reconstitution Program. The Deriver could exploit the vocabulary available in
the underlying hardware to perform its function. The end result of the work is to specify the
transformations in the vocabulary specified for the Reconstitution Program, and to do so using a

minimal amount of incremental storage and in a manner that also enables fast data retrieval.

10

15

20

25

30

WO 2018/200862 52 PCT/US2018/029636

[00170] The Deriver could avail of the processing power of the underlying machine
and work within the processing budget allocated to it to provide the best analysis possible within
the cost-performance constraints of the system. Given that microprocessor cores are more readily
available, and given that IO accesses to storage are expensive, the Data Distillation™ solution
has been designed to take advantage of the processing power of contemporary microprocessors to
efficiently perform local analysis and derivation of the content of the candidate element off a few
Prime Data Elements. It is expected that the performance of the Data Distillation™ solution (on
very large data) will be rate-limited not by the computational processing but by the IO bandwidth
of a typical storage system. For example, it is expected that a couple of microprocessor cores
will suffice to perform the required computation and analysis to support ingest rates of several
hundred megabytes per second on a typical flash-based storage system supporting 250,000
I0s/sec. Note that two such microprocessor cores from a contemporary microprocessor such as
the Intel Xeon Processor E5-2687W (10 cores, 3.1 GHz, 25 MB cache) is a fraction (two of ten)
of the total computational power available from the processor.

[00171] FIG.7B shows examples of the results of candidate elements being derived
from Prime Data Elements in accordance with some embodiments described herein. Specifically,
the data pattern “Elem” is the Prime Data Element that is stored in the Prime Data Sieve, and the
data pattern “Cand” is the candidate element that is to be derived from the Prime Data Element.
The 18 common bytes between “Cand” and “Elem” have been highlighted. Reconstitution
program 702 specifies how data pattern “Cand” can be derived from data pattern “Elem.” As
shown in FIG. 7B, Reconstitution program 702 illustrates how to derive “Cand” from “Elem” by
using 1 byte Replace, 6 bytes Insert, 3 bytes Delete, 7 bytes bulk Replace. Cost to specify the
derivative is 20 bytes + 3 byte reference = 23 bytes, which is 65.71% of the original size. Note
that the Reconstitution Program 702 shown is a human-readable representation of the program
and may not be how the program is actually stored by embodiments described herein. Likewise
other Reconstitution Programs based on arithmetic operations such as multiplication and addition
have also been shown in FIG. 7B. For example, if “Elem” is
bc1c0f6a790c82e19¢224b22{900ac83d9619ae5571ad2bbec152054(f{fff83 and “Cand” is
bc1c0f6a790c82e19¢224b22{91c4dalaa0369a0461ad2bbec152054fffff83, then the §-byte
difference can be derived as shown using multiply (00ac83d9619ae557)*2a =
[00]1c4dalaa0369a046. The cost to specify the derivative: 4 bytes + 3 byte reference = 7 bytes,
which is 20.00% of the original size. Alternatively, if “Elem” is
bc1c0f6a790c82e19c224b22f9b2ac 8T Tfb283, and “Cand” is
bc1c0{6a790c82¢19¢224b22{9b2ac8300000000000000000000000000002426, then the 16-byte

10

15

20

25

30

WO 2018/200862 >3 PCT/US2018/029636

difference can be derived as shown using addition, e.g., by adding 0Ox71a3 to the 16-byte region
starting at offset 16, and discarding the carry. The cost to specify the derivative is 5 bytes + 3
byte reference = 8 bytes, which is 22.85% of the original size. Note that the sample encodings in
FIG. 7A have been chosen for illustration purposes only. The examples in FIG. 7B have data
sizes of 32 bytes, and so 5 bits suffice for the length and offset fields within the element. For
large elements (e.g., a 4 KB element), the sizes of these fields would need be increased to 12 bits.
Likewise, the sample encoding accommodates a reference size of 3 bytes or 24 bits. This should
allow 16 million Prime Data Elements to be referenced. If the reference needs to be able to
address any location in, say, 256 TB of data, the reference would need to be 6 bytes in size.
When such a dataset is factorized into 4 KB elements, the 6 bytes needed to specify the reference
will be a small fraction of the size of the 4 KB element.

[00172] The size of the information needed to specify the Derivative element (that
is derived from the one or more Prime Data Elements) is the sum of the size of the Reconstitution
Program and the size of the references needed to specify the required (one or more) Prime Data
Elements. The size of the information needed to specify a candidate element as a Derivative
element is referred to as the Distance of the candidate from the Prime Data Element. When the
candidate can be feasibly derived from any one set of multiple sets of Prime Data Elements, the
set of Prime Data Elements with the shortest Distance is chosen as the target.

[00173] When the candidate element needs to be derived from more than one Prime
Data Element (by assembling extracts derived from each of these), the Deriver needs to factor in
the cost of the additional accesses to the storage system and weigh that against the benefit of a
smaller Reconstitution Program and a smaller Distance. Once an optimal Reconstitution
Program has been created for a candidate, its Distance is compared with the Distance Threshold;
if it does not exceed the threshold, the derivation is accepted. Once a derivation is accepted, the
candidate element is reformulated as a Derivative Element and replaced by the combination of
the Prime Data Element and the Reconstitution Program. The entry in the distilled data created
for the candidate element is replaced by the Reconstitution Program plus the one or more
references to the relevant Prime Data Elements. If the Distance for the best derivation exceeds
the Distance Threshold, the derivative will not be accepted.

[00174] In order to yield data reduction, the Distance Threshold must always be
less than the size of the candidate element. For example, the Distance Threshold may be set to
50% of the size of the candidate element, so that a derivative will only be accepted if its footprint
is less than or equal to half the footprint of the candidate element, thereby ensuring a reduction of

2x or greater for each candidate element for which a suitable derivation exists. The Distance

10

15

20

25

30

WO 2018/200862 >4 PCT/US2018/029636

Threshold can be a predetermined percentage or fraction, either based on user-specified input or
chosen by the system. The Distance Threshold may be determined by the system based on static
or dynamic parameters of the system.

[00175] FIGs. 8A-8E illustrate how data reduction can be performed by factorizing
input data into fixed-sized elements and organizing the elements in a tree data structure that was
described in reference to FIG.s 3D and 3E in accordance with some embodiments described
herein. FIG. 8A shows how the input data can be simply factorized into 32-byte chunks.
Specifically, FIG. 8A shows the first 10 chunks, and then few more chunks which appear say 42
million chunks later. FIG. 8B shows the organization of the Prime Data Elements in the Sieve
using Names constructed such that the leading bytes of the Name are comprised of content from 3
dimensions in the content of the element (corresponding to locations of an anchor fingerprint, a
secondary fingerprint, and a tertiary fingerprint). Specifically, in FIG. 8B, each 32 byte chunk
becomes a candidate element of 32 bytes (Fixed-Sized Blocks). A method of fingerprinting is
applied to the content of the element. Each element has a Name, which is constructed as follows:
bytes of data from three dimensions or fields (located by an anchor fingerprint, a secondary
fingerprint, and a tertiary fingerprint respectively) of the element are concatenated to form the
leading bytes of the Name, followed by the rest of the bytes of the element. The Name is used to
organize elements in the Sieve. As shown in FIG. 8B, the first 10 chunks contain no duplicates
or derivatives, and are successively installed as elements in the Sieve. FIG. 8B shows the Sieve
after the 10™ chunk is consumed. FIG. 8C shows the contents of the Sieve at a subsequent point
in time after consuming an additional several million elements of data input, e.g., after the next
42 million chunks are presented. The Sieve is examined for duplicates or derivatives. Chunks
that cannot be derived from elements get installed in the Sieve. FIG. 8C shows the Sieve after
the 42 million chunks are consumed, containing say 16,000,010 elements (logically addressable
with 3 bytes of reference address), with the remaining 26,000,000 chunks becoming derivatives.
FIG. 8D shows an example of fresh input that is subsequently presented to the Sieve and
identified as a duplicate of an entry (shown as element number 24,789) in the Sieve. In this
example, the Sieve identifies element 24,789 (chunk 9) as the most suitable element for chunk
42,000,011. The derive function determines that the new chunk is an exact duplicate and
replaces it with a reference to element 24,789. The cost to represent the derivative is 3 byte
reference vs 35B original, which is 8.57% of the original size. FIG. 8D shows a second example
of an input (Chunk 42,000,012) that is converted into a derivative of an entry (shown as element
number 187,126) in the Sieve. In this example, the Sieve determines that there are no exact

matches. It identifies elements 187,125 and 187,126 (chunks 8 & 1) as the most suitable

10

15

20

25

30

WO 2018/200862 33 PCT/US2018/029636

elements. The new element is derived from the most suitable element. Derivation vs element
187,125 and derivation vs element 187,126 are illustrated in FIG. 8D. The cost to represent the
derivative vs element 187,125 is 39 bytes + 3 byte reference = 42 bytes, which is 120.00% of the
original size. The cost to represent the derivative vs element 187,126 is 12 bytes + 3 byte
reference = 15 bytes, which is 42.85% of the original size. The best derivation (vs element
187,126) is chosen. The reconstitution size is compared to a threshold. For example if the
threshold is 50%, this derivative (42.85%) is accepted. FIG. 8E provides two additional
examples of data chunks that are derived from Prime Data Elements, including one example
where the derivative is actually created by deriving from two Prime Data Elements. In the first
example, chunk 42,000,013 is presented. The Sieve identifies element 9,299,998 (chunk 10) as
the most suitable element. Derivation vs element 9,299,998 is shown in FIG. 8E. The cost to
represent the derivative is 4 bytes + 3 byte reference = 7 bytes, which is 20.00% of the original
size. The reconstitution size is compared to a threshold. For example if the threshold is 50%,
this derivative (20.00%) is accepted. In the second example, chunk 42,000,014 is presented. In
this example, chunk 42,000,014 is such that one half of the chunk can be best derived from
element 9,299,997 while the other half of the chunk can be best derived from element 9,299,998.
Hence, a multi-element derivative is created to yield further data reduction. The multi-element
derivation is shown in FIG. 8E. Cost to represent this multi-element derivative is 3 byte
reference + 3 bytes + 3 byte reference = 9 bytes, which is 25.71% of the original size. The
reconstitution size is compared to a threshold, e.g., if threshold is 50%, this derivative (25.71%)
is accepted. Note that the best outcome from a single element derivative would have been
45.71%.

[00176] FIGs. 8A-E illustrate an important advantage of the Data Distillation™
system: that it can be effective in performing data reduction while consuming and producing
fixed-sized blocks. Note that fixed-sized blocks are highly desired in a high-performance storage
system. Using the Data Distillation™ apparatus, a large incoming input file comprised of
numerous blocks of fixed size can be factorized into numerous elements of fixed size, so that all
the Prime Data Elements are of fixed size. The potentially variable-sized Reconstitution
Programs for each derivative element can be packed together and kept in-line in the Distilled
Data file, which can subsequently be chunked into fixed-sized blocks. Thus, for all practical
purposes, powerful data reduction can be performed while consuming and producing fixed-sized
blocks in the storage system.

[00177] FIGs. 9A-C illustrate an example of the Data Distillation™ scheme that

was first shown in FIG. 1C: this scheme employs a separate Prime Reconstitution Program Sieve

10

15

20

25

30

WO 2018/200862 36 PCT/US2018/029636

that can be accessed in a content-associative manner. Such a structure enables the detection of a
derivative that constructs a Reconstitution Program that is already present in the Prime
Reconstitution Program Sieve. Such a derivative can be reformulated to reference the existing
Reconstitution Program. This enables the detection of redundancy among Reconstitution
Programs. In FIG. 9A, input data is ingested. A method of fingerprinting is applied to the data,
and chunk boundaries are set at the fingerprint positions. The input is factorized into 8 candidate
elements as shown (alternating chunks shown in bold and regular font in FIG. 9A). In FIG. 9B,
the 8 candidate elements are shown as organized in the Sieve. Each element has a distinct Name,
constructed from the entire content of the element. In this example, the element Name is
constructed as follows: bytes of data from two dimensions or fields (located by an anchor
fingerprint and a secondary fingerprint, respectively) are concatenated to form the leading bytes
of the Name, followed by the rest of the bytes. The Name is used to order elements in the Sieve,
and also provide content-associative access to it through a tree structure. FIG. 9B also shows a
second content-associative structure that contains Prime Reconstitution Programs. FIG. 9C
illustrates duplicate reconstitutions. Suppose a 55-byte candidate element (shown in FIG. 9C)
that is not a duplicate of any Prime Data Element arrives. Element 3 is selected as the most
suitable element - the first 2 dimensions are the same for PDEs 2 and 3, but the rest of the bytes
starting with 88a7 match Element 3. The new input is derived from Element 3 with a 12-byte
Reconstitution Program (RP). Encodings are as shown in FIG. 7A. Note that, for this example,
max element size is 64 bits and all offsets and lengths are encoded as 6-bit values, as opposed to
the 5-bit lengths and offsets shown in FIG. 7A. The Prime Reconstitution Program Sieve is
searched and this new RP is not found. This RP is inserted into the Prime Reconstitution
Program Sieve, ordered based on its value. The new element is reformulated as a reference to
Prime Data Element 3 and a reference to the newly created Prime Reconstitution Program at
reference 4 in the Prime Reconstitution Program Sieve. The total storage size for this derived
element is: 3-byte PDE reference, 3-byte RP reference, 12-byte RP = 18 bytes, which is 31.0% of
the size vs. storing it as a PDE. Later, suppose a copy of the 55-byte candidate element arrives.
As before, a 12-byte RP is created based on Element 3. The Prime Reconstitution Program Sieve
is searched and the RP with Prime RP ID =3, RP reference=4, is found. This candidate element
is represented in the system as a reference to Prime Data Element 3 and a reference to
Reconstitution Program 4. The total storage size added for this derived element is now: 3-byte
PDE reference, 3-byte RP reference = 6 bytes, which is 10.3% of the size vs. storing it as a PDE.
[00178] FIG. 10A provides an example of how transformations specified in the

Reconstitution Program are applied to a Prime Data Element to yield a Derivative Element in

10

15

20

25

30

WO 2018/200862 >7 PCT/US2018/029636

accordance with some embodiments described herein. The example shows a Derivative Element
specified to be generated from Prime Data Element numbered 187,126 (this Prime Data Element
is also shown in the Sieve in FIG. 8C) by applying to it four transformations (an insertion,
replacement, deletion, and append) as specified by the Reconstitution Program shown. As shown
in FIG. 10A, element 187,126 is loaded from the Sieve, and the Reconstitution Program is
executed to derive chunk 42,000,012 from element 187,126. FIGs. 10B-10C illustrate data
retrieval processes in accordance with some embodiments described herein. Each data retrieval
request essentially takes the form of an Element in the Distilled Data, presented to the retrieval
engine in the losslessly reduced format. The losslessly reduced format for each Element contains
references to the associated Prime Data Element(s) and the Reconstitution Program. The
Retriever of the Data Distillation™ apparatus fetches the Prime Data Elements and
Reconstitution Program and furnishes these to the Reconstitutor for reconstitution. After the
relevant Prime Data Elements and Reconstitution Program for an Element of the Distilled Data
have been fetched, the Reconstitutor executes the Reconstitution Program to generate the
Element in its original unreduced form. The effort required by the data retrieval process to
execute the reconstitution is linear with respect to the size of the Reconstitution Program and the
size of the Prime Data Elements. Hence, high data retrieval rates can be achieved by the system.

[00179] It is evident that to reconstitute an Element from the losslessly reduced
form in the Distilled Data to its original unreduced form, only the Prime Data Element(s) and
Reconstitution Program specified for the Element need to be fetched. Thus, to reconstitute a
given Element, no other Elements need to be accessed or reconstituted. This makes the Data
Distillation™ apparatus efficient even when servicing a random sequence of requests for
reconstitution and retrieval. Note that traditional methods of compression such as the Lempel Ziv
method need to fetch and decompress the entire window of data containing a desired block. For
example, if a storage system employs the Lempel-Ziv method to compress 4KB blocks of data
using a window of 32KB, then to fetch and decompress a given 4KB block, the entire window of
32KB needs to be fetched and decompressed. This imposes a performance penalty because more
bandwidth is consumed and more data needs to be decompressed in order to deliver the desired
data. The Data Distillation™ apparatus does not incur such a penalty.

[00180] The Data Distillation™ apparatus can be integrated into computer systems
in a variety of ways to organize and store data in a manner that efficiently uncovers and exploits
redundancy globally across the entire data in the system. FIGs. 11A-11G illustrate systems that
include a Data Distillation™ mechanism (which can be implemented using software, hardware,

or a combination thereof) in accordance with some embodiments described herein. FIG. 11A

10

15

20

25

30

WO 2018/200862 o8 PCT/US2018/029636

presents a general purpose computing platform with software applications running on system
software executing on a hardware platform comprised of processors, memory and data storage
components. FIG. 11B shows the Data Distillation™ apparatus integrated into the application
layer of the platform, with each specific application using the apparatus to exploit redundancy
within the dataset for that application. FIG. 11C shows the Data Distillation™ apparatus
employed to provide a data virtualization layer or service for all applications running above it.
FIGs. 11D and 11E show two different forms of integration of the Data Distillation™ apparatus
with the operating system, file system and data management services of the sample computing
platform. Other methods of integration include (but are not limited to) integration with an
embedded computing stack in the hardware platform such as that employed in a flash-based data
storage subsystem as shown in FIG. 11F.

[00181] FIG. 11G presents additional details of the integration of the Data
Distillation™ apparatus with the sample computing platform shown in FIG. 11D. FIG. 11G
shows the components of the Data Distillation™ apparatus, with the Parser & Factorizer,
Deriver, Retriever, and Reconstitutor executing as software on the general purpose processor, and
the content-associative mapping structure residing across a few levels of the storage hierarchy.
The Prime Data Sieve can reside in the storage media (such as flash-based storage drives).

[00182] FIG. 11H shows how the Data Distillation™ apparatus may interface with
the sample general purpose computing platform.

[00183] A file system (or filesystem) associates a file (e.g., a text document, a
spreadsheet, an executable, a multimedia file, etc.) with an identifier (e.g., a filename, a file
handle, etc.), and enables operations (e.g., read, write, insert, append, delete, etc.) to be performed
on the file by using the identifier associated with the file. The namespace implemented by a file
system can be flat or hierarchical. Additionally, the namespace can be layered, e.g., a top-layer
identifier may be resolved into one or more identifiers at successively lower layers until the top-
layer identifier is completely resolved. In this manner, a file system provides an abstraction of
the physical data storage device(s) and/or storage media (e.g., computer memories, flash drives,
disk drives, network storage devices, CD-ROMs, DVDs, etc.) that physically store the contents of
the file.

[00184] The physical storage devices and/or storage media that are used for storing
information in a file system may use one or multiple storage technologies, and can be located at
the same network location or can be distributed across different network locations. Given an
identifier associated with a file and one or more operation(s) that are requested to be performed

on the file, a file system can (1) identify one or more physical storage devices and/or storage

10

15

20

25

30

WO 2018/200862 59 PCT/US2018/029636

media, and (2) cause the physical storage devices and/or storage media that were identified by the
file system to effectuate the operation that was requested to be performed on the file associated
with the identifier.

[00185] Whenever a read or a write operation is performed in the system, different
software and/or hardware components may be involved. The term “Reader” can refer to a
collection of software and/or hardware components in a system that are involved when a given
read operation is performed in the system, and the term “Writer” can refer to a collection of
software and/or hardware components in a system that are involved when a given write operation
is performed in the system. Some embodiments of the methods and apparatuses for data
reduction described herein can be utilized by or incorporated into one or more software and/or
hardware components of a system that are involved when a given read or write operation is
performed. Different Readers and Writers may utilize or incorporate different data reduction
implementations. However, each Writer that utilizes or incorporates a particular data reduction
implementation will correspond to a Reader that also utilizes or incorporates the same data
reduction implementation. Note that some read and write operations that are performed in the
system may not utilize or incorporate the data reduction apparatus. For example, when Data
Distillation™ Apparatus or Data Reduction Apparatus 103 retrieves Prime Data Elements or adds
new Prime Data Elements to the Prime Data Store, it can perform the read and write operations
directly without data reduction.

[00186] Specifically, in FIG. 11H, Writer 150W can generally refer to a software
and/or hardware component of a system that is involved when a given write operation is
performed, and Reader 150R can generally refer to a software and/or hardware component of a
system that is involved when a given read operation is performed. As shown in FIG. 11H, Writer
150W provides input data to the Data Distillation™ Apparatus or Data Reduction Apparatus 103,
and receives Distilled Data 108 from Data Distillation™ Apparatus or Data Reduction Apparatus
103. Reader 150R provides retrieval requests 109 to Data Distillation™ Apparatus or Data
Reduction Apparatus 103, and receives Retrieved Data Output 113 from Data Distillation™
Apparatus or Data Reduction Apparatus 103.

[00187] Implementation examples for FIG. 11H include, but are not limited to,
incorporating or utilizing the Data Distillation™ Apparatus or Data Reduction Apparatus 103 in
an application, operating system kernel, file system, data management module, device driver, or
firmware of a flash or disk drive. This spans the variety of configurations and usages described

in FIGs. 11B-F.

10

15

20

25

30

WO 2018/200862 60 PCT/US2018/029636

[00188] FIG. 111 illustrates how the Data Distillation™ apparatus may be used for
data reduction in a block processing storage system. In such a block processing system, data is
stored in blocks, and each block is identified by a Logical Block Address or LBA. Blocks are
continuously being modified and overwritten so that fresh data may be overwritten into a block
identified by a particular LBA. Each block in the system is treated as a candidate element and the
Data Distillation™ apparatus may be used to reduce the Candidate Element into the losslessly
reduced form comprising of a reference to a Prime Data Element (stored in a particular Prime
Data Element Block) and in the case of a Derivative Element a reference to a Reconstitution
program (stored in a particular Reconstitution Program Block). FIG. 111 introduces a data
structure 1151 that maps the content of the block identified by an LBA to a corresponding
Element in losslessly reduced form. Against each LBA will reside the specification of the
associated Element. For a system employing fixed sized blocks, it is convenient to have the
incoming blocks, the Prime Data Element Blocks 1152, and also Reconstitution Program Blocks
1153 to all be of fixed size. In this system, each Prime Data Element may be stored as an
individual block. Multiple Reconstitution Programs may be packed into a Reconstitution
Program Block which is also of the same fixed size. The data structure also contains a reference
to the Count field and associated metadata residing at the Leaf Node Data structure for each of
the Prime Data Elements and the Reconstitution Programs, so that when the block is overwritten
with fresh data, the previous data residing at the LBA can be effectively managed — the count
field for the existing Prime Data Element and Reconstitution Program (that is being overwritten)
has to be decremented, and likewise the Count for a Prime Data Element that is referenced by
incoming data into the LBA has to be incremented. By maintaining the reference to the Count
field in this data structure 1151, overwrites can be speedily managed, thus enabling a high
performance block processing storage system that takes full advantage of the data reduction
offered by the Data Distillation™ apparatus.

[00189] FIG. 12A shows the use of the Data Distillation™ apparatus for the
communication of data across a bandwidth-constrained communication medium in accordance
with some embodiments described herein. In the setup shown, Communication Node A creates a
set of files to be sent over to Communication Node B. Node A employs the Data Distillation™
apparatus to transform the input files into distilled data or Distilled Files, containing references to
Prime Data Elements installed in a Prime Data Sieve, as well as Reconstitution Programs for
derivative elements. Node A then sends the Distilled Files along with the Prime Data Sieve to
Node B (the Prime Data Sieve can be sent prior to, concurrently, or after sending the Distilled

Files; moreover, the Prime Data Sieve may be sent over the same communication channel or over

10

15

20

25

30

WO 2018/200862 61 PCT/US2018/029636

a different communication channel than the communication channel that is used for sending the
Distilled Files). Node B installs the Prime Data Sieve in a corresponding structure at its end, and
subsequently feeds the Distilled Files through the Retriever and Reconstitutor that are resident in
Node B’s Data Distillation™ apparatus to yield the original set of files that were created by Node
A. Thus, a more efficient use is made of the bandwidth-constrained communication medium, by
employing the Data Distillation™ apparatus at both ends of the medium to send only the reduced
data. Note that using Data Distillation™ enables exploiting redundancy across a larger scope
(beyond what is viable using conventional techniques, such as Lempel-Ziv) so that even large
files or groups of files can be transmitted efficiently.

[00190] We now discuss the use of the Data Distillation™ apparatus in Wide Area
Network installations where workgroups collaboratively share data that is spread across multiple
nodes. When data is first created, it can be reduced and communicated as illustrated in FIG. 12A.
Wide Area Networks maintain copies of the data at each site to enable fast local access to the
data. Use of the Data Distillation™ apparatus can reduce the footprint at each site. Furthermore,
upon subsequent ingestion of fresh data at any of the sites, any redundancy between the fresh data
and the contents of the pre-existing Prime Data Sieve can be exploited to reduce the fresh data.

[00191] In such an installation, any modifications to the data at any given site need
to be communicated to all other sites, so that the Prime Data Sieve at each site is kept consistent.

Hence, as shown in FIG. 12B, updates such as installations and deletions of Prime Data
Elements, as well as metadata updates, can be communicated to the Prime Data Sieve at each site
in accordance with some embodiments described herein. For example, upon installing a fresh
Prime Data Element into the Sieve at a given site, the Prime Data Element needs to be
communicated to all other sites. Each site can access the Sieve in a content associative manner
using the value of the Prime Data Element and determine where in the Sieve the new entry needs
to be added. Likewise, upon deleting a Prime Data Element from the Sieve at a given site, all
other sites need to be updated to reflect the deletion. One way this could be accomplished is by
communicating the Prime Data Element to all sites so that each site can content-associatively
access the Sieve using the Prime Data Element to determine which entry in the leaf node needs to
be deleted, along with necessary updates to the related links in the tree as well as deletion of that
Prime Data Element from the Sieve. Another method is to communicate to all sites a reference to
the entry for the Prime Data Element in the leaf node where the Prime Data Element resides.

[00192] Thus, the Data Distillation™ apparatus can be used to reduce the footprint
of data stored across the various sites of a Wide Area Network as well as make efficient use of

the communication links of the network.

10

15

20

25

30

WO 2018/200862 62 PCT/US2018/029636

[00193] FIGs 12C-12K illustrate the various components of the reduced data
produced by the Data Distillation™ apparatus for various usage models in accordance with some
embodiments described herein.

[00194] FIG. 12C illustrates how the Data Distillation™ apparatus 1203 ingests a
set of Input Files 1201 and after completion of the distillation process generates a set of
Distilled Files 1205 and a Prime Data Sieve or Prime Data Store 1206. The Prime Data Sieve or
Prime Data Store 1206 of FIG. 12C itself is comprised of two components, viz. Mapper 1207 and
the Prime Data Elements (or PDEs) 1208 as shown in FIG. 12D.

[00195] Mapper 1207 itself has two components within it, namely, the set of tree
node data structures and the set of leaf node data structures that define the overall tree. The set of
tree node data structures could be placed into one or more files. Likewise the set of leaf node data
structures could be placed into one or more files. In some embodiments, a single file called the
Tree Nodes File holds the entire set of tree node data structures for the tree created for the Prime
Data Elements for the given dataset (Input Files 1201), and another single file called the Leaf
Nodes File holds the entire set of leaf node data structures for the tree created for the Prime Data
Elements for that dataset.

[00196] In FIG. 12D, Prime Data Elements 1208 contains the set of Prime Data
Elements created for the given dataset (Input Files 1201). The set of Prime Data Elements could
be placed into one or more files. In some embodiments, a single file called the PDE File holds the
entire set of Prime Data Elements created for the given dataset.

[00197] The tree nodes in the Tree Nodes File will contain references to other tree
nodes within the Tree Nodes File. The deepest layer (or lowermost levels) of tree nodes in the
Tree Nodes File will contain references to entries in leaf node data structures in the Leaf Nodes
File. Entries in the leaf node data structures in the Leaf Nodes File will contain references to
Prime Data Elements in the PDE File.

[00198] The Tree Nodes File, Leaf Nodes File and PDE File are illustrated in FIG.
12E which shows details of all the components created by the apparatus. FIG. 12E shows a set of
Input Files 1201 comprising of N files named filel, file2, file3,.....fileN that get reduced by the
Data Distillation™ apparatus to produce a set of Distilled Files 1205 and the various components
of the Prime Data Sieve, viz., Tree Nodes File 1209, Leaf Nodes File 1210, and PDE File 1211.
Distilled Files 1205 comprises of N files named filel.dist, file2.dist, file3.dist....fileN.dist. The
Data Distillation™ apparatus factorizes the input data into its constituent elements and creates
two categories of data elements — Prime Data Elements and Derivative Elements. The Distilled

Files contain descriptions of the data elements in the losslessly reduced format and contain

10

15

20

25

30

WO 2018/200862 63 PCT/US2018/029636

references to Prime Data Elements in the PDE File. Each file in Input Files 1201 has a
corresponding distilled file in Distilled Files 1205. For example, filel 1212 in Input Files 1201
corresponds to the distilled file named filel.dist 1213 in Distilled Files 1205. Fig. 12R illustrates
an alternate representation of the Input Dataset which is specified as a set of Input Files and
Directories or Folders.

