WO 2006/009768 A1 | |00 000 0 000 O D0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

72
(19) World Intellectual Property Organization f 57"’ | [)

528 | 000 O

International Bureau

(43) International Publication Date
26 January 2006 (26.01.2006)

(10) International Publication Number

WO 2006/009768 Al

(51) International Patent Classification : GO6F 17/30
(21) International Application Number:
PCT/US2005/021259

(22) International Filing Date: 9 June 2005 (09.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/582,706
10/948,523

Us
Us

23 June 2004 (23.06.2004)
22 September 2004 (22.09.2004)

(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): LIU, Zhen, Hua
[US/US]; 1017 Wayne Way, San Mateo, CA 94403

(US). KRISHNAPRASAD, Muralidhar [IN/US];
34136 Summerwind Terrace, Fremont, CA 94555 (US).
MANIKUTTY, Anand [IN/US]; 764 Marlin Avenue,
Apt. 4, Foster City, CA 94404 (US). WARNER, James
[US/US]; 280 Easy Street, #309, Mountain View, CA
94043 (US). ZHANG, Hui, X. [US/US]; 34290 Ken-
wood Drive, Fremont, CA 94555 (US). ARORA, Vikas
[US/US]; 8 Locksley Avenue, #4F, San Francisco, CA
94122 (US). KOTSOVOLOS, Susan, M. [US/US]; 1319
Eaton Avenue, San Carlos, CA 94070 (US).

(74) Agents: DRAGANOFF, Stoycho et al.; Hickman Palermo
Truong & Becker LLP, 2055 Gateway Place, Suite 550, San

Jose, CA 95110-1089 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,

[Continued on next page]

(54) Title: EFFICIENT EVALUATION OF QUERIES USING TRANSLATION

205

Receive query.

w7

Detect portions
of the query.

A

Query contains
SQL?

Query contains
XQuery?

Parse and compile XQuery Parse and compile
fnfo XQuery-related SQL info SQL-related
abstract syntax tree (AST). AST.
>l
225 Y
Translate More portions of
XQuery-related AST into query fo be
an SQL-related AST. processed?
250
sassdoncombed < Combie
AST, SQL-related ASTs.
255 l
Store or execute

optimized query.

(57) Abstract: Techniques are provided for processing a
query including receiving the query, where the query specifies
certain operations; determining that the query includes a
first portion in a first query language and a second portion
in a second query language; generating a first in-memory
representation for the first portion; generating a second
in-memory representation for the second portion; generating
a third in-memory representation of the query based on the
first in-memory representation and the second in-memory
representation; and performing the certain operations based
on the third in-memory representation.

WO 2006/009768 Al

0000 0 A O O

OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-

ance Notes on Codes and Abbreviations" appearing at the begin-

ning of each regular issue of the PCT Gazette.

WO 2006/009768 PCT/US2005/021259

EFFICIENT EVALUATION OF QUERIES USING TRANSLATION

FIELD OF THE INVENTION
[0001] The present invention relates to query processing. The invention relates more

specifically to efficient evaluation of queries using translation.

BACKGROUND OF THE INVENTION

[0002] The approaches described in this section could be pursued, but are not necessarily
approaches that have been previously conceived or pursued. Therefore, unless otherwise
indicated herein, the approaches described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in this section.

[0003] Relational database management systems (RDBMSs) store information in tables,
where each piece of data is stored at a particular row and column. Information in a given
row generally is associated with a particular object, and information in a given column
generally relates to a particular category of information. For example, each row of a table
may correspond to a particular employee, and the various columns of the table may
correspond to employee names, employee social security numbers, and employee salaries.
[0004] A user retrieves information from and makes updates to a database by interacting
with a database application. The user's actions are converted into a query by the database
application. The database application submits the query to a database server. The database
server responds to the query by accessing the tables specified in the query to determine
which information stored in the tables satisfies the query. The information that satisfies the
query is retrieved by the database server and transmitted to the database application.

Alternatively, a user may request information directly from the database server by

WO 2006/009768 PCT/US2005/021259

constructing and submitting a query directly to the database server using a command line or
graphical interface.

[0005] Queries submitted to the database server must conform to the syntactical rules of
a particular query language. One popular query language, known as the Structured Query
Language (SQL), provides users a variety of ways to specify information to be retrieved.
Another query language based on the Extensible Markup Language (XML) is XML Query
Language (XQuery). XML Query language may have multiple syntactic representations. For
instance, one of them is a human-readable version and another is an XML representation
(XQueryX). XQuery is described in “XQuery 1.0: An XML Query Language.” W3C
Working Draft July 23, 2004 at www.w3.org/TR/xquery. XQueryX is described in “XML
Syntax for XQuery 1.0 (XQueryX).” W3C Working Draft 19 December 2003 at
www.w3.org/TR/xqueryx. Another related technology, XPath, is described in “XML Path
Language (XPath) 2.0.” W3C Working Draft 12 November 2003 at
www.w3.org/TR/xpath20. XQuery and XQueryX may use XPath for path traversal.

[0006] To implement XQuery support in RDBMSs, one approach, referred as
coprocessor approach, is to embed a general purpose XQuery processor inside an RDBMS
engine and have the XQuery processor execute XQuery on behalf of the RDBMS SQL
processor. The coprocessor approach has the SQL processor treat the XQuery coprocessor as
a black box. During the execution of the SQL statement, the SQL processor handles the
XQuery portion of the query by passing the text of the XQuery portion of the query, and the
necessary XML values, as input to the XQuery processor. The XQuery processor then
returns the results of processing the XQuery portion of the query to the SQL processor and

the SQL processor performs any other appropriate operations specified by the query.

