

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2010293995 B2

(54) Title
Smoke filtration

(51) International Patent Classification(s)
A24D 3/16 (2006.01)

(21) Application No: **2010293995** (22) Date of Filing: **2010.09.09**

(87) WIPO No: **WO11/030151**

(30) Priority Data

(31) Number **0915814.8** (32) Date **2009.09.10** (33) Country **GB**

(43) Publication Date: **2011.03.17**

(44) Accepted Journal Date: **2014.01.30**

(71) Applicant(s)
British American Tobacco (Investments) Limited

(72) Inventor(s)
Branton, Peter;Schuth, Ferdi;Schwickardi, Manfred

(74) Agent / Attorney
Shelston IP, L 21 60 Margaret St, Sydney, NSW, 2000

(56) Related Art
US 2009/038632
WO 2002/012380

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 March 2011 (17.03.2011)

(10) International Publication Number
WO 2011/030151 A1

(51) International Patent Classification:
A24D 3/16 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/GB2010/051504

(22) International Filing Date:
9 September 2010 (09.09.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0915814.8 10 September 2009 (10.09.2009) GB

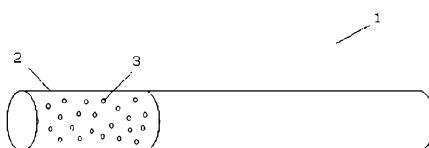
(71) Applicant (for all designated States except US):
BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED [GB/GB]; Globe House, 1 Water Street, London WC2R 3LA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRANTON, Peter [GB/GB]; c/o British American Tobacco (Investments) Limited, Globe House, 1 Water Street, London WC2R 3LA (GB). SCHUTH, Ferdi [DE/DE]; c/o Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mulheim an der Ruhr (DE). SCHWICKARDI, Manfred [DE/DE]; c/o Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mulheim an der Ruhr (DE).

(74) Agents: GILL, Siân et al.; 20 Little Britain, London EC1A 7DH (GB).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: SMOKE FILTRATION

WO 2011/030151 A1

Figure 1

(57) Abstract: The invention relates to a smoking article comprising a carbonaceous dried gel (3), (such as a xerogel, aerogel or cryogel), a filter (2) for a smoking article comprising a carbonaceous dried gel and the use of a carbonaceous dried gel for the filtration of smoke.

Smoke Filtration

Field of the Invention

The present invention relates to the novel use of a particular type of porous carbon
5 material for smoke filtration in smoking articles.

Background to the Invention

Filtration is used to reduce certain particulates and/or vapour phase constituents of
10 tobacco smoke inhaled during smoking. It is important that this is achieved without
removing significant levels of other components, such as organoleptic components,
thereby degrading the quality or taste of the product.

15 Smoking article filters are often composed of cellulose acetate fibres, which
mechanically filter aerosol particles. It is also known to incorporate porous carbon
materials into the filters (dispersed amongst the cellulose acetate fibres, or in a
cavity in the filter) to adsorb certain smoke constituents, typically by physisorption.
Such porous carbon materials can be made from the carbonized form of many
20 different organic materials, most commonly plant-based materials such as coconut
shell. However, synthetic polymers have also been carbonized to produce porous
carbons. In addition, fine carbon particles have been agglomerated with binders to
produce porous carbons, in the manner described in US 3,351,071.

25 The precise method used to manufacture porous carbon material has a strong
influence on its properties. It is therefore possible to produce carbon particles
having a wide range of shapes, sizes, size distributions, pore sizes, pore volumes,
pore size distributions and surface areas, each of which influences their
effectiveness as adsorbents. The attrition rate is also an important variable; low
attrition rates are desirable to avoid the generation of dust during high speed filter
manufacturing.

30

Generally, porous carbons having a high surface area and large total pore volume
are desired in order to maximise adsorption. However, this must be balanced with a
low attrition rate. The surface area and total pore volume of conventional materials

10 Jan 2014

2010293995

such as coconut carbons are limited by their relative brittleness. In addition, the ability to incorporate a large proportion of meso- and macropores is hindered by the strength of the material. As explained in *Adsorption* (2008) 14: 335-341, conventional coconut carbon is essentially microporous, and increasing the carbon activation time results in an increase in the number of micropores and surface area but produces no real change in pore size or distribution. Thus, it is generally not possible to produce coconut carbon containing a significant number of meso- or macropores.

Another factor to take into consideration is the fact that the residence time for smoke in a typical 27 mm-long cigarette filter, during standard measurements of tar content, is of the order of milliseconds. Thus, porous carbon materials for smoke filtration must be optimised to be very efficient adsorbers on such a short timescale.

In view of the foregoing, there is still room for improvement in the art with regard to the use of porous carbon materials for smoke filtration.

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.

20

Summary of the Invention

According to a first aspect, the present invention provides a smoking article comprising a carbonaceous dried gel, wherein the carbonaceous dried gel is xerogel, aerogel and/or cryogel.

25

According to a second aspect, the present invention provides a filter for a smoking article, the filter comprising a carbonaceous dried gel according to the first aspect.

According to a third aspect, the present invention provides the use of a carbonaceous dried gel according to the first aspect for the filtration of smoke.

In a first embodiment of the invention there is provided a smoking article comprising a carbonaceous dried gel.

In a related embodiment of the invention there is provided a filter for use in a smoking article, comprising a carbonaceous dried gel.