[00199] Note that FIG. 12E shows the various components created by the Data
Distillation Apparatus based on an organization of the Distilled Data and the Prime Data Sieve in
accordance with FIG 1A, where Reconstitution Programs are placed in the losslessly reduced
representation of the Element in the Distilled File. Note that some embodiments (in accordance
with FIG. 1B) can place the Reconstitution Programs in the Prime Data Sieve and treat them just
like Prime Data Elements. The losslessly reduced representation of the Element in the Distilled
File will contain a reference to the Reconstitution Program in the Prime Data Sieve (rather than
contain the Reconstitution Program itself). In these embodiments, the Reconstitution Programs
will be treated like Prime Data Elements and be produced in the PDE File 1211. In yet another
embodiment, in accordance with FIG. 1C, the Reconstitution Programs are stored separate from
the Prime Data Elements in a structure called the Reconstitution Program Store. In such
embodiments, the losslessly reduced representation of the Element in the Distilled File will
contain a reference to the Reconstitution Program in the Reconstitution Program Store. In such
embodiments, as illustrated in FIG. 12F, in addition to producing the Tree Nodes File 1209, Leaf
Nodes File 1210 and PDE File 1211 for the tree organization of the Prime Data Elements, the
apparatus will also produce a second set of tree and leaf node files referred to as Recon Tree
Nodes File 1219 and Recon Leaf Nodes File 1220, along with a file containing all the
Reconstitution Programs referred to as the RP File 1221.

[00200] The Data Distillation™ apparatus shown in FIG. 12E also stores
configuration and control information governing its operation in one or more of the Tree Nodes
File 1209, Leaf Nodes File 1210, PDE File 1211 and Distilled Files 1205. Alternatively, a fifth
component containing this information may be generated. Similarly for the apparatus shown in
FIG.12F, the configuration and control information could be stored in one or more of the various
components shown in FIG. 12F, or it could be stored in another component generated for this
purpose.

[00201] FIG. 12G illustrates an overview of the usage of the Data Distillation™
apparatus, where a given dataset (Input Dataset 1221) is fed to the Data Distillation™ apparatus
1203 and processed to produce a losslessly reduced dataset (Losslessly Reduced Dataset 1224).

Input Dataset 1221 could be comprised of a collection of files, objects, blocks, chunks, or

10

15

20

25

30

WO 2018/200862 64 PCT/US2018/029636

extracts from a data stream. Note that FIG. 12E illustrates the example where the dataset is
comprised of files. Input Dataset 1221 of FIG. 12G corresponds to Input Files 1201 of FIG.12 E1,
while Losslessly Reduced Dataset 1224 of FIG. 12G includes four components shown in FIG.
12E, namely Distilled Files 1205, Tree Nodes File 1209, Leaf Nodes File 1210, and PDE File
1211 of FIG. 12E. In FIG. 12G, the Data Distillation™ apparatus exploits redundancy among
data elements across the entire scope of the Input Dataset that is presented to it.

[00202] The Data Distillation™ apparatus can be configured to exploit redundancy
across a subset of the Input Dataset and deliver lossless reduction for each subset of data
presented to it. For example, as shown in FIG. 12H, Input Dataset 1221 can be partitioned into
numerous smaller collections of data, each collection being referred to in this disclosure as a “lot”
or a “Lot of Data” or a “Data Lot”. FIG. 12H shows the Data Distillation™ apparatus configured
to ingest Input Data Lot 1224 and produce Losslessly Reduced Data Lot 1225. FIG. 12H shows
Input Dataset 1221 comprised of a number of collections of data which are Data Lot 1,...Data Lot
1,.... Data Lot n. The data is presented to the Data Distillation™ apparatus one Data Lot at a time,
and redundancy is exploited across the scope of each Data Lot to generate a Losslessly Reduced
Data Lot. For example, Data Lot 1 1226 from Input Dataset 1221 is fed to the apparatus and
Losslessly Reduced Data Lot 1 1228 is delivered to Losslessly Reduced Dataset 1227. Each Data
Lot from Input Dataset 1221 is fed to the apparatus and the corresponding Losslessly Reduced
Data Lot is delivered to the Losslessly Reduced Dataset 1227. Upon consuming and reducing all
of Data Lot 1, ...Data Lot i... Data Lot n, Input Dataset 1221 is reduced to Losslessly Reduced
Dataset 1227.

[00203] While the Data Distillation™ apparatus is by design already efficient at
exploiting redundancy across the global scope of data, the above technique may be used to further
speed up the data reduction process and further improve its efficiency. The throughput of the data
reduction process can be increased by limiting the size of a Data Lot to be able to fit into the
available memory of a system. For example, an Input Dataset which is many terabytes or even
petabytes in size could be broken up into numerous Data Lots each of size say 256 GB, and each
Data Lot can be speedily reduced. Using a single processor core (Intel Xeon E5-1650 V3,
Haswell 3.5Ghz processor) with 256 GB of memory, such a solution exploiting redundancy
across a scope of 256 GB has been implemented in our labs to yield ingest rates of several
hundred megabytes per second of data while delivering reduction levels of 2-3x on various
datasets. Note that a scope of 256 GB is many million-fold larger than 32 KB, which is the size of
the window at which the Lempel Ziv method delivers ingest performance of between 10 MB/sec

to 200 MB/sec on modern processors. Thus, by limiting the scope of redundancy appropriately,

10

15

20

25

30

WO 2018/200862 65 PCT/US2018/029636

improvements in the speed of the data distillation process can be achieved by potentially
sacrificing some reduction.

[00204] FIG. 12l illustrates a variation of the setup in FIG 12H, and shows multiple
data distillation processes running on multiple processors to significantly boost the throughput of
data reduction (and also data reconstitution/retrieval) of the input dataset. FIG. 121 shows the
Input Dataset 1201 partitioned into x number of Data Lots, and the x independent Data Lots are
fed into the j independent processes running on independent processor cores (with each process
being allocated sufficient memory to accommodate any Data Lot that will be fed to it) to get
executed in parallel and yield approximately j-fold speedup for both data reduction as well as
reconstitution/retrieval.

[00205] FIG. 12H shows the Data Distillation™ apparatus configured to ingest
Input Data Lot 1224 and produce Losslessly Reduced Data Lot 1225. FIG. 12H shows Input
Dataset 1221 comprised of a number of collections of data which are Data Lot 1,...Data Lot i,....
Data Lot n. In some embodiments, alternative partitioning schemes could be employed that
partition the input dataset into the multiple Data Lots, where the Data Lot boundary is
dynamically determined in order to make best use of available memory. The available memory
could either be utilized to firstly hold all the tree nodes, or it could be utilized to hold all the tree
nodes and all the leaf nodes for the Data Lot, or lastly it could be utilized to hold all the tree
nodes, leaf nodes and all the prime data elements. These three different choices enable alternative
operating points for the apparatus. For example, dedicating the available memory for the tree
nodes enables a much larger scope of data to be accommodated in a Data Lot, but this requires
that the apparatus must fetch the leaf node as well as relevant prime data elements from storage
when needed, thus incurring additional latency. Alternatively, dedicating the available memory
to accommodate both the tree nodes and the leaf nodes speeds up the distillation, but reduces the
effective size of the tree and consequently the scope of data that can be accommodated in the
Data Lot. Lastly, using the available memory to hold all of the tree nodes, the leaf nodes and the
prime data elements will enable the fastest distillation, but the size of the Data Lot that can be
supported as a single scope will be the smallest. In all these embodiments, the Data Lot will be
dynamically closed the moment the memory limit is reached, and subsequent files from the input
dataset become part of a fresh Data Lot.

[00206] Further refinements exist that can improve the efficiency of the apparatus
and speedup the reconstitution process. In some embodiments, a single unified Mapper is used
for the distillation, but instead of holding the prime data elements in a single PDE File, the prime

data elements are held across N PDE FILES. Thus, the erstwhile single PDE FILE is partitioned

10

15

20

25

30

WO 2018/200862 66 PCT/US2018/029636

into n PDE Files, each smaller than a certain threshold size, and each partition being created
during the distillation process when the PDE File exceeds that threshold size (upon growth due to
installations of prime data elements). Distillation proceeds for each input file by consulting the
Mapper to content-associatively select the appropriate prime data element suitable for derivation,
and subsequently deriving off the appropriate prime data element that is fetched from the
appropriate PDE File where it resides. Each distilled file is further enhanced to list out all those
PDE Files (out of the n PDE Files) which contain prime data elements to which the particular
distilled file makes references. In order to reconstitute the particular distilled file, only those
listed PDE files will need to be loaded up or opened to be accessed for the reconstitution. This
has the advantage that for reconstitution of a single distilled file or a few distilled files, only those
PDE Files containing the prime data elements needed for that particular distilled file need to be
accessed or kept active, while the other PDE Files need not be retained or loaded into fast tiers of
memory or storage. Thus, reconstitution can be sped up and made more efficient.

[00207] The partitioning of the PDE File into n PDE Files can be further guided by
criteria that localizes the reference patterns made to the prime data during the reduction of any
given file in the dataset. The apparatus can be enhanced with counters that count and estimate the
density of references to elements in the current PDE File. If this density is high, the PDE File will
not be partitioned or split, and will keep growing upon subsequent installation of elements. Once
the density of references from a given distilled file tapers down, the PDE File can be allowed to
be split and partitioned upon subsequent growth beyond a certain threshold. Once partitioned, a
fresh PDE File will be opened, and subsequent installations from subsequent distillation will be
made into this fresh PDE File. This arrangement will further speed up reconstitution in the event
that only a subset of files from a Data Lot need to be reconstituted.

[00208] FIG. 12J illustrates the various components of the reduced data produced
by the Data Distillation™ apparatus for a usage model where the mapper is no longer needed to
be retained subsequent to reduction of the Input Dataset. Examples of such usage models are
certain kinds of data backup and data archiving applications. In such a usage model, the
subsequent use of the reduced data is reconstitution and retrieval of the Input Dataset from the
Reduced Dataset. In such a scenario, the footprint of the Reduced Data can be further reduced by
not storing the Mapper after the data reduction is completed. FIG. 12J shows Input Files 1201 fed
to the apparatus, which produces Distilled Files 1205 and PDE File 1211 — these components
comprise the Reduced Data in this scenario. Note that the Input Files 1201 can be completely
regenerated and recovered using Distilled Files 1205 and PDE File 1211 only. Recall that the

losslessly reduced representation for each element in the Distilled Files contains the

10

15

20

25

30

WO 2018/200862 67 PCT/US2018/029636

Reconstitution Program where needed, as well as references to Prime Data Elements in the PDE
File. Coupled with the PDE File, this is all the information needed to execute reconstitution. It is
also noteworthy to point out an important benefit of this arrangement on the performance
efficiency of the reconstitution and retrieval of the Input Dataset. In this embodiment, the
apparatus factorizes the input dataset into Distilled Files and prime data elements which are
contained in a separate PDE File. During reconstitution, the PDE File can be loaded from storage
in to available memory first, and subsequently the Distilled Files can be successively read from
storage for reconstitution. During the reconstitution of each Distilled File, any prime data
elements needed for the reconstitution of the Distilled File will be speedily retrieved from
memory without incurring any additional storage access latency for the read of the prime data
elements. Reconstituted Distilled Files can be written out to storage as they are completed. This
arrangement precludes the need to perform random storage accesses that would otherwise have a
harmful effect on performance. In this solution, the load of the PDE File from storage is a set of
accesses for a sequentially contiguous chunk of bytes, the read of each Distilled File is also a set
of accesses for a sequentially contiguous chunk of bytes, and lastly each reconstituted input file is
written out to storage as a set of accesses for a sequentially contiguous chunk of bytes. The
storage performance of this arrangement more closely tracks the performance of reading and
writing sequentially contiguous chunks of bytes rather than the performance of a solution which
incurs multiple random storage accesses.

[00209] Note that FIG. 12J shows the various components created by the Data
Distillation Apparatus based on an organization of the Distilled Data and the Prime Data Sieve in
accordance with FIG 1A, where Reconstitution Programs are placed in the losslessly reduced
representation of the Element in the Distilled File. Note that some embodiments (in accordance
with FIG. 1B) can place the Reconstitution Programs in the Prime Data Sieve and treat them just
like Prime Data Elements. The losslessly reduced representation of the Element in the Distilled
File will contain a reference to the Reconstitution Program in the Prime Data Sieve (rather than
contain the Reconstitution Program itself). In these embodiments, the Reconstitution Programs
will be treated like Prime Data Elements and be produced in the PDE File 1211. In yet another
embodiment, in accordance with FIG. 1C, the Reconstitution Programs are stored separate from
the Prime Data Elements in a structure called the Reconstitution Program Store. In such
embodiments, the losslessly reduced representation of the Element in the Distilled File will
contain a reference to the Reconstitution Program in the Reconstitution Program Store. In such
embodiments, in addition to producing the PDE file for the Prime Data Elements, the apparatus

will also produce a file containing all the Reconstitution Programs referred to as the RP File. This

10

15

20

25

30

WO 2018/200862 68 PCT/US2018/029636

is shown in FIG. 12K, which shows the components of the reduced data for usage models where
the mappers no longer need to be retained. FIG. 12K shows the reduced data components
comprising the Distilled Files 1205, PDE File 1211, and RP File 1221.

[00210] FIG.s 12L-P illustrate how the Distillation process can be deployed and
executed on distributed systems to be able to accommodate very large datasets at very high ingest
rates in accordance with some embodiments described herein.

[00211] The distributed computing paradigm entails distributed processing of large
datasets by programs running on multiple computers. FIG. 12L shows a number of computers
networked together in an organization referred to as a distributed computing cluster. FIG. 121
shows point-to-point links between the computers, but it will be understood that any
communication topology, e.g., hub-and-spoke topology or mesh topology, can be used in place of
the topology shown in FIG. 12L. In a given cluster, one node is appointed as the master node
which distributes tasks to the slave nodes and controls and co-ordinates their overall operation.
Slave nodes execute tasks as directed by the master.

[00212] The Data Distillation Process can be executed in a distributed fashion
across the multiple nodes of a distributed computing cluster to harness the total compute,
memory, and storage capacity of the numerous computers in the cluster. In this setup, a master
distillation module on the master node interacts with slave distillation modules running on slave
nodes to achieve the data distillation in a distributed fashion. To facilitate this distribution, the
Prime Data Sieve of the apparatus can be partitioned into multiple independent subsets or
subtrees that can be distributed across multiple slave modules running on the slave nodes. Recall
that in the Data Distillation Apparatus, the Prime Data Elements are organized in tree form based
upon their Names, and their Names are derived from their content. The Prime Data Sieve can be
partitioned into multiple independent subsets or Child Sieves based on the leading bytes of the
Name of Elements in the Prime Data Sieve. There can be multiple ways to partition the Name
space across multiple subtrees. For example, the values of the leading bytes of the Name of
elements can be partitioned into a number of subranges, and each subrange assigned to a Child
Sieve. There can be as many subsets or partitions created as there are slave modules in the
cluster, so each independent partition is deployed on a particular slave module. Using the
deployed Child Sieve, each slave module is designed to execute the data distillation process on
candidate elements that it receives.

[00213] FIG. 12M illustrates a sample partition of the Prime Data Sieve into 4
Prime Data Sieves or Child Sieves labelled PDS_1, PDS 2, PDS 3, and PDS_4 which will be

deployed on 4 slave modules running on 4 nodes. The partitioning is based on the leading byte of

10

15

20

25

30

WO 2018/200862 69 PCT/US2018/029636

the Names of Prime Data Elements. In the example shown, the leading byte of the Name of all
elements in PDS_1 will be in the range A through I and the Sieve PDS_1 will have a Name A_I
marked by the range of values that steer to it. Likewise, the leading byte of the Name of all
elements in PDS_2 will be in the range J through O and the Child Sieve PDS_2 will have a Name
J_O marked by the range of values that steer to it. Likewise, the leading byte of the Name of all
elements in PDS_3 will be in the range P through S and the Child Sieve PDS_3 will have a Name
P_S marked by the range of values that steer to it. Lastly, the leading byte of the Name of all
elements in PDS_4 will be in the range T through Z and the Child Sieve PDS_4 will have a
Name T_Z marked by the range of values that steer to it.

[00214] In this setup, the master module running on the master node receives an
Input File and performs a lightweight parsing and factorization of the Input File to break the Input
File into a sequence of candidate elements, and subsequently steer each candidate element to a
suitable slave module for further processing. The lightweight parsing might include parsing each
candidate element against a schema, or might include the application of fingerprinting on the
candidate element to determine the dimensions that constitute the leading bytes of the Name of
the candidate element. The parsing at the master is limited to identify only as many bytes as is
sufficient to determine which slave module should receive the candidate element. Based upon the
value in the leading bytes of the Name of the candidate element, the candidate is forwarded to the
slave module at the slave node which holds the Child-Sieve that corresponds to this specific
value.

[00215] As data accumulates into the Sieve, the partition can be intermittently
revisited and rebalanced. The partitioning and rebalancing functions can be performed by the
master module.

[00216] Upon receiving a candidate element, each slave module executes the Data
Distillation process, starting with a complete parsing and examination of the candidate element to
create its Name. Using this Name, the slave module performs a content associative lookup of the
Child Sieve, and executes the distillation process to convert the candidate element into an
Element in the losslessly reduced representation with respect to that Child Sieve. The losslessly
reduced representation of an Element in the Distilled File is enhanced with a field called
SlaveNumber to identify the slave module and corresponding Child Sieve with respect to which
the Element has been reduced. The losslessly reduced representation of the Element is sent back
to the master module. If the candidate element is not found in the Child Sieve or cannot be
derived from Prime Data Elements in the Child Sieve, a fresh Prime Data Element is identified to

be allocated into the Child Sieve.

10

15

20

25

30

WO 2018/200862 70 PCT/US2018/029636

[00217] The master module continues to steer all candidate elements from an Input
File to appropriate slave modules and accumulates the incoming Element descriptions (in
losslessly reduced representation) until it has received all Elements for the Input File. At that
point a global commit communication can be issued to all slave modules to update their
respective Child Sieves with the outcome of their individual distillation processes. The Distilled
File for the input is stored at the master module.

[00218] In some embodiments, rather than wait for the entire Distilled File to be
prepared before any slave can update its Child Sieve with either fresh Prime Data Elements or
metadata, the updates to the Child Sieves may be completed as the candidate elements get
processed at the slave modules.

[00219] In some embodiments, each Child Sieve contains Prime Data Elements as
well as Reconstitution Programs in accordance with the descriptions for FIG. 1B and 1C. In such
embodiments, the Reconstitution Program is stored in the Child Sieve and the losslessly reduced
representation contains references to both Prime Data Elements as well as Reconstitution
Programs (where needed) in the Child Sieve. This further reduces the size of the Element and
hence the size of the Distilled File which needs to be stored at the master module. In some
embodiments, the Prime Reconstitution Program Sieve in each Child Sieve contains those
Reconstitution Programs that are used to create Derivations off Prime Data Elements resident in
that Child Sieve. In such a case, the Prime Reconstitution Programs are available locally at the
Slave Node and enable rapid derivation and reconstitution without any delay that would
otherwise be incurred to fetch the Prime Reconstitution Program from a remote node. In other
embodiments, the Prime Reconstitution Program Sieve is distributed globally across all the nodes
to take advantage of the total capacity of the distributed system. The losslessly reduced
representation is enhanced with a second field that identifies the slave node or Child Sieve that
contains the Prime Reconstitution Program. In such an embodiment, the solution incurs an
additional delay to fetch the Prime Reconstitution Program from a remote node in order to either
generate the final Reconstitution Program through derivation, or to reconstitute the Element. The
overall method takes advantage of the combined storage capacity of all the slave nodes to
distribute files across all the nodes, based upon the content of each chunk or candidate element in
each file.

[00220] Data retrieval is similarly co-ordinated by the master module. The master
module receives a Distilled File and examines the losslessly reduced specification for each
Element in the Distilled File. It extracts the field “SlaveNumber” that indicates which slave

module will reconstitute the Element. The Element is then sent to the appropriate slave module

10

15

20

25

30

WO 2018/200862 7 PCT/US2018/029636

for reconstitution. The Reconstituted Element is then sent back to the master module. The master
module assembles Reconstituted Elements from all the slaves and forwards the Reconstituted file
to the consumer that is demanding the file.

[00221] FIG. 12N illustrates how the Data Distillation apparatus may be deployed
and executed in distributed systems. Input File 1251 is fed to the master module which parses and
identified the leading bytes of the Name of each candidate element in the file. The master module
steers candidate elements to one of 4 slave modules. Slave Modulel at Slave Node 1 which holds
PDS_1 or Child Sieve with Name A_I containing Prime Data Elements with leading byte of
Name bearing values in the range A through I receives Candidate Element 1252 with Name
BCD... which is determined to be a duplicate of an element already present in Child Sieve with
Name A_I. Slave Module 1 returns the Losslessly Reduced Representation 1253 which contains
the indicator that the Element is prime, and residing in Slavel at address refPDE1. The master
sends all candidate elements to the relevant slave modules as shown in FIG. 12N and assembles
and collects and finally stores the Distilled File.

[00222] FIG 120 illustrates a variation of the scheme shown in FIG.12N. In this
variation, in the losslessly reduced representation of each element in the distilled file, the field
which identifies the particular Child_Sieve with respect to which the element has been reduced
contains the Name of that Child_Sieve instead of the number of the module or node on which
that Child_Sieve resides. Hence, the field SlaveNumber is replaced by the field
Child_Sieve_Name. This has the benefit of referring to the relevant Child_Sieve by its virtual
address rather than the number of the module or the physical node where the Child_Sieve resides.
Thus, as can be seen in FIG. 120, Slave Modulel at Slave Node 1 which holds PDS_1 or Child
Sieve with Name A_I containing Prime Data Elements with leading byte of Name bearing values
in the range A through I receives Candidate Element 1252 with Name BCD... which is
determined to be a duplicate of an element already present in Child Sieve with Name A_I. Slave
Module 1 returns the Losslessly Reduced Representation 1254 which contains the indicator that
the Element is prime, and residing in Child_Sieve with Name A_I at address refPDEI.

[00223] Note that by employing the arrangements described in FIG.s 12L through
120, the overall throughput rate of the data distillation process can be increased. The throughput
at the master will now be limited by lightweight parsing and dispatch of candidate elements from
the master module. Distillation for numerous candidate elements will execute in parallel, so long
as their content steers them to distinct slave modules.

[00224] To further boost the overall throughput, the task of lightweight parsing and

factorization of the input stream to identify which Child_Sieve should receive the candidate

10

15

20

25

30

WO 2018/200862 72 PCT/US2018/029636

element can be parallelized. This task can be partitioned by the master module into multiple
concurrent tasks to be executed in parallel by the slave modules running on the multiple slave
nodes. This can be accomplished by looking ahead in the data stream and slicing the data stream
into multiple partially overlapping segments. These segments are sent by the master to each of the
slave modules which perform the lightweight parsing and factorization in parallel and send back
the results of the factorization to the master. The master resolves the factorization across the
boundaries of each of the segments and then routes the candidate elements to the appropriate
slave module.

[00225] FIGS 12L through 120 described an arrangement where the data
distillation apparatus operates in a distributed fashion with a master distillation module running
on a master node and multiple slave distillation modules running on slave nodes. The master
module was responsible for performing the partitioning of Prime Data Elements across the
various Child Sieves. In the arrangement shown, all Input Files to be ingested were ingested by
the master module and losslessly reduced Distilled Files were retained at the master module,
while all Prime Data Elements (and any Prime Reconstitution Programs) resided in Child Sieves
at the various slaves. Data retrieval requests for a File were also processed by the master, and the
reconstitution of the corresponding Distilled Files was coordinated by the master. FIG. 12P
illustrates a variation where Input Files can be ingested by any of the slave distillation modules
(and the corresponding Distilled Files retained at those modules), and data retrieval requests can
be processed by any of the slave distillation modules. The master module continues to perform
the partitioning of the Prime Data Elements across the Child Sieves in the same manner, so that
the distribution of Prime Data Elements across the Child Sieves would be the same as in the
arrangements shown in FIGs. 12L through 120. However, in the new arrangement shown in FIG.
12P, each slave module is made aware of the partitioning, since each slave module can both
ingest and retrieve data. Additionally, all modules are made aware of the existence and location
of Distilled Files created and stored at each of the modules upon ingestion of data by those
modules. This allows any slave module to satisfy data retrieval requests for any of the Files
stored in the entire system.

[00226] As shown in FIG 12P, each of the slave modules can ingest and retrieve
data from the distributed storage system. For example Slave Distillation Module 1 1270 ingests
Input File I 1271 and performs lightweight parsing to factorize the Input File I and route
candidate elements to the module containing the Child Sieve that corresponds to the name of
each candidate element from Input File I. For example, candidate element 1275 from Input File I

is sent to Slave Distillation Module 2 1279. Likewise, Slave Distillation Module 2 1279 ingests

10

15

20

25

30

WO 2018/200862 73 PCT/US2018/029636

Input File IT and performs lightweight parsing to factorize the Input File II and route candidate
elements to the module containing the Child Sieve that corresponds to the name of each
candidate element from Input File II. For example, candidate element 1277 from Input File II is
sent to Slave Distillation Module 1 1270. Each of the Slave Distillation Modules process the
candidate elements that they receive, complete the distillation process with respect to their Child
Sieve, and return the losslessly reduced representation of the candidate element back to the
initiating module that ingested the data. For example, in response to receiving candidate element
1275 from Input File I from Slave Distillation module 1 1270, Slave Distillation Module 2 1279
returns losslessly reduced element 1276 to Slave Distillation Module 1 1270. Likewise, in
response to receiving candidate element 1277 from Input File II from Slave Distillation module 2
1279, Slave Distillation Module 1 1270 returns losslessly reduced element 1278 to Slave
Distillation Module 2 1279.

[00227] In this arrangement, retrieval of data can be satisfied at any slave module.
The module that receives the retrieval request needs to first determine where the Distilled File for
that requested File resides, and fetch the Distilled File from the corresponding slave module.
Subsequently, the initiating slave module needs to co-ordinate the distributed reconstitution of
the various elements in that Distilled File to yield the original File and deliver it to the requesting
application.

[00228] In this fashion, the Data Distillation Process can be executed in a
distributed manner across multiple nodes of a distributed system to more effectively harness the
total compute, memory, and storage capacity of the numerous computers in the cluster. All nodes
in the system can be utilized to ingest and retrieve data. This should enable very high rates of data
ingestion and retrieval while taking full advantage of the total combined storage capacity of the
nodes in the system. This also allows applications running on any node in the system to make a
query at a local node for any data stored anywhere in the system, and to have that query satisfied
efficiently and seamlessly.

[00229] In the arrangements described in FIG.s 12M through 12P, the partitioning
of data across Child Sieves resident in the various nodes of the system was based upon the Name
of Elements in a globally visible name space, where the Elements were extracted by factorizing
the input Files. In an alternate arrangement, a Data Lot or an entire group of Files that share
certain metadata can be assigned and stored on a particular Node. Thus the primary partitioning
of the overall data is based on Data Lots, and is performed and managed by the master. All Slave
Modules are kept aware of the allocation of Data Lots to Modules. A Data Lot will reside entirely

on a given Slave Node. The Child Sieve on the Distillation Slave Module running on that Slave

10

15

20

25

30

WO 2018/200862 74 PCT/US2018/029636

Node will contain all Prime Data Elements belonging to this Data Lot. In other words, the entire
tree for all Prime Data Elements for a given Data Lot will reside completely on a single Child
Sieve within a single Slave Distillation Module. All Distilled Files for a given Data Lot will also
reside on the same Slave Distillation Module. Using this arrangement, Input Files can still be
ingested by any of the slave distillation modules, and data retrieval requests can still be processed
by any of the slave distillation modules. However, the entire data distillation process for a given
Data Lot executes completely on the Module containing that Data Lot. Requests for data
ingestion and data retrieval are routed from the initiating modules to the particular slave module
that is designated to hold the particular Data Lot. This solution has the benefit of reduced
communication overhead in the distributed environment when factorizing and distilling a Data
Lot. Redundancy is no longer exploited across the entire global data footprint, but very
efficiently exploited locally within the Data Lot. The solution still uses the combined storage
capacity of the distributed system and offers seamless ability to query, ingest and retrieve any
data from any node of the system.

[00230] Thus, employing the numerous techniques described above, an efficient
use is made of the resources in the distributed system to perform data distillation on very large
datasets at very high speeds.

[00231] The Data Distillation™ method and apparatus can be further enhanced to
facilitate efficient movement and migration of data. In some embodiments, the losslessly reduced
dataset can be delivered in the form of multiple containers or Parcels to facilitate data movement.
In some embodiments, one or more reduced Data Lots could fit into a single container or Parcel,
and alternatively, a single reduced Data Lot can be converted into multiple Parcels. In some
embodiments, a single reduced Data Lot is delivered as a single self-describing Parcel. Figure
12Q illustrates the sample structure of such a Parcel. Parcel 1280 in Fig. 12Q can be viewed as a
single file or contiguous set of bytes containing the following components sequentially
concatenated to one another: (1) Header 1281, which is the Parcel Header which contains firstly
the Parcel Length 1282 which specifies the length of the Parcel, and secondly contains offset
identifiers identifying the offsets where the Distilled Files, the PDE File, and the various
manifests are located in the Parcel; (2) Distilled Files 1283, which are the Distilled Files for the
Data Lot concatenated one after another, with the length for each Distilled File first being
specified followed by all the bytes comprising the Distilled File; (3) PDE File 1284, which is the
PDE File, starting off with a length identifier for the PDE File followed by the body of the PDE
File containing all the prime data elements; (4) Source Manifest 1285 which is a source manifest

which describes the structure of the input dataset and identifies the unique directory structure,

10

15

20

25

30

WO 2018/200862 73 PCT/US2018/029636

pathname and filename of each file in the Parcel. The source manifest also contains a listing of
each node in the input Data Lot (which was reduced and turned into the Parcel) along with the
metadata associated with each node; (5) Destination Manifest and Mapper 1286, which is the
destination manifest and mapper. The destination mapper provides the intended mapping of each
input node and file into the target destination directory and file structure or the target
bucket/container and object/blob structure in the cloud. This manifest facilitates the movement,
reconstitution and relocation of the various components in the Parcel to their final destination
following data movement. Note that this destination mapper section can be independently altered
to retarget the destination where the data in the Parcel is to be transported to and reconstituted.