WO 2006/009768 PCT/US2005/021259

[0007] The coprocessor approach has numerous problems. First, the XQuery processor
is not aware of any of the underlying techniques for storing XML data. Therefore, the
XQuery processor needs fully materialized XML as input. Consequently, the XML input
needed by the XQuery processor must be constructed or materialized by the RDBMS. Often
the XML input needed for the XQuery is stored in the database and may be “shredded” into
one or component XML elements, and those XML elements may be stored in one or more
relational or object relational tables. Under these conditions, the process of materializing the
XML data is time and resource consuming, and therefore makes the coprocessor approach
inefficient.

[0008] A second problem with the coprocessor approach is that the XQuery portion of an
incoming query cannot be optimized with the SQL portion of the incoming query (and vice-
versa). Specifically, the XQuery processor is not able to optimize the SQL portion of the
query; and the SQL processor is not able to optimize the XQuery portion of the query.
Therefore, the SQL and XQuery parts of the query are separately optimized (if at all), which
is suboptimal. In addition, the underlying storage of the data needed in the XQuery portion
of the query will be stored in a form other than XML (such as being shredded into multiple
XMLType columns). Since the XQuery processor is not aware of the form in which the
underlying data is stored, the XQuery processor is not able to optimize execution of the
XQuery operations based on storage information.

[0009] A third problem with the coprocessor approach occurs when an XQuery processor
is invoked multiple times, where the output of a first XQuery becomes the input to a second
XQuery in the original query. For example, in the case where the output of a first XQuery
must be passed as input to a second XQuery, the output of the first XQuery must be

generated as XML. This dictates that the XQuery processor, after determining the result of

WO 2006/009768 PCT/US2005/021259

the first XQuery, must materialize the result as XML in an XML document and send the
XML document to the SQL processor. The SQL processor then passes the XML document
back to the XQuery processor along with the second XQuery. The XQuery processor will
then retrieve and process the second XQuery with the XML document. This constitutes
numerous wasted communication and computational steps and wasted bandwidth.

[0010] Therefore, there is clearly a need for techniques that overcome the shortfalls of

the co-processor approach described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:

[0012] FIG. 1 is a block diagram that depicts a system for efficient evaluation of queries
using translation.

[0013] FIG. 2 is a flow diagram that depicts a process for efficient evaluation of queries
using translation.

[0014] FIG. 3 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[0015]) Techniques for efficient evaluation of queries using translation are described. In
the following description, for the purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the present invention. It will be

apparent, however, that the present invention may be practiced without these specific details.

WO 2006/009768 PCT/US2005/021259

In other instances, well-known structures and devices are shown in block diagram form in

order to avoid unnecessarily obscuring the present invention.

1.0 INTRODUCTION

[0016] The techniques described herein are in no way limited to any particular
embodiment or aspect of the embodiment. One example embodiment of the techniques
described herein is a database server that accepts queries in SQL, XQuery, and XQueryX.
This embodiment is described for illustrative purposes only.

[0017] When the database server receives a query, it determines whether any portion of
the query is in a query language other than SQL (e.g. XQuery or XQueryX). For each such
portion, the database server parses the portion and compiles the portion into an abstract
syntax tree (AST) in an abstract syntax related to the non-SQL query language. Such ASTs
are referred to herein as “non-SQL ASTs” or as AST related to particular query languages,
such as XQuery ASTs. The non-SQL AST is then converted into an AST in an abstract
syntax related to SQL. Such ASTs are referred to herein as “SQL ASTs.” This is repeated
for each portion of the query that is in a non-SQL query language (e.g. XQuery or
XQueryX). Each portion of the query in the SQL is also compiled into an SQL AST. The
database server then combines all of the ASTs corresponding to each portion of the query.
This combined AST can then be optimized and executed or stored for later execution.
[0018] The techniques described herein apply, at least, to queries that have one or more
portions of the query in one or more declarative query languages. Declarative query
languages allow one to specify information to be retrieved from a data source without

needing to specify how the information is to be retrieved.

WO 2006/009768 PCT/US2005/021259

| 2.0 XML DATABASE OPERATIONS
[0019] Some RDBMSs and object-relational database systems (ORDBMS) support
“XML” or “XMLType” as a native datatype. Using XMLType, users can store XML
documents in databases via the use of XML tables or XMLType columns of tables.
Furthermore, users can convert their relational data into XMLType views via the use of
SQL/XML publishing functions, such as XMLElement, XMLConcat, etc. XQuery can be
used in SQL through a function such as XMLQuery, which enables queries on XMLType
values. The XMLTable function enables one to convert XML values (possibly from one or
more XMLType columns, or values returned from an XQuery) into a virtual relational table.
Consider an example where a table called “purchaseOrder” is an XMLType table with each
row storing a purchaseOrder XML document instance. Each XML document instance has
contents similar to the following:

<PurchaseOrder>

<ShippingAddress>345, 35 Ave, Berkeley, CA 94613 <ShippingAddress>
<Zt<e?z?;e>item> <name>XQuery Book</name><price>46</price></lineitem>
<lineitem><name>SQL/XML Guide</name><price> 78</price><lineitem>
</items>
</PurchaseOrder>