In another embodiment of the invention there is provided the use of a carbonaceous dried gel for the filtration of smoke.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

Brief Description of the Drawings

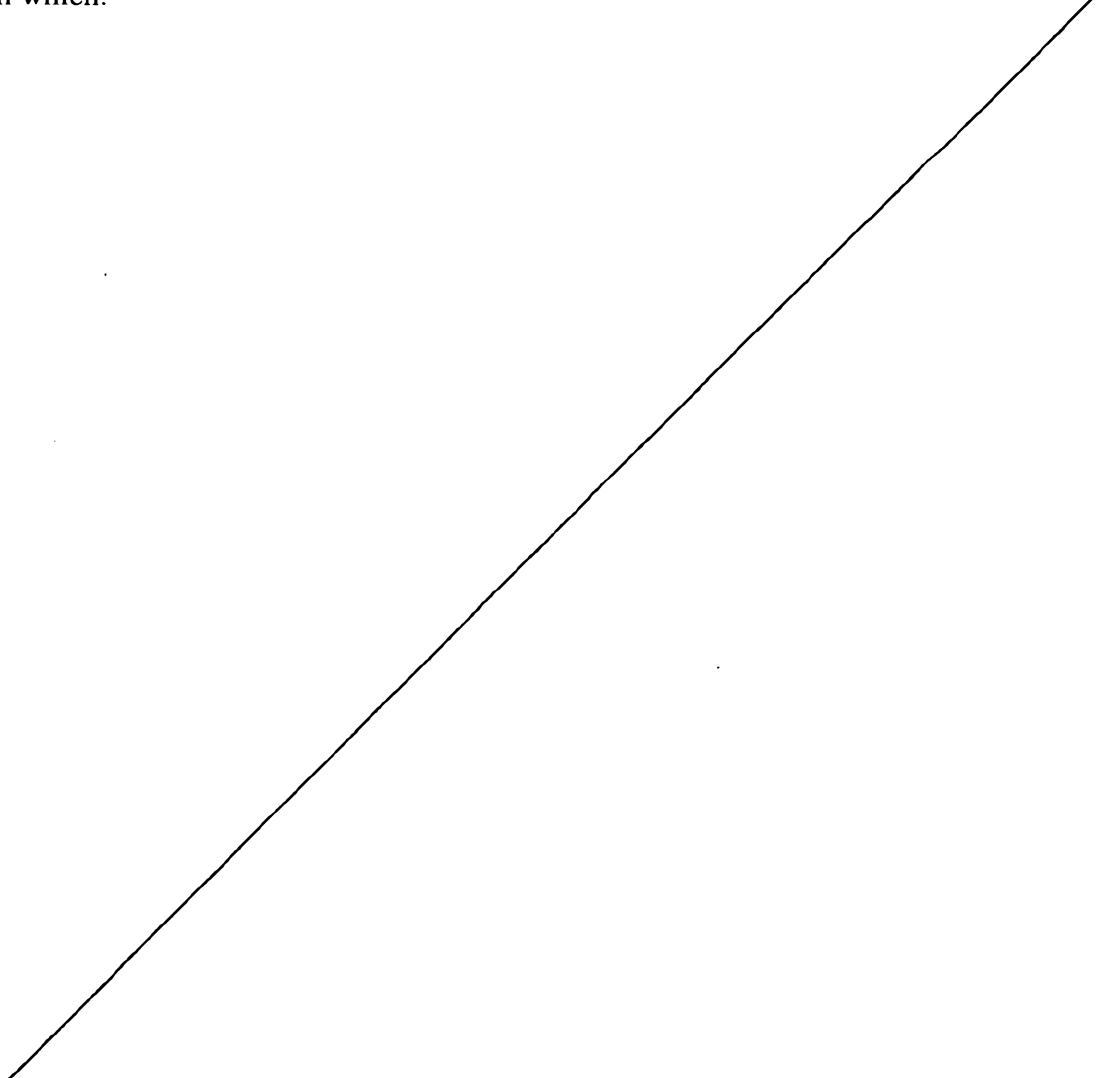

For a fuller understanding of the invention, embodiments of the invention will be described by way of illustrative example with reference to the accompanying drawings in which:

Figure 1 shows carbonaceous dried gel particles distributed throughout a cigarette filter.

5 Figure 2 shows carbonaceous dried gel particles located in the cavity of a cigarette filter.

Figure 3 shows a cigarette having a patch in the filter containing carbonaceous dried gel particles.

10 Figure 4 shows a nitrogen adsorption isotherm for a carbonaceous dried gel of the invention.

Detailed Description of the Invention

The present invention makes use of a carbonaceous dried gel. Such dried gels are 15 porous, solid-state materials obtained from gels or sol-gels whose liquid component has been removed and replaced with a gas, which have then been pyrolyzed/ carbonized. They can be classified according to the manner of drying and include carbon xerogels, aerogels and cryogels. Such types of materials *per se* are known.

20 Xerogels are typically formed using an evaporative drying stage under ambient pressure conditions. They generally have a monolithic internal structure, resembling a rigid, low density foam having *e.g.* 60-90 % air by volume. Aerogels, on the other hand, can be produced using other methods such as supercritical drying. They contract less than xerogels during the drying stage and so tend to have an even 25 lower density (*e.g.* 90-99 % air by volume). Cryogels are produced using freeze drying.

Preferably, the dried gel of the invention is a carbon xerogel or carbon aerogel, preferably a carbon xerogel.

30

The dried gels used in the invention may be obtained from any source. Several different methods are available to make the gel to be dried. In an embodiment, the gel is obtained by the aqueous polycondensation of an aromatic alcohol (preferably

resorcinol) with an aldehyde (preferably formaldehyde). In an embodiment, the catalyst is sodium carbonate. An illustrative method is described in *Chem. Mater.* (2004) 16, 5676-5681.

5 The dried carbonaceous gels used in the invention may be obtained by a first step of producing a polycondensate by polycondensation of an aldehyde and an aromatic alcohol. If available, a commercially available polycondensate may be used.

To produce the polycondensate, the starting material may be an aromatic alcohol
10 such as phenol, resorcinol, catechin, hydrochinon and phloroglucinol, and an aldehyde such as formaldehyde, glyoxal, glutaraldehyde or furfural. A commonly used and preferred reaction mixture comprises resorcinol (1,3-dihydroxybenzol) and formaldehyde, which react with one another under alkaline conditions to form a gel-like polycondensate. The polycondensation process will usually be conducted under
15 aqueous conditions. Suitable catalysts are (water soluble) alkali salts such as sodium carbonate, as well as inorganic acids such as trifluoroacetic acid. To produce the polycondensate, the reaction mixture may be warmed. Usually, the polycondensation reaction will be carried out at a temperature above room temperature and preferably between 40 and 90 °C.

20 The rate of the polycondensation reaction as well as the degree of crosslinking of the resultant gel can, for example, be influenced by the relative amounts of the alcohol and catalyst. The skilled person would know how to adjust the amounts of these components used to achieve the desired outcome.