[00232] In this manner the Losslessly reduced representation of the Data Lot is
delivered as a Parcel in a format that is self-describing and that is suitable for the movement and
relocation of the data.

[00233] Data reduction was performed on a variety of real world datasets using the
embodiments described herein to determine the effectiveness of these embodiments. The real
world datasets studied include the Enron Corpus of corporate email, various U.S. Government
records and documents, U.S. Department of Transportation records entered into the MongoDB
NOSQL database, and corporate PowerPoint presentations available to the public. Using the
embodiments described herein, and factorizing the input data into variable-sized elements (with
boundaries determined by fingerprinting) averaging 4 KB, an average data reduction of 3.23x was
achieved across these datasets. A reduction of 3.23x implies that the size of the reduced data is
equal to the size of the original data divided by 3.23x, leading to a reduced footprint with a
compression ratio of 31%. Traditional data deduplication techniques were found to deliver a data
reduction of 1.487x on these datasets using equivalent parameters. Using the embodiments
described herein, and factorizing the input data into fixed-sized elements of 4 KB, an average
data reduction of 1.86x was achieved across these datasets. Traditional data deduplication
techniques were found to deliver a data reduction of 1.08X on these datasets using equivalent
parameters. Hence, the Data Distillation™ solution was found to deliver significantly better data
reduction than traditional data deduplication solutions.

[00234] The test runs also confirm that a small subset of the bytes of a Prime Data
Element serve to order the majority of the elements in the Sieve, thus enabling a solution that
requires minimal incremental storage for its operation.

[00235] The results confirm that the Data Distillation™ apparatus efficiently
enables exploiting redundancy among data elements globally across the entire dataset, at a grain

that is finer than the element itself. The lossless data reduction delivered by this method is

10

15

20

25

30

WO 2018/200862 76 PCT/US2018/029636

achieved with an economy of data accesses and IOs, employing data structures that themselves
require minimal incremental storage, and using a fraction of the total computational processing
power that is available on modern multicore microprocessors. Embodiments described in the

preceding sections feature systems and techniques that perform lossless data reduction on large
and extremely large datasets while providing high rates of data ingestion and data retrieval, and

that do not suffer from the drawbacks and limitations of conventional techniques.

Performing content associative search and retrieval on data that has been losslessly reduced

by deriving data from prime data elements resident in a prime data sieve

[00236] The Data Distillation Apparatus described in the preceding text and
illustrated in FIG.s 1A through 12P can be enhanced with certain features in order to efficiently
perform multidimensional search and content associative retrieval of information from the data
that is stored in the losslessly reduced format. Such multidimensional searches and data retrieval
are key building blocks for an analytics or data warehousing application. These enhancements
will now be described.

[00237] FIG. 13 shows a Leaf Node Data Structure similar to the structure
illustrated in FIG. 3H. However, in FIG. 13, the entry in the leaf node data structure for each
Prime Data Element is enhanced to contain references (which will also be called Reverse
References or Reverse Links) to all Elements in the Distilled Data that contain a reference to that
particular Prime Data Element. Recall that the Data Distillation scheme factorizes data from an
Input File into a sequence of Elements which are placed in the Distilled File in a reduced format
using a specification such as that described in FIG. 1H. There are two kinds of Elements in the
Distilled File - Prime Data Elements and Derivative Elements. The specification for each of these
Elements in the Distilled File will contain references to Prime Data Elements resident in the
Prime Data Sieve. For each of these references (from Element in Distilled File to Prime Data
Element in the Prime Data Sieve) there will be a corresponding Reverse Link or Reverse
Reference (from entry for the Prime Data Element in the Leaf Node Data structure to Element in
the Distilled File) installed in the Leaf Node Data Structure. The Reverse Reference determines
the offset within the Distilled File that marks the start of the losslessly reduced representation of
the Element. In some embodiments, the Reverse Reference comprises the name of the Distilled
File and an offset within that file which locates the start of the Element. As shown in FIG. 13,
along with the Reverse Reference to each Element in the Distilled File, the leaf node data
structure also keeps an indicator which identifies whether the Element being referred to in the

Distilled File is a Prime Data Element (prime) or whether it is a Derivative Element (deriv).

10

15

20

25

30

WO 2018/200862 77 PCT/US2018/029636

During the distillation process, the Reverse Links are installed into the Leaf Node Data Structures
as and when Elements are placed into the Distilled File.

[00238] The Reverse Reference or Reverse Link is designed as a universal handle
which can reach all Elements in all Distilled Files that share the Prime Data Sieve.

[00239] The addition of the Reverse References is not expected to significantly
impact the data reduction achieved, since data element size is expected to be chosen such that
each reference is a fraction of the size of the data element. For example, consider a system where
Derivative Elements are constrained to each derive off no more than 1 Prime Data Element (so
multi-element derivatives are not allowed). The total number of Reverse References across all
Leaf Node Data Structures will equal the total number of Elements across all Distilled Files.
Assume the sample input dataset of 32GB size is reduced to 8GB of losslessly reduced data,
employing an average element size of 1KB, and yielding a reduction ratio of 4X. There are 32M
elements in the input data. If each Reverse Reference is 8B in size, the total space occupied by
the Reverse References is 256MB, or 0.25GB. This is a small increase to the 8GB footprint of the
reduced data. The new footprint will be 8.25GB and the effective reduction achieved will be
3.88X, which represents a loss of reduction of 3%. This is a small price to pay for the benefits of
powerful content associative data retrieval on the reduced data.

[00240] As described earlier in this document, the Distillation Apparatus can
employ a variety of methods to determine the locations of the various components of the Skeletal
Data Structure within the content of a candidate element. The various components of the Skeletal
Data Structure of the element can be considered as Dimensions, so that a concatenation of these
Dimensions followed by the rest of the content of each element is used to create the Name of
each element. The Name is used to order and organize the Prime Data Elements in the tree.

[00241] In usage models where the structure of the input data is known, a schema
defines the various fields or Dimensions. Such a schema is furnished by the Analytics
Application that is using this Content Associative Data Retrieval Apparatus and is provided to
the apparatus through an interface to the application. Based upon the declarations in the schema,
the Parser of the Distillation Apparatus is able to parse the content of a candidate element to
detect and locate the various Dimensions and create the Name of the candidate element. As
described earlier, Elements that have the same content in the fields corresponding to the
Dimensions will be grouped together along the same leg of the tree. For each Prime Data
Element installed into the Sieve, the information on the Dimensions can be stored as metadata in

the entry for that Prime Data Element in the Leaf Node Data Structure. This information can

10

15

20

25

30

WO 2018/200862 78 PCT/US2018/029636

include the locations, sizes, and values of content at each of the declared Dimensions and can be
stored in the field referred to in FIG. 13 as “Other Metadata for Prime Data Element”.

[00242] FIG. 14A illustrates a sample schema that provides a description of the
structure of the input dataset and a description of the correspondence between the structure of the
input dataset and Dimensions in accordance with some embodiments described herein. Structure
description 1402 is an excerpt or a portion of a more complete schema that describes the
complete structure of the input data. Structure description 1402 includes a listing of keys (e.g.,
"PROD_ID," "MFG," "MONTH," "CUS_LOC," "CATEGORY," and "PRICE") followed by the

n,on

type of value that corresponds to the key. The colon character ":" is used as a delimiter to
separate the key from the type of the value, and the semicolon character ";" is used as a delimiter
to separate distinct pairs of keys and the corresponding type of value. Note that the complete
schema (of which Structure 1402 is a part) may specify additional fields to identify the start and
end of each input, and also possibly other fields outside of Dimensions. Dimension mapping
description 1404 describes how the Dimensions that are used for organizing Prime Data Elements
map to the key values in the structured input dataset. For example, the first line in Dimension
mapping description 1404 specifies that the first four bytes (because the first line ends with the
text "prefix=4") of the value corresponding to the key "MFG" in the input dataset is used to create
Dimension 1. The remaining lines in Dimension mapping description 1404 describe how to
create the other three dimensions based on the structured input data. In this mapping of keys to
Dimensions, the order of the keys as they appear in the input does not necessarily match the order
of the Dimensions. Using the schema descriptions provided, the parser can recognize these
Dimensions in the input data to create the Name of the candidate element. For the example in
FIG. 14A, and using Dimension mapping description 1404, the Name of a candidate element
will be created as follows — (1) the first 4 bytes of the Name will be the first 4 bytes from the
value corresponding to the key “MFG” which is declared as Dimension 1, (2) the next 4 bytes of
the Name will be the first 4 bytes from the value corresponding to the key “CATEGORY” which
is declared as Dimension 2, (3) the next 3 bytes of the Name will be the first 3 bytes from the
value corresponding to the key “CUS_LOC” which is declared as Dimension 3, (4) the next 3
bytes of the Name will be the first 3 bytes from the value corresponding to the key “MONTH”
which is declared as Dimension 4, (5) the next set of the bytes of the Name will be comprised of
a concatenation of the rest of the bytes from the Dimensions, (6) and finally, after all the bytes of
the Dimensions are exhausted, the rest of the bytes of the Name will be the created from a

concatenation of the rest of the bytes of the candidate element.

10

15

20

25

30

WO 2018/200862 79 PCT/US2018/029636

[00243] The schemas furnished by the application driving this apparatus may
specify a number of Primary Dimensions as well as a number of Secondary Dimensions.
Information for all of these Primary and Secondary Dimensions can be retained in the metadata in
the Leaf Node Data Structure. The Primary Dimensions are used to form the principal axis along
which to sort and organize the elements in the Sieve. If Primary Dimensions are exhausted and
subtrees with large membership still remain, then Secondary Dimensions may also be used
deeper down the tree to further subdivide the elements into smaller groups. Information on the
Secondary Dimensions can be retained as metadata and also used as secondary criteria to
differentiate the elements within a leaf node. In some embodiments offering content associative
multidimensional search and retrieval, a requirement may be placed that all incoming data must
contain the keys and valid values for each of the Dimensions declared by the schema. This allows
the system a way to ensure that only valid data enters the desired subtrees in the Sieve. Candidate
elements which either do not contain all fields specified as Dimensions or which contain invalid
values in the values corresponding to the fields for the Dimensions will be sent down a different
subtree as illustrated earlier in FIG. 3E.

[00244] The Data Distillation apparatus is constrained in one additional way in
order to comprehensively support content associative search and retrieval of data based upon the
content in the Dimensions. When Derivative Elements are created off a Prime Data Element, the
Deriver is constrained to ensure that both the Prime Data Element and the Derivative have the
exact same content in the value fields for each of the corresponding Dimensions. Thus, when a
derivative is being created, the Reconstitution Program is not allowed to perturb or modify the
content in the value fields corresponding to any of the Dimensions of the Prime Data Element, in
order to construct the Derivative Element. Given a candidate element, during lookup of the
Sieve, if the candidate element has different content in any of the Dimensions compared to the
corresponding Dimensions of the target Prime Data Element, a fresh Prime Data Element needs
to be installed, rather than accept the derivative. For example, if a subset of the Primary
Dimensions sufficiently sort the elements into distinct groups in the tree so that a candidate
element arrives at a leaf node to find a Prime Data Element that has the same content in this
subset of Primary Dimensions but different content in either the remaining Primary Dimensions
or the Secondary Dimensions, then, instead of creating a derivative, a fresh Prime Data Element
needs to be installed. This feature ensures that all data can be searched using the Dimensions by
simply querying the Prime Data Sieve.

[00245] The Deriver may employ a variety of implementation techniques to enforce

the constraint that the Candidate Element and the Prime Data Element must have the exact same

10

15

20

25

30

WO 2018/200862 80 PCT/US2018/029636

content in the value fields for each of the corresponding Dimensions. The Deriver may extract
information comprising the locations, lengths and content of the fields corresponding to the
Dimensions from the Skeletal Data Structure of the Prime Data Element. Similarly, this
information is received from the Parser/Factorizer or computed for the Candidate Element. Next
the corresponding fields for the Dimensions from the candidate Element and the Prime Data
Element can be compared for equality. Once confirmed to be equal, the Deriver may proceed
with the rest of the Derivation. If there is no equality, the Candidate Element is installed in the
Sieve as a fresh Prime Data Element.

[00246] The restrictions described above are not expected to significantly hamper
the degree of data reduction for most usage models. For example, if input data is comprised of a
set of Elements which are data warehouse transactions of size 1000 bytes each, and if a set of 6
Primary Dimensions and 14 Secondary Dimensions are specified by the schema, each with say 8
bytes of data per Dimension, the total bytes occupied by content at the Dimensions is 160 bytes.
No perturbations are allowed on these 160 bytes when creating a derivative. This would still
leave the remaining 840 bytes of candidate element data available for perturbation to create
derivatives, thus leaving ample opportunity for exploitation of redundancy, while simultaneously
enabling the data from the data warehouse to be searched and retrieved in a content associative
manner using the Dimensions.

[00247] To execute a search query for data containing specific values for fields in
the Dimensions, the apparatus can traverse the tree and reach a node in the tree that matches the
Dimensions specified, and all Leaf Node Data structures below that node can be returned as the
result of the lookup. References to Prime Data Elements present at the Leaf Node can be used to
fetch the desired Prime Data Elements if required. The Reverse Links enable retrieval of the input
Element (in losslessly reduced format) from the Distilled File, if so desired. The Element can
subsequently be reconstituted to yield the original input data. Thus, the enhanced apparatus
allows all the searching to be done on data in the Prime Data Sieve (which is a smaller subset of
the total data) while yet being able to reach and retrieve all derivative elements as needed.

[00248] The apparatus as enhanced can be used to execute search and lookup
Queries for powerful searches and retrieval of relevant subsets of data based upon the content in
Dimensions specified by the query. A Content Associative Data Retrieval Query will have the
form “Fetch (Dimension 1, value of Dimension 1; Dimension 2, Value of Dimension 2; ...). The
Query will specify the Dimensions involved in the search as well as the values to be used for each
of the specified Dimensions for content associative search and lookup. A query may specify all

the Dimensions or it may specify only a subset of the Dimensions. The Queries may specify

10

15

20

25

30

WO 2018/200862 81 PCT/US2018/029636

compound conditions based on multiple dimensions as the criteria for the search and retrieval.
All data in the Sieve which has the specified values for the specified Dimensions will be
retrieved.

[00249] A variety of Fetch queries can be supported and made available to the
Analytics Application that is using this Content Associative Data Retrieval Apparatus. Such
queries will be furnished to the apparatus through an interface from the application. The interface
provides queries from the application to the apparatus and returns results of queries from the
apparatus to the application. Firstly, a query FetchRefs can be used to fetch a reference or Handle
to the Leaf Node Data Structure in FIG 13 (along with the Child ID or index of the entry) for each
Prime Data Element that matches the query. A second form of query FetchMetaData can be used
to fetch the metadata (including the Skeletal Data Structure, information on the Dimensions, and
References to Prime Data Elements) from the entry in the Leaf Node Data Structure in FIG 13 for
each Prime Data Element that matches the query. A third form of query FetchPDEs will fetch all
the Prime Data Elements that match the search criteria. Another form of query
FetchDistilledElements will fetch all Elements in the Distilled File that match the search criteria.
Yet another form of query FetchElements will fetch all Elements in the Input Data that match the
search criteria. Note that for the FetchElements query, the apparatus will first fetch Distilled
Elements and then reconstitute the relevant Distilled Elements into Elements from the Input Data
and return these as the results of the query.

[00250] In addition to such multidimensional content associative Fetch primitives,
the interface may also provide to the application the capability to directly access Prime Data
Elements (using the Reference to the Prime Data Element) and Elements in the Distilled File
(using the Reverse Reference to the Element). Additionally, the interface may provide to the
application the capability to Reconstitute a Distilled Element in the Distilled File (given a
Reference to the Distilled Element) and deliver the Element as it existed in the Input Data.

[00251] A judicious combination of these queries can be used by an Analytics
application to perform searches, determine relevant unions and intersections, and glean important
insights.

[00252] FIG. 14B explained below illustrates an example of an input dataset with
structure described in structure description 1402. In this example, the input data contained in File
1405 contains e-commerce transactions. The input data is converted into a series of candidate
elements 1406 by the parser in the data distillation apparatus, using the schema and Dimension
declarations in FIG 14A. Note how the leading bytes of the Name of each candidate element are

comprised of content from the Dimensions. For example, the leading bytes for Name 1407 for

10

15

20

25

30

WO 2018/200862 82 PCT/US2018/029636

Candidate Element 1 is PRINRACQNYCFEB. These Names are used to organize the candidate
elements in tree form. After data reduction is complete, the distilled data is placed in Distilled
File 1408.

[00253] FIG. 14C explained below illustrates how Dimension mapping description
1404 can be used to parse the input dataset illustrated in FIG. 14A according to structure
description 1402, determine Dimensions according to dimension mapping description 1404, and
organize Prime Data Elements in a tree based on the determined Dimensions. In FIG. 14C, Prime
Data Elements are organized in a Master Tree using a total of 14 characters taken from 4
Dimensions. Shown in the Master Tree is a portion of the Leaf Node Data Structure for the
various Prime Data Elements. Note that for purposes of easy viewing, the complete Leaf Node
Data structure of FIG. 13 is not shown. However, FIG. 14C shows the Path Info or name of each
entry in the leaf node data structure, the Child ID, all Reverse References or Reverse Links from
Prime Data Elements to Elements in the Distilled File along with indicator of whether the
Element in the Distilled File is “prime” (denoted by P) or “deriv” (denoted by D), and also the
Reference to the Prime Data Element. FIG. 14C shows 7 elements in the Distilled File mapped to
5 Prime Data Elements in the Master Tree. In FIG. 14C, Reverse Link A for Prime Data Element
with Name PRINRACQNYCFEB refers back to Element 1 in the Distilled File. Meanwhile,
Prime Data Element with name NIKESHOELAHJUN has 3 Reverse Links B, C, and E to
Element 2, Element 3, and Element 58 resply. Note that Element 3 and Element 58 are
derivatives of Element 2.

[00254] FIG.14D shows an auxiliary index or auxiliary tree created from the
Dimensions to improve the efficiency of searches. In this example the auxiliary mapping tree
created is based on Dimension 2 (which is CATEGORY). By directly traversing this auxiliary
tree, all elements of a given CATEGORY in the input data can be found without more expensive
traversals of the master tree that might otherwise have been incurred. For example, a traversal
down the leg that is denoted by “SHOE” leads directly to two Prime Data Elements for shoes
which are ADIDSHOESJCSEP and NIKESHOELAHJUN.

[00255] Alternatively, such an auxiliary tree may be based on Secondary
Dimensions and used to aid in rapid convergence of searches using the Dimensions.

[00256] Examples of Queries executed on the apparatus shown in FIG. 14D will
now be provided. The Query FetchPDEs (Dimensionl, NIKE;) will return two Prime Data
Elements named NIKESHOELAHJUN and NIKEJERSLAHOCT. The Query
FetchDistilledElements (Dimension 1, NIKE ;) will return Element 2, Element 3, Element 58,

and Element 59 which will be Distilled Elements in the losslessly reduced format. The Query

10

15

20

25

30

WO 2018/200862 83 PCT/US2018/029636

FetchElements (Dimension 1, NIKE; Dimension 2, SHOE) will return Transaction 2, Transaction
3, and Transaction 58 from the input data File 1405. The Query FetchMetadata (Dimension 2,
SHOES) will return the metadata stored in the leaf node data structure entry for each of the two
Prime data Elements named ADIDSHOESJCSEP and NIKESHOELAHJUN.

[00257] The apparatus described thus far can be used to support searches based
upon content that is specified in fields called Dimensions. Additionally, the apparatus can be used
to support searches based upon a listing of keywords that are not included in the listing of
Dimensions. Such keywords may be provided to the apparatus by an application such as a search
engine that is driving the apparatus. The keywords may be specified to the apparatus via a schema
declaration or passed in via a keyword list containing all the keywords, each separated by a
declared separator (such as spaces, or commas, or linefeeds). Alternatively, both a schema as well
as a keyword list may be used to collectively specify all the keywords. A very large number of
keywords may be specified - the apparatus places no limit on the number of keywords. These
search keywords will be referred to as Keywords. The apparatus can maintain an inverted index
for search using these Keywords. The inverted index contains for each Keyword a listing of
Reverse References to Elements in the Distilled Files that contain this Keyword.

[00258] Based upon the Keyword declarations in the schema or the Keyword list,
the Parser of the Distillation Apparatus can parse the content of a candidate element to detect and
locate the various Keywords (if and where found) in the incoming candidate element.
Subsequently, the candidate element is converted into either a Prime Data Element or Derivative
Element by the Data Distillation Apparatus and placed as an Element in the Distilled File. The
inverted index for the Keywords that were found in this Element can be updated with Reverse
References to this Element in the Distilled File. For each keyword found in the Element, the
inverted index is updated to include a Reverse Reference to this Element in the Distilled File.
Recall that Elements in the Distilled File are in the losslessly reduced representation.

[00259] Upon a search Query of the data using a Keyword, the inverted index is
consulted to find and extract Reverse References to Elements in the Distilled File that contain
this Keyword. Using the Reverse Reference to such an Element, the losslessly reduced
representation of the Element can be retrieved, and the Element can be reconstituted. The
Reconstituted Element can then be provided as the result of the search Query.

[00260] The inverted index can be enhanced to contain information which locates
the offset of the Keyword in the Reconstituted Element. Note that the offset or location of each
Keyword detected in the candidate element can be determined by the Parser and hence this

information can also be recorded in the inverted index when the Reverse Reference to the

10

15

20

25

30

WO 2018/200862 84 PCT/US2018/029636

Element in the Distilled File is placed into the inverted index. Upon a search Query, after the
inverted index is consulted to retrieve a Reverse Reference to an Element in the Distilled File that
contains the relevant Keyword, and after the Element is reconstituted, the recorded offset or
location of the Keyword in the Reconstituted Element (same as the original input candidate
element) can be used to pinpoint where the Keyword exists in the Input data or Input File.

[00261] FIG. 15 illustrates the inverted index to facilitate search based on
Keywords. For each Keyword, the inverted index contains pairs of values — the first is a Reverse
Reference to the losslessly reduced Element in the Distilled File that contains the Keyword, and
the second value is the Offset of the Keyword in the Reconstituted Element.

[00262] Dimensions and Keywords have different implications to the Prime Data
Sieve in the Data Distillation Apparatus. Note that the Dimensions are used as the principal axes
along which to organize Prime Data Elements in the Sieve. Dimensions form the Skeletal Data
Structure of each Element in the data. The Dimensions are declared based upon knowledge of the
structure of the incoming data. The Deriver is constrained such that any Derivative Element that
is created must have the exact same content as the Prime Data Element in the values of the fields
for each of the corresponding Dimensions.

[00263] These properties need not hold for the Keywords. In some embodiments,
neither is there an a priori requirement that the Keywords even exist in the data, nor is the Prime
Data Sieve required to be organized based on the Keywords, and nor is the Deriver constrained
with regards to derivations involving content containing the Keywords. The Deriver is free to
create a derivative from a Prime Data Element by modifying the values of Keywords if necessary.
The locations of the Keywords are simply recorded where found upon scanning the input data,
and the inverted index is updated. Upon a content associative search based on the Keywords, the
inverted index is queried and all locations of the Keywords are obtained.

[00264] In other embodiments, the Keywords are not required to exist in the data
(the absence of Keywords in the data does not invalidate the data), but the Prime Data Sieve is
required to contain all Elements that contain Keywords, and the Deriver is constrained with
regards to derivations involving content containing the Keywords — no derivations are allowed
other than reducing duplicates. The purpose of these embodiments is that all distinct Elements
containing any Keyword must exist in the Prime Data Sieve. This is an example where the rules
governing the selection of Prime Data are conditioned by the Keywords. In these embodiments, a
modified inverted index may be created which contains, for each Keyword, a Reverse Reference

to each Prime Data Element containing the Keyword. On these embodiments, powerful Keyword-

10

15

20

25

30

WO 2018/200862 85 PCT/US2018/029636

based search capability is realized, wherein searching only the Prime Data Sieve is as effective as
searching the entire data.

[00265] Other embodiments may exist where the Deriver is constrained so that the
Reconstitution Program is not allowed to perturb or modify the contents of any Keyword found in
the Prime Data Element, in order to formulate a Candidate Element as a Derivative Element of
that Prime Data Element. The Keyword needs to propagate unchanged from the Prime Data
Element to the Derivative. If the Deriver needs to modify bytes of any Keyword found in the
Prime Data Element in order to successfully formulate the candidate as a derivative of this Prime
Data Element, the Derivative may not be accepted, and the candidate must be installed as a fresh
Prime Data Element in the Sieve.

[00266] The Deriver may be constrained in a variety of ways with regards to
derivations involving the Keywords so that the rules governing the selection of Prime Data are
conditioned by the Keywords.

[00267] The apparatus for Search of data using Keywords can accept updates to
the listing of Keywords. Keywords can be added without any changes to the data that is stored in
losslessly reduced form. When new Keywords are added, fresh incoming data can be parsed
against the updated Keyword list, and the inverted index updated with the incoming data
subsequently being stored in losslessly reduced form. If the existing data (that is already stored in
losslessly reduced form) needs to be indexed against the new Keywords, the apparatus can
progressively read in the Distilled Files (either one or more Distilled Files at a time, or one
Losslessly Reduced Data Lot at a time), reconstitute the original files (but without disturbing the
losslessly reduced stored data), and parse the reconstituted files to update the inverted index. All
this while, the entire data repository can continue to remain stored in losslessly reduced form.

[00268] FIG. 16A illustrates a schema declaration that is a variation of the schema
shown in FIG. 14A. The schema in FIG. 16A includes a declaration of a Secondary Dimension
1609 and a listing of Keywords 1610. FIG. 16B illustrates an example of an input dataset 1611
with structure described in structure description 1602, which is parsed and converted into a set of
candidate elements with names based on the declared Primary Dimensions. The candidate
elements are converted into Elements in Distilled File 1613. The declaration of the Secondary
Dimension “PROD_ID” places a constraint on the Deriver such that candidate element 58 may
not be derived from the Prime Data Element “NIKESHOELAHJUN with PROD_ID=348", and
hence one additional Prime Data Element “NIKESHOELAHJUN with PROD 1D=349" is
created in the Prime Data Sieve. Although the input dataset is the same as that shown in FIG 14B,

the outcome of the distillation is to yield 7 Distilled Elements but 6 Prime Data Elements. FIG.

10

15

20

25

30

WO 2018/200862 86 PCT/US2018/029636

16C shows the Distilled File, the Master Tree, and the Prime Data Elements created as a result of
the distillation process.

[00269] FIG. 16D illustrates an auxiliary tree created for the Secondary Dimension
“PROD_ID”. Traversing this tree with a specific PROD_ID value leads a Prime Data Elements
with that particular PROD_ID. For example the Query FetchPDEs (Dimension 5, 251), or
alternatively the Query FetchPDEs (PROD_ID, 251), which asks for Prime Data Elements with
PROD_ID=251 yields the Prime Data Element WILSBALLLAHNOV.

[00270] FIG. 16E illustrates an inverted index (labelled Inverted Index For
Keywords 1631) created for the 3 Keywords declared in FIG 16A Structure 1610. These
Keywords are FEDERER,LAVER, and SHARAPOVA. The inverted index is updated after
parsing and consuming the input dataset 1611. The Query FetchDistilledElements (Keyword,
Federer) will utilize the inverted index (rather than the Master Tree or Auxiliary Tree) to return
Element 2, Element 3, and Element 58.

[00271] FIG17 shows a block diagram of the overall apparatus as enhanced for
Content Associative Data Retrieval. Content Associative Data Retrieval Engine 1701 provides
the Data Distillation apparatus with Schema 1704 or structure definitions including Dimensions
for the data. It also provides the apparatus with Keyword lists 1705. It issues Queries 1702 for
search and retrieval of data from the Distillation Apparatus, and receives the results of the queries
as Results 1703. Deriver 110 is enhanced to be aware of the declarations of the Dimensions to
prohibit modification of content at the locations of the Dimensions when creating a derivative.
Note that the Reverse References from entries in the leaf node data structure to Elements in the
Distilled Files are stored in the leaf node data structures in Prime Data Sieve 106. Likewise,
auxiliary indexes are also stored in Prime Data Sieve 106. Also shown is Inverted Index 1707
which is updated with Reverse Reference 1709 by Deriver 110 when the Element is being written
to the Distilled Data. This Content Associative Data Retrieval Engine interacts with other
Applications (such as Analytics, Data Warehousing, and Data Analysis Applications), providing
them with results of executed Queries.

[00272] In summary, the enhanced Data Distillation apparatus enables powerful
multidimensional content associative search and retrieval on data that is stored in losslessly
reduced form.

[00273] The Data Distillation™ apparatus can be employed for the purposes of
lossless reduction of audio and video data. The data reduction accomplished by the method is

achieved by deriving components of the audio and video data from prime data elements resident

10

15

20

25

30

WO 2018/200862 87 PCT/US2018/029636

in a content associative sieve. Applications of the method for such purposes will now be
described.