[0020] The following SQL statement, with XQuery embedded in the XMLQuery
function, finds the ShippingAddress of all the purchaseOrder XML document instances
which have a purchase item whose price is greater than forty-five:

select xmlquery(‘for $i in /PurchaseOrder where Si/items/lineitem/price > 45 return

$i/ShippingAddress’ passing value(p) returning content)

from purchaserOrder p;
[0021] Here is an example of converting the XML document instance into relational

tables via XMLTable construct:

select xt.name, xt.price

WO 2006/009768 PCT/US2005/021259

from purchaseOrder p, xmltable(*/PurchaseOrder/items/lineitem’ passing value(p)
columns
name varchar2(20) path ‘name’,
price number path ‘price’) xt;

3.0 SYSTEM OVERVIEW
[0022] FIG. 1 is a block diagram that depicts a system for efficient evaluation of queries
using translation.
[0023] The system illustrated in FIG. 1 includes a database server 150. The database
server 150 is a logical machine. The database server 150 includes a non-SQL parser unit
110a, an SQL parser unit 110b, a compiler unit 120, a translator unit 130, and a further query
processing unit 140. Each of the units 110a, 110b, 120, 130, and 140 may be a logical
machine. Each logical machine may run on separate physical computing machines or may be
running on the same physical computing machine as one or more of the other logical
machines. Various embodiments of computers and other physical and logical machines are
described in detail below in the section entitled Hardware Overview. In one embodiment,
each of the units 110-140 are software units running on one or More Processors on one or
more computers, and those one or more processors on one or more computers make up the
database server 150. The database server 150 may include other software units not described
herein. The units 110-140 may all be part of the same software program or may be part of
separate software programs. That is, a single software program may perform the
functionality of two or more of the units 110-140. Alternatively, a first software program
may perform some of the functions for a particular unit 110-140 and a second software
program may perform other functions for the particular unit 110-140.
[0024] The non-SQL parser unit 110a takes a non-SQL query, or portion of a query, as
input and converts it to a second representation (such as SQL). For example, the non-SQL

parser unit 110a may be an XQuery parser unit 110a that takes as input an XQuery query and

7

WO 2006/009768 PCT/US2005/021259

converts it into an XQueryX representation. The compiler unit 120 takes a query as input
and produces an in-memory representation of the query. For example, the compiler unit 120
may take as input an XQueryX query and compile that into an XQuery AST. In one
embodiment, the compiler unit may take as input queries in more than one query language,
and queries of each query language are compiled into different formats of in-memory
representation. For example, an SQL query may be compiled into an SQL AST, whereas an
XQueryX query may be compiled into an XQuery AST. Alternatively, queries in one or
more different query languages may be compiled into similar or the same format of in-
memory representation. In alternative embodiments, there are separate parser units 110a and
110b and compiler unit 120 for each query language. For example, there may be an XQuery
parser unit 110a and an SQL parser unit 110b.

[0025] The translator unit 130 converts among the various formats of in-memory
representations. For example, the translator unit 130 may convert an XQuery AST into an
equivalent SQL AST, or vice-versa.

[0026] The further query processing unit 140 takes an in-memory representation as input
and provides query optimization, storage, and / or, execuﬁon of the query based on the in-
memory representation of the query. The further query processing unit 140 may also
perform the step of combining one or more in-memory representations of queries or parts of
a query and performing query optimization, storage, and / or execution of the query or
queries based on the combined in-memory representations.

[0027] The database server 150 is communicatively coupled to a database 160. The
database 160 may be a relational database, an object-oriented database, a file, a repository, or
any form of structured data stored on a machine-readable medium. The database server 150

may perform (e.g. using the further query processing unit 140) certain operations required by

WO 2006/009768 PCT/US2005/021259

the query against the database 160 based on the in-memory representations produced by the
compiler unit 120, translator unit 130, or further query processing unit 140. In various
embodiments, coupling is accomplished by optical, infrared, or radio signal transmission,
direct cabling, wireless networking, local area networks (LANSs), wide area networks
(WANS), wireless local area networks (WLANS), the Internet, or any appropriate

communication mechanism.

4,0 FUNCTIONAL OVERVIEW
[0028] FIG. 2 is a flow diagram that depicts a process for efficient evaluation of queries
using translation.
[0029] In step 205, a query is received. The query may be in any appropriate format.
For example, the query may be in SQL, XQuery, or XQueryX. The query may also utilize a
language for addressing parts of a markup language document, such as XPath. The query
may contain one or more “portions”. Each of the portions may be in the different formats
than each of the other portions. For example, in the context of FIG. 1, the database server
150 may receive a query that contains both SQL and XQuery portions:

select xmlquery(‘for $i in /PurchaseOrder where $i/items/lineitem/price > 43 return

$i/ShippingAddress’ passing value(p) returning content)

from purchaserOrder p;
where the outer portion of the query is in SQL and the portion of the query inside the
xmlquery(...) is in XQuery. The query may also be in a single format.
[0030] In step 207, the query is processed in order to detect whether there are portions of
the query in one or more query languages. Once the portions of the query are detected in
step 207, then checks are performed to determine whether the query contains XQuery (step
210) or SQL (step 230). In other embodiments, other checks would be performed to

determine whether the query contained statements in other particular query languages (e.g.

9

WO 2006/009768 PCT/US2005/021259

XQueryX) and steps similar to those for XQuery (steps 210-225) or SQL (steps 230-245)
would be performed for queries in each of those other query languages.