25 The resultant polycondensate can be further processed without first being dried. In a possible alternative embodiment, it may be dried so that all or some of the water may be removed. It has, however, been shown to be advantageous to not completely remove the water.

30 In order to produce particles of a desired size, it has been shown to be advantageous to reduce the size of the polycondensate before further processing. The size reduction of the polycondensate may be carried out using conventional

mechanical size reduction techniques or grinding. It is preferred that the size reduction step results in the formation of granules with the desired size distribution, whereby the formation of a powder portion is substantially avoided.

5 The polycondensate (which has optionally been reduced in particle size) then undergoes pyrolysis. The pyrolysis may also be described as carbonisation. During pyrolysis, the polycondensate is heated to a temperature of between 300 and 1500 °C, preferably between 700 and 1000 °C. The pyrolysis forms a porous, low density carbon xerogel.

10

One way of influencing the properties of the carbon xerogel, such as the pore volume, surface area and/or pore size distribution, is to treat the polycondensate before, during or after pyrolysis with steam, air, CO₂, oxygen or a mixture of gases, which may be diluted with nitrogen or another inert gas. It is particularly preferred 15 to use a mixture of nitrogen and steam.

Advantageously, the dried gels of the invention are very hard and strong; accordingly, their attrition rate is low and their pore structure can be manipulated more easily without concern for degradation of the material. In addition, whereas 20 conventional carbons are black, the dried gels of the invention may have a glassy and shiny appearance, *e.g.* a glassy black appearance.

The dried gels of the invention may have any suitable form, for instance particulate, fibrous, or a single monolithic entity. Preferably, however, they are particulate. 25 Suitable particle sizes are 100-1500 µm, or 150-1400 µm.

The carbonisation stage preferably takes place in a gaseous atmosphere comprising nitrogen, water and/or carbon dioxide. In other words, the dried gels used in the present invention may be non-activated or, in some embodiments, activated, *e.g.* 30 steam activated or activated with carbon dioxide. Activation is preferred in order to provide an improved pore structure.

The dried gels may be incorporated into a smoke filter or smoking article by conventional means. As used herein, the term “smoking article” includes smokable products such as cigarettes, cigars and cigarillos whether based on tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes and also 5 heat-not-burn products. The preferred smoking articles of the invention are cigarettes. The smoking article is preferably provided with a filter for the gaseous flow drawn by the smoker, and the dried gel is preferably incorporated into this filter, but may alternatively or in addition be included in another part of the smoking article, such as in or on the cigarette paper, or in the smokable filler 10 material.

The smoke filter of the invention may be produced as a filter tip for incorporation into a smoking article, and may be of any suitable construction. For example, with reference to Figure 1, the filter (2) for a cigarette (1) may contain the carbonaceous dried gel (3) distributed evenly throughout fibrous filter material, such as cellulose acetate. The filter may alternatively be in the form of a “dalmatian” filter with the dried gel particles being distributed throughout a tow section at one end of the filter, which will be the tobacco rod end when incorporated into a cigarette. 15

20 Another option, with reference to Figure 2, is to make the filter in the form of a “cavity” filter comprising multiple sections, the dried gel (3) being confined to one cavity (4). For instance, the cavity containing the dried gel may lie between two sections of fibrous filter material.

25 Alternatively, with reference to Figure 3, the dried gel (3) may be located on the plug wrap (5) of the filter, preferably on the radially inner surface thereof. This may be achieved in a conventional manner (*e.g.* GB 2260477, GB 2261152 and WO 2007/104908), for instance by applying a patch of adhesive to the plug wrap and sprinkling the dried gel material over this adhesive.

30 A further option is to provide the dried gel in a form adhered to a thread (*e.g.* a cotton thread) passing longitudinally through the filter, in a known manner.

Other possibilities will be well known to the skilled person.

Any suitable amount of the dried gel may be used. Preferably, however, at least 10 mg, at least 15 mg, at least 25 mg or at least 30 mg of the dried gel is incorporated
5 into the filter or smoking article.

When filtering tobacco smoke, it is advantageous to use a porous carbon material having a range of different pore sizes, so as to adsorb a range of different compounds in the smoke. The different sizes of pores found in the carbon
10 materials are classified as follows, according to the IUPAC definition: micropores are less than 2 nm in diameter, mesopores are 2-50 nm in diameter, and macropores are greater than 50 nm in diameter. The relative volumes of micropores, mesopores and macropores can be estimated using well-known nitrogen adsorption and mercury porosimetry techniques; the former primarily for micro- and mesopores,
15 and the latter primarily for meso- and macropores. However, since the theoretical bases for the estimations are different, the values obtained by the two methods cannot be compared directly with one another.

The present inventors have found that a particular group of carbonaceous dried gels
20 exhibit additional advantages over coconut carbon in terms of the reductions in vapour phase smoke analytes. Specifically, carbon dried gels with a total pore volume (measured by nitrogen adsorption) of at least 0.5 cm³/g, at least 0.1 cm³/g of which is in mesopores, show better performance than coconut carbon. A high BET surface area is not essential in this regard.

25

Preferably, the total pore volume (measured by nitrogen adsorption) is at least 0.5, 0.6, 0.7, 0.80, 0.85, 0.87, 0.89, 0.95, 0.98, 1.00, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 or 3.1 cm³/g.

30 Preferably, at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3 or 2.4 cm³/g of the total pore volume is in mesopores (measured by nitrogen adsorption using BJH analysis on the desorption branch of the nitrogen isotherm).

Preferably, at least 0.05, 0.10, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6 or 0.7 cm³/g of the total pore volume is in micropores (measured by nitrogen adsorption isotherm). In one embodiment, at least 0.4 cm³/g of the total pore volume is in micropores.

5

Preferably, the total volume of mesopores is greater than the total volume of micropores.

10 In an embodiment, the dried gels have a pore size distribution (measured by nitrogen adsorption) including a mode in the range of 15-45 nm, preferably in the range of 20-40 nm.

15 In one embodiment of the invention, the dried carbonaceous gels of the present invention have micropores and mesopores which are relatively large, that is, the mesopores have a pore size (diameter) of at least 10 nm and preferably of at least 20 nm (*i.e.* the mesopores have a pore size of 20-50 nm).