[00274] FIG.s 18 A-B show a block diagram for an Encoder and Decoder for
compression and decompression of audio data according to the MPEG 1, Layer 3 Standard (also
referred to as MP3). MP3 is an audio coding format for digital audio which uses a combination of
lossy and lossless data reduction techniques to compress incoming audio. It manages to compress
Compact Disc (CD) audio down from 1.4Mbps to 128Kbps. MP3 takes advantage of the
limitations of the human ear to suppress components of the audio that will not be perceptible to
the human ear of most people. To achieve this, a set of techniques collectively referred to as
Perceptual Coding techniques are employed, which lossily but imperceptibly reduce the size of a
snippet of audio data. The Perceptual Coding techniques are lossy, and information lost during
these steps cannot be regained. These Perceptual Coding techniques are supplemented by
Huffman Coding, which is a lossless data reduction technique described earlier in this document.

[00275] In MP3, the incoming audio stream is compressed into a sequence of
several small data frames, each containing a frame header and compressed audio data. The
original audio stream is periodically sampled to produce a sequence of snippets of audio which
are then compressed employing Perceptual Coding and Huffman Coding to produce a sequence
of MP3 data frames. Both the Perceptual Coding and Huffman Coding techniques are applied
locally within each snippet of the audio data. The Huffman Coding technique exploits
redundancy locally within a snippet of audio but not globally across the audio stream. Thus the
MP3 techniques do not exploit redundancy globally - neither across a single audio stream, nor
between multiple audio streams. This represents an opportunity for further data reduction beyond
what MP3 can achieve.

[00276] Each MP3 data frame represents an audio snippet of 26ms. Each frame
stores 1152 samples and is subdivided into two granules each containing 576 samples. As can be
seen in the Encoder Block Diagram in FIG. 18A, during encoding of a digital audio signal, time
domain samples are taken and converted into 576 frequency domain samples through a process of
filtering and by application of the Modified Discrete Cosine Transform (MDCT). Perceptual
Coding techniques are applied to reduce the amount of information contained in the samples. The
output of the Perceptual Coding is a Non-uniformly Quantized Granule 1810 which contains
reduced information per frequency line. Huffman Coding is then used to further reduce the size of
the granules. The 576 frequency lines of each granule may use multiple Huffman tables for their
encoding. The output of the Huffman Encoding is the main Data component of the frame

comprising scale factors, Huffman encoded bits, and ancillary data. Side information (used to

10

15

20

25

30

WO 2018/200862 88 PCT/US2018/029636

characterize and locate various fields) is placed into the MP3 Header. The output of the Encoding
is an MP3 encoded audio signal. At a BitRate of 128Kbps, the size of an MP3 frame is 417 or
418 bytes.

[00277] FIG. 18C shows how the Data Distillation apparatus first shown in FIG.
1A can be enhanced to perform data reduction on MP3 data. The method illustrated in FIG. 18C
factorizes the MP3 data into candidate elements and exploits redundancy between elements at a
grain finer than the element itself. For MP3 data, the Granule is chosen as the Element. In one
embodiment, the Non-uniformly Quantized Granule 1810 (as shown in FIG. 18 A) may be treated
as the Element. In another embodiment the Element may be comprised of a concatenation of the
Quantized Frequency Lines 1854 and the ScaleFactors 1855.

[00278] In FIG. 18C, the Stream of MP3 Encoded Data 1862 is received by the
Data Distillation Apparatus 1863 and reduced into a stream of Distilled MP3 Data 1868, stored in
the losslessly reduced form. The incoming Stream of MP3 Encoded Data 1862 comprises of a
sequence of pairs of MP3 Header and MP3 Data. The MP3 Data includes CRC, Side
Information, Main Data and Ancillary Data. The outgoing Distilled MP3 Data created by the
apparatus comprises of a similar sequence of pairs (each pair being a DistMP3 Header followed
by an Element Specification in losslessly reduced format). The DistMP3 Header contains all the
components of the original frame other than the Main Data, namely it contains the MP3 Header,
CRC, Side Information, and Ancillary Data. The Element field in this Distilled MP3 Data
contains Granules specified in losslessly reduced form. Parser/Factorizer 1864 performs a first
decoding of the incoming MP3 Encoded Stream (including performing Huffman decoding) to
extract the Quantized Frequency Lines 1851 and ScaleFactors 1852 (which are shown in FIG.
18B) and to generate Audio Granule 1865 as a Candidate Element. The first decoding steps
performed by the Parser/Factorizer are the same as the steps of Sychronization and Error
Checking 1851, Huffman Decoding 1852, and Scale Factor Decoding 1853 of FIG. 18B — these
steps are performed in any standard MP3 Decoder and are well known in the existing art. Prime
Data Sieve 1866 contains Granules as Prime Data Elements, organized to be accessed in a
Content Associative manner. During installation of a Granule into the Prime Data Sieve, the
content of the Granule is used to ascertain where in the Sieve the Granule should be installed and
to update the Skeletal Data Structure and metadata in the appropriate leaf node of the Sieve.
Subsequently, the Granule is Huffman Coded and compressed so that it can be stored in the Sieve
with a footprint no greater than the footprint it occupied when residing in the MP3 Data.
Whenever a Granule in the Sieve is needed as a Prime Data Element by the Deriver, the Granule

is decompressed before it is furnished to the Deriver. Using the Data Distillation Apparatus,

10

15

20

25

30

WO 2018/200862 89 PCT/US2018/029636

incoming Audio Granules are derived by Deriver 1870 from Prime Data Elements (which are also
Audio Granules) resident in the Sieve, and a losslessly reduced representation or distilled
representation of the Granule is created and placed in the Distilled MP3 Data 1868. This distilled
representation of the Granule is placed into the Element field replacing the Huffman Coded
information that originally existed in the Main Data field of the MP3 frame. The distilled
representation of each Element or Granule is encoded using a format shown in FIG. 1H — each
Element in the Distilled Data is either a Prime Data Element (accompanied by a Reference to a
Prime Data Element or Prime Granule in the Sieve), or a Derivative Element (accompanied by a
Reference to a Prime Data Element or Prime Granule in the Sieve, plus a Reconstitution Program
that generates the Derivative Element from the Prime Data Element being referred to). During the
derivation step, the Threshold for accepting the derivation may be set to be a fraction of the size
of the original Huffman Coded information that resided in the Main Data field of the frame being
reduced. Thus, unless the sum of the Reconstitution Program and the reference to the Prime Data
Element is less than this fraction of the size of the corresponding Main Data field of the MP3
encoded frame (that contained Huffman coded data), the derivation will not be accepted. If the
sum of the Reconstitution Program and the reference to the Prime Data element is less than this
fraction of the size of the existing Main Data field of the encoded MP3 frame (that contained
Huffman coded data), a decision can be made to accept the Derivation.

[00279] The above described method enables the exploitation of redundancy at a
global scope, across multiple Audio Granules stored in the apparatus. MP3 Encoded Data files
may be transformed into Distilled MP3 Data and stored in losslesly reduced form. When needed
to be retrieved, the data retrieval process (employing Retriever 1871 and Reconstitutor 1872) can
be invoked to reconstitute the MP3 Encoded Data 1873. In the apparatus shown in FIG 18C, the
Reconstitutor is responsible for executing the Reconstitution Program to generate the desired
Granule. It is additionally enhanced to perform the Huffman Coding step (shown as Huffman
Coding 1811 in FIG. 18A) needed to generate the MP3 Encoded data. This data can then be fed
to a standard MP3 Decoder to play the audio.

[00280] In this fashion, the Data Distillation Apparatus may be adapted and
employed to further reduce the size of MP3 audio files.

[00281] In another variation of the scheme described, upon receiving an MP3
Encoded Stream, the Parser/Factorizer takes the entire Main Data field as a Candidate Element
for derivation or as a Prime Data Element for installation into the Prime Data Sieve. In this

variation, all Elements will continue to remain Huffman Coded, and Reconstitution Programs

10

15

20

25

30

WO 2018/200862 20 PCT/US2018/029636

will operate upon Elements that are already Huffman Coded. This variation of the Data
Distillation Apparatus may also be employed to further reduce the size of MP3 audio files.
[00282] In a manner similar to that described in the preceding sections and
illustrated in Figs. 18 A-C, the Data Distillation™ apparatus can be employed for the purposes of
lossless reduction of video data. The data reduction accomplished by the method is achieved by
deriving components of the video data from prime data elements resident in a content associative
sieve. Video data streams comprise of audio and moving picture components. A method for
distillation of the audio component has already been described. The moving picture components
will now be addressed. The moving picture components are typically organized as a series of
groups of pictures. A group of pictures starts off with an I frame and is typically followed by a
number of predicted frames (called P frames and B frames). The I frames are typically bulkier
and contain a complete snapshot of the picture, while the predicted frames are derived after
employing techniques such as motion estimation with respect to the I frame or with respect to
other derived frames. Some embodiments of the Data Distillation™ apparatus extract the I
frames from the video data as Elements and perform the data distillation process on them, thus
retaining certain I frames as prime data elements resident in a content associative sieve, while the
rest of the I frames are derived off the prime data elements. The described method enables the
exploitation of redundancy at a global scope, across multiple I frames both within the video file
and across multiple video files. Since I frames are typically the bulky component of the moving
picture data, this approach will yield a reduction in the footprint of the moving picture
component. Applying the distillation technique to both the audio component as well as the
moving picture component will serve to losslessly reduce the overall size of the video data.
[00283] FIG. 19 shows how the Data Distillation apparatus first shown in FIG. 1A
can be enhanced to perform data reduction on video data. Stream of Video Data 1902 is received
by the Data Distillation Apparatus 1903 and reduced into a stream of Distilled Video Data 1908,
stored in the losslessly reduced form. The incoming Stream of Video Data 1902 comprises two
components - compressed moving-picture data and compressed audio data. The outgoing
Distilled Video Data created by the apparatus also comprises two components, i.e., compressed
moving-picture data and compressed audio data; however, these components are further reduced
in size by Data Distillation Apparatus 1903. Parser/Factorizer 1904 extracts the compressed
moving-picture data and compressed audio data from the Stream of Video Data 1902, and
extracts (including performing any required Huffman decoding) intra-frames (I-frames) and
predicted-frames from the compressed moving-picture data. I-frames are used as Candidate

Elements 1905 to perform the content-associated lookup in Prime Data Sieve 1906. The set of

10

15

20

25

30

WO 2018/200862 71 PCT/US2018/029636

Prime Data Elements (which are also I-frames) returned by Prime Data Sieve 1906 are used by
Deriver 1910 to generate a losslessly reduced representation or distilled representation of the I-
frame, and the losslessly reduced I-frame is placed in the Distilled Video Data 1908. The distilled
representation is encoded using a format shown in FIG. 1H — each Element in the Distilled Data
is either a Prime Data Element (accompanied by a Reference to a Prime Data Element in the
Sieve), or a Derivative Element (accompanied by a Reference to a Prime Data Element in the
Sieve, plus a Reconstitution Program that generates the Derivative Element from the Prime Data
Element being referred to). During the derivation step, the Threshold for accepting the derivation
may be set to be a fraction of the size of the original I-frame. Thus, unless the sum of the
Reconstitution Program and the reference to the Prime Data Element is less than this fraction of
the size of the corresponding I-frame, the derivation will not be accepted. If the sum of the
Reconstitution Program and the reference to the Prime Data element is less than this fraction of
the size of the original I-frame, a decision can be made to accept the Derivation.

[00284] The above described method enables the exploitation of redundancy at a
global scope, across multiple I-frames of multiple video data sets stored in the apparatus. When
needed to be retrieved, the data retrieval process (employing Retriever 1911 and Reconstitutor
1912) can be invoked to reconstitute the Video Data 1913. In the apparatus shown in FIG. 19,
the Reconstitutor is responsible for executing the Reconstitution Program to generate the desired
I-frame. It is additionally enhanced to combine the compressed audio data with the compressed
moving-picture data (essentially the inverse of the extraction operations that were performed by
Parser & Factorizer 1904) to generate the Video Data 1913. This data can then be fed to a
standard video decoder to play the video.

[00285] In this fashion, the Data Distillation Apparatus may be adapted and
employed to further reduce the size of video files.

[00286] The above description is presented to enable any person skilled in the art to
make and use the embodiments. Various modifications to the disclosed embodiments will be
readily apparent to those skilled in the art, and the general principles defined herein are applicable
to other embodiments and applications without departing from the spirit and scope of the present
disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be
accorded the widest scope consistent with the principles and features disclosed herein.

[00287] The data structures and code described in this disclosure can be partially or
fully stored on a computer-readable storage medium and/or a hardware module and/or hardware
apparatus. A computer-readable storage medium includes, but is not limited to, volatile memory,

non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape,

10

15

WO 2018/200862 92 PCT/US2018/029636

CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media, now
known or later developed, that are capable of storing code and/or data. Hardware modules or
apparatuses described in this disclosure include, but are not limited to, application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), dedicated or shared
processors, and/or other hardware modules or apparatuses now known or later developed.

[00288] The methods and processes described in this disclosure can be partially or
fully embodied as code and/or data stored in a computer-readable storage medium or device, so
that when a computer system reads and executes the code and/or data, the computer system
performs the associated methods and processes. The methods and processes can also be partially
or fully embodied in hardware modules or apparatuses, so that when the hardware modules or
apparatuses are activated, they perform the associated methods and processes. Note that the
methods and processes can be embodied using a combination of code, data, and hardware
modules or apparatuses.

[00289] The foregoing descriptions of embodiments of the present invention have
been presented only for purposes of illustration and description. They are not intended to be
exhaustive or to limit the present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners skilled in the art. Additionally, the

above disclosure is not intended to limit the present invention.

10

15

20

25

30

WO 2018/200862 73 PCT/US2018/029636

What Is Claimed Is:

1. A method for reducing video data, the method comprising:

extracting compressed moving-picture data and compressed audio data from the video
data;

extracting intra-frames (I-frames) from the compressed moving-picture data; and

losslessly reducing the I-frames to obtain losslessly-reduced I-frames, wherein losslessly
reducing the I-frames comprises, for each I-frame,

identifying a first set of prime data elements by using the I-frame to perform a first
content-associative lookup on a data structure that organizes prime data elements based
on their contents, and

using the first set of prime data elements to losslessly reduce the I-frame.

2. The method of claim 1, wherein using the first set of prime data elements to
losslessly reduce the I-frame comprises:
in response to determining that a sum of (i) sizes of references to the first set of prime
data elements and (ii) a size of a description of a reconstitution program is less than a threshold
fraction of a size of the I-frame, generating a first losslessly reduced representation of the I-frame,
wherein the first losslessly reduced representation includes a reference to each prime data element
in the first set of prime data elements and a description of the reconstitution program; and
in response to determining that the sum of (i) the sizes of the references to the first set of
prime data elements and (ii) the size of the description of the reconstitution program is greater
than or equal to the threshold fraction of the size of the I-frame,
adding the I-frame as a new prime data element in the data structure, and
generating a second losslessly reduced representation of the I-frame, wherein the
second losslessly reduced representation includes a reference to the new prime data

element.

3. The method of claim 2, wherein the description of the reconstitution program
specifies a sequence of transformations which, when applied to the first set of prime data

elements, results in the I-frame.

4. The method of claim 1, wherein the method further comprises:

decompressing the compressed audio data to obtain a set of audio components; and

10

15

20

25

30

WO 2018/200862 94 PCT/US2018/029636

for each audio component in the set of audio components,

identifying a second set of prime data elements by using the audio component to
perform a second content-associative lookup on the data structure that organizes prime
data elements based on their contents, and

using the second set of prime data elements to losslessly reduce the audio

component.

5. The method of claim 4, wherein using the second set of prime data elements to
losslessly reduce the audio component comprises:
in response to determining that a sum of (i) sizes of references to the second set of prime
data elements and (ii) a size of a description of a reconstitution program is less than a threshold
fraction of a size of the audio component, generating a first losslessly reduced representation of
the audio component, wherein the first losslessly reduced representation includes a reference to
each prime data element in the second set of prime data elements and a description of the
reconstitution program; and
in response to determining that the sum of (i) the sizes of the references to the second set
of prime data elements and (ii) the size of the description of the reconstitution program is greater
than or equal to the threshold fraction of the size of the audio component,
adding the audio component as a new prime data element in the data structure, and
generating a second losslessly reduced representation of the audio component,
wherein the second losslessly reduced representation includes a reference to the new

prime data element.

6. The method of claim 5, wherein the description of the reconstitution program
specifies a sequence of transformations which, when applied to the second set of prime data

elements, results in the audio component.

7. A method for performing lossless data reduction, comprising:
initializing a data structure that is stored in a first memory device and that is configured to
organize prime data elements based on their contents;
factorizing input data into a sequence of candidate elements; and
for each candidate element,
identifying a set of prime data elements by using the candidate element to perform

a content-associative lookup on the data structure,

10

15

20

25

30

WO 2018/200862 5 PCT/US2018/029636

losslessly reducing the candidate element by using the set of prime data elements,
wherein the candidate element is added to the data structure as a new prime data element
if the candidate element is not sufficiently reduced in size,

storing the losslessly reduced candidate element in a second memory device, and

upon detecting that a size of one or more components of the data structure is
greater than a threshold, (1) moving one or more components of the data structure to the
second memory device, and (2) initializing the one or more components of the data

structure that were moved to the second memory device.

8. The method of claim 7, wherein a losslessly reduced data lot includes (1)
losslessly reduced candidate elements that were stored on the second memory device between
temporally adjacent initializations, and (2) components of the data structure that were moved to
the second memory device between the temporally adjacent initializations, wherein the method
further comprising creating a set of parcels based on losslessly reduced data lots stored on the
second memory device, wherein the set of parcels facilitates archival and movement of data from

one computer to another computer.

9. The method of claim 7, wherein losslessly reducing the candidate element by
using the set of prime data elements comprises:
in response to determining that a sum of (i) sizes of references to the set of prime data
elements and (ii) a size of a description of a reconstitution program is less than a threshold
fraction of a size of the candidate element, generating a first losslessly reduced representation of
the candidate element, wherein the first losslessly reduced representation includes a reference to
each prime data element in the set of prime data elements and a description of the reconstitution
program; and
in response to determining that the sum of (i) the sizes of the references to the set of prime
data elements and (ii) the size of the description of the reconstitution program is greater than or
equal to the threshold fraction of the size of the candidate element,
adding the candidate element as a new prime data element in the data structure,
and
generating a second losslessly reduced representation of the candidate element,
wherein the second losslessly reduced representation includes a reference to the new

prime data element.

10

15

20

25

30

WO 2018/200862 96 PCT/US2018/029636

10. The method of claim 9, wherein the description of the reconstitution program
specifies a sequence of transformations which, when applied to the set of prime data elements,

results in the candidate element.

11. A method for performing lossless data reduction, comprising:
factorizing input data into a sequence of candidate elements; and
for each candidate element,
splitting the candidate element into one or more fields;
for each field, dividing the field by a prime polynomial to obtain a
quotient-and-remainder pair,
determining a name based on one or more quotient-and-remainder pairs,
identifying a set of prime data elements by using the name to perform a content-
associative lookup on a data structure that organizes prime data elements based on
contents of their respective names, and

losslessly reducing the candidate element by using the set of prime data elements.

12. The method of claim 11, wherein losslessly reducing the candidate element by
using the set of prime data elements comprises:
in response to determining that a sum of (i) sizes of references to the set of prime data
elements and (ii) a size of a description of a reconstitution program is less than a threshold
fraction of a size of the candidate element, generating a first losslessly reduced representation of
the candidate element, wherein the first losslessly reduced representation includes a reference to
each prime data element in the set of prime data elements and a description of the reconstitution
program; and
in response to determining that the sum of (i) the sizes of the references to the set of prime
data elements and (ii) the size of the description of the reconstitution program is greater than or
equal to the threshold fraction of the size of the candidate element,
adding the candidate element as a new prime data element in the data structure,
and
generating a second losslessly reduced representation of the candidate element,
wherein the second losslessly reduced representation includes a reference to the new

prime data element.

13. The method of claim 12, wherein the description of the reconstitution program

10

15

20

25

30

WO 2018/200862 4 PCT/US2018/029636

specifies a sequence of transformations which, when applied to the set of prime data elements,

results in the candidate element.

14. A method for performing lossless data reduction, comprising:
factorizing input data into a sequence of candidate elements;
for each candidate element,

identifying a set of prime data elements by using the candidate element to perform
a content-associative lookup on a data structure that organizes prime data elements based
on their contents, and

losslessly reducing the candidate element by using the set of prime data elements;
storing losslessly reduced candidate elements in a set of distilled files; and

storing the prime data elements in a set of prime data element files.

15. The method of claim 14, wherein each losslessly reduced candidate element
specifies, for each prime data element that was used to reduce the candidate element, a prime data
element file that contains the prime data element and an offset where the prime data element can

be found in the prime data element file.

16. The method of claim 14, wherein each distilled file stores a list of prime data
element files that contain prime data elements that were used to losslessly reduce candidate

elements that are stored in the distilled file.

17. The method of claim 14, wherein losslessly reducing the candidate element by
using the set of prime data elements comprises:

in response to determining that a sum of (i) sizes of references to the set of prime data
elements and (i1) a size of a description of a reconstitution program is less than a threshold
fraction of a size of the candidate element, generating a first losslessly reduced representation of
the candidate element, wherein the first losslessly reduced representation includes a reference to
each prime data element in the set of prime data elements and a description of the reconstitution
program; and

in response to determining that the sum of (i) the sizes of the references to the set of prime
data elements and (ii) the size of the description of the reconstitution program is greater than or
equal to the threshold fraction of the size of the candidate element,

adding the candidate element as a new prime data element in the data structure,

WO 2018/200862 78 PCT/US2018/029636

and
generating a second losslessly reduced representation of the candidate element,
wherein the second losslessly reduced representation includes a reference to the new

prime data element.

18. The method of claim 17, wherein the description of the reconstitution program
specifies a sequence of transformations which, when applied to the second set of prime data

elements, results in the candidate element.

82

PCT/US2018/029636

WO 2018/200862

BB €je Slllid = 30d

~

M30d o 0 0
SAREALSQ ~20UBIRJSY SUllid m>_wm>mmall/Jmuc2&mm
SN b A
IJ TwelBoi4 T ueRNISU0NoY i W e 1S Y —ouwind
+ 50 01 20U0InI0H i Eﬁmmg_u UOHINSU008Y
A/' ﬂ/{/ + Tm.:.a aw BOUBIBYTY + 1 304 0} 80UaIsjaY
3Gd ¢ 49 ;
e F Y P M‘
ey HNAING el pessLiay eled Lalilsid g Y8l
smeseddy uononpey Bleq Jo snigieddy , UOHBHNSICT B1BC
~ Bled] * \
oLl SINUISUGOS —— p P (8r2iq 01 sajERdn ¥ SUCHE]|ZISUL .
peiniy & YR & Freis € Bl 01 S78pdn ~\ syusuodwiog
- wii Gl gl peonpsy
(uesBoud uognpisucoey selnosxs) (SHBLLIBIT I8 QWL POABLIGY) OALIS(] & IUBLIBIT S1BDIDURD
JOINISUCTaY Jaalag
\\ A & ﬁ\
Zil < £01 oLl
= Jeddepy Pl
{ 30d SAIBIDOSSY VONEALISD 10} BIg8Nns
e SIDWBIY BlE(] Olilld POASLISY
JUBIUCH
A I
GGl Jusuwisg s1Bpipued
3 SJUBLUSIE REPIPUBD SOJBALD)
{esfioud uonnEISUNI3 Y pue 2 500d J@ZUoIoe 4
SUSWIBID Bl Slilid S8UDIE)) i n. :
JBAslliey b 30d e L2 ® //.
Py rs _\ J8sied ¥01
o a0l 24019 BB allilld 10 2A3IG Bl sllilld X
F3Gd sum "
. S m>;m>tm.&ﬁ//~wi.iﬂa 01 80uBIgIeY €0l
0} DOUBIBIIY
f/m f CwiRifiosd uonmusuaosy i ufd SUildd
i iy = N pitas;
+
{30 01 80UBISIBN
rae
sjssnbay |pASLISY mmM gleq indu zoi

Vi 'Oid

2182

PCT/US2018/029636

WO 2018/200862

BB €je Slllid = 30d

SABALIBCG ..//

% Edd 0
SoUBISIEN A

N

=119

BAREALIBE

RN

AR
L\

WiBIB0Id UOHMBSU000H

0} 80UsIBISY
+ 7304 0) 80uUsI8IaN
+ 1 30 0] 50URIBI0N

2
| iie1D0id Udd0M Sllld

Wiifioid U008y [BIIBWIBINU]
+ 304 01 8ouzIOEy

01 90URIBIAY +

i
&8 \\q 28 N
mﬁ INdinG eleq pessiiay el pallNsSd en VELL
snigteddy uononpey Bie(Jo snigieddy , uouelnSK] 218
PLile
gLl peInisucoey WEad b & (BnoiS o1 soiendn 3 U0 SsUNdWos
. £°3A01% BYE(] BUMd © fzvgam r “\\ B1EC] POONpOY
Vil
{wesBoud uonnsuoIey senosxs) A (SJUBLUGIT BIBQ) SUI PONSIM) BMIO(& JUDUIBIT BIRDIpURD
JOINYISUCDaY FETAIE Ty
~ 2 & ~
zil % Lot oL
Jeddepy P
30d o~ ooeee
SAIBIDOSSY UOHEALISD 40} DIGENNS
S SIUDWSIT BIB] SWild POAIUISY
WIBIUOD
* e
GG Jusuis|g |mpipuey
- . 3 S)USILolE S1epIpURD 531880}
{ z.._maég gczéﬁ:.cuwm pue 27304 J@ZUoIoe 4
SWSLISIT B8 SUllid S3UNGE) bt 1.
JOASINSNM {30d b o ®? AN
~ ry - JBSied ¥01
W gnlf OIS BIE(] SUl IO 8ABIS BIB(] Sl Y
~
3 A0d
« S aaneALag] 300 EYTETETE eGl
0} 33UIBy m&f, f IIIJ wr
IJ /J iesBosd u0deM qE_i Suitid .J J
et
O} SOUSISISY
wivdbioid Uo3ay EE&E&QE /«//
+ 7304 01 20UBIRISY
gieq] induy -

s1senbey [eAsiiey \. 6

gl "Old

N
<o
-

(1 0} B0USIDJE N

3/82

e’

WO 2018/200862

WiesBold UONNIISUOI0N Sl = dMd

WiSUAR[T BIBG SUllid = T

SABALIBCG ..//

% Edd 0
SoUBISIEN

BANBALISE

PCT/US2018/029636
/“"‘

e I ACd 01 souBBiey
O6LL f
L

J J U eltld 0] 3502434) o . i e
TN 03 a0UBIRION +
J + M aad oy souels mx EE@E& U008 [BIUSRIOU)
/{/f +1730d 01 30ueIsiey + 730 0} s0UBIRI0N
i
3 \k 3 W
mﬂ IndinG eleq pessiiay Bied psiiisid sou YELL
smpteddy uononpey ele Jo smeleddy ,, uoelsk] BB
1 Eleg
U o {an8i3 0} SHBPON B SUOIB|EISLY
9tk Ipainisucoay i Jedde ey syusuoduog
Y £ BABIS BIBC St 0 SBlepdn A ciec paones
BABIOOSSY vl gL | FPQpeonped
{weiBosd uonnIsLoIEY SOIN0EX3) < didd & JUBUOD (Sjieliang B1a(] alilid PeABLISM JorIO(T € 88T alempuen
JOINISUOOSY el . Jsaued
~ 4 zZ1 S 7
Zil \wﬁ oLi
N=Ta I UCHEALISD IO} DIGERNS
SWSUABIT BIEC Sl POASINEH
N Jaddepy < p
= SARBID0OSSY qG1t Wisuie|3 syepipue)
v BIUOD
e A SJUALLS|S 2IEPIPUET S81BRUD)
(wiesB04d vQIMIISUQDSY PUR 77304 IBTUOI0E 4
SHBUISET 8180 Sllid SOUDIE) feaaannndit .)
FEYEINEN: PO g T k3 AN
b — A Jesi8d »01
o g0l 2101S BlEQ Slllld JO 8ABIS BIE(] Slild 7y
30 Bl aaneaLad S0l 0} S0UBIISY mMM
03 ogcﬁ&mmf/ f 'I/J wr e
S
/J M 01 30URIDIAY + el
wieBoid U008y [BIIBLISIDU|
+730d 0} souaissey ///r
gieq] induy -

s1senbey [eAsiiey \. 6

o] IE

N
<o
-

4/82

PCT/US2018/029636

WO 2018/200862

BB €je Slllid = 30d

~

(/“’

sApEALSQ =Te]

Blie]

Y

weiBoig UnINKISU0ISY i §
+ 730 0} BoUIRISH

+1730d 0} SoUIBEY

m>_wm>tmaj _sm_mn_
) !

