(54) Title: SYSTEM FOR STRUCTURED COMMUNICATION BETWEEN PARTIES

(57) Abstract: A system may comprise a remotely-accessible controller configured to present a user interface to one or more of the parties; and a state information repository to be updated throughout a transaction, wherein changes in the state information are constrained at least in part based upon a transaction type determined from a predetermined set of transaction types; wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties, attempt to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party, establish a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction, and, upon advancement of the state information from a first state to a second state, engage associated parties through the user interface.
SYSTEM FOR STRUCTURED COMMUNICATION BETWEEN PARTIES

FIELD OF THE INVENTION

The present innovation relates generally to computer software and computer network applications. More specifically, it relates to configurations for generating and managing electronic records that facilitate transactional interactions between two or more parties.

BACKGROUND

A "transaction" may be defined as a communication pattern occurring in the conduct of business and personal affairs between parties. A beginning of a transaction may be defined as the point when an initiating party makes a request to one or more specifically identified counterparties. One or more of these counterparties may respond to the request, and the requesting party may evaluate the response and decide whether to accept or reject the response outright, or to issue a counter-response that suggests modifications to the response. A transaction may incorporate an unlimited number of modified responses and counter-responses. The transaction may terminate when the initiating party accepts or rejects the response, when the initiating party cancels the transaction, or when one or both parties withdraw from or abandon the transaction. Although some transactions, notably transactions in highly regulated financial markets, are standardized as to their structure and content, many transactions require that the parties adjust flexibly to the specific circumstances of the transacting parties and the particular transaction.

Present software-based systems for handling transactions can be classified in three broad categories: workflow or business process management systems, task management systems, and general-purpose communication tools. Systems in all three categories exhibit significant shortcomings with respect to transaction management because they are not designed to handle transactions with the structure described above.

Systems with workflow or business process management capabilities such as those available under the tradenames Documentum (RTM), Microsoft SharePoint (RTM), and Lotus Notes (RTM) are designed to perform a sequence of partially automated transactions using predefined templates. When a given workflow has been triggered, such a system initiates a sequence of predefined transactions with a
set of pre-assigned counterparties. The system acts as the initiating party, issuing requests and processing responses. The structure, content and sequencing of the transactions is determined by a set of predefined rules. Although this approach may work well for handling certain high-frequency, low-variability transactions, it is poorly suited to relatively less frequent, higher-variability transactions for two reasons.

First, creating a workflow pattern for the software to follow requires a significant investment of time, effort, and technical expertise, because the associated transactions must be classified, standardized, captured in a set of templates, and rules must be developed to determine how the transactions are carried out under any particular circumstances. For many transactions that occur in the course of business and personal affairs, these investments are not cost-effective, generally ruling out the use of workflow or business process management tools.

Second, as stated above, many transactions that occur in the course of business and personal affairs cannot be fully standardized, because they involve adjustment by the parties to particular circumstances at hand. These adjustments are often handled through counter-responses and modified requests that follow the initial request-response interaction. Since workflow and business process management tools automate the initiation and handling of transactions using predefined templates and rules, they are not well-suited to adjust flexibly to particular circumstances. Transactions that do not fit the templates and rules in the system must be handled outside the system, or the system must be modified.

As a result of these limitations, use of workflow or business process management systems is generally limited to transactions that are relatively frequent and that exhibit relatively low variability. Also, these systems are often used in conjunction with more flexible communication tools that can be used to handle transactions that cannot be easily standardized. For example, a workflow system may be used to collect formal approvals in a business environment after a decision has been made, but transactions associated with the actual decision-making process may be handled outside the system.

Task management systems allow users to create tasks and assign them to other people. In some cases, such a system may notify the task creator when the assignee has completed the task. Characterized in transactional terms, these systems allow a request to be issued in the form of a task, and for a response to be
provided in the form of a notification that the task has been completed. However, as described above, issuing a request and receiving a response does not necessarily complete a transaction. Much of the difficulty in managing transactions is associated with the need to handle a series of counter-responses and modified requests.

Since task management systems are not designed to handle the entire sequence of transactional interactions, they generally are suitable for only very simple transactions, or for initiating and tracking the completion of transactions that are conducted using other communication tools. For example, when an assignee receives a task, the assignee might use a series of emails or telephone calls with the task creator to perform the transaction, and then mark the task complete in the task management system.

The clearest evidence of the limitations of existing workflow/business process management and task management systems is the very large volume of transactions that are conducted using the third category of transaction-handling system: email, telephone, and other general-purpose communication tools. These tools permit the transmission of messages among the parties to a transaction, but they generally do not have any transaction management functionality. Specifically, these systems typically do not track when a transaction has been initiated, whether a response has been received from the counterparty, how the content of the response maps to the structure of the request, what counter-responses or modified responses have been issued, or whether the transaction has completed and, if so, with what outcome.

As a result, general-purpose communication tools are an inferior technology for handling transactions. It generally is not possible to track or monitor ongoing transactions or analyze completed transactions, and managers in an organization generally cannot identify problematic transactions or evaluate transaction-processing performance by individuals or groups. Further, it generally is not possible to aggregate similar transactions for monitoring or analytical purposes, or to store the structure of completed transactions for reuse in the future, so transactions are recreated from scratch every time, requiring extra effort.

These limitations have significant practical implications, especially for organizations such as businesses. When general-purpose communication tools are used to handle transactions, it is difficult or impossible for managers to obtain, at a reasonable cost and in a timely fashion, information about much of the transactional
activity that is occurring or has occurred within the organization. This impedes the
detection of problems, hinders the objective and accurate evaluation of staff
performance, and reduces the ability of managers to make timely and well-informed
business decisions.

None of these existing systems can be easily modified to effectively overcome
their limitations with respect to transaction handling. Workflow and business process
management tools are designed to automate business processes by automatically
initiating sequences of transactions and processing responses, so they are not
structured to facilitate ad hoc transactions between human actors. General purpose
communication tools do not have the necessary structure to enable transaction
management functionality; Google’s Gmail (RTM) and other email clients can group
related messages by subject which may help somewhat, but there is no way to
determine the status of a transaction reliably from the information in an email
message. Finally, task management systems are designed to enable assigning
tasks and tracking whether tasks have been completed, so they cannot
accommodate a sequence of interlocking, structured interactions that may be of
arbitrary length and complexity.

What is presented is a worldwide web based, or cloud-based, solution for
modeling electronic communication transactions, or communication "handshakes",
comprising a web service, client applications, and additional interface components
integrated with other end user applications such as email, calendar, contact
manager, social media, or other enterprise IT. The solution may also be deployed
using private cloud and on-premises configurations.

The client applications may be configured to enable users to access the web
service and perform the various activities. Clients may comprise HTML websites,
javascript applications running in a web browser, applications for personal computers
running operating systems such as Microsoft Windows (RTM) or Mac OS (RTM), or
apps for mobile devices running operating systems such as Apple iOS (RTM) or
Google Android (RTM).

SUMMARY

One embodiment is directed to a system for structured communication
between specified parties, comprising a remotely-accessible controller configured to
present a communication user interface to one or more of the parties; and a state
information repository comprising state information to be updated throughout a transaction, wherein changes in the state information are constrained at least in part based upon a transaction type determined from a predetermined set of transaction types; wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties, attempt to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party, establish a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction, and, upon advancement of the state information from a first state to a second state, engage associated parties through the user interface. The system further may comprise one or more computing platforms through which the communication interface is presented to the one or more parties. The one or more computing platforms may be configured to operate a web browser to operate the communication interface. At least one of the one or more computing platforms may be selected from the group consisting of: a mobile phone, a PDA, tablet computer, a laptop computer, and a desktop computer. The controller may be configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by sending an email. The controller may be configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by operating an application configured to function as a plug-in to an email client. The email client may be based upon an application platform selected from the group consisting of: local computer application, online application, and a mobile application. The controller may be configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by connecting directly with an email server. The controller may be configured to initiate an electronically mediated interaction by detecting events from an electronic calendaring system. The controller may be configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by selecting a previously-existing transaction. The predetermined transaction types may include one or more transaction types that are based at least in part upon previously initiated transactions. The controller may be configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by
establishing dates that trigger actions by the controller. The controller may be
configured to attempt to establish an initial context for the transaction by detecting
transactions currently selected by the initiating party/originator in the user interface.
The controller may be configured to attempt to establish an initial context for the
transaction by detecting transactions currently visible to the initiating party through
the user interface. The controller may be configured to attempt to establish an initial
context for the transaction by detecting transaction elements currently selected by
the initiating party in the user interface. The predetermined set of transaction types
may be selected based at least in part upon the initial context. The transaction type
may be determined at least in part based upon the initial context. The
predetermined transaction types may comprise a transaction type that may be
acknowledged but does not require acknowledgement. The predetermined
transaction types may comprise a transaction type that requires an
acknowledgement. The predetermined transaction types may comprise a
transaction type that requests a response. The predetermined transaction types
may comprise a transaction type that requests approval of specified items. The
predetermined transaction types may comprise a transaction type that modifies the
set of parties to the transaction. The predetermined transaction types may comprise
a transaction type that modifies the roles of parties to the transaction. The
predetermined transaction types may comprise a transaction type that requests
parties to the transaction to propose meeting times. The predetermined transaction
types may comprise a transaction type that requests parties to the transaction to
approve proposed meeting times. The controller may be configured to initiate an
electronically mediated interaction pertinent to a communication transaction between
the parties by receiving triggering information from a calendar system. The
predetermined transaction types may comprise a transaction type configured such
that a first party introduces a second party and a third party to each other. The
controller may be configured to establish a defined role by presenting information to
the party in a manner contingent upon the defined role. The controller may be
configured to establish a defined role by receiving information from the party in a
manner contingent upon the defined role. The controller may be configured to
establish a defined role by limiting the actions available to each party through the
user interface. The state information may comprise a state selected from the group
consisting of: a sent state, a viewed state, a waiting-for-response state, a waiting-for-acknowledgement state, a cancelled state, and an abandoned state. The controller may be configured to monitor a time elapsed after a response was requested, and to issue a reminder to one or more parties to the transaction. The controller may be configured to allow parties to the transaction to associate information with the transaction. The controller may be configured to track time associated with changes to the transaction state. The controller may be configured to establish relationships between two or more parties. The controller may be configured to characterize membership of a particular party in one or more groups. The controller may be further configured to establish a set of tags. The controller may be further configured to specify a delegate for one or more of the parties. The controller may be further configured to modify the parties to a transaction under a specified circumstance. The controller may be further configured to request information from a party to a transaction after the transaction reaches a terminal state. The controller may be further configured to specify at least one of the one or more parties from a group of predetermined candidates. The controller may be configured to display summary information regarding the communication transaction through a graphical user interface. The controller may be further configured to display information to a user generated at least in part upon one or more transactions to which the user was not a party. The controller may be further configured to automatically suggest values for one or more input fields in a current transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a conventional communication configuration utilizing an online bulletin board or "wiki" web service.

Figure 2 illustrates a conventional communication configuration utilizing an online email service that features a threading organization of related emails.