A ratio of at least 1:2 of micropores to mesopores is desirable, preferably a ratio of at least 1:3.

20

In an embodiment, the BET surface area is at least 500, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1900 m²/g.

The invention will now be illustrated by way of the following examples.

25

Example 1 - Xerogel synthesis

Carbon xerogel samples were prepared by drying a resorcinol/formaldehyde polymer under ambient pressure conditions, according to the general process set out in *Chem. Mater.* (2004) 16, 5676-5681 (which incorrectly terms the resulting material an aerogel).

Resorcinol (Fluka®, puriss. (98.5 % purity)), formaldehyde (Fluka®, 37 % in water, methanol stabilized), and sodium carbonate (Fluka®, anhydrous, 99.5 %) as the

catalyst were dissolved in deionized water under stirring with a magnetic stir bar to obtain a homogeneous solution. After thermal curing for 1 day at room temperature, 1 day at 50 °C and 3 days at 90 °C, the wet gels were introduced into acetone and left for 3 days at room temperature (fresh acetone being used daily) to 5 exchange the water inside the pores. The samples were then dried at room temperature under ambient pressure, and pyrolyzed at temperatures of up to 800 °C (4 °/min, 10 min at 800 °C) under an argon atmosphere, and thereby transformed into carbon xerogels.

10 The different samples were obtained by varying the catalyst concentration and reactant content, as shown in the table below. The resorcinol and formaldehyde was used in a molar ratio of 1:2 (which corresponds to the stoichiometry of the reaction).

Sample	Percentage of resorcinol and formaldehyde used	Molar ratio of resorcinol : sodium carbonate
Xerogel 1	20	200 : 1
Xerogel 4	50	1000 : 1
Xerogel 6	40	500 : 1
Xerogel 5	30	500 : 1
Xerogel 2	50	500 : 1

15

All these xerogels took the form of glassy black granulates.

Example 2 – Xerogel properties

Nitrogen adsorption isotherms at 77K were obtained for the carbons of Example 1, 20 and BJH analyses of the desorption branches conducted to calculate the pore sizes and size distributions. The surface areas of the samples were also measured. A microporous, steam activated coconut carbon (Ecosorb® CX from Jacobi Carbons) was tested as a control. The results are shown in the table below.

Sample	Surface area (m ² /g) [*]	Total pore volume (cm ³ /g) ^{**}	Pore volume in micropores (cm ³ /g)	Pore volume in mesopores (cm ³ /g)	Pore size range of the mesopores (nm)	Pore size with a maximum in the mesopore size range (nm)
Ecosorb® CX	1000	0.50	0.50	0	-	-
Xerogel 1	650	0.38	0.17	0.21	3 - 5	4
Xerogel 4	690	1.04	0.19	0.85	5 - 25	11
Xerogel 6	680	0.89	0.19	0.70	4 - 22	10
Xerogel 5	680	0.88	0.19	0.69	4 - 17	11
Xerogel 2	710	0.84	0.16	0.68	5 - 14	10

^{*} Surface areas were measured using the uptake at a relative pressure P/P₀ of 0.2

^{**} Estimated from the amount of N₂ adsorbed at a relative pressure P/P₀ of 0.98

5 Example 3 – Filter performance

A cigarette of standard construction was provided (56 mm tobacco rod, 24.6 mm circumference, modified Virginia blend, 27 mm filter), the filter having a cavity bounded on both sides by a cellulose acetate section. 60 mg of Xerogel 1 obtained in Example 1 was weighed into the filter cavity. Further cigarettes were prepared in 10 the same manner, each containing one of the other xerogel samples or the coconut carbon. A cigarette having an empty cavity of similar dimensions was used as a control. Once prepared, cigarettes were aged at 22 °C and 60 % relative humidity for approximately three weeks prior to smoking.

15 The cigarettes were smoked under ISO conditions, *i.e.* a 35 ml puff of 2 seconds duration was taken every minute, and the tar, nicotine, water and carbon monoxide smoke yields were determined. The results are shown in the table below.

Carbon in filter	Puff no. (per cig)	NFDPM (mg/cig)	Nicotine (mg/cig)	Water (mg/cig)	CO (mg/cig)
None	6.9	11.1	0.93	2.1	10.6
Ecosorb® CX	7.0	11.1	0.93	2.4	11.1

Xerogel 1	7.2	11.2	0.96	2.8	10.9
Xerogel 4	6.9	10.5	0.94	2.2	9.7
Xerogel 6	7.1	10.4	0.90	2.7	10.4
Xerogel 5	7.1	10.6	0.94	2.8	11.3
Xerogel 2	7.2	11.5	0.97	2.7	11.2

These results show that the xerogels do not negatively affect the basic smoke yields; any differences are small and due to cigarette and analytical variability.

5 Percentage reductions in vapour phase smoke analytes, relative to the cigarette with no carbon in the filter, are shown below.

	% Reductions in analyte smoke yields					
	Ecosorb® CX	Xerogel 1	Xerogel 4	Xerogel 6	Xerogel 5	Xerogel 2
Acetaldehyde	27	9	35	30	24	25
Acetone	32	12	53	45	40	40
Acrolein	35	16	59	52	45	42
Butyraldehyde	30	12	62	54	50	50
Crotonaldehyde	35	15	71	64	61	60
Formaldehyde	26	3	35	31	28	32
MEK	33	15	63	55	51	51
Propionaldehyde	31	12	53	47	42	41
HCN	15	12	33	21	22	21
1,3-butadiene	25	13	48	45	42	36
Acrylonitrile	35	15	58	58	50	40
Benzene	31	16	61	60	54	42
Isoprene	35	16	64	61	54	46
Toluene	26	12	65	67	62	36
<i>Overall analyte</i>	29	12	48	43	38	35

The results show that all the xerogels tested were effective at filtering smoke.

10 Xerogels 2, 4, 5 and 6 all showed improvements over the coconut carbon.

However, Xerogel 1 was not as effective as the coconut carbon control, presumably due to its lower mesopore volume and/or smaller size of the mesopores.