LedBold UORNISUGORY
+ 1 JCet 0} 8OURIBIAN

W\

pinn B

E

i)
T Ninding e1e0 persLae ~1 l oe
oy PNGINQG ElR(] PoAsUlay eleq polinsia go1 vgi 0%t
smeseddy uononpey Bleq Jo snigieddy , UOHBHNSICT B1BC
~ B1BC) * .
oLl SINUISUGDS — o] P (8A2Q 0} sajepdn W sucHB|ZISU) .
penig 2 va0d N eousmey aeis T B o1 SewEan p sWsuodwon
I S— il peInps
vil ¢y | EIBC PAONDPSY
(uesBoud uognpisucoey selnosxs) I p (SHBLLIBIT I8 QWL POABLIGY) OALIS(] & IUBLIBIT S1BDIDURD
JOINHISUCDEY BETNIE-Tg
3 ¥ T30) 20USIRISH Yy =
T304 0] sousiaioy L84 gLl
seddepy Pl
» S ?..........i? YR SANEIO0SSY BONEALISD 10} BIGEINS
n\w) A SWOLIB|T BB Ollild POASLNS M
HEE i olg!
Let R -
P
B B GGL WowslZ siepipue)
e
3 SIUDLLIS|S R)EPIDUBRD SO1BRUD)
{esfioud uonnEISUNI3 Y pue P I— J@ZUoIoe 4
SISUIB|T BIEQ BUllie] SBYDIB)) [immmnommnnenonB 7 T (Jed O 50UBIBIAN :.fl ‘
JBABIEY I vy e b ¥ //
: _\ 17Ed 0% 90UBI3)eY v JssiEd 501
5 % %01 SASIS BB Sl x ‘
S \\
Mg, SWid mgﬁém.j { =G tots]]
IR \ s
L {TwiEsB0d] UsHNINSUoTaY \ 3] ,\mmbLn
+
TS0 01 30URIBle Y .
\.\
sjssnbay |pASLISY mmM gleq indu zoi

ai 'oid

5/82

PCT/US2018/029636

WO 2018/200862

BB €je Slllid = 30d

=Ta]
37

el oy

SANBALISE
NS

BAREALIBE

FAX

X

)

| uieibolg u0say oWild
0} 20U + i

“wiesBoid U0 sllilid

3

+ 30 01 83ualsoy

+ 30 0 50UBIRJe N

/: ﬁc/mm‘_mo.i UODBY |BUSRIOU)

i
\.\ Yy \k & N [4
& Pnding eeq pereiiey eleq peiisig g0l vey, OF
snigteddy uononpey Bie(Jo snigieddy , uouelnSK] 218
~ 2ed
9kl § peinysucoey WIad X Feuee | S) SR B 0 SBULAWOD
T A namg Bl Sullg 01 S8IBpdn e . PN
P i gy if § BIEQ PSONpaY
Fil
{wesbod UOBNRISUOOSY SeINDSXS) i e (SIUBLUGIT I8} B POASLISH) OALIS(& IUBUIB|TY S1BDIDURD
JOINIISUODaY ; dsAals(d
pd y ¥ T30) 20USIRISH r'y P
Zil \\\\ ™30 0] 8oUsi8100 saddepy a@g oL
" o~ | 30d om ESIERETE | SAIBIDOSSY uoRBALIBD IO} BiQEIINS
cm,.w\w PP DA STIBWIBIT BIR(] QWilld POASLSY
UBIUCD
394 oo o
* I
e G014 OWIB|g sepipueD
rrrrrnreeenccond v r
3 SIUBLLG|S QIEDIDURD SYIEBI0)
{tiesBoud uonnISUNIsy pue % JezZuoPEed
SIUSLIBIT BIE(] SUllie] SBYUDIE)) et 7 J(Jf O} H0UBIBIR Y 1. : -
gy B oen i
Jansiliey P L THC OF B0UIBIM Lot i8siBd JW@
:.M\ 4+ o0t SABIT BIB(] Slulid B
B ~
{"53ad, Build aE?%oﬂlJ {304 £0l
X A,
iJ ‘J % T Uil .J J
— . — — Ol
Tweiboid uoo3y otilid
/If.v + {50 0) 90UBIOIRY /:f/
AR eyeq Indul -
wwmmjvmm jeAoliloy 601 201

A1 "Oid

6/82

oo 30d suny BAREALB(\ uo d
m M D....// Mf/
X J : \ ==
& W ¥l 0] 3834083 W e
%J /M + wibiBoid uosay _mxcaE&cc_ +
= //»/ /{ + 3004 01 3ousiaey TSI 0} S0UBI8I0 N
P4 i
2 : 7 7
W mﬂ IndinG eleq pessiiay Bied psiiisid sou YELL
M smpteddy uononpey ele Jo smeleddy ,, uoelsk] BB
1 Eleg
1N} SINSUGDS _ [T — {3A21S 0F 5918PON § SUQIB|EISLY
patng b~ Wi el 0} S0UBIDJEN jadde & - : SWBUOAWOD
Y £7SNAIR BIBE Bt 0 sajepdn A 21201 DEoNDs
BABIOOSSY vl gL | FPQpeonped
GugaBosd vognsUoTEY $9IN0SN3) e %M.\wmmwmmwm.a JUBUOD (Sjieliang B1a(] alilid PeABLISM JorIO(T € 88T alempuen
JOINMIBUODSY ~ A\ Jaaueg
=7 y L il O) 80USI810 57 - x —
Zil \wﬁ oLi
=Te? %wmm% LOIBALISD 40} BIGBUNS
& SUSUIR|T BIEQ SUlie DOASLISH
T304 €) 8ouai3loy Jaddep < ~
304 Ty SARBID0OSSY GOl Wisuie|3 syepipue)
+ IS olg)
B B SIUDLUS|S 2)EDIPURD STIRAID)
(wiesboid LonmRSU00aK pue N Armmmmmmmmmmood JBZUOINE A
SHBWIS|T 818 Silid SOUDIBY) feedl 770 O S0UBIBEEN .) 9
iBABIEY Emempn bZi N\
5 p p { Iad 0] Jesied 701
A 4 a0l aASIS BB ollilid '
P
M30d, ewg aE?%mﬁl/_ 3 £0l
3 SN o
% ./M / Ty RN Sl // /M
S WM ey
g +
w ﬁ/ S0 01 SoURIBIRY
S
a g indu -
= sisenbey [BAsIaY \. -~ {J Gy 201

WiesBold UONNIISUOI0N Sl = dMd
WiSUAR[T BIBG SUllid = T

41 "Did

7182

WiesBold UONNIISUOI0N Sl = dMd
WiSUAR[T BIBG SUllid = T

§3d

BAREALIBE

.‘mqﬁ

0} B3USI0IG N

—
iy

N

BARBALIRQ ..//
ax

J el 0] 30Ua4B4a)
+ wikiBoud voney [EuswBIBY|
+ %304 01 33UBIBIeH

N
N
3004 0} sauiai0y

f/’f
/“"‘

PCT/US2018/029636

WO 2018/200862

\\q -y

i
{
i

-y
<L IndinG eleq pessiiay el pallNsSd en .
smpteddy uononpey ele Jo smeleddy ,, uoelsk] BB
A Beg
_ Arrnnnnnnnsnannnnnd {(3A813 0} SPIBPON B SUOB|iRISUY)
L 1 painisucoey W el 0} GOUBIIAY Jeddepy e e e swauodwo)
£ BABIS BIBC St 0 SBlepdn P P12 POONDAY
{clid T!....l SANBIDOSSY il gLy §UrM e
(weifosd vognpISUOTEY SINOSXa) 7 %M.M.u..c.mu..m.wm.m....ﬁ. IUSUOT (Sjuelislg a1 elillid PEABLIOH JINIS(& JUSILSIT sleppuaD)
JOINMHISUODONM 3 . Jsauag
~7 y L eddd &) AousIelo Y =7 - T =
zZil 401 oLl
Pl
[t=Ta] om SOUDITIDY LBORBEALISD 10} BigElns
- SWUSUIR|T BIBC SUlild PeAsUIeY
Emmamm ¥ 13 818 WHd pPeAsied
WECd O 80U2I3}eY Jadde < ~
Mg e SARBID0OSSY GOl Jusuis|3 s)epipued
i i SN0
304 % SIUAUSIS 2)8DIDUBS SS18aI0)
(wiesB04d vQIMIISUQDSY PUR e IBTUOI0E 4
SUBISIT BI8Q Sitid SOUN)S)) lemmnndll 77T (0 O] B0UBIBIAN 1. ;
IBABIONM I prvierremicest Vg ¥ J/
o A 1 TECd OF 80uRisioy b J8sied voL
o T a0t aAIg Ble(dUilid 5
i ~
¥T30d . slilid mw>zm>_§mnl/_ 0 0} 80U} £olL
o4 \
[} _ kY 3 SUA
T ddd omons”
a/r/ 7304 01 90usIBLaH ///r
gieq] induy -

s1senbey [eAsiiey \. 6

0l

21 'Ol

N
<o
-

8/82

PCT/US2018/029636

WO 2018/200862

la7 4oy gy |

90 521 gy

{59149 £7 wieiB04d UORNINSUCOSY [s31A] 7 1a71s qy 591AG § 193UaIA)9Y 04| SIIA] 7 197is 304 {(53149 9)

5 Hm

{Sa1Ag £1) aUljUl 4y 'UCIINHISUCIDL JUSUIS|T 2{8UIS UlIM SAIIBALISQ 17 SjduwiExy

I [saha 9) s : jou]s23Aq 7 os Juswops |

5 30d }{591Aq 9) 5 19215 92UBIBIRY {59)
wﬁmgwmw 2ieq atldidd 10 3180

wiesBoid uonnmsuoosay {ds) weiboid

Y/ Old 898G Ao euun weiB04 UORNNISUOSaY J0-4 BBLEA UCININSUOD9Y

wieiboid UOHNNISUN08Y O] 80UBISj0Y SR DETEIEY

Ao 8aslS WieB0ld UORNISU0O8Y 0 BASIS {(szis wieiboid

aousiaal Weiboid USIINHISUDoaY BIE] Sl U Wbl UORMISU09Y 404 | eounisjay) UDHNISUODaY

SAOUPY = G869 T BIAG = (|- 9IS} SB peponul (¥ uieifioid UORNHISUODSY BU} JO 8713 saq z 3215 dy

Siuslisid BlR(] Stllld Bhxs Aug pue {azis {S)asusiaial

80USIS)e) JUBIRIT US| B1B(] SWild JNBIaD 10 SeouUsIRiey | aousieiey) 34d

SOAGUPS = G266 T BIAG =0 (L~ 9TIS) SB peponul (30 wews(3 Ble slild 24} JO 8718 saqz (s}ezig A0
{dx) Wweibold UOINHISUDD Y 10 US|y

S0l 9=/ " 'seifg 7=l ‘1kg =0 {}-9ZiS) SB papooul BIB(] 2ld 0] S8lAQ Ul 80Usiaial |0 9ZIQ SHG £ SZIS BUUBIBION

SIUSLUS|T RIB(] Sl BIIXe JO JBUUNN o0

SIISLUSIS p=C " SWSE L=0 (L-IUN0T) SB Peponuy AJUO UOENJISUCS8Y (0 Sidiyiniy 4104 SUG 7 J0d BIpg

(ndut jpuiliuc oyl Ul JUBSWSIT 84 JO 07IS)
SOUIMPY = §E650 ‘818G L=0 (1~ 9Zis) sk papooul uolusid ayl jo 9zig selq 7 azis Juswisig

WBWBLD BB SWid = 30d 'WEB0ld UOINHISUCOS: SWid = dMd 8I0N
(e1eq PaINSIC SU Ul sulU] UBWa|F Ble(BWilid !

(9ABIS diid Ul did) UDTINHISUCO) T0d SIdNINIY YIM BAlEALSQ |

{8A8IS BIB(] Alilid Ul dfiid) UORNUISUCIS! 3Cd AN Yim saieauad
(e1BQI POINSIC AU U SUIUI M) UOINIISUOSS! JC0d SI0IINM UiM SAEALIDQ
(87818 didd Ul ddd) uonniisuonal 30d 81Bulg Yim saleALaQ !

{9ABIS BIE(] S Ul dXd) UONNLISUDI) Il 81BUIS YIM sARBALSE
{180 PSHISIC 2UL U SUNLE J¥) LOINIISUCOS) 304 siBuig ulm saleAusg !
BABIS BIEC] Sl Ul UAWSID 8180 SWikid ¢

S v N0 WO

HIBWaE paiisI Jo adA L sajenipul SligG ¢ adA} uswel3

Bjeq PSIisiQ 8L Ul JUSWS|T U JO JBWIO J0j UOREDYOSdS Bidwes © Hi "Did

9/82

PCT/US2018/029636

WO 2018/200862

SABIS BIR() BUllld Bje(l payusiQ
U 304
» J W weibold Hoosy 7 wesboid Bosey e L wiziboid uosey ey
BMMMMMAW/M< /ff 4304 03 0% . \“3aq o sen|] O TR o:mm o3 s |
- 30d e JHIRIUOD) ug = y3 €3 z3 L3
1 30d i
JBULIO - Pasnpay AjSS9|SS0T OJUl UONBULIOISURE |
D
/M//M%méma sAlBALIB(BAlJEALIS(Sl aAlBALIBQ Stlildd
U i~ 1= £ &4 =
SIUSWIS|T SAlBALIS(] B SIUBSWB]Y BlB(] Sl OJUI UCHE|HISIO
///H///Emgmmm wswisy riswiag sws|y wswisig Ussig sws|y
U4 i & 9= = i

S UETE ﬁmm%mm% O3Ul UOBZIIOI0E.

i

AN

el nduy

10/82

PCT/US2018/029636

WO 2018/200862

Sjuslis|y eleg slilidg ejeq polnsig
U"30d UT30d 0149y e ~ - e
ﬂ J W WRinoid PMQQ@M.W o A Emﬁ@ﬁh& w\nQuﬁm N!mﬁﬁm L WRIDQAd Cﬁﬂwm Winmﬂﬂﬂm 4
o /ff UHGA 01 J0% Vaad orgeui | oY PTaag oigey] | oM
Z2730d e - o e = 4 € ¢4 b
. 27304 o8y
L 30d @ |30 010y
V]
JeWio] pasnpay A|SSa|SS0T] OJUl UCHBWLIOSURS |
V]
/M//M%méma SMIBALIB(SABALD(] Slilig SAEALS(] BUllid
U i = = 24 =
SIUBLIS|Y SAIJBALIS(B SIUSWS|T BIB(] SWl4 OJUI UCHENISIO
///H///Emgmmm uswsg Wswe|g JUBWe|g uawslg UsWsg JUBWe|g
ug = ¥4 o3 = =

S UETE ﬁmm%mm% O3Ul UOBZIIOI0E.

i

AN

el nduy

N E

11/82

PCT/US2018/029636

WO 2018/200862

ASIG BIE(] Ollilid gled psiinsig
Wodkd 4 Jaddepy
NH%HE i m\MHMmMMX J/J W gnd c:@m A) Z dud a:@m —_— L dxd a:mm oy
bddd ¥ /ff UHGA 01§03 Vaad orgeui | oY PTaag oigey] | oM
¥T3ad roddepy U4 = 1= £ ¢4 L
SARBIOOSSY
o MBI w
1 304 IBULIGCH DIaaNPay %mwm@mmw@am Ojul UCHBULIOISUBL]
V]
///M%m\éma SAIIBALIS(] aAllBALS(Q allilid sAnBALSQ Biid
U+ = P4 ¢4 ¢4 =
SiUgUia] SAllBAlIa(] B SlUslUS|y Ble(] Sullid OJUl UsHE|IsIg
///H///Emgmmm uswal WS WSl SIS S| JUSWS| SIS
U+ i< 4 £ é- L

S UETE ﬁmm%mm% O3Ul UOBZIIOI0E.

i

AN

el nduy

b IRIIE

12182

PCT/US2018/029636

WO 2018/200862

SILBLLIBIY BIB(C] BULid

eled pannsid

W Rid | W dd 01w
4 J 1/ W dnd 03 3o T Vaaonseul |
bddd g i O ok ﬂ/fﬂ/ WHdg 01 Jo o ° Vsad o:mm o1isY TS0 O3 Joy o3 s |
uT30d w a0 0140y U4 = b4 £ ¢4 L
"3ad_[¥ L T30 01 jod i
IBULIOC] DBONPSY %mwm&mwwﬁd QUi UohiBulIojsuBl]
V]
/M//M%méma SAIBALIS(SABEALS(] olilid SABALIS(Bililid
U+ = P4 ¢4 ¢4 =
SIUSUIB]S SAlIBALIS(] R SIUSUS|E Ble(aullid OlUl UChHBlISIg
///H///Emgmmm JUsSWBIg usWe|g JUsWS|g I EIICE JUsWS|g
U+ i< 4 £ é- L

S UETE ﬁmm%mm% O3Ul UOBZIIOI0E.

i

AN

el nduy

10 "9l

13182

PCT/US2018/029636

WO 2018/200862

SABIS BIE(] Pl

eled pannsid

W dsd 01 85815155 Jeddepy
- ' SABIDOSSY 7 weiboid ueosy FTwefold Ho%dy Vweiboid uosey
2 dud 0} s0Usiajay B0 J J oyeu+iagl - - ai- .- +i gl 3Gd i g _ + (A= Ta P2 I
RENERNEY EIEIE /ff YHad 0% oy VA O3 $0u RETRPIYELe
%, A % Z, &\.v.
R U %, | Pk I/
uT3Cd 01 80UBiajeY Joddepy = m\\ z \ £ & ¢ \\\ 4
#——t BAJRID0SSY & o
U3LUQo G 7 \\\\..\\\Q\....\\\\..\\Q\\\\\\\\\\\\\\\\\ \
2730 01 83 0815}5% aineo Wi
“a0q o o5 IBUIOC D3INPOY %mwmmmww@am Olul UOHBULIOISUB] |
SANBALIS(OABALIS(] SABALIS(] SUilid sAnBALSQ Biid
U i~ &= 190 &4 =
SIUSUWIB[E SAljBALIS(] B SIUSUUB]E BlB(suUllig OJUl UOHELISI(
wswalg Wsws|y uswalg B LSwsl s ws|y B
U4 i T & £4 = i+

SILUBWIBIT 8lepIpuUR”) OJUI UOIRZIIODE

el nduy

Wi "9l

14/82

PCT/US2018/029636

WO 2018/200862

~ EleQ psjnsig

A

J IJ 4 Em.umenm HO23Y zTweifold Bousy L uieafold ussey
oyd+igl--c igi- N +i iz 30 id _ TIQE A0d | o
/!_/ uTBd 0y i 30 01 o L 20d C} joy
% 7 ’ Z A
U™, [€3 =N =
i, (DI e \\\\\\ I \

JBlIO pasnpay AjSSa|SS0oT OjUl UCNEBULIOSURI]

sABALB(SAIBALIB(e areALS(] auilid aAleAleQ sllid
U = ¥ £ A =
SIUDWIBT SAllBALISC B mwﬁmﬁmmm BJB(] SWiid OJUI uonelnsia
wswe|g sy uswel|g eS|y jewey sy eS|y
U4 = ¥4 €43 = =

S UETE mwmw%m@@ O3Ul UOBZIIOI0E.

el nduy

NI ©id

15/82

PCT/US2018/029636

WO 2018/200862

SABIS BIE(] Pl

eled pannsid

W asld o1 9085TEEY Jeddepy —
P P T— SANRIDOSSY JIJ L Eﬁmo& U9y 7 44 O} 19 L weiBoid uosey
WSIUCTy oM+ g - - agi--- +i gl 3Gd i g +igiiand g
NIRRT EIEIEN /ff YO 03 5o 730 03 j0u L0 01 0
g 7) T
U004 01 80USIRIEH Jaddey vd sescf\\\smw\\\\\\\\ vd €d ¢d \S\\\\ L3
£ 30d e SAIIBID0SSY .s
2730 01 83 0315}5% oo W
Lm0 o1 035N IBUIOC D3INPOY %mwmﬁmmw@ﬁm Olul UOHBULIOISUB] |
SABALSO SAlIBALIB(SABALISQ alilig SANBALSQ Billiid
U4 i~ &= 190 ¢4 =
SIUSUWIB[E SAljBALIS(] B SIUSUUB]E BlB(suUllig OJUl UOHELISI(
uswo|3 JUsSWBIg usWe|g JUsWS|g I EIICE JUsWS|g
U4 i & £4 = i+

SILUBWIBIT 8lepIpuUR”) OJUI UOIRZIIODE

el nduy

Ol 'Oid

16/82

PCT/US2018/029636

WO 2018/200862

eled psinsig

EERIICT i

Tt

il
P

J IJ L wieiboid ucoey 2 dud 018y L uiesboid uosey
o oymM+eiqgE- - dgi-- N +i giZ 3Gd id _ TIQE A0d | o
/!_/ U A0d 01 Jay ¢ H0d o1 oy b A0d ch oy
7 Z 7
Ug ™, 1] 7 b3 £ =L A E
\\...\..\....\..\.\\\\\\\\\\\\\\\\\\\ o o, Q\\\\\\\

JBlIO pasnpay AjSSa|SS0oT OjUl UCNEBULIOSURI]

D

////M%méma

SAIBALIB(areALS(] auilid BAlBALIB(sllid
U = ¥ £ A =
SIUDWSIT SAIIRALID(] B SIUSWS|T Ble(] SWlldd 01Ul uonelnsiqa
////Emgmmm sy uswel|g eS|y jewey sy eS|y
U4 = ¥4 €43 = i

SILUBWIBIT 8lepIpuUR”) OJUI UOIRZIIODE

Y

AN

el nduy

di "Oid

17182

PCT/US2018/029636

WO 2018/200862

AL BB

JUSWSIT IR sWid BUNSIXS O} 20UDisial a0Rld -

gieprisi ayepdiy -
BleQ psjiisic

glepelews slepdn -
E1e0 POliSI W RIBoid UORNISUO0SY 908|d
ele(l paynsicl Ul {shiuowery Bie(y swid 01 [sfeousielas o0Bld -

Eiepeiowl o1epan

EI8(] PAHESI U JUSWSIT 8] Siid OF S0USISISS S0BId
SABIS BIRE QUG Ul

JUSWIBT RIR(] SUiIY M3 8B JUSLLDT SIBpIpUR: jeisy)

>

.

SIBPIPUBRD Eoﬁ...

SHA

£ PN
Aoz \a1z Loz
¥iZ ON
2z
B2UBISICT ISBBLIS YL UNM SANBALISC B4 3S00UD o
[shusuisia e1eq suilid uo Bunesado wieaboid UCHNHISU0TSY & JUSWSIT SIBDIDURD = SALBALRT -
SIUSUIIT BIEC Sl PSABIIGS JO SAIBAUS(] SB JUSWSIT sjepipues ssaidxg .
TN
ZiZ
T SIEPIDUE 0 Siesdnp
" £ SlUSWAlT e o
S8A o hue s
sah §
SUOHEALISD 10} OIGENNS |
SUBWIS|T B1e(Slitid on
807 n, ALE PUNO -
UONEALISD IO} DIGENS SISO BIEQ Sililid 40U 0 oUD (AUE JI) 9ABLI9Y o
907 ¢ WSS SleMIPUR Y 10 JUSIUGD Lo paseg
£18(] Bllilld 10 dNYOO| SAIRIDOSSY WSIUED WLUOUSH »

usuwialg siepipued
IXON SUINSUCT

SIUBWISIT OIBRIPUET O
S7U0E S PUB BIBG HOU| oY) 9SiBd

¢ "Old

18/82

PCT/US2018/029636

WO 2018/200862

208 \

BT BlB Slild

90¢
By Bleg suilid

G0E \

WSLSIT BlB(Slilig

19/82

PCT/US2018/029636

WO 2018/200862

gig
mswisly

Zie
LS

LLE
mswisly

. 4

4

P o

d Wwewiaig rleg atuld

O JUSIISIY BIB(] SWlld

............... P ORFGTES

W US| BlB(] Sy

| IHBLWSIT BRG] Slullg

.................... Nvmwww ks

0%
SDON

P UeUIS|T vIR(] SlUld

............. CHOLO T IBEL

L HaWST 218 Stilig

Ve

g¢ "Old

5¥96 = 'NENEN'N

“16Ch = 'NTUUNENANIN

20/82

PCT/US2018/029636

WO 2018/200862

Z JUSWB|T BlB(] Wiid

A
WalBy =

@ xolad jod se 5,4 97

wig & Addd L CRGHAdT A

Snarn
WBWRIA™ » 6as sod se SBIEONI0G 91

b JUBWSIT BIR(] Sl

d WSwe|g Bleq slWiig

0 JUSWIS|T BIB SWilid

xobeijad sB 5.0

gi

........ N@QGQO&@@W@
gic \\.%‘
wawe|g

[usws)D 2180 sWilid

| UBLUS B1R(] Sl

............. SPOLO T /BEL

N PEE=NENNTN

By sloisly="NN'N

gie
uolssaidxg 1enboy

ok =N TN\ j2e6izid =N IV

" z{o1log =N N

T
NN

€ "9Ol4

EHp 1 ZHn g b+ \ m
Z Z Z m%mWMPH,ZvZMZNZ.Z

2182

PCT/US2018/029636

WO 2018/200862

AR
3d

0ee
3d

L UOISUBLIC

Ope U

ace "oid

U JUSUIBIT BlB(Sllig

O JUSLLIBIT BlB(] Sl

{1usiue)g v1(] Slilld

| UOISUSUlQ

Ry

@O...VHY.%ZXZ...@Z

punaoy ou wudiabuy

%
ORISR SO

.............. g0 pooel

PR

Pee

P Sagng b
GEEL=TNTNTNN yUr

| {UBWISIT BIR(] Sllilld

B, GEE
By 3pON

20 ="N'N

g

geg AU

L UOISUBLIC

m::mmNmﬁ.m

8e

o altisiy

L sdseBuly

22182

PCT/US2018/029636

WO 2018/200862

X JUBLUa|g BlE(] oUild

.................... 5159528 b k N ~.
N PG = NINTN T
wzmm%hw LpoECe \» . 28 =°N'N
g) .
a0 ©Uosuswg | coMMhmEMQ Tpog= SN NN
D N
R A v I | h
= “, ocdd~ Ldd~
£5¢ yeg A
q0d 2 UOISUSWIC] § UOISUSUIG . aPON .
v ¥ NN
Fanatatat e £ Sy
..... GG e - Be
25¢ i
307 U JUSLIBlg BlB(] Sty Zdd~ ‘L
0 JUSUISIT BIR(Sllild
- | . . edd L
mNu hm...mmuivxz.: r,w,xznxz...wzwz ﬁﬁf
1415
[uswiolg vleg Swild HUT
7 UCISUBLUKT | UCISUBLEQ 7 N
M\ ,Wm - mmm‘”vz:zwz
............ m\?\mmmw .
o . ,
On.wm“ WI.O.WH).XZ .v+xz
=H0d

7 UOISUSLLI(]

v

L uoisuaug

Y

I

mm Y.mm..uh. ...x+_m :_m wm .. mmmmem

®!

aye jsiisz

AN

7 wiudialbuidy

I

\

L e By

3¢ "Old

23182

PCT/US2018/029636

WO 2018/200862

86TH Spou GZETETET 2 N
9T =pou BIOP Z z
LT Bpou BCyLOpTTIRqE o T
$31AQ
BPOU DHLD saneA a1Ag SuneiusIBID
0} B0UBIDIBY Buienuaieyid $0 Jequunp Qi PIUD
N
USIPIUD
0
JBQUUINN
Ul uied
A€ "Oid

24/82

PCT/US2018/029636

WO 2018/200862

< 71 9gL =pd TZPeRy5Y ¥ N
<> L 8TLy opd 43 T z
<> i 2L =pd LT T T
SBAIBALIB(waues
BB BleC iy 2 salesidng BlB(] &ld sonjea 914G s91Ag Bunenuaiayip
10} BiepRIan B0 JO NS 0} 82Uy Bunenusseii 10 Jagquinp Qi PIID
N
USIpIUO
10
JBQUUNN
3¢ "3 iU Uied

25182

PCT/US2018/029636

WO 2018/200862

< ZT 1ZL68TP= 9gf 2pd TZPoRpS5Y i N
< L 0GB LEE00 g1Ly =pd A T z
L i TEZOLTET 9/, epd LT T T
pECTRN T
BIR(] aliid Jo) SBARALIB($31AQ ULy 58140
zalzlel 3t thy D s@EoNdng | pESURoCT BIB(] SUlLi seneA 140 Bunenusisyip
IBUIO floRi¥istelg! uonebiaeN | o1sousmsiey | Bunenusisiic 10 IBgUInN CH PHUD
N
UaURHUD
O
IBqUInN
Gjuf yied
HE Oid

26182

PCT/US2018/029636

2 HRY

g0t * 530d
UCHHG +9 O} sHUT

O
S

R s

3 e,

oed,

3 JUSLSIT BIR(] QUi

[justus]y e1e0] sl

X

2

| JUBLIBIT BlB(] Sl

USeld Ul

g9 91

mmw X S3p0uU jBs)

gi 0] sHun

diN 952

84} X sepou
WGl o1 squin

NV Ul

dinc d¥ ¢t
i dgXsepou g8 X sapou
§ 05T 0) SHUIT M O U]

g %
€9 X sapou
9 O} S5UT

N Jossasoid uj

WO 2018/200862

27182

PCT/US2018/029636

WO 2018/200862

BP020ELBINEIEPEICIE0RLEATI6 LT CUOqSPPLASSEGFIOEFPIEqIOTAPESFOEETOP
I9E9PEGFAPATEEO8Z062 726 860009E6 TEPFE99T699GFP9O6LOFOEIEP17OTPREE
FO897EERCCEF99Z7ICEPCOSPTOR L PIITLYRR00SGPRETS T80T ERGAORCIL) 2908
S 0pDS 8668 [960E BOPAGIOqPOZ T EPIZE PAPATOZE PAPATEGIES L ITL TOEPBTE
FEZE0006BPPIFZF00BOL[LOZETEREES99PFBARACOCOSTLGOUGOTPRL0LTLIGLT®