[0031] In step 210, a check is performed to determine whether the query contains
XQuery. Detecting that a query contains operations to be performed in XQuery may include
searching for and finding an XQuery indicator or function call. For example, the non-SQL
parser unit 110a may parse the query and detect an XMLQuery function and thereby
determine that the query contained within the parentheses is in XQuery format. In various
embodiments, step 210 also includes determining whether the query contains XQueryX or
XPath and the subsequent steps 220-225 are performed on any XQueryX or XPath queries or
subqueries that are found.

[0032] If the query contains no XQuery, then step 242 is performed. Step 242 is
described below. Alternatively, if the query does not contain XQuery or SQL statements
and, moreover, contains only elements that are not recognizable by the database server 150,
then a message may be sent to the query submitter or a system administrator indicating that
the format of the query is not recognizable.

[0033] If the query does contain XQuery, then the XQuery portion of the query is parsed
and compiled into an XQuery AST in step 220. The XQuery portion of the query may be
parsed using any appropriate parser. The parsed XQuery is then compiled into an in-memory
representation of the XQuery. The in-memory representation of the XQuery portion of the
query is formatted in a way that is compatible with the later steps. The techniques described
herein are not limited to any particular in-memory representation. The examples herein will
use an abstract syntax tree. ASTs capture the semantic meanings of queries while rerﬁoving

syntactic details.

10

WO 2006/009768 PCT/US2005/021259

[0034] The AST for the portion of the query in XQuery will be in a particular abstract
syntax related to XQuery. In step 225, the XQuery AST for the XQuery portion of the query
is converted into an equivalent SQL AST in a particular abstract syntax related to SQL. Each
term in the AST is converted in turn. In one embodiment, the elements at the “leaves” or
deepest level of the AST are converted from the XQuery-related abstract syntax to the SQL~
related abstract syntax. Then the nodes on the next lowest level are converted. The “higher”
levels of the AST are processed one level at a time and from the bottom up. Alternatively,
one or more of the leaves of the AST are converted and the parent nodes of these leaves are
converted once all of their child nodes in the AST are converted. Details of what XQuery
statements are converted to which SQL statements are given in the section entitled XQuery
Translation and in “706. Once the XQuery AST has been converted into an equivalent SQL
AST, then the equivalent SQL AST may later be combined with any other SQL ASTs in step
245 (described below).

[0035] After step 225 is performed, then, in step 242, a check is performed to determine
whether any other portions of the query need to be processed. If there are more portions of
the query to process, then step 207 is performed. Alternatively, if there are more portions of
the query to process, steps 210 or 230 may be performed. If there are no more portions of the
query to process, then step 245 is performed. In general, any portion of the original query
that is in a language supported by the database server 150 may be processed. For example, if
a query has a first XQuery portion, a second XQuery portion, and an SQL portion, then steps
210-225 are be performed for each of the first XQuery portion and the second XQuery
portions and steps 230-240 are performed for the SQL portion of the query. The compiled

portions of the query are then combined (described below with respect to steps 245-25 5).

11

WO 2006/009768 PCT/US2005/021259

[0036] In step 230, a check is performed to determine whether the query contains SQL.
For example, the SQL parser unit 110b may parse the query (in step 207) and detect an SQL
portion of the query and thereby determine that the query contains SQL (in step 230). If the
query does not contain SQL, then step 242 is performed. Step 242 is described above. If the
query does contain SQL, then in step 240, the SQL portions of the query are parsed and
compiled into an SQL AST. Various embodiments of parsing and compiling queries in
XQuery are given above in relation to step 220. Techniques for parsing and compiling
queries in SQL (or any query language) are similar to those described for XQuery but may
use an SQL parser and SQL syntax rules for the parsing. The resulting in-memory
representation, such as an SQL AST, contains the semantics of the SQL portion of the query
in an abstract syntax related to SQL.

[0037] After step 240 is performed, then, in step 242, a check is performed to determine
whether any other portions of the query need to be processed. Once any XQuery portions of
the query have been parsed, compiled, and converted to an SQL AST and any SQL portions
of the query have been parsed and compiled into an SQL AST, then the ASTs representing
the different portions of the query may be combined in step 245. Combining the ASTs may
comprise forming a new AST for the query and pointing to or copying the ASTs representing
the different portions of the query. Alternatively, one or more of the ASTs representing the
different portions of the query may point to or incorporate one or more of the other ASTs
representing the different portions of the query. The combined AST is in an SQL-related
abstract syntax and represents the entire query. For example, in the context of FIG. 1, the
further query processing unit 140 combines the ASTs produced in steps 225 and 240.

[0038] In step 250, the combined AST is used as a basis for optimization of the query.

Since the entire query is represented in a single abstract syntax, any appropriate single-

12

WO 2006/009768 PCT/US2005/021259

abstract-syntax optimization technique may be used to optimize the query. In step 255 the
optimized query is executed or stored for later execution.

[0039] Various embodiments of the techniques described herein enable a query that
contains subqueries in multiple query languages to be stored or executed based on an AST in
a single abstract syntax. One of the benefits of embodiments of these techniques is that,
since the AST that represents the query is in a single abstract syntax, the entire query may be
optimized as if it were originally written in a single query language.