Example 4 – Synthesis of further xerogels

5 Five more carbon xerogel samples having micropores and mesopores (and, in the case of one sample, small macropores) were prepared as follows.

10 300.0 g resorcinol (Riedel-de Haen®, puriss. (98.5-100.5 % purity)) was mixed with 1375 g deionised water, 442.25 g formaldehyde (Fluka®, 37 % in water), and 0.415 g sodium carbonate (Fluka®, anhydrous), forming a clear solution. This solution was aged for 20 hours at room temperature, then 24 hours at 50 °C followed by 72 hours at 90 °C. The polycondensate was crushed and introduced into 1500 ml acetone and left for 3 days at room temperature, replacing the solvent every day. The product was then dried at 50 °C for 3 days to produce a red-brown, brittle 15 solid, which was ground in a rasp to form Granulate X having a particle size of 1-2 mm.

20 30.4 g Granulate X was filled into a quartz-tube and inserted into a rotary kiln. The solid was heated to 250 °C at a heating rate of 4 K/min under a nitrogen flow, and was kept at 250 °C for 1 hour. The solid was then heated to 800 °C at 4 K/min. The tube was not moved during the heating period, but the rotor was switched on after the solid reached 800 °C, and the solid was maintained at this temperature for 30 minutes under nitrogen. It was then cooled to room temperature under a protective gas. The resulting non-activated carbon xerogel (186-02) was packed 25 under air.

30 38.74 g Granulate X was filled into a quartz-tube and inserted into a rotary kiln. The solid was heated to 250 °C at a heating rate of 4 K/min under a nitrogen flow, and was kept at 250 °C for 1 hour. The solid was then heated to 800 °C at 4 K/min and maintained at this temperature for 30 min, then heated to 880 °C at 4 K/min. The tube was not moved during the heating period, but the rotor was switched on after the solid reached 880 °C. The nitrogen flow was saturated with steam by bubbling through boiling water, the front end of the tube being heated to prevent

condensation of the steam, and the solid was maintained at 880 °C for 60 min under the saturated nitrogen flow at 1.5 l/min. It was then cooled to room temperature under pure nitrogen. The resulting steam-activated carbon xerogel (186-04) was packed under air.

5

Xerogels 186-08 and 186-09 were produced in a similar manner to Xerogel 186-04, but starting with 48.35 g and 62.87 g Granulate X, respectively, and increasing the steam activation time to 150 minutes and 180 minutes, respectively.

10 Xerogel 008-10 was produced using the following simplified conditions. 120.75 g resorcinol (Riedel-de Haen®, puriss. (98.5-100.5 % purity)) was mixed with 553 g deionised water, 178.0 g formaldehyde (Fluka®, 37 % in water), and 0.167 g sodium carbonate (Fluka®, anhydrous), forming a clear solution. This solution was inserted into an oven in a closed PE-bottle and kept there for 2 hours at 50 °C followed by
15 14 hours at 90 °C. After cooling to room temperature, the product was ground and dried at 50 °C for 4 hours. Further grinding of the red-brown solid in a rasp produced Granulate Y having a maximum particle size of 3 mm.

300 g Granulate Y was placed in a large quartz tube and inserted into a rotary kiln.
20 The solid was heated to 880 °C at a heating rate of 4 K/min under a nitrogen flow, then the rotor was switched on. The nitrogen flow was saturated with steam by bubbling through boiling water, the front end of the tube being heated to prevent condensation of the steam, and the solid was maintained at 880 °C for 80 minutes under the saturated nitrogen flow. It was then cooled to room temperature under
25 pure nitrogen. The resulting steam-activated carbon xerogel (Xerogel 008-10) was packed under air.

Xerogels 186-02, -04, -08, -09 and 008-10 all took the form of glassy black granulates.

30

Example 5 – Xerogel properties

Nitrogen adsorption isotherms at 77K were obtained, and BJH analyses of the desorption branches conducted. The properties of the carbons were as follows:

Sample	Surface area (m ² /g)*	Total pore volume (cm ³ /g)**	Pore volume in micropores (cm ³ /g)	Pore volume in mesopores and any macropores (cm ³ /g)	Pore size range of the mesopores and any macropores (nm)	Pore size with a maximum in the mesopore macropore size range (nm)
Ecosorb® CX	1000	0.50	0.50	0	-	-
Xerogel 186-02	670	1.6	0.2	1.4	8 – 40	34
Xerogel 186-04	1100	2.1	0.4	1.7	6 – 50	34
Xerogel 008-10	1690	2.8	0.6	2.2	6 – 60	25
Xerogel 186-08	1830	3.0	0.7	2.3	8 – 45	25
Xerogel 186-09	1990	3.1	0.7	2.4	8 – 45	25

* Surface areas were measured using the uptake at a relative pressure P/P_0 of 0.2

** Estimated from the amount of N₂ adsorbed at a relative pressure P/P_0 of 0.98

5 The meso- and macropore structure of Xerogel 008-10 was also examined by mercury porosimetry. The volume of pores in the range of 6-100 nm was 2.2 cm³/g, in excellent agreement with the nitrogen adsorption results. In other words, no large macropores are present (which would not be detected by nitrogen adsorption).

10

As an example, the isotherm plot for Xerogel 008-10 is shown in Figure 4.

Example 6 – Filter performance

15 Cigarettes were prepared and smoked in accordance with the method of Example 3, but instead using the Xerogels 186-02, -04, -08 and -09 of Example 4 and coconut carbon control of Example 2. The results are shown in the table below.

	% Reductions in analyte smoke yields (compared with empty cavity)				
	Ecosorb® CX	Xerogel 186-02	Xerogel 186-04	Xerogel 186-08	Xerogel 186-09
Carbonaceous additive					
Acetaldehyde	23	38	46	61	56
Acetone	31	60	75	91	93
Acrolein	37	71	78	91	92
Butyraldehyde	36	69	84	95	96
Crotonaldehyde	37	78	87	92	94
Formaldehyde	27	43	53	57	60
Methyl Ethyl Ketone	34	71	84	96	97
Propionaldehyde	34	64	78	93	94
HCN	38	50	62	63	61
1,3-butadiene	14	59	66	91	91
Acrylonitrile	25	68	72	88	88
Benzene	23	71	79	88	88
Isoprene	28	80	79	91	90
Toluene	17	53	53	54	52
<i>Average analyte</i>	29	63	71	82	82

= limit of quantitation value

As will be evident from this data, these xerogels show outstanding performance in
5 smoke filtration compared with coconut carbon and with the xerogels of Example
1. Within this series, increasing total pore volume, micropore volume, mesopore
volume and surface area correlates with improving smoke filtration properties.