€2092899TTTGR80R80PTTFTOCTILYICTErOD9659998VTIS00FPDPE6ICA00TEIPDOD
GEQS6F6 6L TOPPTELEISUREBEIEREFLILGAIODIOFI6I6CRAZEREPPEFLEFOEIED
££208PP0OT9EE00L 6829V RPPTZET00BFETLETFIIECdACTAY88668997RT66L2TI0
DTLLPTEYO0R9CTEEUTYLEIGHTASAUECEYLRLCGOBTCROPEECREFREDIN0IIDEO09E
TIZFIO8TP8RqTIEELAPFSBIOIFIUILEIETSSZ689FPPPSBLOERLZIQPOBRIEPZIZE
BLEREREDTEOBGTIE0TLOCCPOCEOPLOGTEATRU6T60TERETFGSREQDTODEODPPRIAS

FPSedTeOl U To0GeoUISO9 P PO LG 00 VOAdIEPPEEAE PRPULGUPUPELSIBESE
Qe EDQPOPIEHG I BRI BRI T CUBSIZFOPREBILGGOF LIV IO LI LB CUI0POPeUE0UT

€ERZZIOTETLECEIBTO996RLEEDEEOADODLISEH [AOEUREPEPIBEGTELHHODDUPLAS
DAVS0Z9ISBEATBEPETODAUTPRTLEGOR6 196 DE8ORZAEIZEIFETO6 [OZFRIFOCIO]
€876 7029E 128 E8FOTFOEPTOAAVSATY LL69OPORERLFEOTFEIE TFEOL IPEPEFORET

vs Old

28182

PCT/US2018/029636

WO 2018/200862

L N Vs VS N O N R e T ULV N OV

9ISCEEURRIGPOYZLUEIRRZDE0RAI TSI T I orEB2L 000

x \4._‘;
RN

regdeyEraIcd=dp

u
OC/
F

Lo
)
e
ko]
8]
o~
o
<3
(o8]
ol
<
<O
(@)
o]
=
qQ
<y
o
o]
)
O
o
@
[Ep]

FAPAT6Rr282062k=6R0000dE0 T8 vammﬂmo

5968 GTLGLSAAPOI0FT6ISCRAZCREPY VL OR0SILD

§P000ELPI0ESEPRICIG0PL6ATOBLBoaD
(AL ER A A FAASI N
RIS TIRCPTeqUOeUIy LLea020FRE8LIERZT payjo\uﬁWWWWQWMQ

QBAIQODTIUESZEYIR9ET 28

JASI=dge
DZTePIZLPAPAqe ZE PAPAARSILEL00LTOPRRTE 7260206 8PPIITFC0EDLTLPTCTCCEE o8P S e
BG1PI9L3LEYSAI0PIPEAREATEBRCTITETLECEIRYD9622562E£3TD
FLeE@000readsdpgigoizscapagpPgTor 4

TYRZPeE8T0R9TREPSESE
79977ICCPSORPTGRLPIFTLYSP0UGSPPETST30FPPSUSREIC0LTI0RZ0aTPeT32630 6 DEEDY
9LERGEPPTERSGTFE0TLPEEPOEA9P
OPPPIASITGEITEOZTAUTETOPGEeFAIS00 T T P6RE600Y
Mw&m GTL599g8D
TPRLOLZLO6LFSTER092899TTTSREOC30RTIFTOZTLYACTErOP6G9983FT3G00T T DE2E8095
o 9P ePTZETO0RPETLEFPTPRCARTANE2668997®
S YOE9ETEEAZOLETS Y PIGEAEGE0 P LIOBZCHIPESE ESEeRa T TIPRDTRE
TTZIToRTe8RqTZELUSYSREI00FOU0LGOCTSSTZ680TPV oL @Re, 700y neBREpodee

LOBTEUTRO6TE0PRRETYSGREC

paaubriubry BEEN Jo ss3Ag HuTpesT Y3lTm eBlep JULWSTS

k h

JUusueTs

845 Oid

29/82

PCT/US2018/029636

WO 2018/200862

CATAVF6TUCTRYATSIRPL0TSE6606B00POFECA0IERZ26000F T2 T T oeEPeL000F

PPLA8GeSIOETY
9EqUOTAYBEF06 22 TLIPRSI AP 2082062 7O6 26000 AEETEDF 890 169961 906 TEFTEHER
£FPO0O5EAS6I6T6LTOPSTELESB0RE8E96RGT LILETIPD90716169RATEREPPE L OFOETED
8P000eTBT0CoePeISI60PL6AFIELFEaD
ZA63Z2aAPTTOBTIT
829300 TPUESZEFPS9EPZePeTSTISCPTAAU0SAANLLE9OP0REEIEoCICIBTIROLOPEPE BRI
§A5I39®
OZTEEIZE FAPAAT L FAPAUARGIEGLOULTOPPE 67 FTE0006FPPIIZF009LTLOCZ TP P EEBDIPAE
19 LEPCAIOPOLadgedicresiilTal/eceiepoocarygaaceadp
£87EE69020APLAS 0P 0253 79E 67 9EPETIFAAZPT L5507 6 TEEPEEDE
TPoEPe68PO29TREPEE6
PO9CTICERGTOPISELPIITLYBP0USSPPE TS TROTEPSI9REIc0LEoT0arre1res38TBBPEEDE

o

<

LLE ®m®o4uovmewychh0mmﬁumm®ﬁ :
LOGTAATPO6TA0FRRZTRGGRE00PORSOPPPZISTIFGEITERZTAUP6TOT023p IGO0 VPEFLE03F ¢ ¥

ZRELOLILAGLYPSTES(9EEITTIIGREED® CILYASTEROPO SOS P yPEFEETEY ¢ 3

CERDEPPICTICEDOLE8COPeRIZEI00BFETLERPIFREAIP TR 886682078 :
Teye 166079 LZICFTACET6GR0LRLGD87G8PP665R0A RS 0TIPEO00E ¢ 4
TIZITP8To8dTIZCLURPaRI0OPOUDLGoCTCG7600IDT PR RLPRRLZO0YDSEDEEZEEE ¢

[p DUCDSE pue FEITS ULTM Blep 1UBWSTS 4 JUcWsTs

o

IO SUOTSU:

=8 Oid

30/82

PCT/US2018/029636

WO 2018/200862

BB €je Slllid = 30d

MEad o 304 0
SAREALSQ ~20UBIRJSY SUllid m>_wm>mmall/woc2&mm
SoA \.
IJ Twesboi4 T UoMISU0%9 Y i W e A N e mETErS
+ M0l 01 S0UsIa19Y H Em:m_m;_& UOHMASUCoaY
w/{/ + Tm.\i aw ELITERETEN] + 1 30 0 SoUBISIEY
30d ¢ 19} ;
~ & g N
& mang BB peAsLiey eleq pelinsid o, V611
smeseddy uononpsy B Jo smeleddy , uonelsK] BeQg
~1Eied Jaddel SAITRID0OSSY JUSIUGD) _
Lt PSINHISUCDEN . <& 3 (anreig o) S912paN B SUCHEBHEISUD wwcwﬂOQEOU
h .\ DABIS BIE(] BUll 0} saiepdn \k 21EC] paONpsY
///// b1l §it
Gweiboid BORNEISUNISY $SIN0eXa) (SHUBLISIT RIRCT BUHIA DOABLIRYN] dAIS(T & TUBWR|T o1epipueD
JONISUOO8Y » JsAlad
7~ & " o ‘0l & P
Zil N i..ﬁw.ﬂ/‘u.« _‘V gL
aad UGHBALSD 40 SIGBINS
& I SJUBILGIT 18 (] Sililld PaABLIaY
y 7
& SOl usweg syepipueD
¥ - -
SIUDUIB|S SJERIDUET Sa)aI0)
(uiesBo.Id LOIMNSU00aY puEe 304 iBzuoE 4
SUAWBIT BIR SWilic] SOUDIBY) jafrmmmmmmmmmiph . n. ’
JBABLIIS Y VA0 e a2y 1z by Jf
P Y \ iasigd 501
Lt 201 QOIS BB slllld JO SASIG Bl sllilld VY
— g
o 8:\@: M.Mm f/m?_mn_ mémémﬁjwiﬂmﬁm 01 80UBIBeY 201
PV Ceibold uonninsucoax it {0 % SUild
& - H i - - b
+
1730 0] 33424850
< 4
sjganbey BASUISYH &5y g1eq indu 701

v9 'Oid

31/82

PCT/US2018/029636

WO 2018/200862

/,_m/'

BB €je Slllid = 30d

SABALIBCG ..//

% Edd 0
SoUBISIEN

BAREBALIA(]

o
d6ll

(1 0} B0USIDJE N

5

AR
L\

WiBIB0Id UOHMBSU000H

0} 80UsIBISY
+ 7304 0) 80uUsI8IaN
+ 1 30 0] 50URIBI0N

£ elboid Udd9M Sllild
01 SOUDISIRY +

Wizfioid U008y [BIIBLIBIDU|
+ 300 0} soUBssisd

ehl

nding e1e(] persLEY

Bied psiiisid sou vy
snigteddy uononpey Bie(Jo snigieddy , uouelnSK] 218

\\q &

\:--....\m

~ 2ed jaddely SARBIOSSY JUSIUGD
gLl peInisucoey Wand 1Y » (BnoiS o1 soiendn 3 Suo SUsLOdWOS
. £°3A01% BYE(] BUMd © {HEED -~ B1EC] POONpOY
/ ¥il gli
{wesBoud uonnsuoIey senosxs) A (SJUBLUGIT BIBQ) SUI PONSIM) BMIO(& JUDUIBIT BIRDIpURD
JOINIISUODON FETAIE Ty
~ 4 B , & ~
zil . MS oL
3ad UOREALISD U0} 2iG8INS
= I STIBWIBIT BIR(] QWilld POASLSY
* e
GG Jusuis|g |mpipuey
3 SUBLS|E BlBpIpURD SO184D)
{esfioud uonnEISUNI3 Y pue 27304 J@ZUoIoe 4
SWOUIB[S B1EQ SUilid SBUDISS) b - ne. ’
SETEIHEN L"30d e 8ai) kD ® AN
pey rs -~ JRSIBd ¥0i
" g0’ 2I0IS BIB(] SUllld IO 8ASIS BIB(] Sl Y
e
3 A0d
« S aaneALag] 300 EYTETETE eGl
e CIEN m&f, f II/J wr
TwiesBold U0y qE_i Suitig JJ J
x l\\.l!‘l
/J 0} aOUBIBIeY 1
widfioid Uo0oy _meE&oc_ f/l /r
+ 304 01 aousIBioy
gieq] induy -

s1senbey [eAsiiey \. 6

g9 "Old

N
<o
-

32182

—

WO 2018/200862

WiesBold UONNIISUOI0N Sl = dMd

WiSUAR[T BIBG SUllid = T

% Edd 0
on a\,%%uﬁ%mf mmiom L aw.\,_ﬁg_zmi//m;m ¢
L) %&.)

PCT/US2018/029636

)

" clld 0 8ouRis;
+ 17304 01 33uai8

//./f + 7E0 0) 32uBI850H

mx

el 01 20UDIRI0N +
EmBE& U008 [BIUSRIOU)
+ 73004 0} s0USIRI0Y

¢hl

Inding e persiay

\\q -y

Bied psiiisid sou vy
smpteddy uononpey ele Jo smeleddy ,, uoelsk] BB

i
{
i

(1 0} B0USIDJE N

Joddepy m>am_uom.m< TE T]e)

21 W\ m.wmwmu Uit {an8i3 0} SHBPON B SUOIB|EISLY
DOINHISUCDaN & : : , ssuodwiod
£ BABIS BIBC St 0 SBlepdn ~
- o a1f 1 B180 peonpay
¢ did 4 ¥
GugaBosd vognsUoTEY $9IN0SN3) - (Sjielialg Bla(elilid PoABLISM JOAISE € W8Us|T aleppues
JOINMISUODEY b dud e Jaauad

L ;
‘ » 404 T "
Zil o P, 0L

» UCHEALIBD 10} 28NS
SUUSUIRT BB SUIL DOASLISYH
« 7
0L wsuie|Z sepipueD
A 4 pros SIUALUS|S 2)1BPIDUED ST)BAID)
{wighoId LONMIISUONaY puR ¢ 30d % JBZUOPE Y
SHUBWIGE B1RQ SUlli- SOUOISY) fefmmmmmmmmntl 1 = /.H.N. ; 0
JBABLISY Ja0dey SANEID0SSY WBILGT ’ J/
b - A Jesi8d »01
Lit a0l 201 BIE(] SUlld 10 3ABIG BlE(] Sllilld Z
3ad LUt aaneapad F(ld 01 80UsIBIsY mMM
03 ogcﬁ&mmf/ f 'I/J wr e
SWitid
/J ¥ 01 30UBISIaY + e
wiedold U008y [BIUSLLSIOU]
+ 7304 03 soualsiay ffl /
gieq] induy -

s1senbey [eAsiiey \. 6

39 'Oid

N
<o
-

PCT/US2018/029636

33/82

WO 2018/200862

SHG Z sjpuey

JSaT BiRG Slilid=00d (SION

SHG ¥2 EBTEYIEY

Ska 6 Libus;

SHG § 18540

SHg ¢ uoneisdo Jo aposdo

paAIssE) PoAaSa -G PoAaSa

(i synnaxa uay} pur ‘weiboid UOINISUODaY
MU BALISE 01 MopUlM JUanbasgns w susieliado Ajdde
wieiboid '552JpDE poloads Wil welbBoud UCINUISUOISY UnIsL)
MOPUIAA ‘ielBold UOHNIISUCDSY Slllid 0] 30Ua18i8Y UOINYISLODa) ¥ wieifoid UOINHISUOI8Y SlUlld 81n08XT ¢ "AUDOIW ‘UD1e

(asig BB sliild 8BUIS UG BINDaXe puUB
‘5S24PPE PORINRUS WD WEIBCI UCINYISUSIaY Yy

uieificid UCHNHISUOOaM BUILd DBHED 0] 80URIBIAY 30 sibuis £ aulu] welboid UCHNNISUCISY 8llitid SINseX3 ¥ IED

YiBus) posuy) ‘1asyo (euiBuo JOSHO USSR LT ‘SIpUBY RIBWSIR Wi S0 d Sidin z (UBWIB|E ouZ B WICH BIBD HOSUY) LasY Juswsia-unw
(1usWials puZ B Woy 18P yiim soedad)

yiBuie) eneidal ‘18540 12UIDLO 1950 JUBWSIB 47 ‘SIDUBY UBWIIB LT S0 aidiymu) aoE(del UsLUBa~UNLU
Joieiedo ‘Yyibus) joteiado 'uibus) uonriado ‘1esyo (BUIBUO 'uoneledo 30 8ibuis 0 e EHITRIN

sjge] uolzeISdo UOISUSE 988 4 3pesdo UOISUSKa

onfea pusppe 'yibust pusppe ‘yibua wins esyo ipuiBuo 9 ppe
anea Jaidinw ‘Uibusi seidiinw ‘qibusy onpoud 1asyo jeuiuo G Adinug
{saiAg yibBusi) eiep pusdde ‘Libus) ¥ pusdde

{sm1Aq .WibBus)) eiep sogjdss ‘Yhus) 1asyoc ipubuo ¢ soBidel ¥ing

{3180 |) viep sovide) 18syo jpuibuo z soedad

yibus| 18syo Bu| | a19|ap

{se1Ag yiBus}) elep uasul 'Yi1Bus; Yasul 19540 B Iy} MELSH

weiboid uonnisuoosy Ag pasn suoiesado o) sBujpoous uoonisul jo aidwexy ¥/ "9l

PCT/US2018/029636

UOTRODY
sosn ey sjduiexy

\—’-.—-i

#mmwwuu

> 52340 9T 03 ¢RI PUSLPE 93A4-7 ppE>
DO0EBRRZUGFZEAVZZO6TO®TRD06LRSIOOTOG DU
;;»mm@ﬁm@m%mmgwmmomﬂmmmaompﬁm%ouﬂug WD TH

g-i

uchesydingy
sasn ey edwexg

uohele 9 wswsoridey

JoTTdTraTnw a°

E8FFFIFIVPEOZLIOBAIZPE ﬁ@
E8FFF3FIPHOIGILBAIIPRIL

CT 328130 TeRUuTbTIO e so3Ag g ArTdraTnun

(&

QmwﬂGU¢LHm%mmﬂwmmumﬁwmmmomﬁﬁ@mmvﬂvﬂ pue

ﬁom%mmﬂwmmﬁmﬁwmwuomh@@%@ﬂﬂuﬂ.é@hm

UCIESH| Sash 1o ayduliexg

34/82

{(#3ep a5

+uabust qg+assyzo ag+epondo g} 8o

(U3bu=aT UG+32SI7

3
(B3RR CQp+3®8II0 go+dpoodo gg)
s

20/ wieibiold UONNPISUeNa Y

)

2o LLPRODIRTCY

(\(\

N

C

™

FEEP~~~~~~TERLPBGGPPETO
/FEEPROCOSLIGRLPEBSGGPPE T~ v v~ GTBOPERPEQLEZSCOSE0MUY (W2 T

TBRUTOTIC 3B £83Ag [=20271dex ¥ nd>
195I3I0 TBRUTDLTIC 3B s23AQ ¢ sisT2p>
195130 TeutTbTao e s93Ag o 1I9SUT>
128110 TRUTLTIO av 91Ag T =2ovTdsI>
CeILBETLTIVSTIROPEPLOLISIVZOUY - PUED

WO 2018/200862

{powyByufiy) selhg uownucd i

gl "9Oid

mmwﬁ@ﬁ@aﬁﬁqoow
LIETyRZPRE

TEVFEEPTGRLPRBGSPPETIO
GCEVFEEPED

0r0O297R4T

SHLPCTLTIPSTIBOPRPE0LERICCOMY PURD

GUOPTSELP3SSPPOTSIBOVRRPEOLE9CSE0YY (WP TH

35/82

WO 2018/200862 PCT/US2018/029636

2 ™ N O =
2 b . e e
; C}» {;‘)ﬁ C{ CD*
¢ OO OO
? o O OO
2 Lo o
o) : O O N
™ N WO P 0T ; <t < <F
XM N X M NN X X : N X X
[ool vl el el e wl el sl el e : [l sl ol v
DD D3 D3 3 35 335 3 S N DD 3OS
el cnl el el el sl el el el o ¢ K el cnl cal o
(GRS EES® NGRS NS N6 I §J g (IR G I & I &
°a LX) 50 » % °a 'X) 50 » % °a 'X) 2 50 » % °a 'X)
O W Y osr e Do O s e E s N OOy
O O ¥ 4 o s O OO N O — © T
s NN N0 O™ ¢ Q@ o~ 1 0
) <t O T U L Oy OO 2 © 0 U D
ot H WO 0O T T 2 SN OO RN\
NT st T LD T < T T O
O M O oW T O AW b DO 0O o
U4 T U = O O 0T YA 2 T O i<
O ¢ oY O UL g omn Q ? W o<t O <
[ONEA T NN e o NN e ol I O B NN TS B @ by 0 o O
o O MmO T WOy O DD
T O QO M W s o o s N 00 (M
- T o T o) O, @ O) Y
O DO~ N UM WO O @ O O O
(N Y e~ 0 Do Oy N D E N O oYy D
oM U O @) Ny O
D @ U D O3 O H N 2 O s QO
S IS H N O R c I I e o BN S B @) o ™M QO O m
DT O~ =N U OO, e M NS Y
< O™ 0w ™~ T N oy EORMO IR
s QT s @ T = — O 2 O T W
° O O O 44 g O Do - U o 0T
3 N QO T D0 PO =3 Q o~ O
-t T W U0 N T m £z T O W
T Moy O o NN D 3 Q — 0 O
MO 00— OWn D o FO T BN ea WANe!
- N 00 A MmO o o M S o
O O <0 4 O O © DO fee ~ S — 3
To NN\ o RIS TN BN o R\ G IO’ g T 1 0 O
D~ O UM e =M e T Q@
MO U RO DO o Ut O s 0
GV TN D Y O T e g — T oD U
O D e s W00 X0 S B =
oM O D O s 8w T : sp00 WO W0
Yy oWy O) D M oD s 2 oo U o— D
T o NN Y (o O N QT S D
Mo T~ OO0 @ ; S N O
@~ 0N oo .0 T aw o0 0
Do~ QUm0 ¢ L O Ly U
U O S @ YOO O WO < O Y Y O
YW oseost DM DO T ¢ T N s M
OO = O 5 W0 WO @ g EOREQN IR RN}
PO M MO MO0 2 O UM
U S O T 1o Te I S VLI I ? s Y O
NSO O © o~ O s ? RO TEQN I
N o)OOl T WO : Py OO
O 0 0 0O 0w O N o U Y s
O R IS EE (I ss OIS N e I} ; O N O ®
oo s O M o O ™Moo= oI~ <t — N O
N QM3 D@D 2 SO RENEINGN
U e 0 oSy O 44 TS 4 ¢ T OO O
SO s W0 T M WO ¢ EpRe e NN
— O o0 o0 g Om 3 O Oy QO
OO T =t W WO W 2 o o=t O
N s O Do O W ogoMm 2 T ol @ s
O - T o 0 g 9T b oo o8
T D O d N Y@ P Y4 @ T A
O s~ WU~)M N MO o N
by =p O 0 M WD OO O N O oy Oy
O M T Y @ O ¢ ~ O
Doy @ DT~ TN T ¢ ol DN
—]) 0O s s 0 WO M 2 <o O <
D00 CH L DO ¢ O U - Y
oy W N D = Y O 2 Q0w o

PCT/US2018/029636

36/82

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

¢ IYEgPEGIAPUIEBIEZ06IPREREDI0ULATIRPTRR0T69S9GITI06 L DFPEFEPPLOILERY Y PEoS 699 0L9EP . (OT ¢ 0T

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

CEPDRPPL0RTISCED0 6870V ERTZET0995IFO06LoF0E0EP IOV 8HEREo9YRT66LRFI0: HE0EECOVEI0EIER: O 6

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

FPE60006BPPITZY00RDLTILOCCTRReEB00Fao8dE959GTLG0080CY e 0Lz o6 yR T CPYIDITISS9Y3®: L ¢+ ¢

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

FS0ZOIRREEYRERT I000UZPRTLGGORG[0BPERSEBZA6IZZarZZo6 oY egTonToq: I8YETIOT6PEESE: T &+ L

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

PeT8T600 106DEGOBRUGIDUDOZ IR ZE PP TARUURSICELOULTORPST SceriegeeperrsE: g 9

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

Po99EEPSGePo0ZFECRGDRD L73200GSPP6 15Ty RS EETEGZ cooe: PEUYDDETREFL 0L ¢

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

s
.

s
.

s
.

s
.

s
.

v

N
(@]
L
<op

T

8

s
‘
.

I~

i)
@

-

gE

Y

-
Y"“
o)
e

PIEPOFAZPL0ODLLGDLLA®D L 0PRAIEOBZ0E8RPT L FHEqeg co0dLSrePEeEYcenase: YEEYTOBFgLass

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

! TTCIIOGTIRERUIZELUDPFCRIN0VOU9[GOE 1652663 IDF PG 2L Y¥Y Co0rooencprozy: BYYT[COCSIDFFG

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

<
=

L0
™

! IPGEITEDZIUURETODCeSP IGO0 VR6ELE08 Y 0ATAT 6 CACHEYUIcuaqrsLoTecss: FHYYOOT7IE600F
90Ty YPTPRELPPRICEZPEDED [6EZURLOPHEGGEL 65699 B ToGy2caazrLPyheezoT: BB DA TIEGS ST ¢ : T

I N Y N N N N R VN N N Y B N N N N N N N N N N N N Y N N N A N N I R A VIR v

PaIUYbTTYLTT sweN JO SUuoTsSusutIp PITHT s TUSISE ‘FEITH UITM S1USWDTa: SWeN IC SgSKH Uuniyd:luawusTs

o
N

(&3]

WO 2018/200862

H8 "Old

PCT/US2018/029636

37182

. . s « < e« s s . e« e s s s 0T0‘000°0T QusweTe - - ¢ v - - - : 0T0‘00079T

(GRS

[N N N N N N N N N T N N N N N T N N T N N

©Tdgg G ._QOQ",Cr(. C06CZHO6BED00UEETBEFR29TE096T wo@m\mﬂgwmmmﬁmﬂw PERETCOSFVETER: 01+ 266 ‘66276
: QLETDLE8C0TePTZET002GIFO06 LOFDETEL aPREEE 0072166 RrI0 BB RNTOTEIOEDER: O L6B6°66C'6

o A A S N e N A e P e N P e T e T NG P N P P e T N s e et S s SN N P e T I\ P N Pt e s P s s NG ot e ot NG T NG s N NS T NS P e s BN P TN P P e NG Ta N s N s TN s P e o NG s N e s e N P P e T BN Fes e P e N P e

: cT o reTleldsutT siuzsusTe snodesuny -~ 0o« » v ¢ : .

P A P A A T N T N S A e N e P A e A e A P A S P N P N e A P N P A T N T P e e S N e N e P A P A P N e N P P A e e e S P g e A S P N s A s A P A e e A e N e A e v N o A o A e A S A

D PPI60006RPPIICV00RIL IOz IREGEBYTFIRRACOCOGTLGOUROYYRI0LZLo6LFoT YBYIDT TS89 vI®: L+ G9G'L¥Z'T

P A T T T N T T N s T T R o VT T s s T - U N N R e

-

M * * ° N . * U@ﬁﬂﬂpmﬁﬂ SQuUsueTs snoxsungy - v > * ° ° M : M
D 0OPS0ZOIORERFRERT LoDk Aom?)ﬁ._.H_H_.ﬂ.%ﬂ@%wo‘? CarzZZoaTEY e I00 Toq T T IO O60E B0 T ¢+ 9ZTLy
: .o@%ﬂmmoc @mﬂm..wd@% 28Dz TP ZE PARAAS T T apPUaRCIC6 L0ULTRRPST6 Bt o 6 BRESYE: 8 ¢ GZT'L8

LV T T T A VT T T e T T I T N T T VU T P U s T T N e T R T v

14
4
14

Ll

Ll

. st o s Pa2lTTrlsutT sjUusuwstTs snoeduny -~~~ » ° ° ¢ . H

b P A P e e P T A T A P N P e P e P e P e A P N P e e e s T I P e P e P e P e e T I P e et e et P TN s T e P N P N P e P T P T A P g P N P N P T N T e P e i e e A T A e A e N R e s e A e A P N

° - e ~ - T ~ T - o JRINIPPIRILIN ° . §z —
D pO90ZREPGGET 002 ICCPGOOPTISRLPIITLISR0AGGPD6 LA TR0 el CSBETEDL core :PUUSTOS T8EREDL: 6 68L°%C
B N N N N N N N N N N N N N N N N N N N - T P N R VR VP N

. ct T P=TTedasUdr sjilsWeTs snhiclIsuny -+« ° " ¢ : H

B N N T N N N T N N N N N N N N N T T N N N N N N N N N N R

FEPOFAZPROPPLLGDLLURD (DPRUICISC0ERRPT LRPRE 393 ¢ (EECUCOSTFQETeY PRI
TZITOGTo8RYTZELABYSRICOPOULGOE LGGCE6STIPYFG LY AR VN RSN o) 4 g0 ey’

P A P A A T N T N S A e N e P A e A e A P A S P N P N e A P N P A T N T P e e S N e N e P A P A P N e N P P A e e e S P g e A S P N s A s A P A e e A e N e A e v N o A o A e A S A

<t
<t

%)
o

.
-4

15

¢}
-

. A cor st reTTrelisur glususTs snodsunyN -~ - 7 7 . : :

P A T T T N T T N s T T R o VT T s s T - U N N R e

DOIRGRITEDZTUARATODCSRFUIS00T FP6FEGOFF 0AT6 e cac Y TcusapgLoToces PV ST vXE609F: € ¢

N N N N N T N

I 9ZE PP ZRRLPRPRIeRZIPEDET 6 e L0PRESGeL 6CGOR LB TOGYocaqryLobFehenT ¥ BTIPED (qeager: ¢ 1T

o A A S N e N A e P e N P e T e T NG P N P P e T N s e et S s SN N P e T I\ P N Pt e s P s s NG ot e ot NG T NG s N NS T NS P e s BN P TN P P e NG Ta N s N s TN s P e o NG s N e s e N P P e T BN Fes e P e N P e

U@Mﬂ@ﬁﬂﬁ@ﬂﬂ SWeN JO suUlTsU2WTP PJALiyl ® pusdss “@Hﬂu UltM siuUsw=sTas @ 2ueN JO sdSRk THUNUD 2 AU=Bl=2TH

WO 2018/200862

28 "9id

38/82

PCT/US2018/029636

WO 2018/200862

21Ag peleTnunose Io pus ar gonlkg ¢ pueddes
<7 aA:sIJC TeUTHIIC 3
<2a ‘7z 39sJJo TeUTbTIC e 93Ag T eceTdsI>

A
I~
Q0
0]
©
[19]
o

1B S97AQ ¢ @laTop»

<O06L ‘% 1esiyo Teutrbrio e s83Ag 7 1I8SUT>
210G mwe&wmmweeeeeeeeeem;wg Q&%mﬂhmmmmmA\y%NQmHNNQvNNUmHm» m\xw.m.m.m%u jA={v}

198130 TeUuThTIc de €23AC g LISSUT>
1osJ30c TRUTbIIC 3m so3lkg g enerdsi>

<pIResIIC TRUTHTIC e s23Ag 3 219T20>
q §7 =sorideIi

<ZA637ZapzEoeTEEE006.L99300T0d Y0 398IJ0 TRUTLTIO JB §834c
GTORqUZPETLEEoEE Mw%z??ezzé.\i.}_,%,.mgmwmmﬂ&mumﬂmmmu?mnﬁooﬁo_.
Z 154