Figures 3A-3C illustrate embodiments of the invention wherein a controller is utilized in the context of a web service to manage various aspects of one or more communication transactions between parties.

Figures 4A to 4Z-13 illustrate various embodiments of an exemplary paradigm wherein several members of a law firm are working together to address tasks and communication transactions using various embodiments of the inventive systems.
Figure 5 illustrates embodiments of a computing infrastructure suitable for engaging in communication transactions in accordance with the invention.

DETAILED DESCRIPTION

Referring to Figure 1, a conventional online bulletin board or "wiki" configuration is illustrated wherein a first person posts a first message to an online posting site (2). In response to this first posting, another person may post his own textual message (4). Subsequently, the first person may read the response and post an additional response, that may, for example, contain a photo, audio clip, video clip, and/or textual message (6). Finally, subsequent to the third message (Message3), a third person may post a fourth message (8). While such a configuration may be utilized to facilitate communications between two or more parties, there is very little order or efficiency in the communication pathway, and such shortcomings are often observed in blog or comment postings all over the internet. For example, in response to a typical New York Times article, one or more parties may attempt to have a conversation regarding a particular aspect of the associated article, while others often intervene with positions or arguments that are tangential to the original conversation, a distraction, or worse, and eventually the blog posting site may degenerate into a completely unorganized mosaic of generally unrelated messages.

Referring to Figure 2, a typical mail service does provide some additional order and efficiency. For example, a first person may send an email to a second person using a mail service such as Gmail (RTM) (10), after which the mail message is dispatched and arrives in the inbox of the targeted person, remaining there unopened until the targeted person opens it (12). The targeted second person may open the email message and decide to dispatch a reply (14), after which the reply is sent to the first person and may be organized in relation to the original message in as a message "thread", or grouping of emails between the same two parties (16). An online dialogue may be accomplished between the parties using the thread organization (18). While this type of online dialogue, familiar to many, provides a means of communicating, there is little order or efficiency due to the fact that the only significant organizational features of the interaction are that the communicating parties remain consistent and the group of communications may be treated as a thread. The transactions are not bounded and stateful, there are no defined roles, defined transaction types, or defined state paths (other than the tracking by the mail
server that a particular message has been read or not, and this may be controlled by
the operator's use of functions such as "mark as read", which may confuse the actual
state of the communication transaction). The thread, or the associated controller,
does not know, for example, when the messaging interaction is "done", which party
must respond next in order to advance the state of the interaction, who the initiator of
a task is, whether a sub-thread has developed about a related but distinct task or
topic, or whether a task has been handed off to someone else. As a result, the email
inboxes of many knowledge workers trying to complete tasks through collaborative
communication become cluttered and inefficient, notwithstanding the threading
features available with services such as Gmail (RTM).

Referring to Figures 3A-3C, various embodiments are depicted wherein
various shortcomings of conventional communication transaction systems are
addressed in a generic form; specific examples are illustrated in reference to
Figures 4A to 4Z-13. As shown in Figure 3A, an online application or web service
may be configured to allow an electronically mediated interaction pertinent to a
communication transaction between two or more parties to be initiated (20). In one
embodiment, the system may be configured to attempt to establish an initial context
for the communication transaction based upon factors such as previous
electronically-mediated interactions between one or more of the involved parties
(22). For the purposes of the subject invention, establishing an initial context refers
to establishing the full or partial specification of a set of variables that can, but do not
necessarily, influence the parameters of a newly initiated interaction. A transaction
type may be selected or established from a predetermined set of transaction types
(24), and a defined role may be established for each of the parties, each role
defining bounds upon the communication activity of each party within the transaction
(26). A state information repository, such as a database operatively coupled to the
browser sessions of the pertinent involved parties, as described below in reference
to Figure 5, may be established and updated throughout a given transaction or group
of transactions, the state information comprising a comparison between a current
state of the transaction at a given time and a planned transaction pathway that is
based at least in part upon the transaction type (28). In other words, given a
planned transaction pathway (the way the transaction should flow), a comparison
may be made with where the transaction actually is at a given time. All of this may
be coordinated by a controller configured such that upon advancement of the state
information from a first state to a second state, as defined by the planned transaction
pathway, associated parties may be engaged through computerized user interfaces
operatively coupled to the controller, such as by a web browser session (30).

Given such infrastructure, other elements may also be added. For example,
referring again to Figure 3A, the controller may be configured to characterize
membership of a particular party as a member or one or more particular groups (32).
The controller may also be configured to establish a set of tags (34). Further, the
controller may be configured to specify, or allow an operator to specify, a delegate
for one or more of the parties to the transaction (36).

Referring to Figures 3B and 3C, elements 20, 22, 24, 26, 28, and 30 are
similar to those featured in Figure 3A. As shown in Figure 3B, the controller may be
further configured to modify the parties to a transaction under a specified
circumstance (38), to request information from a party to a transaction after the
transaction reaches a state, such as a terminal state (40), or to specify at least one
of the parties from a group of predetermined candidates (42). As shown in Figure
3C, the controller may be further configured to display summary information
regarding the communication transaction through a graphical user interface (44), to
display information to a user generated at least in part based upon one or more
transactions to which the user was not a party (46), or to automatically suggest
values for one or more input fields in a current transaction (48).

To further illustrate such attributes of various embodiments of the inventive
application, aspects of a typical business scenario are featured in Figures 4A to 4Z-
13 as addressed with embodiments of the application. In this hypothetical but
realistic scenario, a law firm is contacted and asked to represent one company in a
possible acquisition of another company. The related seemingly simple set of
communications is actually relatively complex, and with a conventional communications platform such as an email service, many emails will be generated in
many inboxes of users, with little tracking of tasks and order that are necessary for
the efficiency of the process and individuals involved therein.

Referring to Figure 4A, a simple diagram illustrates that in this example
scenario, Acme, Inc, an intended acquiring company (50), is interested in acquiring
target company Delta, Inc. (52). Referring to Figure 4B, a list of players in the
business communication scenario is listed, including Charles Potter, the CEO of Acme (54); Richard (56), a partner at the law firm (BigLaw LLP) contacted by Acme to potentially handle the acquisition with Delta; John (58), the director of conflicts at the law firm; Robby Smith (60), a conflicts analyst at the law firm; Albert (62), a lawyer within the law firm; Bernard (64), another lawyer within the law firm; Carol (66), an expert consultant to the law firm; Darren (68), another lawyer within the law firm; Frances Parker (70), an assistant with the law firm; Fred (72), the CEO of the target company, Delta, Inc.; Edward (74), another lawyer within the law firm; and Greg (76), an additional lawyer within the law firm.

Referring to Figure 4C, the exchange of communications between knowledge workers begins with Richard (56) sending a message to Charles (54) as a follow up to a telephone call, wherein Charles called Richard's firm and left a message asking if the firm could represent Charles and his company, Acme, in a possible acquisition of Delta. In a conventional scenario, Richard might go to a simple mail interface and send Charles an email, which could lead to many other associated but uncategorized and untracked messages regarding the process of determining whether the firm can represent Charles' company in this particular matter. In the depicted scenario, Richard accesses a main user interface view (86) generated using one embodiment of the subject system, wherein four main fields are depicted: an "action required" field (78), configured to display for a user tasks that are required of him personally that remain incomplete; an "open items" field (80), configured to display for the user tasks that are required of others that remain incomplete; a "new interaction" field (82), configured to allow the user to create a new communication interaction with another user; and an "all interactions" field (84), configured to display for the user information regarding all current interactions involving the user. Referring again to Figure 4C, using the new interaction field (82), Richard has selected a button to send a new "Message" from a selection of predetermined communication types that may include a new "FYI", a new "Ping", or a new "Request", and has typed in a new message to Charles regarding the possible engagement. The system may be configured to treat each of the selectable communication types as different (for example, in one embodiment, the Request type may be configured to require a response of the targeted receiver, while an FYI type may not; a Ping message type
may be configured to require attention but no response; a Message may be configured to require attention and/or a response).

Referring to Figure 4D, subsequent to dispatching the Message of Figure 4C, the user interface (86) may be configured to display for Richard (56) that he now has an item in the Open Items field (80) - the message that he sent out to Charles - as well as an item in his All Interactions field (84) - the same message to Charles.

Referring to Figure 4E, in the depicted embodiment, Charles receives the message from Richard and views it using a conventional email client interface, such as Microsoft Outlook (RTM), due to Charles’ lack of access to a system-connected interface such as that depicted in Figure 4D for Richard’s interaction (86). The mail client viewing interface (88) shows the text (90) of Richard’s message, and in the depicted embodiment, also contains a field (92) featuring information regarding the communication system utilized by Richard (which may be named the "moduleQ" system) to generate the message and manage his communications and those of others in his law firm. In the depicted embodiment, certain key words and/or phrases are described in the field (92) to facilitate processing of the response from Charles as it is processed inbound back to Richard using the subject communication system. The content of the message from Richard says that the firm needs to do a conflicts check, and that Richard will get back to Charles as soon as this is finished.

Referring to Figure 4F, before receiving a response to his outgoing message to Charles (54), Richard (56) utilizes the user interface (86) to create a new interaction (this time a Request requiring a response) with John (58), the conflicts director within the law firm, because Richard is going to need John’s department to clear any conflict issues before Richard can engage Charles’ company for the potential acquisition legal matter. Referring to Figure 4G, after completing and sending the outbound request message to John, Richard’s (56) user interface (86) may be updated to show that he has two items in the Open Items field (80) - one message out to Charles (54), one request out to John (58); these items are also displayed in the All Interactions field (84).

Referring to Figure 4H, with a reply from Charles featuring the aforementioned key phrase “got it”, the system may be configured to close the previously "open" item from the Open Items field (80) in the user interface (86) as viewed by Richard (56), while continuing to display the item in the All Interactions field (84).
Referring to Figure 41, the system may be configured to allow Richard (56) to "Defer" the request to John (58) for a selected period of time, such as two days. This may allow Richard and/or John to conduct other research, attend to other matters, etc., and by selecting the deferral in the user interface, the previously "open" item from Richard's Open Items list (80) disappears, to return in two days. It does remain as an element of his All Interactions field (84) which may be easily accessed by clicking the item.

Referring to Figure 4K, a different user interface view (94) for Richard (56) shows contacts of Richard's, which may be viewed in various groupings controllable by Richard. For example, in the depicted variation, Richard has configured the system to have a field grouping for Prospective Clients (96), Clients (98), and members of his law firm (100), and for the system to display these fields in his main user interface view (94) along with the Action Required field (78), the Open Items field (80), the New Interaction field (82), and the All Interactions field (84).

Referring to Figure 4L, as a member of the firm, John (58) is utilizing the subject system and sees his main interface view (86) containing the Action Required (78) item from Richard (56), which also may be configured to show up in his All Interactions field (84). As the Director of the Conflicts Department, John (58) may decide to hand off or delegate the action to another person. Referring to Figure 4M, John (58) may utilize the system to electronically manage a "hand off" of the conflicts analysis action from Richard to Robby Smith (60), a conflicts analyst in the firm, by creating a new communication interaction (82) and including a turnaround time requirement, such as 3 days turnaround, in the message content.