[0040] Various embodiments of the techniques described herein enable a query to arrive
in a first query language (e.g. XQuery) and for the query to be processed and translated into
an equivalent form of a second query language (e.g. SQL). This may be beneficial when the
processing or optimization techniques available for the second query language are in some
way preferable to those of the first query language. For example, consider a system that does
not have XQuery optimizers, but does have SQL query optimizers. Using the techniques
described herein, if a query arrives in the XQuery format, the query may be processed and an
SQL AST may be generated. The SQL AST may then be optimized using SQL query
optimizers. The optimized, equivalent query (as represented by the optimized, SQL AST)
may then be executed in place of the original XQuery, thereby saving query processing time.
[0041] In the examples discussed herein, the database server 150 receives the non-SQL
query or portions of a query and converts them to SQL. The techniques described herein,
however, are not limited to such embodiments. For example, in other embodiments, a
middle-tier server that acts as middleware between a database application and a database
server 150 may perform the conversions as described herein. The converted SQL query

would then be sent to and executed on the database server 150.

13

WO 2006/009768 PCT/US2005/021259

[0042] The techniques described herein are presented in terms of a conversion from one
abstract syntax to another. In other embodiments of the techniques described herein, the
portion of a query in a first syntax (e.g. XQuery) may be converted to a second syntax (e.g.

SQL), before it is compiled into an abstract syntax.

5.0 XQUERY TRANSLATION
[0043] Asnoted above, the techniques described herein provide for converting an AST in
one abstract syntax into an AST of another abstract syntax. Below is a description of the

conversion between XQuery ASTs and SQL ASTs.

5.1. TRANSLATION OF EXPRESSIONS

[0044] XQuery expressions are rewritten to their equivalent SQL expressions. For
instance a literal in XQuery gets mapped to a string or numeric literal (OPNTSTR) in SQL.
The following table lists the mapping of general expressions in to their SQL equivalents.
Section 5.2 describes the mapping of individual XQuery operators and functions to SQL

operators.

5.1.1. EFFECTIVE BOOLEAN VALUE
[0045] The effective Boolean value (EFB) of a sequence is computed implicitly during
processing of the following types of expressions:

e Logical expressions (and, or)

e The fn:not function

e The WHERE clause of a FLWOR expression
o Certain types of predicates, such as a[b]

e Conditional expressions (if)

e Quantified expressions (some, every)

[0046] The effective Boolean value returns “false” in the following cases. Otherwise it

returns “true”.

14

WO 2006/009768 PCT/US2005/021259

e An empty sequence

e The Boolean value false

e A zero-length value of type xs:string or xdt:untypedAtomic
e A numeric value that is equal to zero

e The xs:double or xs:float value NaN

[0047] Example rule: To map EFB(expr) to SQL, the following rules are applied:

i) Translate expr to its SQL equivalent.

ii) If the static type of expr indicates that the quantifier is 1 (i.e. singleton expr)
then
i. If the type is Boolean and the SQL type is also Boolean (i.e. it is
mapped to one of the logical operators), then nothing to do

il. If the type is Boolean and SQL type is number, then add IS NOT
NULL (case <expr> when 1 then 1 else null)

iii. If the type is numeric then add IS NOT NULL (case <expr> when 0
then 0 when NaN then 0 else 1)

iv. If the type is any other scalar, then add IS NOT NULL(expr)
iii) If the static type of expr indicates that the quantifier is * or + then

i If the type is number or Boolean - convert the collection to a subquery
and add the following subquery expression on top - EXISTS(select *
from (select count(*) cnt, sum(value(p))sm from
table(xmisequence(<expr>)) x where (x.cnt = I and x.sm = 1) or
(x.cnt > 1))

ii. For all other types map it to IS NOT NULL (<expr>) in case the
<expr> is a non-subquery operand or to EXISTS(<expr>) if expr is an
SQL subquery.

5.1.2. ATOMIZATION OF VALUES

[0048] Atomization and conversion to scalar values are required in a number of places.
Atomization is determined by the static type analysis. In XQuery this is represented using the
fn:data() function.

[0049] The result of fn:data() is the sequence of atomic values produced by applying the

following rules to each item in the input sequence:

e Ifthe item is an atomic value, it is returned.

e Ifthe item is a node, its typed value is returned.

[0050] Atomization is used in processing the following types of expressions:
e Arithmetic expressions

15

WO 2006/009768 PCT/US2005/021259

e Comparison expressions

o Function calls and returns

e Cast expressions

e Computed element and attribute constructors.

[0051] When rewriting atomization, if the underlying SQL object is an XMLType (or
node) an OPTXT2SQLT operator is used to convert the node value to the equivalent SQL
type.

[0052] Example rule: Whenever atomization is required and the underlying SQL object’s
type is not scalar, add the OPTXT2SQLT operator with the desired type. OPTXT2SQLT
takes the input XML and the SQL type to convert the result to and atomizes the value to the

result.

5.1.3. LITERAL EXPRESSIONS

[0053] Literal Expressions in XQuery are translated to SQL literals. Boolean are mapped
as numbers 0 & 1. For example, the expression “1” is mapped to STRTCONS with value
«1”_ Numeric literals are mapped to SQL literals of type NUMBER and string literals are
mapped to SQL literals with type VARCHAR2.

[0054] Example rule: Map XQuery literals to SQL literals with the appropriate type
information. In case of a string literal, if it is > 4K, then map to a set of concat operations

with an empty_clob in the beginning.

Big_String_Literal -> empty_clob() || 4kliterall || 4kliteral2 ... || literaln
OPTTCA(OPTTCA(OPTTCA(OPTECLOB, literall), literal2), ... literaln)

5.1.4. BUILT-IN TYPE CONSTRUCTOR, CAST EXPRESSIONS

[0055] The XQuery CAST and type constructors are mapped to SQL TO _CHAR,
TO_NUMBER and XMLCast. XMLCast is used for casting explicitly to user-defined simple
types (e.g. hatsize) and for converting simple scalar types to XML values (for passing into
functions etc..).