Example 7 – Filter performance under different smoking regimes

10 Cigarettes were prepared in the same manner as in Example 3, containing either 60 mg Xerogel 008-10 or 60 mg Ecosorb® CX. The cigarettes were then smoked under two different smoking regimes. The first was a standard smoking regime, involving a 35 ml puff of 2 seconds duration was taken every 60 seconds (35/2/60). The second was an intensive smoking regime, *i.e.* a 55 ml puff of 2 seconds duration

was taken every 30 seconds (55/2/30). The xerogel of the invention showed better performance than the coconut carbon, as seen in the table below.

	% Reductions in analyte smoke yields (compared with empty cavity)			
Carbonaceous filter additive	Ecosorb® CX	Xerogel 008-10	Ecosorb® CX	Xerogel 008-10
Smoke regime	35/2/60	35/2/60	55/2/30	55/2/30
Acetaldehyde	34	66	16	29
Acetone	44	92	28	60
Acrolein	48	93	35	63
Butyraldehyde	47	94	34	80
Crotonaldehyde	56	95 [#]	46	93
Formaldehyde	36	60	42	68
Methyl Ethyl Ketone	49	96	36	84
Propionaldehyde	42	88	29	56
HCN	44	84	25	54
1,3-butadiene	20	83	22	51
Acrylonitrile	44	82	31	77
Benzene	43	85	29	84
Isoprene	41	89 [#]	23	87
Toluene	35	60 [#]	26	66 [#]

[#] = limit of quantitation value

5

Example 8 – Varying the xerogel properties

60.0 g resorcinol (puriss. (98.5-100.5 % purity (Riedel-de Haen®, Catalogue no. RdH 16101-1KG)) = 545 mmol, was mixed in a polyethylene bottle (500 ml) with 275 g deionised water, 88.45 g formaldehyde solution (Fluka®, 37%) = 1090 mmol and 83 mg anhydrous sodium carbonate (Fluka®) = 0.78 mmol to obtain a clear solution.

The bottle was sealed and placed in a 600 ml beaker, then placed in a convection oven at 90 °C for 16 hours. Subsequently, the bottle was removed from the oven.

15 Once it had cooled to room temperature, the red-brown polycondensate was

removed from the bottle. The soft product was broken into coarse pieces using a spatula and placed into a flat aluminium pan (16 cm diameter) and dried in a convection oven with a high air flow rate at 50 °C for 4 hours.

5 The result was 267.9 g of a moist yet already brittle material. The cooled material was ground to a red-brown granulate (maximum particle size 3 mm) in a drum mill to form Granulate Z.

10 Example 8a - 12.4 g of Granulate Z was filled into a quartz-tube and inserted into a rotary kiln. The tube was not moved during the heating phase.

The tube was flushed with nitrogen and under a constant nitrogen flow was heated at a rate of 4 K/min from room temperature to 250 °C and was kept at this temperature for 1 hour. Then it was heated at a rate of 4 K/min to 800 °C and, at 15 reaching this temperature, the rotor of the kiln was switched on. The quartz tube was turned for 30 minutes at 800 °C under a nitrogen flow. Then, it was cooled to room temperature under a protective gas. The resultant carbon xerogel was packed under air. Product: 1.88 g (1 kg resorcinol produces 677 g carbon xerogel).

20 N_2 Physisorption analysis:

BET surface area: 659 m²/g

Single Point Total Pore Volume: 1.19 cm³/g

Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 4.89

25 Mesopore diameter (measured by BJH desorption): maximum at 32 nm

Example 8b – 47.24 g of Granulate Z was filled into a quartz-tube and inserted into a rotary kiln. The tube was not moved during the heating phase.

30 The tube was flushed with nitrogen and under a constant nitrogen flow was heated at a rate of 4 K/min from room temperature to 880 °C. At reaching this temperature, the rotor of the kiln was switched on. The protective nitrogen gas was then bubbled through simmering water before reaching the rotary kiln. The region

of gas entry into the quartz tube was heated to prevent the water from condensing there. The quartz tube was turned for 15 minutes at 880 °C under the saturated nitrogen flow (1.5 l/min). Then, the material was cooled to room temperature under dry nitrogen. The resultant carbon xerogel was packed under air. The process 5 took 1.5 days from the mixing of the polymer solution to obtaining the carbon xerogel. Product: 5.73 g (1 kg resorcinol produces 542 g carbon xerogel).

N₂ Physisorption analysis:

BET surface area: 992 m²/g

10 Single Point Total Pore Volume: 1.65 cm³/g

Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 3.80

Mesopore diameter (measured by BJH desorption): maximum at 33 nm

15 Example 8c – 51.1 g of Granulate Z was processed as in Example 1b, except that the material was activated for 30 minutes at 880 °C under saturated nitrogen (rather than 15 minutes). Product: 5.38 g (1 kg resorcinol produces 470 g carbon xerogel).

N₂ Physisorption analysis:

20 BET surface area: 1254 m²/g

Single Point Total Pore Volume: 1.93 cm³/g

Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 3.55

Mesopore diameter (measured by BJH desorption): maximum at 33 nm

25

Example 8d - 51.04 g of Granulate Z was processed as in Example 8b, except that the material was activated for 60 minutes at 880 °C under saturated nitrogen (rather than 15 minutes). Product: 3.62 g (1 kg resorcinol produces 317 g carbon xerogel).

30 *N₂ Physisorption analysis:*

BET surface area: 1720 m²/g

Single Point Total Pore Volume: 2.53 cm³/g

Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 3.49

Mesopore diameter (measured by BJH desorption): maximum at 24 nm

5 Example 8e - Granulate Z was processed as in Example 8b, except that the material was activated for 105 minutes at 880 °C under saturated nitrogen (rather than 15 minutes). Product: 2.11 g (1 kg resorcinol produces 180 g carbon xerogel).