Referring to Figure 4N, with the handoff communication dispatched by John, Richard may view an interaction feed view (106) of the user interface (102) to see that the action required of John has been handed off to Robby; this view also shows Richard's other messages in this interaction that are related to the two people shown in the Participants field (104). Such a configuration may be utilized to easily check the status of an ongoing interaction between a set of participants; further, such a configuration may be utilized to easily check the state of all ongoing interactions to which the user has access or in which the user is involved.

Referring to Figure 4O, subsequent to the handoff using the system, John's (58) main view (86) shows that he still has the Action Required (78) from Richard
(56), and that he has an Open Item (80) required of Robby (60) - the handed off
conflicts analysis task. Each of the interactions is shown in the All Interactions field
(84).

Referring to Figure 4P, the main interface view (86) of Robby (60) is shown
having one Action Required (78), the action handed off from John (58). As shown in
Figure 4P, Robby may select "Accept" and type in a quick message, such as "Sure
thing", to allow the system to monitor the process, and to provide John (58) with
assurance that Robby is on the task and that there are no apparent problems.

Referring to Figure 4Q, as soon as Robby (60) sends the "Accept" dispatch
for the handoff from John (58) (i.e., as soon as Robby officially accepts responsibility
from the perspective of the communications system), he becomes the designated
responder for the request or action originated by Richard - and thus in his user
interface view (86), he now has an Action Required (78) item directly connecting him
to Richard (56); this is also shown in Robby's All Interactions field (84).

Referring to Figure 4R, the acceptance of the handoff by Robby (60) clears
the item from the Actions Required field (78) of John (58) in his user interface view
(86); in this embodiment, the system is configured to still present the action in
John's All Interactions field (84) where it may easily be accessed.

Referring to Figure 4S, in this embodiment, the system is showing a user
interface view of Robby's (60) main page, with the Action Required (78) from Richard
(56), and a New Interaction "request" that Robby is creating to be sent that has three
yes or no questions for his recipients (108). Referring to Figure 4T, Robby
dispatches the new request from Figure 4S to four lawyers within the law firm (Albert
62, Bernard 64, Carol 66, Darren 68), asking each to reply with the answers
regarding the conflicts analysis for the possible handling of the acquisition of Delta
by Acme. Each of these new items shows up as a new Open Item (80) owed to
Robby; they are also shown in Robby's (60) All Interactions field (84).

Referring to Figure 4U, in the depicted embodiment, Robby (60) is sending
another New Interaction message, this time an "FYI" not requiring a response, to
John noting that he included Carol in the conflicts analysis dispatch, per the explicit
request of John. Referring to Figure 4V, subsequent to dispatch (i.e., by pressing
the "send" software button in the user interface) of the FYI communication, this
communication shows up as an element of Robby's (60) All Interactions field (84),
but not his Open Items field (80), because no response is required for an FYI type of interaction, as dictated by this configuration of the system.

Referring to Figure 4W, Robby (60) starts to receive responses to his requests, and these may be viewed together with his main user interface view (86), as shown, wherein the replies to the three questions from Albert (62) and Darren (68) have been returned by these users. In the depicted embodiment, the system may be configured to require that Robby (60) acknowledge each of the responses to complete the action cycle.

Referring to Figure 4X, Richard (56), the originator of the investigation task, may conveniently receive an update regarding the Acme conflicts investigation matter by simply selecting the participants/feed view (102) of the user interface, and selecting the interaction of interest (here involving participants John 58 and Robby 60). In this interface view, he sees that Albert and Darren have already replied, as well as the content of their replies. Referring to Figure 4Y, Richard may see in the user interface that Carol has not replied yet to Robby's (60) request, and may decide to directly and efficiently intervene by switching to a user interface view (110) also featuring a New Interaction field (82) so that he may quickly "Ping" Carol (66) directly with a message urging her to complete her response to Robby ASAP. The system may be configured to require an acknowledgement by Carol of a "Ping" type of interaction.

Referring to Figure 4Z, in John's main interface view (86), he can look to the All Interactions field (84) generated by the system to see his interaction with Richard (56) along with the associated interactions with Robby (60), Albert (62), Bernard (64), Carol (66), and Darren (68).

Referring to Figure 4Z-1, in one embodiment, the system may be integrated with an electronic voicemail system configured to use voice recognition processing to generate a textual transaction element within the system, as shown in Figure 4Z-1 as an element in an Items to be Filed field (114) that may be utilized for incoming elements wherein operator input is needed for effective categorization. The system may be configured to provide a best guess categorization that the operator may simply confirm by clicking a software button, or may manually categorize with a manually-typed categorization, a user interface drag over to another appropriate element of the user interface, etc. Referring to Figure 4Z-2, a voicemail has come in
from Bernard (64), and John is shown selecting one of the system-based
categorizations with a click (shown as an "X" next to "Request from Robby to
Bernard RE Conflicts Check for . . .") as a "file under" categorization, and entering
related text that results in a reply, as well as a New Interaction (in this case, a new
Request for Frances 70 to schedule a meeting).

Referring to Figure 4Z-3, one embodiment of John's user interface view (86)
is depicted with the new Open Item (80) of getting Frances (70) to schedule the
meeting. Further progress of this interaction is also shown in the All Interactions field
(84) adjacent Bernard, who is involved in the Frances interaction.

Referring to Figure 4Z-4, a user interface view (86) for Frances (70) is shown,
with her Action Required field (78) element related to John (58). Frances is shown
creating a New Interaction (82) with Richard and Bernard, which is a meeting
request with time selections (108).

Referring to Figure 4Z-5, after dispatching the meeting request, Frances may
go to the participants/feed interface view (102) developed by the system to monitor
responses from Richard and Bernard (116).

Referring to Figure 4Z-6, John (58), the Conflicts Director, decides to speed
things up by posting a draft conflicts waiver document, accessible by clicking a link to
a remote storage system, to Bernard and Richard so they can reply and/or comment.
John can see the status of this interaction by watching the participants/feed view of
the user interface (102) generated by the system.

Referring to Figure 4Z-7, with comments received from Richard and Bernard
and an effective conclusion that the firm may take on the Acme acquisition matter if
Delta signs the modified waiver document, John may send the waiver document to
Fred (72), the CEO of Delta, by way of a New Interaction request interaction
including the waiver, as shown in Figure 4Z-7.

Referring to Figure 4Z-8, a reply has come in from Fred in the affirmative
("John, this is not a problem. Let's proceed. Signed waiver attached.") and the
system may be configured to automatically match it with the parent interaction, and
also import the attached document (the signed waiver) and make it available by a
link.

Referring to Figure 4Z-9, with Robby, the recipient of the handoff from John,
on vacation, John intervenes to make sure that Richard receives the final affirmative
response from his conflicts analysis team: that the conflict issue is all clear. In the
embodiment shown in Figure 4Z-9, Richard elects to receive and view the message
using a conventional email system (i.e., as opposed to the subject system, which
also is configured to receive this message); this user interface of the mail client is
depicted with a field (90) having the message, and also a field including other
valuable information and links (92) that are operatively coupled to the subject system
and may be conveniently accessed from the conventional mail client interface (88).

Referring to Figure 4Z-10, Richard is back at his computer (i.e., desktop,
laptop, smartphone, or the like) and using the subject system for communications;
his Action Required and Open Items fields (78, 80) are clear with the conflicts
analysis done, and he creates a New Interaction (a "request" requiring a response)
with Edward and Greg, two lawyer colleagues in the firm, to see if they have
availability to work on the new matter for Acme.

Referring to Figure 4Z-11, Richard (56) may use the participants/feed view of
the system-generated user interface (102) to observe responses from Edward (74)
and Greg (76), and to use the New Interaction field (82) functionality to send out
additional communications, such as a handoff of a task, or a request about checking
financials.

Referring to Figure 4Z-12, in response to Richard's FYI transaction to Edward
and Greg, Edward (74) messages with a return question visible in the Feed field
(106) by Richard (56). Also visible is the handoff status of various items to Edward.

Referring to Figure 4Z-13, going forward with the legal representation of Acme
in the possible acquisition of Delta, Richard can use the participants/feed view of the
user interface (102) to conveniently monitor the status of the work done by the
particular participants, such as Edward (74) and Greg (76), and the Binder field (118)
may be configured to contain links and/or attachments of pertinent related
documents for easy access.

In one embodiment, attempting to establish an initial context for the
transaction based upon electronically-mediated interactions to which the initiating
party has access may involve scenarios such as one wherein a supervisor initiates a
follow-on transaction to be pursued by one or more members of his team.

As briefly noted above, the subject electronic communication transactions
may also be denoted as electronic "handshakes" - which, again, represent stateful,
goal-oriented interactions such as questions, requests, or notifications requiring acknowledgement. Existing technologies for performing handshakes, including email and telephone, do not capture the structure of the interaction, so tracking and managing handshakes is left to individual workers. Workers waste large amounts of time monitoring and prioritizing pending handshakes, retrieving information about handshakes, and recreating repetitive handshakes. The subject configurations address these challenges with a cloud-based communication platform that organizes worker interactions into discrete handshakes with explicit structure and state. Rather than requiring workers to define interaction structure beforehand, the technology may be configured to allow interactions to unfold naturally and to work in the background to capture structure and state information as it emerges. The technology may be configured to use this information to provide fine-grained insight into how and by whom work is getting done, and where attention is required. The technology may be configured to automatically organize handshake information and provide a shared, consistent view to all participants, helping workers see the big picture and avoid information overload. Handshakes may be reused, increasing efficiency and facilitating standardization. In contrast to other structured communication tools, the subject technology may be configured to capture the microstructure of individual interactions as they occur and aggregate upward to provide high-level visibility and manageability. This contrasts with traditional process management tools such as those available under the tradenames Documentum (RTM) or Microsoft SharePoint (RTM), which require detailed process definitions upfront, a costly and time-consuming exercise. The approach of the subject technology also differs from task and project management tools such as those available under the tradenames Microsoft Project (RTM), Basecamp (RTM), or Asana (RTM), which provide a framework for defining the work to be done and reporting when tasks have been completed, but do not capture the interactions through which the work actually takes place. Since communication occurs outside of task and project management tools, these tools cannot help workers track and manage individual handshakes. By capturing handshake structure and content, the subject technology may be configured to deliver the transparency, manageability, and reusability associated with process automation while leaving workers in control and minimizing upfront costs. It may be configured to interoperate with and
complement email, minimizing disruption to existing communication patterns. It may be configured to provide basic functionality free of charge to encourage a spread of the technology virally as workers interact with colleagues already using the platform. Additional functionality for managing handshakes across organizational units may be sold to organizations where workers have already adopted certain aspects of the subject technology. Handshakes are a central part of information work. For example, common handshakes include questions; notifications, confirmations, reminders, or handoffs requiring acknowledgement; and requests for comments, meetings, approvals, or decisions. The cost and inflexibility of traditional process automation technologies have limited their application, so many handshakes take place over email or telephone instead of within process management systems. Unfortunately, email and telephone are designed for transmitting one-off messages, not for managing complex interactions from start to finish, so information workers must track and manage large numbers of handshakes manually. The subject technology may be configured to automate handshake tracking and management, saving valuable time and enabling high quality decisions by giving workers and supervisors greater insight into their collaborative work; it may be configured to provide a platform for creating flexible handshakes that expand hierarchically to handle complex interactions between multiple workers. Handshakes capture structured information about an interaction including the roles of the participants (e.g., initiator, responder, observer), the state of the interaction (waiting for a response from a specific participant, overdue, complete, canceled, etc.), related information associated with the interaction (attached files, forms, links, etc.), and subsidiary interactions that must be completed first. By allowing the creation of subsidiary handshakes, the handshake enables emergent organization of arbitrary complexity. Encapsulating all communication within structured handshakes enables automated tracking and aggregation, as well as facilitating reuse of handshakes that occur frequently. Other social media platforms provide structured communication tools for sharing information with friends (Facebook RTM), sharing professional information with colleagues (LinkedIn RTM), and assigning clearly-defined tasks to collaborators (Asana RTM), but no extant technologies provide a platform for creating and managing flexible handshakes of unlimited complexity. To a substantial degree, organizational activity consists of communication patterns that can be
modeled naturally and flexibly as hierarchically nested clusters of goal-oriented handshakes. For example, one worker may notify a second worker that a new piece of equipment is needed. The second worker may ask a third to investigate possible vendors for the equipment. The third may ask some clarifying questions of the second before providing the requested information. Then the second worker may ask for comments and/or approval from several other workers before asking yet another worker to purchase the selected equipment. Using email or other conventional project or task management technologies, it is very difficult for a user to maintain a picture of these handshakes as they unfold that is current, concise, and comprehensive. A technology that captures handshakes in the background, without requiring up-front specification of the process or even the specific tasks to be done, such as the subject technology, can provide visibility and manageability without impeding the ability of information workers to get things done through ad hoc communication with coworkers.