16

WO 2006/009768 PCT/US2005/021259

[0056] The following table explains the mapping of XML datatypes to their SQL
equivalents. The constructor column is used to check the validity of the value (e.g. byte may
be < 127 and greater than -128). The constructor may not be needed if the static type
indicates that the expression is of the right type (or a subtype). Constant folding may be
performed to eliminate the constructor.

[0057] Example rule: Check datatype to which to cast. If the input is a constant, then
check the bounds and raise an error if appropriate. Else if it is a numeric datatype add the

TO NUMBER and the bounds check. Ifit is a date type, convert it to the TIMESTAMP_TZ

with the appropriate format.

XML Datatype SQL Data Type Example SQL conversion

xs:integer NUMBER TO NUMBER(<expr>)

xs:positivelnteger NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT_POSITIVEINT
EGER)

xs:negativeInteger NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT_NEGATIVEIN
TEGER)

xs:nonPositivelnteger | NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT _NONPOSITIV
EINTEGER)

xs:nonNegativeInteger NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT NONNEGATI
VEINTEGER)

xs:int NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT INT)

xs:short NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT SHORT)

xs:double BINARY DOUBLE [TO BINARY DOUBLE(<expr>)

xs:float BINARY FLOAT |TO BINARY_FLOAR(<expr>)

xs:byte NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT BYTE)

xs:string VARCHAR2/ TO_CHAR(<expr>)

CLOB

xs:unsignedByte NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT UNSIGNEDBY
TE)

xs:unsignedShort NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT UNSIGNEDSH

17

WO 2006/009768

PCT/US2005/021259

ORT)

xs:unsignedInt NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT_UNSIGNEDIN
T)

xs:long NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT LONG)

xs:unsignedLong NUMBER OPTXMLCNV(TO_NUMBER(
<expr>),QMTXT_UNSIGNEDLO
NG)

xs:decimal NUMBER TO NUMBER (<expr>)

xs:Boolean NUMBER Case <expr> when null then 0
when 0 then 0 when NaN then 0
else 1

xs:base64Binary RAW/BLOB OPTXMLCNV(<expr>,
QMTXT BASE64BINARY)

xs:hexBinary RAW/BLOB OPTXMLCNV (<expr>,
QMTXT HEXBINARY)

xs:dateTime TIMESTAMP TZ |OPTXMLCNV (<expr>,
QMTXT DATETIMETZ)

xs:time TIMESTAMP _TZ |OPTXMLCNV(<expr>,
QMTXT TIMETZ)

xs:date TIMESTAMP TZ |OPTXMLCNV(<expr>,
QMTXT DATETZ)

xs:gday TIMESTAMP _TZ |OPTXMLCNV(<expr>,
QMTXT GDAYTZ)

xs:gMonth TIMESTAMP_TZ |OPTXMLCNV(<expr>,
QMTXT_GMONTHTZ)

xs:GYearMonth TIMESTAMP_TZ |OPTXMLCNV(<expr>,
QMTXT GYEARMONTHTZ)

xs:GMonthDay TIMESTAMP _TZ |OPTXMLCNV(<expr>,
QMTXT GMONTHDAYTZ)

xs:gYear TIMESTAMP _TZ |OPTXMLCNV(<expr>,
QMTXT GYEARTZ)

5.1.5. SEQUENCE CONSTRUCTORS

[0058] XMLConcat() is used for concatenating sequences. However, XML constructors
are needed for converting scalar values to XMLType. For example, the sequence constructor
(1, 2, 3) is mapped to XMLConcat(XMLCast(1), XMLCast(2), XMLCast(3)).

[0059] Example rule: Iterate over all the input of the sequence constructor. For each

expression, convert it into its SQL equivalent. If the result type is a simple scalar, add an

18

WO 2006/009768 PCT/US2005/021259

XMLCast operand on top of it. Create an XMLConcat() to concatenate the result into a single

XMLType.

5.1.6. RANGE EXPRESSION
[0060] Range expressions may be handled by using an operator OPTXNRNG(). See the

range operator in operator listing. This range operator returns an XMLType containing a list

of integers.

[0061] Example rule: Map to the OPTXNRNG operator.

5.1.7. SET EXPRESSIONS (UNION, INTERSECT, MINUS, EXCEPT)

[0062] Set operations are transformed to value operation in case of unions on values. If
XMLType(Seq) may be mappable to SQL. UNION, INTERSECT, MINUS, and / or
EXCEPT constructs, and doing so may eliminate duplicates among nodes.

[0063] Example rule: Map the set expressions to the SQL UNION, INTERSECT,
MINUS, and EXCEPT constructs. The order/map method is used on the XMLType to

perform node level operations.

5.1.8. ARITHMETIC EXPRESSIONS

[0064] Static typing ensures that input may be numerical values or atomization and type
casts are added. The translation simply converts it to the SQL arithmetic expression.

[0065] Example rule: Convert the XQuery arithmetic expression to its SQL equivalent.

See operators table for detailed mapping of the various operators.

5.1.9. VALUE COMPARISON EXPRESSIONS
[0066] Static typing ensures that input may be scalar values or atomization and type casts

are added. The translation simply converts it to the SQL comparison expression.

19

WO 2006/009768 PCT/US2005/021259

[0067] Example rule: Convert the XQuery comparison expression to its SQL equivalent.

See operators table for detailed mapping of the various operators.