N_2 Physisorption analysis:

10 BET surface area: 2254 m²/g

Single Point Total Pore Volume: 3.23 cm³/g

Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 4.19

Mesopore diameter (measured by BJH desorption): maximum at 25 nm

15

Example 9 – Varying the xerogel properties

20 25.85 g resorcinol (98 % purity) = 230 mmol was mixed in a polyethylene bottle (250 ml) with 118.5 g deionised water, 37.40 g formaldehyde solution (Fluka®, 37%) = 461 mmol and 36 mg anhydrous sodium carbonate (Fluka®) = 0.34 mmol to obtain a clear solution.

25 The bottle was sealed and placed in a beaker, then placed in a convection oven at 90 °C for 16 hours. Subsequently, the bottle was removed from the oven. Once it had cooled to room temperature, the red-brown polycondensate was removed from the bottle. The soft product was broken into coarse pieces using a spatula and placed into a flat aluminium pan (16 cm diameter) and dried in a convection oven with a high air flow rate at 50 °C for 4 hours.

30 The resultant material weighed 99.4 g. The cooled material was ground to a red-brown granulate (maximum particle size 3 mm) in a drum mill.

39.05 g of the granulate was filled into a quartz-tube and inserted into a rotary kiln. The tube was not moved during the heating phase.

The tube was flushed with nitrogen and under a constant nitrogen flow was heated at a rate of 4 K/min from room temperature to 880 °C. At reaching this temperature, the rotor of the kiln was switched on. The protective nitrogen gas was 5 then bubbled through simmering water before reaching the rotary kiln. The region of gas entry into the quartz tube was heated to prevent the water from condensing there. The quartz tube was turned for 60 minutes at 880 °C under a saturated nitrogen flow (1.5 l/min). Then, the material was cooled to room temperature under dry nitrogen. The resultant carbon xerogel was packed under air. The 10 resultant product was 3.12 g of a black granulate.

N₂ Physisorption analysis:

BET surface area: 1843 m²/g

Single Point Total Pore Volume: 2.72 cm³/g

15 Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 3.64

Mesopore diameter (measured by BJH desorption): maximum at 24 nm

Example 10 – Varying the xerogel properties

20 35.0 g resorcinol (puriss. (Riedel-de Haen®, Catalogue no. RdH 16101)) = 318 mmol was mixed in a polyethylene bottle (250 ml) with 24.5 g deionised water, 51.65 g formaldehyde solution (Fluka®, 37%) = 636 mmol and 66.5 mg anhydrous sodium carbonate (Fluka®) = 0.63 mmol to obtain a clear solution.

25 The bottle was sealed and placed in a beaker, then placed in a convection oven at 90 °C for 16 hours. Subsequently, the bottle was removed from the oven. Once it had cooled to room temperature, the red-brown polycondensate was removed from the bottle. The hard, glassy block was broken up into coarse pieces using a hammer, placed into a flat aluminium pan (16 cm diameter) and dried in a 30 convection oven with a high air flow rate at 50 °C for 4 hours.

The result was 59.23 g of product. The cooled material was ground to a red-brown granulate (maximum particle size 3 mm) in a drum mill.

18.54 g of the granulate was filled into a quartz-tube and inserted into a rotary kiln. The tube was not moved during the heating phase.

5 'The tube was flushed with nitrogen and under a constant nitrogen flow was heated at a rate of 4 K/min from room temperature to 880 °C. At reaching this temperature, the rotor of the kiln was switched on. The protective nitrogen gas was then bubbled through simmering water before reaching the rotary kiln. The region of gas entry into the quartz tube was heated to prevent the water from condensing there. The quartz tube was turned for 60 minutes at 880 °C under a saturated nitrogen flow (1.5 l/min). Then, the material was cooled to room temperature under dry nitrogen. The resultant carbon xerogel was packed under air. The resultant product was 3.62 g of a black granulate (1 kg resorcinol produces 330 g carbon xerogel).

15

N₂ Physisorption analysis:

BET surface area: 1628 m²/g

Single Point Total Pore Volume: 1.56 cm³/g

20 Ratio of micropore volume : mesopore volume (measured by nitrogen physisorption): 1 : 1.83

Mesopore diameter (measured by BJH desorption): maximum at 8 nm.

10 Jan 2014

2010293995

Claims

1. A smoking article comprising a carbonaceous dried gel, wherein the carbonaceous dried gel is xerogel, aerogel and/or cryogel.

5 2. A smoking article according to claim 1, wherein the carbonaceous dried gel is a xerogel.

3. A smoking article according to any one of the preceding claims, wherein the carbonaceous dried gel has a total pore volume (measured by nitrogen adsorption) of at least 0.5 cm³/g, at least 0.1 cm³/g of which is in mesopores.

4. A smoking article according to claim 3, wherein the carbonaceous dried gel has a total pore volume (measured by nitrogen adsorption) of at least 0.6, 0.7, 0.80, 0.85, 0.87, 0.89, 0.95, 0.98, 1.00, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 or 3.1 cm³/g.

5. A smoking according to claim 3 or 4, wherein at least 0.2, 0.3, 0.4, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3 or 2.4 cm³/g of the total pore volume of the carbonaceous dried gel is in mesopores (measured by nitrogen adsorption using BJH analysis on the desorption branch of the nitrogen isotherm).

6. A smoking article according to any one of claims 3 to 5, wherein at least 0.05, 0.10, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6 or 0.7cm³/g of the total pore volume of the carbonaceous dried gel is in micropores (measured by nitrogen adsorption isotherm).

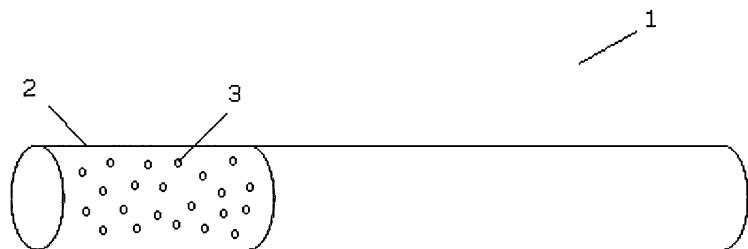
25

7. A smoking article according to any one of claims 3 to 6, wherein the total volume of mesopores in the carbonaceous dried gel is greater than the total volume of micropores therein.