The subject technology can be configured to increase the productivity of information workers by streamlining handshake management and facilitating complex interactions. At the same time, the technology can generate detailed data about the content of information work that will enable new technologies and management techniques. For example, managers can utilize the subject technology to visualize and monitor white collar work in real time, evaluate employee performance objectively, spot problems and bottlenecks quickly, and, when necessary, drill down into the details of specific transactions or decisions. By analyzing patterns in handshake data, associated artificial intelligence systems or subsystems may be configured to make suggestions about whom to involve in a decision or what information might be relevant to a question. Such systems may be configured to detect unusual or unexpected activity patterns and report them to workers and managers. If the past few decades are any guide, more effective integration of humans and computers should yield organizations that are more productive and intelligent.

In accordance with embodiments of the invention, an object-oriented database or databases may be used instead of an SQL database or databases to simplify the architecture and increase flexibility. Handshake clusters may be reused in a way that preserves a handshake structure but also maintains flexibility. Worker
relationships with other workers and with organizations may be modeled in a manner that enables fine-grained security controls and management of information sharing. An intuitive user interface may be presented to users and utilized to require a minimum of training, and places as little burden on the user as possible, where user interface burden is measured in terms of the amount of information visible and the number of options available at any given point, and the number of interactions required to perform a given action or access given information. Integration configurations may enable interoperation with as little user interface overhead as possible. The system may comprise a highly scalable and evolvable backend architecture based upon information assembly line principles that can handle large numbers of handshakes and users.

The system may comprise (1) a service accessible over a computer network such as the Internet or a corporate intranet, (2) client applications that enable users to interact with the service, and (3) additional interface components that integrate the service with other applications such as email clients, calendars, contact managers, corporate identity servers, enterprise IT systems, and other social media. The service preferably enables users to perform a variety of activities relevant to the initiation and management of handshakes. These functions include user account management, handshake management, coworker relationship management, organization management, and app management. The service may comprise a gateway service that accepts requests from client applications and a cluster of backend services that handle the functions identified above. The Gateway Service may be configured to accept requests from client applications in the form of structured forms encoded electronically using a standard protocol such as JSON. Client applications may communicate with the Gateway Service over a computer network such as the public Internet or a private intranet. The Gateway Service may be implemented as a Django or Pylons application that integrates with a standard web server using the Web Server Gateway Interface.

When the Gateway Service receives a request, it may be configured to create a hierarchical data structure called a "pallet" that is used to encapsulate the request, the (as-yet-incomplete) response to the client application, and routing information that specifies the sequence of services to which the pallet will be routed in order to complete the response. Then, the Gateway Service may be configured to route the
pallet to the backend services according to the routing information. Routing to backend services may be serial or parallel depending on the structure of interdependencies among the backend services and latency concerns.

The backend services may be configured to receive pallets from the Gateway Service, modify the contents of the pallets as appropriate, and return the pallets to the Gateway Service for further processing. The backend services may be implemented as servers using a language such as Python and a protocol such as XML-RPC. Pallets may be transmitted to and from the backend servers using a standard encoding such as JSON or XML. The core backend services may be as follows.

A Roles Services module may be configured to handle user account management: registration of new people and roles, and the maintenance of people and roles databases. The databases may be object databases using a technology such as ZODB or standard SQL databases. The Roles Service also may be configured to handle authentication of users who attempt to access the service by checking credentials against those stored in databases and issuing challenges when appropriate. In one embodiment, organizations can, through the Organizations Service (see below) configure the Roles Service to use a corporate identity service such as Open Directory or LDAP for authentication of users attempting to access the service as an agent of the organization.

People may interact with the system in multiple roles (e.g., in a personal capacity and as an employee of an organization), so the system supports multiple roles for each person. Permissions and privileges may be managed for both people and roles. The Roles Service also may be configured to handle modification of account information and account termination. The Roles Service may be configured to maintain indices of the handshakes, apps, coworker relationships, and organization memberships associated with each role.

A Handshake Service may be configured to handle the creation of new handshakes and retrieval or modification of existing handshakes. The service may be configured to support retrieval of single handshakes or groups of handshakes based on some selection criteria (e.g., all handshakes having a given person as a participant or including a given keyword). Handshakes may be retrieved in the form
of compact summaries (header form) or retrieved in full. Handshakes may be retrieved together with all child handshakes in full or in header form.

Handshakes may be modeled as data structures that include information about the participants, state, related information and related handshakes. More detailed information about each component of the handshake data structure follows below.

As described above, a handshake may be a structured interaction between two or more participants, who may or may not be registered users. These participants may participate in the handshake in a role (e.g., as an agent of an organization). Participants also have one or more roles relative to the handshake (handshake roles) such as owner, administrator, handler, initiator, observer, or responder. The system may be configured such that permissions of a participant with respect to a handshake may depend on the role of the participant with respect to the handshake. The Handshake Service may be configured to support the additional and removal of participants.

Retrieval and modification of handshakes may be restricted by the service based on the role of the user. The system may be configured such that a person who is the owner or administer of a handshake, or the supervisor of such a person, can retrieve and modify the handshake without limit. Other handshake roles may have more limited privileges.

The system may be configured such that a handshake models a finite state machine that progresses from an initial state to one of two terminal states (complete or canceled). States may model whether the handshake has been viewed, whether a response is required, whether a response has been received, etc. Additionally, a handshake may have a due date and may be overdue. The ownership of a handshake, which may be assigned to a participant or to an organization, may also considered to be part of the handshake's state.

The handshake also may have a type, which may be a generic handshake of one of several built-in types, or it may be a custom type that may be handled by another service with an appropriate API. The service may be configured to keep track of custom types and services used to handle them.

The Handshake Service may be configured to support modification of state parameters such as the due date, and update handshake state as appropriate when
a handshake changes (e.g., when a client informs the service that a handshake has
been viewed).

Handshakes may include two collections of related information: a log
recording actions taken by participants (the Feed) and a hierarchical data structure
(the Binder) containing information (links, files, forms, etc.) that participants have
added to the handshake.

The Handshake Service may be configured to update the Feed as necessary
when users take actions relative to a handshake (e.g., send a message, post
information or initiate or modify a child handshake). Certain kinds of child
handshakes may provide summaries for inclusion in the Feed, such as questions,
FYIs, and pings. The Handshake Service also may update the Binder when users
add information or initiate or modify child handshakes that provide summaries for
inclusion in the Binder. Users may organize information in the binder by creating
sections (which can be nested without limit) and moving information into these
sections.

The system may be configured such that a handshake can be initiated within
the context of another handshake, creating a parent-child relationship where the new
handshake is a child. The child handshake may affect the parent handshake, e.g.,
by adding participants, changing the due date, or adding content to the Feed or the
Binder.

Child handshakes may be represented in the handshake data structure by
including references to the handshakes that are the parent or the children of the
handshake. When retrieving a handshake, the Handshake Manager may be
configured to examine the handshake's child handshakes and incorporate
information about these child handshakes as appropriate in the Feed and the Binder.

Several types of handshakes may be defined by the Handshake Manager,
and APIs may be configured to allow for definition and custom handling of other
handshake types. The system may be configured such that handshake types
defined by the Handshake Manager include:

- Generic Handshake: A handshake that consists of an unstructured
 message requiring an unstructured response.
25

- Meeting Request: Schedule a meeting about the parent handshake, inviting participant(s) in the parent handshake and, optionally, other people, where the response to the handshake is a comment, RSVP, or request to reschedule.

- Meeting Notes: Record notes about the items covered at a meeting, where the response is a request to modify the notes or approval of the notes. The system may automatically prompt the initiator of a meeting request handshake to initiate a Meeting Notes handshake after the meeting's scheduled completion time.

- Collect structured information: collect information using a customizable, hierarchically structured form, from participants in the parent handshake or other people.

- FYI: Enter a message that allows other participants to acknowledge receipt of the message and display a list of participants who have acknowledged receipt.

- Ping: Enter a message that calls attention of participants to an existing handshake or an element (information or child handshake) within it and require acknowledgement of receipt, and display a list of participants who have not yet acknowledged receipt.

- Approval Request: Send a message, in one embodiment referring to a child handshake or other element, asking for explicit approval, which requires responder(s) to answer yes, no, or request changes, and displays the result.

- Comment Request: Ask for comments, in one embodiment referring to a child handshake or other element.

- Selection Request: Ask for a selection from multiple choices and include the results in the handshake.

- Question: Ask question about handshake or elements in it and associate answer with handshake

- Handoff: Transfer one's own role in handshake to another person fully or leaving self as an observer, temporarily or permanently (handoff)

The system may be configured to allow users to establish relationships with coworkers in order to streamline the initiation and management of handshakes with them. A Coworkers Service may be configured to handle creation of new relationships, retrieval of relationships, and modification or deletion of relationships. A relationship may be modeled as a data structure that stores the two parties to the
relationship, the roles, if any, in which they are engaging in the relationship, and meta data about the relationship such as its creation date, the type of relationship (e.g., coworker, client, supervisor-subordinate) and its context (e.g., the organization where the people are coworkers).