5.1.10. GENERAL COMPARISON EXPRESSIONS

[0068] Static typechecking may convert any general comparison expression to a value
comparison if possible. If both sides are non collection values and the types are compatible
they are converted to value comparison. For example, the expression, $po/PoNo = 21 may
be converted to $po/PoNo eq 21 if the type quantifier of $po/PoNo is not a collection (*, +
etc.).

[0069] If the static type information for both the sides are known compatible scalar types
(e.g. integer *) they are mapped to EXISTS subqueries. For example, $po//Lineltems = 21
may get mapped to EXISTS(select * from TABLE(XMLSEQUENCE(<xpath-conv-for
$po//Lineltems>)) x where value(x) = 21).

[0070] If the static type is unknown (untypedAtomic *) then the equivalent general
comparison operator is used.

[0071] Example rule: Given expr] GCOMP expr2, check the compatibility of the static
types of the two expressions.

e Ifthe type of both sides is untypedAtomic, they are both converted to a
VARCHAR? type.

e If one side is untypedAtomic and the other is a numeric value, then the
untypedAtomic value is converted to the BINARY_DOUBLE.

[0072] Now check the quantifier for the type (e.g. quantifier (integer *) is *). For
example:
e If the quantifier for both sides is a singleton (empty or ?) then map the GCOMP to

the SQL value comparison operator.

e Ifexprl quantifier type is a collection (* or +) and expr2 quantifier is a singleton
then map to

EXISTS(select null from TABLE(XMLSEQUENCE(expr!) x
Where value(x) VCOMP expr2) (VCOMRP is the value comparison

20

WO 2006/009768 PCT/US2005/021259

equivalent)

e.g. $po//LineltemNo < 20 becomes (assuming the static type of
$po//LineltemNo is integer™)

EXISTS(select null from TABLE(XMLSEQUENCE(
$po//LineltemNo) x

Where value(x) < 20)

e Ifexpr2 quantifier type is a collection (* or +) and exprl quantifier is a singleton
then map to

EXISTS(select null from TABLE(XMLSEQUENCE(expr2) x

Where exprl VCOMP value(x)) (VCOMP is the value comparison
equivalent)

e.g. 20 < $po//LineltemNo becomes (assuming the static type of
$po//LineltemNo is integer*)

EXISTS(select null from TABLE(XMLSEQUENCE(
$po//LineltemNo) X

Where 20 < value(x))

e Ifboth expressions are collections then map the expression to

EXISTS(select null from TABLE(XMLSEQUENCE(expr!) x

Where EXISTS (select null from TABLE(XMLSEQUENCE(expr2
)y
Where value(x) VCOMP value(y)))

e.g. $po1//LineltemNo < $po2//LineltemNo becomes
EXISTS(select null from TABLE(XMLSEQUENCE($pol//LineltemNo) x

Where EXISTS (select null from TABLE(XMLSEQUENCE(
$po2//LineltemNo) y

Where value(x) < value(y)))

5.1.11. NODE COMPARISON EXPRESSIONS

[0073]

Node comparisons are handled by using the order method on XMLType. They are

mapped to the SQL value comparison operators.

[0074]

Example rule: Map to the SQL value comparison operators as described herein.

5.1.12. ORDER COMPARISON EXPRESSIONS

[0075]

Order comparison expressions are used in the FLWOR order by clause. These are

mapped to the SQL order by clause.

21

WO 2006/009768 PCT/US2005/021259

[0076] Example rule: Map Order comparison expressions to SQL order by clause

expressions.

5.1.13. LOGICAL EXPRESSIONS (AND, OR, NOT)

[0077] XML logical expressions are mapped to SQL logical expressions. SQL has 3-
valued logic, but empty sequences are mapped to NULL and this works for non-constraint
operations. Constraints may be an important issue, since a NULL value from a constraint is
treated as matching the constraint.

[0078] Example rule: Map logical expressions to SQL logical expressions (AND, OR). In
case when the logical expression appears as a top-level expression (outside of the WHERE
clause or IF clause) then add 2 CASE Expression to the result. E.g. if the query is the

expressions “a <20 and b > 30”, map it to CASE WHEN (a <20 and b > 30) then 1 else 0.

5.1.14. FLWOR EXPRESSION

[0079] FLWOR expressions are mapped to SQL select expressions. The LET clauses are
mapped as common sub expressions in the SQL query. The RHS of the for-clause is mapped
to the from-clause, the where-clause is mapped to the SQL where-clause and the return-
clause is mapped to the SQL select-clause. If node identities are to be preserved in the query,

then the query block is marked as NO_MERGE.

for <var> 1in <rhs-exprl>,

<var2> in <rhs-expra>
where <cond-expression>
order by , <02>.. <on>
return <ret-expr>

is mapped to

select /*+ NO MERGE */ XMLAGG(<sgl-ret-expr>)

from TABLE (XMLSEQUENCE (<sgl-rhs-exprl>) as “varl”
TARLE (XMLSEQUENCE (<sql-rhs-expr2>) as “var2”

where <sgl-cond>

order by <sgl-ol>, <sgl-o2>, .. <sgl-on>

22

WO 2006/009768 PCT/US2005/021259

[0080] Example 1: Simple FLWOR clause

for $i in (1,2,3)
where $i > 1
return Si+ 2

is mapped to

select xmlagg (XMLCast (XMLCast (value (“$1”) as number) + 1 as xml))
from table (xmlsequence (xmlconcat (cast (L as xmltype (sequence)) ,
cast (2 as xmltype (sequence)),
cast (3 as
xmltype (sequence))))
returning sequence) as “$1”
where XMICast (value(“$i”) as number) > 1;