30

8. A smoking article according to any one of claims 3 to 7, wherein the carbonaceous dried gel has a pore size distribution including a mode in the range of 15-45 nm, or in the range of 20-40 nm.

35


9. A smoking article according to any one of claims 3 to 8, wherein the BET surface area of the carbonaceous dried gel is at least 500, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1900 m²/g.

10 Jan 2014

2010293995

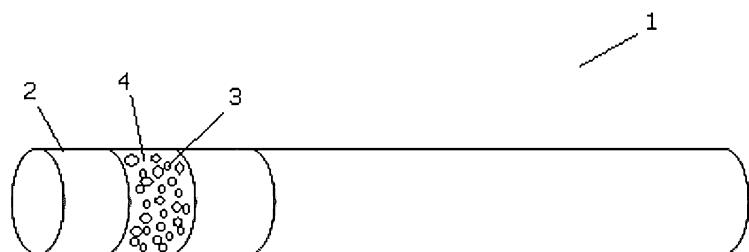

10. A smoking article according to any one of the preceding claims, wherein the carbonaceous dried gel is obtainable by aqueous polycondensation of an aromatic alcohol with formaldehyde followed by drying and carbonization.
- 5 11. A smoking article according to any one of the preceding claims, wherein the carbonaceous dried gel is activated, optionally by steam and/or carbon dioxide.
12. A smoking article according to any one of the preceding claims, the smoking article further comprising a filter and the filter comprising the carbonaceous dried gel.
13. A filter for a smoking article, the filter comprising a carbonaceous dried gel according to any one of claims 1 to 12.
- 5 14. The use of a carbonaceous dried gel according to any one of claims 1 to 12 for the filtration of smoke.
15. A smoking article, a filter for a smoking article or the use of a carbonaceous dried gel for the filtration of smoke substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples

Figure 1

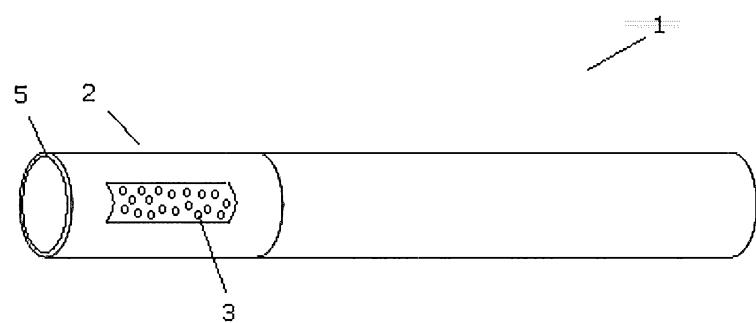

5

Figure 2

10

Figure 3

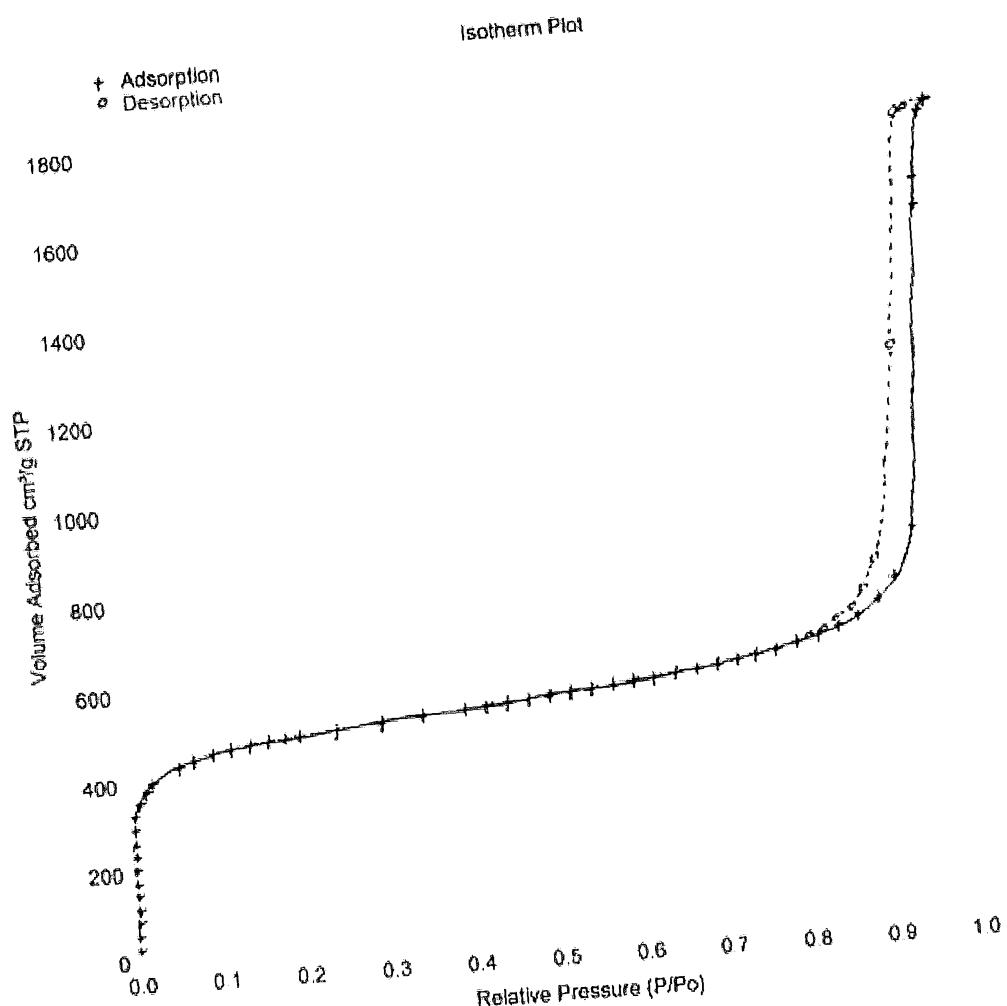


Figure 4