The system may be configured such that initiating a relationship requires that one person request the relationship with a second person and that the second person approve the relationship. This may be handled as a handshake using APIs exposed by the Handshake Service for creating, representing, and modifying handshakes.

An Organizations Service may allow representatives of organizations to register the organization, specify which users are members of the organization, and define the roles of these people with respect to the organization. Subsequently, organization membership may be used to determine permissions and privileges of users with respect to handshakes associated with the organization. Organizations may be modeled as data structures that include information about the organization's registration with the service, its representatives, and the set of organization members.

The system may be configured such that the Organizations Service handles registration of organizations and modification of account information. In some cases, modifications may be handshakes requiring approval by other organization representatives; these may be handled using custom handshake types through the Handshakes Service APIs.

The Organizations Service also may allow the registration of sub-organizations such as divisions, business units, committees, or teams within other organizations. This may be modeled using parent-child references in the organization records. An existing organization may become a child of an existing organization through a custom handshake between representatives of the two organizations.

An Apps Service may be configured to handle Apps (applications) that allow users to create handshakes of specified types. An App may be internal or external. Internal Apps may comprise a data structure containing a template defining the structure of the handshakes created from the app and meta data defining who can use the app, characteristics of handshakes created by the app such as service level
guarantees, and information (or references to information) about past use of the app including feedback on the performance of the app from users. The app may also specify the ownership of handshakes that it creates, participants in the handshake, and constraints on transfers or ownership or addition of participants (e.g., only participants belonging to a specified organization can be added to the handshake.

External apps may comprise a data structure similar to the data structure for an internal handshake except that, instead of a handshake template, the data structure may specify the interface to a service that will provide, on demand, a handshake data structure. The Apps Service may implement APIs that allow providers of external apps to access and modify, subject to constraints, the meta data associated with the app.

The system may be configured such that client applications (clients) enable users to access the Service and perform the activities handled by the various system components described above. Clients may include HTML-based web sites, JavaScript applications that run in a web browser, applications for personal computers running operating systems such as Microsoft Windows (RTM) or Mac OS (RTM), or apps for mobile devices running operating systems such as iOS or Android. A client may enable a person to log in and modify account settings; initiate, view and manipulate handshakes; form coworker relationships and view information about coworkers; establish and modify organization memberships; and create or configure apps.

The client may be configured to issue requests to the service using a protocol such as HTML. The requests may be structured as forms encoded using a standard such as JSON and containing the information necessary to handle the request.

In order to make the initiation and management of handshakes as efficient as possible, the system may comprise interface components that connect the system to individual and enterprise applications.

Interface components that connect the system to individual applications may include email connectors, calendar connectors, address book connectors, and cloud-based document connectors.

The system may be configured such that email connectors allow users to initiate handshakes or child handshakes from incoming or outgoing email messages or associate incoming or outgoing email messages with existing transactions.
An email connector may be a server-side component that receives emails copied to an address specific to the user and creates a new handshake with the email body in the feed, attachments to the message (if any) in the binder, and the sender and recipients as the handshake participants.

A more sophisticated email connector may comprise a component that plugs in to an email client (an email plug-in). The email plug-in may allow a user to select an incoming or outgoing email message and turn it into a handshake. The plug-in may allow the user to select the type of handshake to create (e.g., a Question, Meeting request, or Ping) and to enter additional information associated with the handshake such as target completion date, other participants, or parameters specific to the handshake type (e.g., possible meeting times or a specific question). The plug-in may allow a user to create handshakes from recently sent messages.

The plug-in also may allow a user to initiate the handshake as a child of an existing handshake or simply associate the message with an existing handshake as a piece of relevant information.

The service may comprise a server-side component that inserts meetings scheduled using a meeting request handshake into a user’s calendar. A plug-in for a calendar application may also be included that allows users to view information about a handshake (and its child handshakes) associated with a meeting or to associate a calendar appointment with a meeting.

The service may comprise a server-side component that imports data from a users contact manager or a corporate directory server in order to identify possible coworkers or transaction participants.

The service may comprise one or more server-side components that enable posting into handshake documents stored in the cloud in services with externally accessible APIs. If these APIs permit accessing metadata about or content of the documents, the components may generate summaries describing the documents and provide them to the Handshakes Manager for incorporation into the Binder.

One target market for the subject technology is the information worker who currently uses email intensively for handshakes with coworkers, and the companies that employ these workers. One customer may be a professional who collaborates with several groups of coworkers on a number of projects at any given time. Examples include lawyers, consultants, investment bankers, project managers, mid-
level executives, and financial advisors. The continuing trend toward project-oriented organizations means that traditional white-color jobs increasingly fit one or more customer profiles.

These workers often struggle with several serious problems arising from the limitations of traditional communication tools:

Fragmented communication. In a conventional paradigm, information regarding a given interaction may be spread across multiple messages in email accounts belonging to different people, attachments, shared files, etc. There may be nowhere to go for a comprehensive record of the interaction. This decreases the quality of decision-making, which depends on access to current, complete, well-organized information.

Lack of visibility. With conventional technologies, workers generally cannot see the state of pending interactions with coworkers, or of related interactions between coworkers and other people. As a result, workers generally must try to keep track of pending interactions themselves using task lists or email flags, and then send follow-up messages or schedule meetings to receive updates on the state of pending interactions. Managers may struggle to monitor process performance, detect bottlenecks, and evaluate workers objectively.

Time wasted onboarding coworkers. With conventional tools, when a coworker is brought into an existing interaction, he or she must be provided with the relevant context: background information, other participants, related activities and pending interactions, etc. This often requires time-consuming meetings and considerable effort on the part of the new coworker.

Inability to store and reuse interaction patterns. In a conventional paradigm, although worker interactions are highly varied, there tend to be patterns. Using email or telephone, however, these patterns are difficult to capture and reuse. Thus, workers end up wasting time reinventing the wheel, or searching for and copying and pasting from old emails.

In one embodiment, centralized management functionalities may comprise:

- automated management of organization membership, roles, and access to self-service modules
- automated maintenance of aspects of organizational control over handshakes, interaction templates, and data
- automated summarizing of activity by group or process, with configurations facilitating drill down to specific handshakes
- capabilities for assignment of staff to handle handshakes originating from self-service modules

Referring to Figure 5, one embodiment of a system implementation is depicted, wherein a plurality of computing systems (120, 122, 124, 126) local to one or more operators are used to operate web browser sessions (128, 130, 132, 134) to access a remote server (138) through the internet (136) and/or other networks, to provide a local user with a web service or web-based application configured to provide the functionality as described above. The server (138) preferably is operatively coupled to a database or information repository. The computing systems may be personal computers of various types (i.e., desktop computers, laptop computers), tablet computers, mobile computing devices such as smartphones, and the like, each of which generally comprises a local processor, controller, or microcontroller that may be configured to operate web browser software, such as that available under the tradenames Internet Explorer (RTM), Google Chrome (RTM), and FireFox (RTM), to remotely interact with the server (138) via the web browser sessions (128, 130, 132, 134). In other embodiments, one local computing system may be utilized to operate multiple browser sessions to connect with the server (138). In one embodiment the web service may comprise JavaScript (RTM) built using a JavaScript application framework such as AngularJS (RTM). It may be configured to be a one-page application in the browser session (128, 130, 132, 134) that is configured to exchange JSON (JavaScript Object Notation - a lightweight text-based open standard designed for human-readable data interchange) objects with the server (138) using, for example, a Restful API configuration (representational state transfer, or "REST", is a style of software architecture for distributed media systems such as the Internet; conforming to "REST" constraints is referred to in computer science as being "restful"), so that packets of information in the form of JSON objects may be passed and interpreted (i.e., as opposed to transferring fully-rendered HTML pages from the server) by the application in the browser. The server-based back end may be built using Python (a general purpose high-level programming language), and a web framework such as Django (RTM), Flask (RTM), or Ruby on Rails (RTM). Thus requests for a given URL from a
browser session may be received by a web server (such as Apache RTM), then passed through a WSGI (web server gateway interface) interface to the application, where the URL may be parsed and routed to an appropriate controller.

In one embodiment, to support "offline" use (i.e., when connectivity to the remote server 138 has been interrupted), the application may be set up to have some caching in the browser (with HTML 5, "local data store" may be utilized). In another embodiment, a plug in for a mail client, such as Microsoft Outlook (RTM) may be installed locally on an operator's computing system to assist with seamless back and forth between such mail client and the subject web service configuration (i.e., in one embodiment, it is the intention to have the web service completely in sync with an email system such as Outlook, such that a request in the web service will be seen (or optionally not seen) as an email message in the mail client). As graphical user interface "sidebar" may be created with the mail client plug in to show the content of the interaction, links to jump to one or more related email messages, related calendar items, and the like.

In one embodiment, the data repository operatively coupled to the server (138) may comprise one or multiple databases configured to store different subsets of the information. For example, key recent interaction data may be stored in a more readily-available configuration than older data, wherein it may be perfectly acceptable to have higher latency in retrieval. The server and associated data repository may be located on the other side of a firewall from a corporate computing infrastructure, or may be within the firewall, such as in a "virtual machine" configuration that runs on any kind of server (Windows RTM, Linux RTM, etc) that encapsulates the entire corporate communication system behind the corporate firewall for security or other purposes.

Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms "a," "an," "said," and "the" include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for "at least one" of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims
may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.

Without the use of such exclusive terminology, the term "comprising" in claims associated with this disclosure shall allow for the inclusion of any additional element-irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
1. A system for structured communication between specified parties, comprising:
 a. a remotely-accessible controller configured to present a communication user interface to one or more of the parties;
 b. a state information repository comprising state information to be updated throughout a transaction, wherein changes in the state information are constrained at least in part based upon a transaction type determined from a predetermined set of transaction types;

 wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties, attempt to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party, establish a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction, and, upon advancement of the state information from a first state to a second state, engage associated parties through the user interface.

2. The system of claim 1, further comprising one or more computing platforms through which the communication interface is presented to the one or more parties.

3. The system of claim 2, wherein the one or more computing platforms are configured to operate a web browser to operate the communication interface.

4. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by sending an email.

5. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction
between the parties by operating an application configured to function as a plug-in to an email client.

6. The system of claim 1, wherein the controller is configured to attempt to establish an initial context for the transaction by detecting transactions currently selected by the initiating party/originator in the user interface.

7. The system of claim 1, wherein the controller is configured to attempt to establish an initial context for the transaction by detecting transaction elements currently selected by the initiating party in the user interface.

8. The system of claim 1, wherein predetermined transaction types comprise a transaction type that requests approval of specified items.

9. The system of claim 1, wherein predetermined transaction types comprise a transaction type that modifies the set of parties to the transaction.

10. The system of claim 1, wherein the controller is configured to establish a defined role by limiting the actions available to each party through the user interface.

11. The system of claim 1, wherein the controller is configured to establish relationships between two or more parties.

12. The system of claim 1, wherein the controller is further configured to characterize membership of a particular party in one or more groups.