ZTLOEEDT TOBGUZPRTLGEOEE TOEPESSE CABIZZAPZ DR TRO06LERROT0D IO

,.«

‘Z1L0'000°2H Uy

POR9TEEPGGAPI9ZIICEPGOOPTIRLPIITLY320USCPDE L T80 et UEEFE0L o0=

110000 2P MUY

asg ‘oid

PCT/US2018/029636

<HT U3bust ‘L 19SII0C QUBSWSTID il
‘07 188II0 TRUTLTIO ‘866766776 1USUWRBTS 1I9SUT JUSWSa-TITHW>

OGP I6BO8Z06ZYR6REDO0UES IBP VSO0 1A 00GIPI06 LBT0LoLD ¥Ry
CEO0EPPOOTIOCEDD 689 R0 CE 1093GIFo06/ 3 DE0LR 1UrBa66890VETE8 L evI0

39/82

‘866 662’6 PUE /66 662 6 SIUBLIBIR SA 8AlR(Q

6BO8Z06ZTSEE6D000C6T8PYER0TE0PSIFO06LoF0EPEP 1AVR866890FETEE L epI0

<7449 Y0 198330 TRUThTIO Jv £97AQ 7 1ISSUT>

PeGIgPII6ED8Z06EVS6RAC00UEE IBPYED9 160051906 L9 0 e reogPRER 7 LC
TACOPeEG IUPIIERO8Z06 ZPS6RED00UES IBPTEDY 16986 IpORs 8T o rEsZPES Y ~ v v~

WO 2018/200862

‘BERBRZ' S JUDLUBIR SA BALIRY

PRGIAPYTERO8Z0O6CTR6RE6200TEATSDTS

o0
G
O
—
(o)
\a]
G
Ly
G
<3
¥
G
&)
[\
I 3
g
N
)
QL
N
T
T
(o)
0
[§N
ko]
[\
WO

48 "Old

40/82

PCT/US2018/029636

WO 2018/200862

POTCRLGOLBYPROPPLOLYPUIRITITIROERITIFREUPELEPSPoICRGP=2P6ICESROPLPS
LFEOOPSOUCEICRI60LOP20FTELOULEEETO6PEEOREPRLAESREIOCEIPIEIYCTH
PEBFOERIPPFIALIPRGIIPUIOECRI06EPPEE6PO00IEBIEPPEPITE6995IPI06LBF0ES
EPTPeClPEO8Y o0 lEoRGS6YO0CCIELPGORPISRLPIITLY8R0UGGPPOTIGTE0TERPGUD
PCIC0LIVORC0UPP=TRE688T00PLERREFPROBGEQLUET6I6LIOPPIELESGBORE6BESE6Y
SFLGLGIAPOIDPIE6IGRRAIEREPFEPLOFIOEIEP LLRPOBPPORIOLERVLE8IOVERPTIETO
ORPCTLERPVIPRLUUDTUPEE06E8OVETOGLEYIORTLLPTEY PR CT66UIOLIISTIASE
AoGEOLPLGRRBIGEPPooERLoRER]00IIP6V00C0UIE6FPP6EIEPEPILIGUYPIAPRLII®LG6
JeBOIPOPIEIEITRIBG ORI [AR I EIPRERILGGVPISGIPIOLILEPSAIOPPPoUB6UT
CERIZICTOTLOZEFOPRO20RGoRLERAPRRLOGoTUREUREPLRIRPLERELHR000P UG
QAP G0CO4=22CopRePGIRRUYCPRTLGGREC[06PE 8O FLIUPECC6 IRERERIFOOTOY
EBCEPOBILPIEREIBIIBLPIBIUOGIUPLLEGPRORERLIEBIFEIBTIROLOPEPLEPREY

V6 'Old

PCT/US2018/029636

o e P A e A e A T P B P A P P N e N R P i e N P P P e N P N P P N P e N T N e e

T = 2eFTIvPLEGROGIES -

N N N N N N N P VPN
= . _— N s e
oo JoegaqpeyoyovZer -

B N A I T T T T s T N U e T e R s Y I T T e s T TV

SOAGRSPeFOnITCIVESOT :

N L A e P N P N e e R P N P P e P N R P e P N P N e P e R N e R P e P N e P e

o
oe

N P e N R e e e P

oUzsialad dY - wexboxg uo CTANTITASUOCDaY sWTdg I 4d¥ sWrtid

SEIBCId TS UoTS Y 3T g SUTBIUGY T8 Ul 3OS SAER0OSSY TUSIUo™S

41/82

A v R P N P P e P N P N e P N R P N P N e P N P P e P N P N e P R P N P P e P g e P e P N e P e P A

HOCP8LoIBCegleEnoPOL IEdeIvRlBg ORI T CUSITIISEgBILEE E - 8
QGPPLYBERGIDETRO .
AP TUR SRV 0eRISRTALOPRGIAPHTIGROBID6IPSEREDL0UE6TERPTERO TR %G

CATEPHECACHRPATS

l\l

ITOT6LBIOEIER - L

FLOLGAUPTOOYTOI6RRACLREPYEVLBFOLE2EDP ¢ 2
caedccarcdrel=ses :

BOI0OIRHLECEyRR0C V8RR IRTIRLPIRUAOGAUR LL62P20REBLICICIZICTIRRL2PePEEIEREd ¢)
SCTPTIOLILBRPAYI0 ﬂm@mmgwmdﬁxmw PT6TL6CEI6FR0%0BIGERECRAPS :

2 2 BTLEGOERTIGREEOR ¢ i

\UQrzcmcLﬁ> coFsecopRePaTo2queP

T
I~
(\e]
o
(e))
Q
)
o
Q
]
fied
s
o
\\e]
¢
%
ee)
=
o)
3¢}
Gy
O
J

PRTIREGOLEPPFORPLOEYOATRATIRGROT LS

PLCAYRRRPEPROI CRGPRPLICRGESPEPILICO0OVGOUICIOBIG0LIOPRI0RIELOULEEBISERPEERE €

R P N P N e P N R N e P N R P N Pl N e P I R N e P P e P e P N s P N P N e P N R N

logpegae

TPerPeEebOB0TEERCGE T :
O0CCFCePEO=PLORLPITITLYE=0YGSPPo TSTROPRPGARCILOLIOPICAUPPR L6 8R3T96PERSR L A

CEOZPPODIVLEDDLeBCOPRPTIICTIO0RYETLEYPIPREAUOTIAR 360

68907 :
TOELEPI0RPTLLPLERPRPEOT66dl0LZIGTPUACOUEGEOLBLGPRIGEPPOGERGEERSINOFISED0IE ¢

=i

N R AV VN

ULTY Wl U3 IO SUCTSUSWIP pucles puUe 38ITFX UiTM Blep JuUuswusie (I JusueTe

4

WO 2018/200862

SASIS €6 "Dl

42182

PCT/US2018/029636

sASlg LIEIBOlL UOHNUISUODSY
allilid Ui payoieag
PSS 0PERFesSRBE0PRRIPCA2Y
dul 8 71

BABIS Wb UOINYISULOS N
Al Ol paLBsU
FPReL0FERYRRREE0TOY TRYSY
dy 8kg zi

e
]

i

9

¥

4
<

anusIsIay 43

BTLRQOIC6RCTSI0CORPIE0IAGRAPRILEDS

i

SEVTIPPLEGEOGIE
GgepLL=0eL

PPeSL0VERPEeRge b TPGeY

ZTPBIGTRYOFIP LT

S0dLRSPeTOPITSIVEE0T
welborg uUCTINITIS

SU0DSY 2WTId

QOURIT2TSY 4o

SCPTIPVLEQR0GICS

PPSSLOVESHESEES R, IPYSY

50GPey0VOT T

POAESGPROFOPFTGIYYe0T

wersboId UOTINITISUODTY

77
(R

SVITIT 3

¥

YPOBL0PESYERRGEOTOVTRUGT

fakal E@HCOM& UVOTINGTISUODIY

0ToT OT

o -

.
0
0o ¢
T
L

o ¢

ﬂaooﬂoo
TT00T0 T
TOTICO ©

~

-
[So 0N o

-

-~
T

@O
—

-4

WO 2018/200862

36 "Oid

AR AS A NE

gyerorpLOcyPAFeqiTe0R I IIyRedy®

EPEROPEIZeSPIPeITRGEY LIC0RTELD

o~
3

0FG2

RTHL00Le3 0T 96PEE0%
;Q&gmm%ﬁ%émumgaﬁm

CRLORE0ASOCS TReQUIPET L GGRERI36PEBORZUGI AV i6To08Y06LE9200T209

2L0°000° 2y Hunygd

PCT/US2018/029636

£8L49=E (0]

=<
L
[
N
Lo
L]
]
s
0
Ia)
L2
N
e
N/
©
i

LGGORETIEPEORLAEIZZAYLLO6TOTE006LRITOOTON &
i A

i N o~ K - - e - PR — s —y o o . ~ — T 7
Jgee SRIAJQ paiETnumdoe IO DUz e sa1Ag ¢ pusc QO/

0475009300 oePL IVRUUIPRTLGYPEGIIO0PEROBCUGICZUT IR0 TIRIBP 0 LEII0VTOY &
<p7 195IJO TRUTLTIO ' $33A0 G 93sTep>

O
Q
<3t
i)
O
[N
Ne
Y
0]
Q
o8]
()
Q
58
e
D
-
£
¢
el
o
[N
o]
o]

: CRB LR8P 06LEIIOO DY &
‘77 ABEITO TRUTDTIO av 81AQ T momamomu

QQWmQJ@M®®mmw®m@mﬂUUQQCﬁﬁﬂwmmdm@H@@ﬁ<m ECUOICCUT PO TRIE8RO6LEII0P TV &

3

D
5EIJ0 TRUT

N\
(@]
[O)}
[\\

LN
o
)

an

)

TIO 3' golhg 7 1IesuT»

43182

WO 2018/200862

‘weiboid UOHNISUOD8Y SU JO UoHNDSXT

1293200 PoLPY To0QUZIPRTLGGDEL [96PERVEIAGI LGV IR0 I9IREGIQO T

RTANE T m&mmm

A
™
o8]
.
Q

[0}

T

' s371Ag ¢
ae g81lg g
1e o1hAg T B

ae mub.w\/tu ¢ AFssui>

ALY 1 LORNHISUODS Y

vYilL "'Oid

44/82

PCT/US2018/029636

WO 2018/200862

s sisenbay

wiesBold UoNNINSUODIBY BINGSXS

WwiesBold UOININSUO38Y Y018

I

w

[EABLNOH SIOWN

weBoid UoINISUCosY 81N0oxd

wiziBoig uo
+
{shuswa|z e1eQ 2W

AU

{shuowia|g rIBG SUlld Y2104

[shusiuors e allilld 0} SGURIRIRS
pug weiboid
BONNHISBODaH 0] 30uaisyas Buueiuso
150nboy 1eASHION IXEN SAIB08 M

[shuswiaig 812} SWild 0) B3UaI)ad
pue wWeibold uonnisucoay Suiuieiues
1530 1BABLISY IXSN SAIR00H

201 'Did

H01L 'Oi4

4582

LLIOHB|d BJBMPIEH

PCT/US2018/029636

swsbeuep BB}
LWISISAS ofid ‘WissAs Bunesad)

Uuodield
BIBMpIeH

i jusiicReUR B1BG
WEmw@AmmmE.Emw‘?wm:sﬁ@gﬂ

vlicgield
aiBmplBL]

tiohe|d
BiEMpIBH

Wof1gid
slempieH

> wawabeuryy BlE]
113331649 ali4 'WosAg Buneradn

juswisbsuew 18
LIRISAG Bl 'WieisAg Bunriado

wawabruep Beq
WSISAS afi4 wisysAs Bunrisdoy

suoiesijddy

sucheoiddy

WO 2018/200862

dbi Ol

ki 'Ol

suolesiddy

suonesijddy

aii "oOid

smeieddy UCHBHISIO BIB(YUA DROUBLUR
SULICiIE 4 Buiindiien asoding jeisuas odwieg

ULONB]d
alemplen

WinsAq a4 'UIesAS Buneladdy

awebeuryy Bleq

sucesiddy

Sk "Old

smefeddy UCHBRNSICY BIB(T INOLUM
W0Rl Buindwion
asodingd jeisuss giduieg

Vil 'DIid

gil 'oid

46/82

PCT/US2018/029636

WO 2018/200862

L ualel 8 aWilg

smeleddy UCREIISIO BIB(]

U Jousely Bleg sl

Jaddepy
BAIBIDOSSY
L3 [Helg)

:, ;
| ¥
sezusioed
Jonsucosy [Be JorauEy fehuag g
I3SiBg
& :

St 'Did

{ogey oBuUoIBIU BBNoIY 10 AGSHD JaUN0 DOUCRLE 2ir siuduodwiod aBelois)

Aycarseiy abelols Yum
uLIoiield Bunndwon asading jeiouas) sdiuey

aBrioyg yseid

aBerors aaH ..

NVEa

syED

swsbeuep BB}
t Uo1SAS Sfi4 (WeIsAg Bunesad)

suopeoddy

PCT/US2018/029636

47182

01800V, |

J J./ b L T .
/ + 50000000000000000%
{1301 01 8oUBIBIOY ;

WSS 818 Blild = I (@I0N (0309 awng SARBALOC] @mﬂm.n 01 80UBI0IEN
Vi

WO 2018/200862

\\ B w\; m\
gl pInding ele(perainsy e1eQ polisiC g, 6L
smeseddy uononpsy B Jo smeleddy , uonelsK] BeQg
gl m\ Mmmynmmomwm J20dEIN SNIEIo0SSY Wa0D {onss 0] selepdn § suole|RISU)
: ¥ =d < ~ 9ABIS €18 (] BUilid 0} sayepdn - SpaLotuwo0
/ vLi gy |f § 180 paonpay
Gweiboid BORNEISUNISY $SIN0eXa) X (SIUBLIOIF BIB(] Sl DOABLYGYH] BALSYT 4 SIS 2lepipuED
JOINISUOO8Y oo » JsAlad
= 3 & -
Zil o thV M\E it
130d & UCITBALISD 40} SiGBUNS
» R SIS BIE(SUillH DOASLIGY
) -
& SOl usweg syepipueD
X SIUDUIB|S SJERIDUET Sa)aI0)
(uiesBo.Id LOIMNSU00aY puEe 7 30d iBzuoE 4
SUBWIBIT B1R Bl SOUNBY) jefrmiih o a;rl. '
iIBABLIS Y =Tal= aad] L7 % Jf
= Y A iasigd 501
Lt a0} A0S BiB slllld JO 8ASIG i) sllllld -y
PR ~
o AW:MWMMMKJ @Emﬂr& arfjeAldd @wmm.u._ Qj mucm.xm.ww_ . €01
atUlled
! L T Vi
& .&uuj
(laad oy sousisjey
) k) <
s1s0nbay [eAeLISY ¢, & LI =31=Tq B iale VI)
HOG | AOS L
- 'y
B | ODESY REENHVINE R+

. wawebeusy vle(9 WosAg ol
HLL m.umm washs Buneado ‘suonedyddy

48/82

PCT/US2018/029636

WO 2018/200862

R |

e B

¥l welbold uonay

RS |

o1 weibolg uooey

FARECNINGE |

2iwes

ol ucosy

Z wieiboig ucosy

1 L 7poig g

L TI8SHO

Zoolg Jd¥

B

$30015 weiboid UoNIISUoIaY

Z 3Qd

L 30d

1zt

SHO0IE SIUSIS|T BlE(] Slllid

p1 dy wnod £730d wnod _€18SHO
TP oo ZoPog dy
'S 8PON3eeT o | ‘pLTOPON JBeT 30d '€730d | arneALe(81
Z oy Wnog i 30d wnod _ TI8SHO
_Temo o 1001 gy
‘G 9PON JB8T i | L PPON BT 30d 17304 | neALaQ ¥
¢ 3ad wnog
_BLTmD. _
WIN ‘6 9pON Je87 3Ad gaad | euwiid £
by unog) 30d wno _LTIBSHO
TP O vpo 1o dy
'S 8DON 4RO ol | 'L 8PON 1S 30d 'L E0d | sAuBALRQ g
b 3Qd wnop
PO _
VN 27 9pON J8eT 30d 7304 | suid }

LGl

L

Sid

PCT/US2018/029636

49/82

WO 2018/200862

gjed
DIINIISUaN
JOINSU0aS Y Joned
28 O BPON WO SASIS BIe(] ol W -y m mﬁgz EOMMQOcsgggm
»
JszIooe
JBASINGH Al {_wm.mma
% Y
MU UCHESIUNLULIO D .w:w
g [CIETT I, ;
FUL SANBAUS 33 i 3} 8lUalBiS
. Todden O} soUBIBISN f./ L neALaC vum_m ¥ $ed
BANBIDOSSY FooE e ifiosd uopnisuoooy 1Y | Slig
& +
s WSO }304 oy eousieisy
& 'y
SHBUCTLI0)
U304 1% . ejec] paonpay
"RSIEpdn B SUCHEEISUL
SONASLOIBY > Jaddepy FENIEYe! Y 2DPON UCHEIIUNWILICD
| M A
& Lt SANBIDOSSY e '
o 1TV el R
“ ABZUQITE
R . A s
IBABLYEM aaal e o JasiBd
BI01S BIB0] Bl JO SASIS B18(] AlUlla
19sny wod ereq induy Vel Oid

50182

PCT/US2018/029636

WO 2018/200862

jesn o gecy inding

€180
POIMISUOIAN] Lol

b & 4

B8

A0INSUOOSH

saddepy

Jsaued

&

IUSOD

& EBE SABIDOSSY 5%

187140108 4

J=er M
FETITITY gt | L0d 1854
31016 BIBC] lilig 10 BABIS BIB(] Aliig
% X
HUIT UCHESINULO D 4 .w@,
m QERE Blilid BANRAMGE

1

& SPON UCHESIUNWIWOT

{Y30d 03 BouasEy

\.

0} SOUDIBISN f./
SoyEpdn BIBPBIOIN § ;
SISLSIT BYR(] QUM 10 S:IBI8(] ‘SiBISU

Vhupifiosd uonninsucooy

+
}304 oy eousieisy

P

3 S
et

4

F-§
SUEHRIIRG)
U304 1% . ejec] paonpay
TSSIERAN B SUCHEYEISUI
JOIRMBLO0E Y
sty ! Jaddepy JBALRG
T 4
+ =S, SANRIDOSSY —
4 USIL0D S I—
» 137140108 4
- N AT, ?
FEVEI T aial oo M .
51078 B1B0 Aluilla J0 SASIS 8180 Al
I3s wodp e nduj

WV SPON UCHEDIUNWIWOD

g¢1 "Old

51182

PCT/US2018/029636

WO 2018/200862

e R
8J0IS BlE(] 9lid
i0 sajid
BABIG BIB(] Sullid pajisi]

T4 MIIE

LOZL

$9|i4 nduj

52182

PCT/US2018/029636

WO 2018/200862

g0c1

LOCH

| (s30d) |
{SlUBWBIT |,
| eeq |F
i aud

1 soddepy

sl

aéi "oid

LOZL

$8|i4 nduj

53182

PCT/US2018/029636

WO 2018/200862

8|14 sepoN
jesn

3]l SSPON
sal}

sii4 ddd

sajt4

SEHUEHE

1SID°E 0l

ISP

1SiD L el

A E

e84

¢oll

Lol

AT

54182

PCT/US2018/029636

WO 2018/200862

Biid ¥

{14 SBPON e8] UCO8Y

{ ozz

+ + + | sipzen

aéipcay

1SiD L el

7 60Z1

..mmnm SSPON 2811

Y7
ard

oli4 30d

%
&aowmw

...mmﬁ SBPON jesT

41 "Old

e84

¢oll

Lol

AT

55182

PCT/US2018/029636

WO 2018/200862

19se1R(]
paonpay A|SsSe|ssoT]

921 'Did

19sele 1Induj

56182

£ CT/US2018/029636

U107 e g
0BoNPa s
Al8$8i8807

m\%mm ’

ot
P
w

1 joeieQ
PONPEY

07 el
paoNPay

A8$2|8507

Ajssoisson o

b »

j/l;mwmm\

L (J
DEONPaY
AlsS8iss07]

1esele(]
paonpay A|sss|ssoT

[\
\o
oL
4
=4
o
S
o
—
=4
(o\}
m

HEL "Oid

U o071 eleq

L o] ejeQd

| 1077 Bl

19sele(] nduj

... PCT/US2018/029636

Wl eiel
PBONPSY

U jo7 eie
paonpay
AlS88I880

57182

X 107 Ble(]

107 BlB(] %QEW

[107 81eQ

paoNEayYy
Ajssasso]

1071 Bled

pooNpay
AIS88ISS0T

WO 2018/200862 ..o

L 1o e
0BoNPa s
Al$$8I8807]

s o

19sele(]

paonpey A|Ssa|ssoT

0] eie(]
pannpPay

#1107 eleq indu

L 1071 BleQ

;wmwﬁmm nduy |

PCT/US2018/029636

WO 2018/200862

114 30

5914
peisI]

AT

NSl

£oly

zoly

Lol

2zl

5982

PCT/US2018/029636

WO 2018/200862

Bild dd

o4 40d

£oct

_________________________ \\\\\\\\\

1Sip"g ol

ISP

S0Z1 ~g1Z)

MZl Ol

ssji4 Indu|

Nejl

£oll

¢ol

e0/82

PCT/US2018/029636

WO 2018/200862

U SPON 2ABIS

| SPON SAEIS

Z 9PON BABIS

SPON Ie1seiy

| SPON 8ABIG

121 "Old

61/82

PCT/US2018/029636

WO 2018/200862

v S0d

£ SQd

Z Sad

L S0d

7 188ilans

S d8eiLans

lo7r seuL ang

[y @2i] qng

WZLl "Old

6282

PCT/US2018/029636

WO 2018/200862

L30dis parBlS sllild

j SPON BRI

iy g

Zduied vaddied Laaelg saljealis(

W
copon orels | oy
AN ZOARIS Sllitld
B o
..... -
Z SPON 8ABIS
£GZi
\
L3S LOABIS Slitid
V%u.
%

| 8PON 8ABIS

3jid PaIisIg

SPON I2ISBIY

NZL 'Old

84 induj

PCT/US2018/029636

©3/82

WO 2018/200862

[3AAdIRY 771 suild Blid PSS
Www. \\\Inl.ﬂl!.. e
T e,
muna :N}X-:- i"lll‘\
7 800N 8ABIS
.......... ali4 induy
Zuod vIAAISY S d aateauea |\ I P
v .wxx. IS \\\I.il....?..\.\\
coponaonels | o

30clod O 1 sl

..... WD SPON J81sey S
Z SPON SABIS 4 AT
A4
e A e
LGS |7V slld
W. s Q Qm
4 A TARG
..... Qﬂvm . M.M
1571

| 8PON 8ABIS
0Z1 'Ol

©4/82

PCT/US2018/029636

WO 2018/200862

mend [
painsIa &
Mt

HEE

nduj

heud [
SEHD O =
1

ndu

A

gict

i

»
“
T o

Al 8lid
eSlNsIa

“nexnnas®

NS
ndug

| 8li4
PaIEsIC

“ eanewuess}
e |

04c1

biveened TL7L
N :........m\

EHE
nduj

LLCL

~

dél "9id

©5/82

PCT/US2018/029636

WO 2018/200862

'd

a
d

A Buiddepy % 1s8liuepy uoleulsaq
a8zl
- 1SBlUBIN 824N0S
G821
p)4 30ad
4T
Doy el IsIa T LelAg e Isig wiBus) e s
o]
sall4 Pafiisi(d o
x\“
€8z} NSIAG_zepy Js1a T LelAgzel 1s1g 'Wibusy zeyy s
Welg ey sig T LelAa ey sig yibus) ey s
08310 1SSJUBIN S9in0g
g ispesH 19840 8lid Iqd
L8z} J@sj0 s8|14 paINsI
yibue| jeoled
- I
0871 Zecl

021 "Oid

e6/82

PCT/US2018/029636

WO 2018/200862

8|14 sepoN
jesn

EHE MQ& 5i14 SSPON

1sipgofi
ISP
1SiD L el

L rA I E

| Lol

Rnrn) T
H
.

cIopio]

[oa—
! i
! H

H
|
'
H

..... J

L18pI0}

jelele

L

—

Zispio

NPNN

6782

PCT/US2018/029636

WO 2018/200862

ATISC 1ge W=2TH
SWTIA 26 UWSTH
ATISD /6 WOTH
ATIBP 95 weTd
sutad g1 weTH < 21 [ZL6RTP® 9gL opd [Zpoepso ¥ N
swiid 179 weTd < L 0G9LEE00 8TLE epd ze T z
ATIBPR LT wWeTH
@GHHHUH ¢y VIRTH
surrad gz weTH < b [€29LYET oL epd LT 1
SARBALIB(]
JO Blllid $1 UBWBl
JBUIBUM JOIBDIpU WSS SSANBALIB(]
g BIEQ) PRINSIC] BIE(C] BLilld JOJ 9 sajhq BB sa1Aq
By} Ui SJUSWBT 0} elepEIai seondng pESUBRYO0T 21e(] elild 38NIBA 814G BuiienuaIap
Sa0USIBION 85IaAaY BUIO 3O UNoD uoneBIARN 0} 8ouiejey | Bunenusiauiq 10 Jeguiny Qi po
N
USIPID
. 3O
€L "Dl Jegquiny
Ojul} Uied

©8/82

PCT/US2018/029636

WO 2018/200862

covi

<g=xXyaid’ HINOW, =AY ‘p=tip>
<g=xyaid’ D07 SNO.=Asy ‘g=wip>
<p=Xljeid ANMODILIVD,=A8Y ‘Z=UWip>
<p=Xyaisd' DN, =A3Y L =lID>

POvi

WNUFDHG XL AHODALYDXSED0T SNOIXSEHINOW IXOLDAW WUl QOYd

A4 E

©Y/82

PCT/US2018/029636

T 4ASOPSIOHSOIAY 304 01 ddudIsleN Bulilld | g wews|3
T LOOHYISHAMIMIN 30d 01 90UiBiey sllilld | 56 wewela
g1 wieibold uoHMIISHOo:Y T NNPHYTACHSIMIN 3Qd 01 92usiajey ‘sAlEAlled | gg juswell

T AONHYTTIVESHAA 30 0} 90UBIISY Bllilld | ¢ justusy

L wesboid uonmpsuooey U NNPHYTRCHSAMIN 304 O e0usiaiey ‘eMiBAed | ¢ uswelm
TTNAPHYTIOHSIMIN 30d 01 9Juisiay ‘slilid | 7 Jssiy

T AIA0ANDOVENIEG 304 01 93Uy Slllid | | Juswsig

~ a4 pais
- 4 Painsig

G 2L IRDIMAFOHS AHODILYIIONSIO0T SNOIdISHINON I SYAIAY D4N'669:01 QOMd | 43S DS IOHS GIdY=b0 €0 20 10 ‘09 s|T slepipues

mm.mm%”MOmm&mwmmm,”\fmmu@m&{o”I<HOOJH®DO”ZD?IFZOEMEanumﬁmmm.wdﬁa@ma 100 HYT SHA IMIN=¥Q €0 20 LT '8¢ lUSWs|3 elepipue]
T 2EEZIEIIONES FOHS AHODALYOHYTOOT SNONNMHANOW ZMINDAN 8P Al QOMd | NNP HYT ZOHS 3MIN=p(0 €0 20 10 '8¢5 luss|3 olepipue])

06 2Z$ A0 TIVEAHODELYOIHY 00T SNAAONHINOWINOS HMIDAN 1GZIAN Q04 | AON HYT TIvE STIM=FCQ €0 24 1Q 'y 1SlUe|F olepipued

mm.m@wmxmumm&“mOIw”\/mmeh.{QwI,,.\HOOJHwDQ”ZDﬁ“IPZOEmeZ”@mﬁnwvmdm”a@m& NNP HYT 30HS DHN=C €0 2C LG ' Welue3T s1Bpipued
08 01$ E0IHS FOHS AHODALYOHY T 00T SASNANHINCOW EMIND AN Y Gl QOHd | NN HY'T I0OHS 3MIN=¥C €0 20 LQ 'Z Wallal3 s1Epipued

WO 2018/200862

~

SIQOBIBYD £ 1SH ' HINOW=(F)PUCISUSUNG ARty L0¥L
SIERIZYD € 1S ' 00T SND=(EQ)cuoIsusUG Aleuiid
SIIOBIEYD { 1SH ' AHOD T YD=(2AZuoIsusUEC ARl
SINORIBUD ¢ 151 'OJN=(1 () | bolsusuG Aleuid
:SUGISUSLIIG

Tt GTL6S IO BOHS AMODALYD M5 007 mmoimw”xHZOEww_qmﬁ{“@mﬁwmm@mmﬂﬂm&
mm.m\.w”momm&”\rmmmmﬂ%m@@m,r{nuf{:m”OQJE@DQFQOHIPZOS_WMEZ@&}EN?QMEQOM&
T EETGZLS EONA BOHSANMOOILYIHYEI0T SNONNMHINCN EIMINSINGPEOl 0Ed

082S RN TIVEAHOD ALY HYTEO0T SNOAONHINCANOS HAMDHAW LSZIAI d0Hd
02081 S IO BOHS AMODILVIHYTOOT SNOINNCHINOW IMINDHN'8Ve:Ql a0Nd
0 0L IS EON G BOHS AMODILVIHYTO0T SNOINNCHINOW IMINDHN'SVe Gl a0Nd