13. The system of claim 1, wherein the controller is further configured to establish a set of tags.

14. The system of claim 1, wherein the controller is further configured to specify a delegate for one or more of the parties.

15. The system of claim 1, wherein the controller is further configured to modify the parties to a transaction under a specified circumstance.
16. The system of claim 1, wherein the controller is further configured to automatically suggest values for one or more input fields in a current transaction.

17. The system of claim 2, wherein at least one of the one or more computing platforms is selected from the group consisting of: a mobile phone, a PDA, tablet computer, a laptop computer, and a desktop computer.

18. The system of claim 5, wherein the email client is based upon an application platform selected from the group consisting of: local computer application, online application, and a mobile application.

19. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by connecting directly with an email server.

20. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction by detecting events from an electronic calendaring system.

21. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by selecting a previously-existing transaction.

22. The system of claim 1, wherein the predetermined transaction types include one or more transaction types that are based at least in part upon previously initiated transactions.

23. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by establishing dates that trigger actions by the controller.

24. The system of claim 1, wherein the controller is configured to attempt to establish an initial context for the transaction by detecting transactions currently visible to the initiating party through the user interface.
25. The system of claim 1, wherein the predetermined set of transaction types is selected based at least in part upon the initial context.

26. The system of claim 1, wherein the transaction type is determined at least in part based upon the initial context.

27. The system of claim 1, wherein predetermined transaction types comprise a transaction type that may be acknowledged but does not require acknowledgement.

28. The system of claim 1, wherein predetermined transaction types comprise a transaction type that requires an acknowledgement.

29. The system of claim 1, wherein predetermined transaction types comprise a transaction type that requests a response.

30. The system of claim 1, wherein predetermined transaction types comprise a transaction type that modifies the roles of parties to the transaction.

31. The system of claim 1, wherein predetermined transaction types comprise a transaction type that requests parties to the transaction to propose meeting times.

32. The system of claim 1, wherein predetermined transaction types comprise a transaction type that requests parties to the transaction to approve proposed meeting times.

33. The system of claim 1, wherein the controller is configured to initiate an electronically mediated interaction pertinent to a communication transaction between the parties by receiving triggering information from a calendar system.

34. The system of claim 1, wherein the predetermined transaction types comprise a transaction type configured such that a first party introduces a second party and a third party to each other.
35. The system of claim 1, wherein the controller is configured to establish a defined role by presenting information to the party in a manner contingent upon the defined role.

36. The system of claim 1, wherein the controller is configured to establish a defined role by receiving information from the party in a manner contingent upon the defined role.

37. The system of claim 1, wherein the planned transaction pathway state information comprises a state selected from the group consisting of: a sent state, a viewed state, a waiting-for-response state, a waiting-for-acknowledgement state, a cancelled state, and an abandoned state.

38. The system of claim 1, wherein the controller is configured to monitor a time elapsed after a response was requested, and to issue a reminder to one or more parties to the transaction.

39. The system of claim 1, wherein the controller is configured to allow parties to the transaction to associate information with the transaction.

40. The system of claim 1, wherein the controller is configured to track time associated with changes to the transaction state.

41. The system of claim 1, wherein the controller is further configured to establish a set of tags.

42. The system of claim 1, wherein the controller is further configured to request information from a party to a transaction after the transaction reaches a terminal state.

43. The system of claim 1, wherein the controller is further configured to specify at least one of the one or more parties from a group of predetermined candidates.

44. The system of claim 1, wherein the controller is configured to display summary information regarding the communication transaction through a graphical user interface.
44. The system of claim 1, wherein the controller is further configured to display information to a user generated at least in part upon one or more transactions to which the user was not a party.
Person1 posts a textual message (Message1) to an online bulletin board or "wiki".

Person2 reads Message1, and in reaction, posts his own textual message (Message2).

Person1 reads Message2 and responds by posting a message that includes text and a photo (Message3).

Person3 reads the series of Message1-Message3 and posts his own response as a textual message (Message4).

FIG. 1
Person1 sends an email (Email1) to Person2 using a mail system such as Gmail.

Email1 arrives in the inbox of Person2 as unopened, until Person2 opens it.

Person2 reads Email1 and decides to reply to Person1 (Email2).

A dispatch of the reply (Email2) goes to the inbox of Person2 and is handled as a "thread" of emails between Person1 and Person2.

Additional back and forth emails within the email thread (i.e., Email3, Email4, etc) are tracked by the mail system as members of such thread, and are presented to Person1 and Person2 in an outline dialogue format in the mail system user interface used by each of the persons.

FIG. 2
Initiating an electronically mediated interaction pertinent to a communication transaction between parties

Attempting to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party

Establishing a transaction type from a predetermined set of transaction types

Establishing a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction

Establishing a state information repository to be updated throughout a transaction, the state information comprising a comparison between a current state of the transaction and a planned transaction pathway based at least in part upon the transaction type

Providing a controller configured such that upon advancement of the state information from a first state to a second state, as defined by the planned transaction pathway, associated parties are engaged through a user interface operatively coupled to the controller

Utilizing the controller to characterize membership of a particular party in one or more groups

Configuring the controller to establish a set of tags

Specifying a delegate for one or more of the specified parties

FIG. 3A
Initiating an electronically mediated interaction pertinent to a communication transaction between parties

Attempting to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party

Establishing a transaction type from a predetermined set of transaction types

Establishing a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction

Establishing a state information repository to be updated throughout a transaction, the state information comprising a comparison between a current state of the transaction and a planned transaction pathway based at least in part upon the transaction type

Providing a controller configured such that upon advancement of the state information from a first state to a second state, as defined by the planned transaction pathway, associated parties are engaged through a user interface operatively coupled to the controller

Modifying the parties to a transaction under a specified circumstance

Requesting information from a party to a transaction after the transaction reaches a terminal state

Specifying at least one of the one or more parties from a group of predetermined candidates

FIG. 3B
Initiating an electronically mediated interaction pertinent to a communication transaction between parties

Attempting to establish an initial context for the transaction based upon previous electronically-mediated interactions that include the initiating party

Establishing a transaction type from a predetermined set of transaction types

Establishing a defined role for each of the parties, each role defining bounds upon the activity of each party within the transaction

Establishing a state information repository to be updated throughout a transaction, the state information comprising a comparison between a current state of the transaction and a planned transaction pathway based at least in part upon the transaction type

Providing a controller configured such that upon advancement of the state information from a first state to a second state, as defined by the planned transaction pathway, associated parties are engaged through a user interface operatively coupled to the controller

Displaying summary information regarding the communication transaction through a graphical user interface

Displaying information to a user generated at least in part upon one or more transactions to which the user was not a party

Automatically suggesting values for one or more input fields in a current transaction

FIG. 3C
Possible acquisition of Delta, Inc. by Acme, Inc.

Acme, Inc (Acquiror) --> Delta, Inc (Acquisition Target)

FIG. 4A
Richard sends message to Charles following up telephone call

New interaction with Charles Potter (CEO, Acme, Inc.)

Subject: Acquisition of Delta, Inc.
Message: FY1 Ping Request

Richard (me)
Partner, BigLaw

Action required
No items require action

Open items
No open items

Send

All interactions
No interactions

1. We'll handle the due diligence, with an emphasis on IP around the next-generation product.
2. We'll work with Carol on all the financial matters and Larry on regulatory/compliance.
3. The target closing date is February 21, although this may need to be adjusted depending on our due diligence findings.

Thanks, John
Richard sees message to Charles as open item pending response

New interaction with
Type	Message	FYI	Ping	Request
Subject

Action required
No items require action

Open items
Message to Charles: Acquisition of Delta, Inc. yesterday
Charles, thanks for your call earlier today. We'd love to assist...

All interactions
Message to Charles: Acquisition of Delta, Inc. yesterday
Charles, thanks for your call earlier today. We'd love to assist...

FIG. 4D
Charles receives message as email with auto-generated ModuleQ footer

From: Richard [mailto:richard@biglaw.com]
Sent: Thursday, December 01, 2011 12:41 PM
To: Potter, Charles
Subject: Acquisition of Delta, Inc. (mQ-a5g)

Charles, thanks for your call earlier today. We'd love to assist with the Acquisition of Delta. I'll need to do a conflicts check, so I'll get back to you as soon as that's finished. In the meantime, please confirm the following items from our conversation:

1. We'll handle the due diligence, with an emphasis on IP around the next-generation product.
2. We'll work with Carol on all the financial matters and Larry on regulatory/compliance.
3. The target closing date is February 21, although this may need to be adjusted depending on our due diligence findings.

Thanks,
John

I'm using moduleQ to track this message and ensure that your reply receives my immediate attention. moduleQ inserts a code in the subject line and in the message body here (mQ-a5g) for tracking purposes. Please leave the codes in place in your reply.

By including the following words in the subject line of your reply, you can tell moduleQ how to handle your message:

Question - message requires a response.
Ping - message requires attention.
FYI - message does not require a response.

If you reply with only the words "got it", I'll know that you received my message and no further action is required for now.
Partner selects message and initiates private request to Director of Conflicts Dept.

New interaction with John (Director, Conflicts, BigLaw)

Type: Request

Subject:
Context: Message to Charles: Acquisition of Delta, Inc.
private to you and John add observers make shared

John, I've just gotten a request from Charles Potter to help with Acme's acquisition of Delta, Inc. Could you please do a conflicts check and get back to me ASAP? Thanks!

Send

All interactions
Message to Charles: Acquisition of Delta, Inc. yesterday
Charles, thanks for your call earlier today. We'd love to assist...

FIG. 4F
Charles replies with message "got it", closing the item.

<table>
<thead>
<tr>
<th>New interaction with</th>
<th>Type</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard (me)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner, BigLaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No items require action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request to John RE Acquisition of Delta, Inc.</td>
<td>11 am</td>
<td></td>
</tr>
<tr>
<td>Charles Potter to help with...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Message to Charles: Acquisition of Delta, Inc. yesterday:
Charles, thanks for your call earlier today. We'd love to assist... 86

Request to John RE Acquisition of Delta, Inc. 11 am
John, I've just gotten a request from Charles Potter to assist... 86
Richard defers open request to John for two days

<table>
<thead>
<tr>
<th>New interaction with</th>
<th>Type</th>
<th>Subject</th>
<th>Message</th>
<th>FY1</th>
<th>Ping</th>
<th>Request</th>
<th>Send</th>
</tr>
</thead>
</table>

Message to Charles: Acquisition of Delta, Inc.

Charles, thanks for your call earlier today. We'd love to assist...

Request to John RE Acquisition of Delta, Inc.

John, I've just gotten a request from Charles Potter to help with...

Deferr for [2] days

Request to Charles Acquisition of Delta, Inc.

11 am

Charles: Got it!
<table>
<thead>
<tr>
<th>Type</th>
<th>Subject</th>
<th>Message FYI</th>
<th>Request</th>
<th>Action required</th>
<th>Open items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send</td>
<td></td>
<td></td>
<td></td>
<td>No items require action</td>
<td>No open items</td>
</tr>
</tbody>
</table>

Deferred item removed from open items until two days have passed or response received.

Request to John RE Acquisition of Delta, Inc. 11 am
Charles: Got it!

Message to Charles: Acquisition of Delta, Inc. yesterday Charles, thanks for your call earlier today. We'd love to assist...
<table>
<thead>
<tr>
<th>Clients</th>
<th>New interaction with</th>
<th>Action required</th>
<th>Open items</th>
<th>Prospective clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard (me)</td>
<td>BigLaw</td>
<td>No items require action</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Message from Charles: Thanks! Hi Richard, just wanted to thank you...

Message to Charles: Acquisition of... Charles, thanks for your call earlier.

Request to John RE Acquisition: John, I've just gotten a request from... Frances, John will be away for a week. Richard, just wanted to let you know...

Request to John RE Acquisition: John, I've just gotten a request from... Bernard, just wanted to make sure you saw the...
John (Conflicts Director) sees incoming request from Richard requiring response

New interaction with

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request</th>
</tr>
</thead>
</table>

Subject

All interactions

Request from Richard RE Acquisition of Delta, Inc. 11 a.m.
John, I've just gotten a request from Charles Potter to help with...

FIG. 4L
From Richard's perspective, interaction feed shows the request from Richard to John, and John's subsequent handoff to Robby.

Participants
- Richard (me), Partner, BigLaw
- Charles, Recipient
- Robby, Recipient

Feed
- Request from Richard to John (private to John, Richard and Robby)
 - John, I've just gotten a reply from Charles Potter to help with Acme's acquisition of Delta, Inc. Could you please do a conflicts check and get back to me ASAP? Thanks!

Handoff from John to Robby (3 day turnaround requested)
- Robby, Please handle. Thanks!

Message from Richard to Charles
- Richard: thanks for your call earlier today. We'd love to assist with the Acquision of Delta. I'll need to do a conflicts check, so I'll get back to you as soon as is finished. In the meantime, please confirm the following items from our conversation:
 1. We'll handle the due diligence, with an emphasis on IP, around the next-generation product.
 2. The target closing date is February 21, although this may need to be adjusted depending on our due diligence findings.

Message from Charles to Robby
- Charles: Got it!
John (Conflicts Director) now has one incoming notification requiring response (from Richard) and one outgoing open item pending response from Robby.

New interaction with

- **Type**: Message
- **Subject**: Request to Richard RE Acquisition of Delta, Inc. 11 a.m. John, I've just gotten a request from Charles Potter to help with...

Open items

- **Handoff to Robby**: Request from Richard RE Acquisition... 11:30 a.m. Pls handle. Thanks!

All interactions

- **Request from Richard RE Acquisition of Delta, Inc. 11 a.m.** John, I've just gotten a request from Charles Potter to help with...
- **Handoff to Robby**: 11:30 a.m. Pls handle. Thanks!
Once Robby has accepted the handoff, he becomes the responder for the request from Richard

Message
- FYI
- Request
- Handoff

Send
- Request from Richard RE Acquisition of Delta, Inc. 11 a.m.
- John, I've just gotten a request from Charles Potter to help with...

Type
- Conflicts Analyst
- BigLaw

Action required
- Request from Richard RE Acquisition of Delta, Inc. 11 a.m.
- John, I've just gotten a request from Charles Potter to help with...

Open items
- No open items

SUBSTITUTE SHEET (RULE 26)

FIG. 4Q
After the handoff to Robby, the request from Richard is no longer an "action required" item for John.

<table>
<thead>
<tr>
<th>New interaction with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Message</td>
</tr>
<tr>
<td>Subject</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handed off to Robby: Request from Richard RE... 11 a.m. John, I've just gotten a request from Charles Potter to help with...</td>
</tr>
<tr>
<td>Handoff to Robby completed 11:45 a.m. Robby: Sure thing!</td>
</tr>
</tbody>
</table>

FIG. 4R
<table>
<thead>
<tr>
<th>Type</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>New interaction with Robby (me)</td>
<td>Conflicts Analyst, BigLaw</td>
</tr>
<tr>
<td>RE Acquisition of Delta, Inc. 11 a.m.</td>
<td>Request from Richard RE Acquisition of Delta, Inc.</td>
</tr>
<tr>
<td>John, I've just gotten a request from Charles Potter to help with...</td>
<td>Request to Albert: Conflicts check for... 11:45 a.m.</td>
</tr>
<tr>
<td></td>
<td>Could you please let me know if you have any potential conflicts...</td>
</tr>
<tr>
<td></td>
<td>Request to Bernard: Conflicts check for... 11:45 a.m.</td>
</tr>
<tr>
<td></td>
<td>Could you please let me know if you have any potential conflicts...</td>
</tr>
<tr>
<td></td>
<td>Request to Carol: Conflicts check for... 11:45 a.m.</td>
</tr>
<tr>
<td></td>
<td>Could you please let me know if you have any potential conflicts...</td>
</tr>
<tr>
<td></td>
<td>Request to Darren: Conflicts check for... 11:45 a.m.</td>
</tr>
<tr>
<td></td>
<td>Could you please let me know if you have any potential conflicts...</td>
</tr>
</tbody>
</table>

FIG. 4T

Requests show up as open items for Robby

Action required

Open items
Robby sends an FYI to John noting that he included Carol, an affiliated expert.

New interaction with John

- **Type**: Message
- **Context**: Request from Richard RE Acquisition of Delta, Inc.
- **Subject**: Per your instructions last time, I included Carol in the check.

Request from Richard RE Acquisition of Delta, Inc. 11 a.m.

John, I've just gotten a request from Charles Potter to help with...

Open items

- Request to Albert: Conflicts check for Acme... 11:45 a.m.
- Request to Bernard: Conflicts check for Acme... 11:45 a.m.
- Request to Carol: Conflicts check for Acme... 11:45 a.m.
- Request to Darren: Conflicts check for Acme... 11:45 a.m.

All interactions

- Request to Albert: Conflicts check for... 11:45 a.m.
- Request to Bernard: Conflicts check for... 11:45 a.m.
- Request to Carol: Conflicts check for... 11:45 a.m.
- Request to Darren: Conflicts check for... 11:45 a.m.
New interaction with

<table>
<thead>
<tr>
<th>Type</th>
<th>Subject</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request</th>
<th>Handoff</th>
<th>Send</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All interactions

<table>
<thead>
<tr>
<th>84</th>
<th>82</th>
<th>86</th>
</tr>
</thead>
</table>

Action items

- **Robby (me)**: Conflicts Analyst, BigLaw
- **Request from Richard RE Acquisition of Delta, Inc. 11 a.m.**
- **John**: I've just gotten a request from Charles Potter to help with...
- **FYI to John**: Per your instructions last time, I included Carol in the check.

Open items

- **Request to Albert**: Conflicts check for Acme... 11:45 a.m.
- **Could you please let me know if you have any potential conflicts...**
- **Request to Bernard**: Conflicts check for Acme... 11:45 a.m.
- **Could you please let me know if you have any potential conflicts...**
- **Request to Carol**: Conflicts check for Acme... 11:45 a.m.
- **Could you please let me know if you have any potential conflicts...**
- **Request to Darren**: Conflicts check for Acme... 11:45 a.m.
- **Could you please let me know if you have any potential conflicts...**
Robby receives responses to his requests, which he must acknowledge to complete.

Subject: All interactions

<table>
<thead>
<tr>
<th>New interaction with</th>
<th>Type</th>
<th>Subject</th>
<th>Message</th>
<th>Send</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FYI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Request</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Handoff</td>
<td></td>
</tr>
</tbody>
</table>

Request from Richard RE Acquisition of Delta, Inc. 11 a.m.
John, I've just gotten a request from Charles Potter to help with...

FYI to John
Per your instructions last time, I included Carol in the check.

Request to Albert: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...

Reply from Albert: 1. No. 2. No. 3. No
Could you please let me know if you have any potential...

Request to Bernard: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...

Reply from Bernard: Conflicts check for...
Could you please let me know if you have any potential...

Request to Carol: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...

Reply from Carol: Deferred this request until tomorrow
Could you please let me know if you have any potential...

Request to Darren: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...

Reply from Darren: All clear: 1. No. 2. No. 3. No
Richard can see entire structure of interaction, down to the status of Robby's requests

Participants
Richard (me)
Partner, BigLaw

Richard
Requestor
56

John
Observer
58

Robby
Responder
60

Binder

Feed
Request from Richard to John, handed off to Robby (private to John, Richard and Robby)
John, I've just gotten a request from Charles Potter to help with Acme's acquisition of Delta, Inc.
Could you please do a conflicts check and get back to me ASAP? Thanks!

Request from Robby to Albert: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Reply from Albert: 1. No, 2. No, 3. No

Request from Robby to Bernard: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Request from Robby to Carol: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Carol deferred this request until tomorrow

Request from Robby to Darren: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Reply from Darren: All clear! 1. No, 2. No, 3. No

Handoff from John to Robby (3 day turnaround requested)
Pls handle. Thanks!

FIG. 4X
Richard can intervene with a ping, e.g., asking Carol to respond ASAP

New interaction with Carol (Expert Consultant, BigLaw)

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request from Robby to Carol: Conflicts check for Acme acquisition</td>
</tr>
</tbody>
</table>

Hey Carol, hope all is well... Acme is a key client for me, so I'd really appreciate if you could get back to me on this ASAP. Thanks so much!!

Send

Feed

Request from Richard to John, handed off to Robby (private to John, Richard and Robby)
John, I've just gotten a request from Charles Potter to help with Acme's acquisition of Delta, Inc. Could you please do a conflicts check and get back to me ASAP? Thanks!

Request from Robby to Albert: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Reply from Albert: 1. No, 2. No, 3. No

Request from Robby to Bernard: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Reply from Albert: 1. No, 2. No, 3. No

Request from Robby to Carol: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Carol deferred this request until tomorrow.

Request from Robby to Darren: Conflicts check for Acme acquisition... 11:45 a.m.
Could you please let me know if you have any potential conflicts...

Reply from Darren: All clear! 1. No, 2. No, 3. No

Handoff from John to Robby (3 day turnaround requested)
Pls handle. Thanks!
John can see Robby's activity, including new FYI from Robby

New interaction with

Type
- Message
- FYI
- Ping
- Request
- Handoff

Subject

No items require action

All interactions

Handed off to Robby: Request from Richard RE... 11 a.m.
John, I've just gotten a request from Charles Potter to help with...

FYI from Robby 11:45 a.m.
Per your instructions last time, I included Carol in the check.

Request to Albert: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...
 Reply from Albert: 1. No, 2. No, 3. No

Request to Bernard: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...