" B9 061 AN DOVH AYODILYDIOANIDOT SNOEALHINON ZONML D4NIGL9:Gl QOXd

89081 ADIYA DOV AHODALY DI DANIDOT SNOGIAHINOW IONIMA DI OLG:GN Odd | 834 AN DOV NiXid=v(0 €0 20 10 | JslIajF sigpipue)d

~
90ri

0o uonoesuRL
66 UoHDESURL |
9¢ uonoBsuRI |

UOHDBSURI |
& UONOBSURI L
Z uonoBsuRl |
L HOIDBSUEL |

P
910147 sitd

dvi "Oid

70182

PCT/US2018/029636

WO 2018/200862

SUOLIR|T B1B(] Slllig

#30d 013Uy

o~ lUaiisia 01 XUl asisnsy
%,

ACONHY1

S S S S

oy

G343 AN

“,

ey Ay T A5

(310G JUSWAIS 0] U 8SI0ASY

%

€116 Welusle i esiaasn], | NOMHYI
4, SOHSIAUN
4304 0] 42 Jugusle tyur] Sejpnan

T

m

4 304 o1y | d 8g 1UBLISIS O} LI BSIaASY 1L
: %,

FOCHYE
SHHEIHIN,

S S e s s e s s

J00d 01 UM | 4 T00 JuSUISie 0] YUl oSisAaH 1

e e e e 2 e

435005
FOHSAIOYS,

Pl Did

TIVES TV g

TOVENINdE

HY
G334 Tivd
il STAA
JAN
DOV [d
=
HY IJOHS
NAF aiay
SoEr { UOISUSWIC
v I0OHS
7 UOISUSILI]
L3O IR
i € UCISUSUN
¢ 438
i b unisuswig

T H3SOrSI0OHSTIAY S0d 0} SoURIsjeN Bl
T LOOHYISHAMMIN 30d 0F 90Ua1eioy "allitid

91 Weibold UORMISUCOSY T NNTHY TIOHSTIMIN 304 ©) 20usiajay 'saealad

T AONHYTTIVESTIA S0d 03 souRisjer "sulitld

£ weiBold uoRmNsU0nay " NNPHY TIOHS IHIN J(0- 01 60UaIS|aY 'SARBALIC

TTNAMHYTIOHSIMIN 30d OF 90Usi6)ay "aultid
T GIADANDOVIENMd 30 03 2oUsIRBY ‘Sl

o0l JBISBN

00 HUSUIBIT #ows

66 a3 ...f

QG JUSUIDT e

¥ JUSWSI &@

£ IUSLUBIT s

Z JUOIB|T Hrf

alid PailIsIg

[RTRETTVE T \

3

{~

PCT/US2018/029636

WO 2018/200862

e

v 93 i

L Aad oviun
i

SOHS AMODILYD
2 UoIsSuawi(] AlBudilid

T T S o oy o Ty o T o STy

aigs EmEmmm ol esionan

Qg weusie m.mmgj BSIBAGY

¢ ",

w 30 9337

“,

o T Jugwsis %%EJ geianey

%, e,
. o,

10} 88l Aeixny

NOrH aj

581 ISISEN

A0 01U | o 165 Justiars 033U 95Ionax {1

§

Jaiay
/1 uoisusiig

"F UOISUBLIC]

7T UOISUBUIC

"3 HOISUSLH(]

TUediavy

SHISWISIT BIR(] Silllid

avi "id

00 HUSUIBIT #ows

" 3SOrSIOHSTAY 30 03 S0URISIY ‘Bl
" LOOHYISHIEMIN 3 03 9ousieley ‘euilld 16 WUSWSE 2.

g1 Weibtid UORMESUCoSY * NNFHYTIOHSIMIN 30d O} 20usiajex ‘saneadag {85 WSWIST o

" AONHYTTIVES UM JCd 03 0URISIeM SWild | 4 justus)y \sn\..u.....i

£ weiBold UCHUISUCOSY " NAIPHY TAOHSIAIN 30d 01 0USISISY SARBAIST | o 1iaiayyy

" NAPHY TIOHSTMIN 30d 0} S0UBISIRY ‘SWltid | 2 JUOLUSIT Gt

T GIADANDOVIENMd 30 03 2oUsIRBY ‘Sl

L jusis)g \
EERESE @

72182

PCT/US2018/029636

WO 2018/200862

oLl Z00Z We3 ‘004 8l N piomiay
808 GOp Well ‘ZAX elid

LpoL ¢ welg ‘oweNAW elid € plomiey)
080T £4419 Wai3 ‘osI oli4 Z pJomiey
z89 £E86 Waa '0gy o4

£P08 LGZ W ZAX el L plomiay
08 L Well ‘004 el

1 'Dlid

73182

PCT/US2018/029636

WO 2018/200862

<g=xyaud’ HINOW, =AY ‘p=Wip>
<g=xyaid’ D07 SNJ,=A) ‘g=uip>
<p=xyald’ AMOOT LY. =A8Y ‘Z=wip>
<p=xyaid’ D4 =AY ‘L =Wip>

o9l

sucisuswi Alelliig

WNUED G PEEAHODI LY @LO0T SNOISEHINON XeID AN WnUdl Q0dd

YAOLVYHYHS
HAAYT
HAHE03
v

0Lgl SPIOMASY
<g=xy3id’ Qi aOMd, =AY ‘G=lp>
mo%w UoIsUBLIC] Alepuonss

209t

V8l "Old

74182

PCT/US2018/029636

T 4ASOPSIOHSOIAY 304 01 ddudIsleN Bulilld | g wews|3
T LOOHYISHAMIMIN 30d 01 90UiBiey sllilld | 56 wewela
TTNAPHYTACHSEMIN 30d 0} 90ULISaY “Bllilid | of Justusi

T AONHYTTIVESHAA 30 0} 90UBIISY Bllilld | ¢ justusy

[weiioid uonisuoosy T NNPHYTIOHSEMIN 304 01 80usiaey ‘aAnsalad | ¢ jusisj
TTNAPHYTIOHSIMIN 30d 01 9Juisiay ‘slilid | 7 Jssiy

T AIA0ANDOVENIEG 304 01 93Uy Slllid | | Juswsig

~ a4 pais
101 4 Painsig

ST LL65E0MNEBOHSIANODILYIIONSIO0T SNOEISIHINONISYOIGY: D4 208101 A0 | 438 O J0HS Qidv=F 20 20 10 ‘09 sWs(T siepipue)

mm.mm@“momm&mwmmszmO@mur{Of{\HOOJHWDOMZD?IPZQEMEZ@&Eﬁmﬁﬂﬂﬁ@&& 100 HYT 843P IUIN=Y €0 20 13 '65 JUBUIB(F siepipue)
T EEGZESEONA BOHS ANODI LY HYTO0T SNOINNMHINOW IMINDOSN-6P2 01 QOB | NN HYT 30HS AIN=FQ €0 20 10 95 Jusuiag siepipued

T0GT/ZEIEOM TIVED AHODILYD! HYT 00T SNOAONHINOWNOSHMIDHN LST'AI AONd | AON HY'T TIvE STiM=P £Q 20 1O ' lusuieid sjepipue)

cm.g©ww”mmxmameIm;m@@maﬂ{QI{HUOJHWDQWZD?IPZOS_“MEZ“@mﬁmwvmﬁﬁa@m& NOM HYT 20HS DHN=VA €0 20 10 ‘¢ Wawe|3 sjepipued
U080 30N FOHS AHODILYOIHYTOCT SNONNMHANOW AN DAW -8V Gl QOMd { NN HYT SOHS SXIN=VG €0 20 14 'Z JLsuis]] slepipued

" B9 081 AN DOVHAYODILYDIOANIDOT SNOEAHINON ZONIMA OANGLY:AI QOMd | 834 DAN DOVY Nidd=v0 €0 20 1Q ‘| Waws|3 ejepipued

WO 2018/200862

SISICBIBYD € 184 ‘G QD Hd = HoISUaWi(] A1epuooasg ~ -’
SISPEIBLD € 1SI5 HLNOW=($Q)puoisuaiisg ABwig £lol 451"
SI90BIEYD £ 181 T DOT SNO=(CQ)suoisusLUg Bl
SISREIBYD ¥ 1S ANMODILVO={ZIZuoisusiuig ABluid
SISOBIBYS § 164 "O4iN={1 () | UDISUSLUI AsRWLS
ISUCISUBLIG

HAAVT ST L1863 T30 BOHS AMODILYD 05007 mmoimw”x&z@ﬁww_ﬂmmﬁ,ﬂwméﬁmm”mm“ﬂ@mnm (g uooesuURI |
mm.mmw”mommam\rmwmmM..%MOmum,r{OuI{..m“OO;@E@DOFOO”XPZOw,ﬁmxmZuwm_\ﬁmmw”mmEQOma 65 uohoesuRI |
MIAHIAILZCGZ IS HDN A IOHS ANOOTIVIHVYTIOT SAONNMHINOW IMNSINGYE Al dOHd 195 uolioesuel |

TOGTLZSEDNMEE TIVEAYODILY MY T 00T SNOAONHINOWNOS HAMIDHN LST:GI Q0Md | 4 uonoesuel]

HIHAGTA 08 091 ADN G FOHS ANODTLYIHYTEIOT SNOINNCHINOW IMINO4N8re Q. aOXHd £ UORDBSUR Y
HAMHAE4708°0L ww”mmxmnmmeIm;,mOmumam,{Q“I<HU;O4!WDQWZD?IPZOSﬁmxmZ“m‘yn@ﬁmwvmﬁﬁa@m& 7 uoloBsSuRiL
YACAYHYHS 89 0613 304 DOV AMODILVI OAN'SOT SN E34 HINOW IONIMA D4N-819°Gl AO¥d L uonoBsUEL |

r o4
€91 'Ol ek

75182

WO 2018/200862

PCT/US2018/029636

TN

B

TePe T USHMIN T@

TP USERMIN W

SjUSLUL|T B1B(] SWilid

; m =d 01 Jury

ADNHYT
TIVES AL

gA40AN

F0d OINUNT o 1L USWISE 0 YU 8SIBAGY 1] O

%

TivE

o 85 UoLUSIS O JUITT S5I0A3Y i . w...mr}}
0116 Wswise mw { NOCHY DOV mmﬂm
2, IOHS AN
30d AU 42 EW\W\»%&E Q@mmﬂ &m&m\,mm .Id‘xm . MOIMW

Jaiay

i ED /1 uoisusuig

dAOHS
% 7 UOISUSLUIC

%,

4 200 014U | o 165 Wsluele 0] Y esiensy

org.
2 UOISURUN(C

30 WU | d 09 1UeLele o) yur esieray | 1| IISUMT fe P uoisusung

%, AOHEGIOY

T H3SOrSI0OHSTIAY S0d 0} SoURIsjeN Bl
T LOOHYISHAMMIN 30d 0F 90Ua1eioy "allitid

TTNNPHY TIOHSTIMIN 30d 01 80Useey ‘sulild

T AONHYTTIVES IAM 30d 0} 90U218j0x 'Bllilld
£ weiBold uoRmNsU0nay " NNPHY TIOHS IHIN J(0- 01 60UaIS|aY 'SARBALIC

TTNAMHYTIOHSIMIN 30d OF 90Usi6)ay "aultid
T GIADANDOVIENMd 30 03 2oUsIRBY ‘Sl

o0l JBISBN

00 HUSUIBIT #ows

66 a3 ...f

QG JUSUIDT e

¥ JUSWSI &@

£ IUSLUBIT s

Z JUOIB|T Hrf

alid PailIsIg

291 "Did

[RTRETTVE T \

76/82

PCT/US2018/029636

3

TUediay

N

ek SHMIN T

TEPET T USEMIN W

SUBLUSIT BlE(Sllld

WO 2018/200862

dd 943U

b SIS0 0] YUIT 8S1oA8H

i A30d CHjun

: ” | / aaoud
. UoIsSUS LI

Hdd 01U

\¢ ».»

47 EWEJE Bxcj uﬁy\ax

.

Alepuoseg Jo4
gai] Aeijixny

NOTHY T
JOHS I
-

304 9 xcj d ‘85 Usligle o1 yun 9

%,

SRS

Jaiavy
L UOISUSLUICT

T OISUBIG

% UoISUBLIG 30l IBISEN
dasors
IOHSAIOY P UOISUSUN(]

dgi "Oid

~ dISOrSIOHSCIAY Iqd 0} Soudiaey ‘Bllitlg {09 HISWRIS

66 a3 ...f

T LO0OHVYISHIMIMIN 30d 0} 90UsisiSy Silitid

TTNNPHY TIOHSTIMIN 30d 01 80Useey ‘sulild

RG JIBUIRNT iy

" AONHYTTIVES UM JCd 03 0URISIeM SWild | 4 justus)y \sn\..u.....i

4 wieiboid uonnpsucosy - \\mitii

" NAPHYTIOHSTAIN 30d 01 80URIAISY ARG | o ooy
“NAPHYTIOHSTYIN J(0d 0} 90UBISIBY ‘Bl | 7 JUSLUBIY Gt

T GIADANDOVIENMd 30 03 2oUsIRBY ‘Sl

(ARUETTTE: T \
EERESE @

77182

_PCT/US2018/029636

TUESTIM

s

ek SHMIN ¢

X

TEPeTUSEMIN P

WO 2018/200862

3

B

TUediay

siuciisil BB ol

%,

2%

F0HSAIaY)

T H3SOrSI0OHSTIAY S0d 0} SoURIsjeN Bl
T LOOHYISHAMMIN 30d 0F 90Ua1eioy "allitid

TTNNPHY TIOHSTIMIN 30d 01 80Useey ‘sulild

T AONHYTTIVES IAM 30d 0} 90U218j0x 'Bllilld
£ weiBold uoRmNsU0nay " NNPHY TIOHS IHIN J(0- 01 60UaIS|aY 'SARBALIC

TTNAMHYTIOHSIMIN 30d OF 90Usi6)ay "aultid
T GIADANDOVIENMd 30 03 2oUsIRBY ‘Sl

YAOLVEYHS
30d M AU oy UsWBsis o1 jur 8sI8ABY |1 . \
%, Loa) NERCE
HAHE0E4
004 01 UM o (L USSR O} U] asIeAN) mwn_uu}z : CHER G HIEG ORI IR T
BOYaNIEG o
} 592URIRIBY B5I3ABY piomiay
HYT
A X A
. - S CEE/ Y SPIOMASH 103 XOpU] petIsAUl
TS DENUNTE & 166 WUSUIRG O] T osIenay iz AN STHAA
%.
o . NOPHYT | 0ovY idd
¢ listusls Ol 9RISAD ,
| dENRE H | FoHsDin |
\\ O G142 E.MM&@ m@m..mﬁ m&mwmm - e SOMS
/ i aigy
) g SHdr L ucisusuiQg
i . 1D0HYT | e
\\ AOd QUM E A4 86 Emw\wc&m CLAUN ssisfoM il U L (S| dOHS
/| o , e 7 UDISUsUIg
7 100 o
A & .~ ¢ uoisuauwig
B dI8008 . 3 =8
71 B0 01 AU | d 100 Wstiale 0 YU esieAsy L] SERE L i~ uoisuauig

0% HUBUIB|T Zwres
6G sl »...7

QG JUBUIDT]

¥ juews|y &@
LRICTITE Rees

AUCTIEERZE

491 "Oid

alid PailIsIg

(AR T Lot \@

PCT/US2018/029636

7882

0304 0

WO 2018/200862

o o i e (N3a BANBALIS SoUDIIY
USWIS[T B1R(] Blllld = JC4 1910N i ol !
01 80UBISI5Y ./ o fl .
J J i ¥ 800l d UoRMISU00sy A ¥ A Sultidd
F K + 50000000000000000%
{3 01 soUBIRIeYN ;
\\ B w\; m\
gil Inding ele peasLiey e12Q pelinsiy gg; 8Ll
smeseddy uononpsy B Jo smeleddy , uonelsK] BeQg
~ gled 85aJ] AlBljIXNY . Suiauodios
@r m\ ﬁ@wﬁﬁwmﬁcuﬂm of — P Am\/a_mw o) s81EpCn g m:czm_mﬂwco mﬂwmﬂ mumuom;.mumwm
\\\\\ #~ BABIS €l8Q uilid 0} mﬁmunw " P TS Mkéc
N - o il
GieiBoid UoRrINSU0NSY SSINaEXe) & g S {swawzig m"ma w&i& par8LIDY) SIS 804L
& WBWIBIT epIpuRD
JOINISUDOSY JBALISC]
7~ 4 Jsddep) aABIDOSSY WSLUCD Y P
ail YERT Lo oLl
’ o
1 30d UCHBALISD JOf 3igBunsS
SIUSAT BIEQ Sl POA3INSY
) -
s S GoL JUBLLDIT BIEDIDUED
LOLL
k {SiUoLUISiS 2IBRIPURD SOIREID)
{WelBosd LolNINSLo0aY puk P 19700 _
SIUBUSIT BIR(] Blllic] SOUDISY) el ¢ 3dd sjr... LopeA mi X3pu
FEVEILEN L30d e 7 P k3 pa1ISAL
7 : -~ ’ 0l 19818 —
bbb A 001 S40IG BIB(] Sllild JO 8ABIQ BlB(] Slliid y e Se—
M3Cd _ awug anjentag ~, (30 03 0URIR3Y T $ Tl -
0} POULIRITH fn“ e l/ L AL ~ " w_a“ BiBYas €0l
!) Wigibod 4 UONISU0nay i 1 > S 0Ll s RIGMAS)
e . SOUBND TOLL
(raad oy souassioy) ' JOUNSBY § § souand .
GOLL § B~
e~ 0L 7~
sisanbay [BASUISYH &5 £ % eled ndul 7,
1 usweleuepy elec w WaIsAG Ay 1 .
1 weishs Gunelsdo ‘suoneoiddy | LOiL
% ¥ ~
scidy
1 "9l aulbug [eAsiaY SAIRIOSSY JUBIUOD sishipuy B1B(]

79182

PCT/US2018/029636

WO 2018/200862

[eubig oIpny pepoouy SdiN

Buijewo) wealisig

J0 Buipoo

UOHBLULIOJ] BDIS

Buipoo

UBWLNH

jeziuenb
WLCHUNUCU

AUBQISIY

)

(NDd) leubig oipny [BabIg

Japooudg (€ 18427 1-93dIN) CdIN V8L "Sid

NM, sl

oL8lL
sanueid -

paznuenb
ApJojiunuou

PCT/US2018/029636

80/82

WO 2018/200862

(WD d) 1eubisg oipry jeubig

R e

suBgiaiy Huedaliy
sseydAjod aseydijod
SISBUIUAS SiISOUIUAS

UOISIBAUI | | UOISISAUI
Aousnbayy . fousnbaly Duuspiosl

t

waw | 1oawl

581
- : 591
saul Aouenbayy ~
m ; poziuenb % SICIDBIBIEDS
UoHONPaJ Skelle | | UoioNpal seie @ w,
e .
Buipooap y »
LBLUNH ” :

Buiposep @
oaseis ol

BUoBUD 10140 198
M v % UONEZIUCILOUAS r

)

[eubis oipny pepooul £di

J8p0238Q (€ 18487 L-DAJN) S4N 981 DI

81/82

BB €je Slllid = 30d

i
vy

PCT/US2018/029636

WO 2018/200862

(/“’

VU E0d 0
IV HER

m>um>cwD¢IIJ wuc&&wﬂ. fw
i

L\
. - N {TURIB044 UORNIISU00aY Aapea Japesy
&R U B 1oPEH /f/, + 730 0 souBsopRN] EISI oS
£
F-y & el
m\,\m\w eleclibeponul odin = INAINO BiR(peasiiay 218 cdiN Paliisig m@m\r zesl
smeseddy uononpey Bleq Jo snigieddy , UOHBHNSICT B1BC
2led]
(823ig 01 seepRdn ¥ SUGHE]|ZISUL)
SINUISUCDS W3ad 1T % :
P o Hd T BI0)g Blee} aWilid 0) SRIepdn sauodwog
- vl peINpSy
{ Bumyenuio) WBSNSHG C4N swiioed
‘Buipoo uetlEng swiopad (SIUBWIBIT BIB(T WL POABLIGX) SALIS(T & JUBUIBIT dlepIpURD
‘sinues apne spreueb dsAauadd
o3 weiboid uoRrIEsSUC0aN SSINDIXS) .
JOINIISUODDY 2 -
: Macd ® 0igl
- & s~ Jaddeiny
ziel L= SAIBIDOSSY) a@w@ém?& .mmgmfsm .
S STOWIBT BIBC] OWid POASLISY
uauon
<
\ SIUBLAS|T BjEpIDUES)
5881 o,
> SRINUBLD OIpNY
A
, N . weld oipne S108IXa B
n,ﬁ._m(mm_ﬁg UQNNIWISUNI3 M pue e .Aw.u_wz_m‘m I I e
SIUBLIBNS BYEC] SUNid SOUOIEY) Py LS T .Jwm_owﬁwwﬂmwmﬁmﬂwﬂwh_ww,. //
ASH b E0d e @ Bl stisopiod)
JBABIISY p sezuopeL g J9sied | =
L % 998! SASIS Ble(] Sl x ‘
T3040 guug ~
m%mém&llld SOUBISIeY ’ £e8l
{ zf f
eI U0NNHSB008 H Jopea JOpEBH i y -
+ 7304 01 80uUsIRioy CAiNISIC L iAlSIO e OpEeH fed {ePEaH
\\

s1senbay jRASILIEY

28 "Oid

Ble(PopooUT 4 JO Weang L, L

BB €je Slllid = 30d

ey

PCT/US2018/029636

82/82

FAad o it
@%méwg.rlj soualsjey S
1Y f.y ﬂff
iJ 18] J3pEsH [atle 1opeak :/w /V [umiboid uonmusuoaY ‘_m%wﬂﬂ ,awwmn
412} %] g lope ~— . i ., B t]9}]
/IA/' /iw/ + | T 01 Sousiojay 1s10 i)
B &8
o5, egje 08piA = INdINQ Bl parsliay eleq 0OpIA PSINISIA 47,
smeseddy uononpey Bleq Jo snigieddy , UOHBHNSICT B1BC
gieq
< (araig 01 se1epdn ¥§ SUGHR)EISY
SINHISUCDS Ta=Te l <% ;
PaIn d =0d 240)G BIB(] alilid 0} selepdn ssuodiLod
- gl psdnpsy
(swey spwipuald ctt (SIUBWIBIT BIB(T WL POABLIGX) SALIS(T & JUBUIBIT dlepIpURD
o1 Wesbioad UoRNHISUOooY SOIN0aXS) BENIE-Tg
JOUNSUDO3Y -y -~
Macd ® gL61
- £ Ea seddepy
Zi6l faad SANBID0SSY LONBALIBD 40} BIOEINS
S SIBWRY BIB(] Olilld POASLISH
JUBIUCH
) I
SIUBILGIT B)EpIpUE”
CO61L L |= syepipued

S8 SaLies-|

¥

(e1ep 2imoid BUIAOW W0

{wisfiosd UonnPSUNN3Y pue . SO B PE 1D 0PI

SWIOWIB[T BIEQ SUllid SOUDIG) fmmmmmmonrd:

WO 2018/200862

- UG gIRD 2unId-BulAouw JoRAXa)
b Edd e
J8ABLIS Y y & J9ZUOE] % i8siBd ,W/o,mm
nd 1 9061 SABIS BIB(] SUilid K ‘
3040 Sl ~
m>_wm>r.mm..l/d souateloy MM;_& £061
BBl d UOHSUoDa Y e Haopear
IBRRGIAL VOIS . aAnn - i P
+ ™30 01 20UBIoIoY ?wwm ,:w_w eeq i9pesH ewrq iepeay
sisanbay [BASLIIEH BIE(] OSPIA JO WeshiS NQMM

61 'Oid

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2018/029636

Box No. I1 Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

1L

i
£

N

3

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See extra sheets.

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable

claims.

2. ¥ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. {7 Asonly some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. % No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-6
Remark on Protest { The additional search fees were accompanied by the applicant’s protest and, where applicable, the

payment of a protest fee.

{™ The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

i No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2018/029636

A.
Int.Cl. HO4N19/40(2014.01)1,

CLASSIFICATION OF SUBJECT MATTER
HO3M7/30(2006.01)1

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. HO4N19/00-19/98, HO3M7/30

Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1871-2018
Registered utility model specifications of Japan 1996-2018
Published registered utility model applications of Japan 199%94-2018

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 2016/205209 Al (ASCAVA, INC.) 2016.12.22, & 1-6
US 2016/0188622 A1l & TW 201717072 A & EP 3238344
Al

A WO 2016/106397 Al (ASCAVA, INC.) 2016.06.30, & 1-6
US 2016/0188622 Al & TW 201635173 A & KR
10-2017-0104509 A & CN 107210753 A & EP 3238344
Al & JP 2018-501752 A

A WO 2006/055587 Al (SMITH MICRO SOFTWARE, INC.) 1-6
2006.05.26, & JP 2008-521293 A & US 2006/0104526
Al & EP 1815398 A2 & KR 10-2007-0090168 A

i Further documents are listed in the continuation of Box C.

yo

™ See patent family annex.

* Special categories of cited documents:

“T” later document published after the international filing date or

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

“A” document defining the general state of the art which is not priority date and not in conflict with the application but cited to
considered to be of particular relevance understand the principle or theory underlying the invention
“E” ea?ler la ?[l{hca(tjlotn or patent but published on or after the inter- «“X” document of particular relevance; the claimed invention cannot
“L g?)clzltlr?eni lvlvlﬁic%inay throw doubts on priority claim(s) or which be considered novel or cannot be considered to involve an
is cited to establish the publication date of another citation or other inventive step when the document is taken alone
special reason (as specified) “Y” document of particular relevance; the claimed invention cannot
«0” document referring to an oral disclosure, use, exhibition or other be considered to involve an inventive step when the document is
means combined with one or more other such documents, such
“p” document published prior to the international filing date but later combination being obvious to a person SI?ﬂled in the art
than the priority date claimed “&” document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
23.07.2018 31.07.2018
Name and mailing address of the ISA/JP Authorized officer 5clo4 65
Japan Patent Office Kenji IWAI

Telephone No. +81-3-3581-1101 Ext. 3541

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2018/029636

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

WO 2017/100619 A1 (ASCAVA, INC.) 2017.06.15,
KR 10-2018-0021074 A & CN 107852173 A

&

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2018/029636

The claims can be grouped into four inventions as below.

(Invention 1) claims 1-6

Claims 1-6 include [extracting intra-frames .. to losslessly reduce
the I-frame] as the special technical feature, thus they are grouped
into Invention 1.

(Invention 2) claims 7-10
Claims 7-10 and claim 1 in Invention 1 include a common technical
feature, i.e., identifying a set of prime data elements to perform
a content-associative lookup on a data structure to losslessly reduce
data. However, the said technical feature does not make any
contribution over the prior art in light of the disclosure of document
Dl: WO 2016/205209 A1l (ASCAVA, INC.) 2016.12.22, and therefore does
not constitute a special technical feature. In addition, the said
claims involve no other same or corresponding special technical
features.

Further, claims 7-10 are not dependent claims of claim 1. Those claims
7-10 are neither substantially identical, nor similarly closely
related, with any claim grouped into Invention 1.

Therefore, claims 7-10 cannot be grouped into Invention 1.

Then, claims 7-10 include [initializing a data structure .. moved to
the second memory device] as a special technical feature, thus they
are grouped into Invention 2.

(Invention 3) claims 11-13
Claims 11-13, claim 1 in Invention 1, and claim 7 in Invention 2
include a common technical feature, i.e., identifying a set of prime
data elements to perform a content-associative lookup on a data
structure to losslessly reduce data. However, the said technical
feature does not make any contribution over the prior art in light
of the disclosure of D1, and therefore does not constitute a special
technical feature. In addition, the said claims involve no other same
or corresponding special technical features.

Further, claims 11-13 are not dependent claims of claim 1. Those
claims 11-13 are neither substantially identical, nor similarly
closely related, with any claim grouped into Invention 1 or Invention
2.

Therefore, claims 11-13 cannot be grouped into Invention 1 or
Invention 2.

Then, claims 11-13 include [factorizing input data into .. by using
the set of prime data elements] as the special technical feature, thus
they are grouped into Invention 3.

(Continued.)

Form PCT/ISA/210 (extra sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2018/029636

(Invention 4) claims 14-18
Claims 14-18, claim 1 in Invention 1, claim 7 in Invention 2, and
claim 11 in Invention 3 include a common technical feature, i.e.,
identifying a set of prime data elements to perform a content
—assocliative lookup on a data structure to losslessly reduce data.
However, the said technical feature does not make any contribution
over the prior art in light of the disclosure of D1, and therefore
does not constitute a special technical feature. In addition, the said
claims involve no other same or corresponding special technical
features.

Further, claims 14-18 are not dependent claims of claim 1. Those
claims 14-18 are neither substantially identical, nor similarly
closely related, with any claim grouped into Invention 1, Invention
2, or Invention 3.

Therefore, claims 14-18 cannot be grouped into Invention 1, Invention
2, or Invention 3.

Then, claims 14-18 include [factorizing input data into .. in a set
of prime data element files] as the special technical feature, thus
they are grouped into Invention 4.

Form PCT/ISA/210 (extra sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - drawings
	Page 174 - drawings
	Page 175 - drawings
	Page 176 - drawings
	Page 177 - drawings
	Page 178 - drawings
	Page 179 - drawings
	Page 180 - drawings
	Page 181 - drawings
	Page 182 - drawings
	Page 183 - wo-search-report
	Page 184 - wo-search-report
	Page 185 - wo-search-report
	Page 186 - wo-search-report
	Page 187 - wo-search-report