Request to Carol: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...
 Carol **deferred** this request until tomorrow

Request to Darren: Conflicts check for... 11:45 a.m.
Could you please let me know if you have any potential...
 Reply from Darren: All clear! 1. No, 2. No, 3. No

FIG. 4Z
Bernard responds to John by voicemail, captured using voice recognition and tentatively matched with interaction

Items to be filed

- Voicemail from John 2 p.m.
 - John, this is Bernard calling with regard to the conflicts check of Acme. I did some work for Delta on labor issues last year and the matter is still open. Not sure whether that would constitute a conflict, but wanted to bring it to your attention. Thanks.
- File under:
 - [] Request from Robby to Bernard RE Conflicts check for Acme
 - [] Other interaction
 - [] New interaction

New interaction with

Type
- Message
- FYI
- Ping
- Request
- Handoff

Subject

- Send

All interactions

- **Handed off to Robby: Request from Richard RE Conflicts check for Acme** 11 a.m.
 - John, I've just gotten a request from Charles Potter to help with...

- **FYI from Robby** 11:45 a.m.
 - Per your instructions last time, I included Carol in the check.

- **Request to Albert: Conflicts check for Acme** 11:45 a.m.
 - Could you please let me know if you have any potential...
 - **Reply from Albert:** 1. No, 2. No, 3. No

- **Request to Bernard: Conflicts check for Acme** 11:45 a.m.
 - Could you please let me know if you have any potential...

- **Request to Carol: Conflicts check for Acme** 11:45 a.m.
 - Could you please let me know if you have any potential...
 - **Carol deferred** this request until tomorrow

- **Request to Darren: Conflicts check for Acme** 11:45 a.m.
 - Could you please let me know if you have any potential...

 - **Reply from Darren:** All clear! 1. No, 2. No, 3. No

Action required

- No items require action

Open items

- No open items

FIG. 4Z-1
Sending reply also initiates request to Frances in the context of Bernard's message

<table>
<thead>
<tr>
<th>Action required</th>
<th>Open items</th>
</tr>
</thead>
<tbody>
<tr>
<td>No items require action</td>
<td>Request to Frances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New interaction with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Subject</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handed off to Robby: Request from Richard RE...</td>
</tr>
<tr>
<td>John, I've just gotten a request from Charles Potter to help with...</td>
</tr>
<tr>
<td>FYI from Robby</td>
</tr>
<tr>
<td>Per your instructions last time, I included Carol in the check.</td>
</tr>
<tr>
<td>Request to Albert: Conflicts check for...</td>
</tr>
<tr>
<td>Could you please let me know if you have any potential...</td>
</tr>
<tr>
<td>Reply from Albert: 1. No, 2. No, 3. No</td>
</tr>
<tr>
<td>Request to Bernard: Conflicts check for...</td>
</tr>
<tr>
<td>Could you please let me know if you have any potential...</td>
</tr>
<tr>
<td>Message from Bernard to John by voicemail</td>
</tr>
<tr>
<td>John, this is Bernard calling with regard to the conflicts...</td>
</tr>
<tr>
<td>Reply to Bernard</td>
</tr>
<tr>
<td>Okay, I'll ask Frances to schedule a meeting with...</td>
</tr>
<tr>
<td>Request to Frances</td>
</tr>
<tr>
<td>Okay, I'll ask Frances to schedule a meeting with...</td>
</tr>
<tr>
<td>Request to Carol: Conflicts check for...</td>
</tr>
<tr>
<td>Could you please let me know if you have any potential...</td>
</tr>
<tr>
<td>Carol deferred this request until tomorrow</td>
</tr>
</tbody>
</table>

FIG. 4Z-3
Frances initiates meeting scheduling request with Richard and Bernard on behalf of John

New interaction with Richard, Bernard
On behalf of John
Type Message FYI Ping Meeting request Handoff
Meeting details Conference call @ 555-555-5555 meeting ID 4625
Context Request from John
Subject Acme conflicts check

Please let me know which of the following times work for you, or suggest a more convenient date/time.

- [] Dec 3, 4 - 4:30 p.m
- [] Dec 4, 8 - 8:30 a.m
- [] Dec 5, 9 - 9:30 a.m

Send

Open items
No open items

All interactions
Request from John
Okay, I'll ask Frances to schedule a meeting with you and Richard to discuss.

FIG. 4Z-4
Meeting request from Richard to John, Bernard (by Frances)

Please let me know which of the following times work for you, or suggest a more convenient date/time.

- Dec 3, 4 - 4:30 p.m.
- Dec 4 - 8:30 a.m.
- Dec 5, 9 - 9:30 a.m.

Richard: OK
Bernard: No

Richard: OK
Bernard: No

Scheduled for Dec 5. Thanks!
After meeting, John posts draft waiver and requests comments from Richard and Bernard

Participants

John (me)
Conflicts Director, BigLaw

Richard
Bernard
Requestor
Responder

New interaction with

Type
Message
FYI
Request

Send

Binder

Delta waiver draft.doc
Posted by me at 8:15 a.m.

Feed

Requests for comments to Bernard, Richard
Per our conversation, I've posted a draft waiver. Could you please review and reply with your comments?
This request references the document Delta waiver draft.doc

I posted document 'Delta waiver draft.doc'

Meeting request from Richard to John, Bernard (by Frances)
Please let me know which of the following times work for you, or suggest a more convenient date/time.
Meeting scheduled for Dec 5 - 9:30 a.m.
After incorporating comments, John sends waiver doc to Fred

<table>
<thead>
<tr>
<th>Participants</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard</td>
<td>56</td>
</tr>
<tr>
<td>John</td>
<td>64</td>
</tr>
<tr>
<td>Bernard</td>
<td>64</td>
</tr>
</tbody>
</table>

New interaction with Fred (CEO, Delta Inc.)

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request approval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject: Waiver for possible conflict

Include: Delta waiver draft.doc

Fred, as you know, Alpha has asked us to assist with the acquisition of Delta. Bernard did some labor work with you a while back, which represents a possible conflict. We'll need a waiver to proceed. Could you please review the attached waiver and let us know whether you approve? Also, if so, please sign and return the PDF to us at your earliest convenience.

John

Feed

Requests for comments to Bernard, Richard

Per our conversation, I've posted a draft waiver. Could you please review and reply with your comments?

This request references the document Delta waiver draft.doc

Reply from Bernard

Could you mention that the matter was handled on the Delta side by the director of HR?

I replied: Got it!

Reply from Richard

This looks fine to me.

I posted document 'Delta waiver draft.doc'

Meeting request from Richard to John, Bernard (by Frances)

Please let me know which of the following times work for you, or suggest a more convenient date/time.

Meeting scheduled for Dec 5 9 - 9:30 a.m.
Fred's reply is matched with interaction and imported along with PDF attachment

Request for approval to Fred
Fred, as you know, Alpha has asked us to assist with the acquisition of Delta.
Bernard did some labor work with...

Reply from Fred
John, this is not a problem. Let's proceed. Signed waiver attached. Thanks.

Requests for comments to Bernard, Richard
Per our conversation, I've posted a draft waiver. Could you please review and reply with your comments?
This request references the document Delta waiver draft.doc

Reply from Bernard
Could you mention that the matter was handled on the Delta side by the director of HR?
I replied: Got it!

Reply from Richard
This looks fine to me.

I posted document 'Delta waiver draft.doc'
Meeting request from Richard to John, Bernard (by Frances)
Robby is on vacation, so John answers Richard's original request, which Richard receives by email (as well as through moduleQ)

From: John [mailto:john@biglaw.com]
Sent: Thursday, December 01, 2011 12:41 PM
To: Richard
Subject: Request from Richard RE Acquisition of Delta, Inc. (mQ-8pt)

We're clear!

John

You have access to this interaction (mQ-8pt) through moduleQ here

This is a response to your request on Dec 1

There are two related files:
- Delta waiver draft - signed.pdf
- Delta waiver draft.doc

There are several follow-on requests, including:
- Request for approval to Fred
- Requests for comments to Bernard, Richard

FIG. 4Z-9
Back at his computer, Richard accesses moduleQ and asks several colleagues if they are available to work on the acquisition.

<table>
<thead>
<tr>
<th>New interaction with</th>
<th>Edward, Greg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Message, FYI, Ping, Request for work on acquisition</td>
</tr>
<tr>
<td>Context</td>
<td>Message to Charles: Acquisition of Delta, Inc.</td>
</tr>
<tr>
<td>Subject</td>
<td>Availability to work on an acquisition</td>
</tr>
<tr>
<td>do you have any availability over the next three months?</td>
<td></td>
</tr>
</tbody>
</table>

All interactions

- Message to Charles: Acquisition of Delta, Inc.
 - Yesterday Charles, thanks for your call earlier today. We'd love assist...
 - Charles: Got it!

- Request to John RE Acquisition of Delta, Inc. 11 am
 - John, I've just gotten a request from Charles Potter to help...

Action required

- No items require action

Open items

- No open items

FIG. 4Z-10
Once team has been formed, Richard sends FYI to team and then hands off items

New interaction with

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request</th>
<th>Handoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>Check finances. Everything should be...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td>Check status of the product liability litigation...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are critical to the deal... please start immediately. Thanks!

Send

Feed

F Y I t o E d w a r d , G r e g

Hey guys,

To get this done, we're going to need to handle the following:

1. Check finances. Everything should be in order-this looks like a straightforward deal. We need to surface anything that looks irregular.

2. Check IP. What's the patent portfolio, what's pending.

3. Check status of the product liability litigation: are they likely to win? What's the worst case scenario?

4. Are they all clear on regulatory? SEC, IRS, etc.

More soon on specific items.

Thanks,
Richard

FIG. 4Z-11
FYI to Edward, Greg

Hey guys,

To get this done, we're going to need to handle the following:

1. Check finances. Everything should be in order—this looks like a straightforward deal. We need to surface anything that looks irregular.

 Handed off to Edward

Question from Edward: Anything specific you want on this, or just a standard review?

2. Check IP. What's the patent portfolio, what's pending.

3. Check status of the product liability litigation: are they likely to win? What's the worst case scenario?

 Handed off to Edward

4. Are they all clear on regulatory? SEC, IRS, etc.

More soon on specific items.
Richard monitors emerging structure; reviews posted docs; receives FYIs, questions, pings

New interaction with

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
<th>FYI</th>
<th>Ping</th>
<th>Request</th>
<th>Handoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feed

Question from Greg
Richard, a family commitment came up next Monday. I'll be on email, but is it okay if I'm out of the office?

Edward posted 2009 10Qs, 2010 10Qs, 2011 10Qs, 10Ks

FYI to Edward, Greg
Hey guys,

To get this done, we're going to need to handle the following:

1. Check finances. Everything should be in order–this looks like a straightforward deal. We need to surface anything that looks irregular.

 Handed off to Edward

 Question from Edward: Anything specific you want on this, or just a standard review?

 Ping from Edward: I've done a first pass, did you want more detail?

2. Check IP. What's the patent portfolio, what's pending.

3. Check status of the product liability litigation: are they likely to win? What's the worst case scenario?

 Handed off to Edward

Binder

- 2009 10Qs
 - 2009 Q1 10Q
 - 2009 Q2 10Q
 - 2009 Q3 10Q
 - 2009 Q4 10Q

 + 2010 10Qs
 + 2011 10Qs
 + 10Ks