[0081] Example 2. FLWOR clause with XPath expressions:
for $i in doc (“foo.xml”)/PurchaseOrder
where $i/PoNo = 21
return <A>{$i}

becomes

select xmlagg (XMLElement (“A”, value (“&i”)))
from table (xmlsequence (extract (select
extract (Res, / /Contents/*’) from resource view
where equals path(res,’/foo.xml’) = 1),
\ /PurchaseOrder’))) “$i”
where XMICast (OPTXATG (value(“$i”, ‘/PoNo’) as number) = 21

5.1.14.1. LET CLAUSE HANDLING

[0082] A LET clause expression is inlined into the query expression (and marked as
common subexpression) if node identities need not be preserved. Otherwise a subquery is
created with the LET clause expressions as it’s select list. The subquery is marked as non-
mergeable to prevent view merging.

[0083] Example with node identities preserved:

for $i in doc (“foo.xml”) /PurchaseOrder//LineItems
let $j := doc(“baditems.xml”)//BadIltems

where $i/ItemNo eqg $j/ItemNo

return ($i, $j/BadItem)

becomes

select xmlagg (xmlconcat (“$1”, OPTXATG(“$j”,’/Baditem’)))

23

WO 2006/009768 PCT/US2005/021259

from
(select /*+ NO MERGE */ value(“$I”) as “SI”,
(select XMLAgg (OPTXATG (value (X))
from table(xmlsequence (
extract (select extract (Res,’/Contents/*’)
from resource view
where equals path(res,’/baditems.xml’) = 1),
v//Badlitems’))) “x”
) as \\$j "
from table (xmlsequence (OPTXATG (
OPTXATG (select extract (Res,’/Contents/*’)
from resource view ‘
where equals path(res,’/foo.xml’) = 1),
'\ /PurchaseOrder’),

v// L)ineItems))) wsir

where exists(select null from table (xmlsequence (
OPTXA'IG(“$j n 1 [/ItenNo’ 1)) x

where XMLCast (OPTXATG(“$I”,’/ItenNo’)as nurber) =
XMLCast (x as number)) ;

[0084] Example without preservation of node identities: If node identity preservation is
not critical, then the LET clause may be inlined into the expression itself directly. This
optimization may be done either by requiring the user to have a pragma specifying that node
identities are not essential. This may be also be done implicitly be examining the globally to

determine whether any node related operations are used in the query.

for $1i in doc (“foo.xml”) /PurchaseOrder//Lineltems
let ¢j := doc(“baditems.xml”)//Baditems

where $i/ItemNo eq $j/ItemNo

return $i

becomes

select xmlagg (value (“$i”)
from table (xmlsequence (OPTXATG (
OPTXATG (
select extract (Res,’/Contents/*’)
from resource view
where equals path(res,’/foo.xml’) = 1),
v /PurchaseOrder’) ,
v//LineItems))) “$i”
where exists(select null
from table (xmlsequence (
OPTXATG((select XMLAgg (OPTXATG (value (x))
from table (xmlsequence (
extract (select extract (Res,’/Contents/*’)
from resource view
where equals path(res,’/baditems.xml’) = 1),
v//Badltems’))) “$3”

24

WO 2006/009768 PCT/US2005/021259

where XMLCast (OPTXATG(%$1i”,’/ItenNo’) as number) =
XML Cast (OPTXATG (“$j”, ' /ItenNo’) as number)) ;

[0085] Example technique: Since preventing view merging may adversely affect query
performance, the WHERE clause for the FLWOR expression is first searched to see if it
includes any of the LET variable. If not, then the LET clause may be evaluated as a result of
the FLWOR clause (along with the return).

[0086] For example in the following query,

for $1i in doc (“foo.xml”) /PurchaseOrder//Lineltems

let $j := count (doc(“baditems.xml”)//BadItems [ItenNo =
$i/ItenNo])

where $i/ItemNo > 200

return $j

$j is often used in the return clause and not in the WHERE clause — so that the WHERE

clause may be evaluated before the LET clause. This query is equivalent to
for $3 in
for $i in doc(“foo.xml”)/PurchaseOrder//LineIltems
where $i/ItemNo > 200
return

count (doc (“baditems.xml”) //BadItems [TtemNo = $1/ItemNo]
return $j

[0087] Example rules: Normalize Type declarations: If the FOR or LET clause involves
any type declaration, check the static type of the expression corresponding to the clause. If it
is the same or a subtype of the declared type then ignore the type declaration. Ifitisa
supertype of the declared type, then add a TREAT expression on the expression and map it to
SQL. Otherwise raise an error. For <var> <type> := <expr> is normalized to for <var> :=
TREAT<expr> as <type> and then mapped to SQL.

[0088] Convert all expressions in the FOR, WHERE, LET and RETURN clauses to their
SQL equivalent. Map the FOR clause expressions to SQL FROM clauses (joins). If node
identity need not be preserved, then inline the LET clause expression wherever it is
referenced. For example:

For <varls> in <exprls>, <var2> in <expr2>

25

WO 2006/009768 PCT/US2005/021259

let <var3s> in <expr3>
where <cond-referencing-var3s
return <expr4>

is mapped to

select xmlagg(<exprd>) /* inline var3 references with expr3 */
from table (xmlsequence (<exprl>) as “varl” ,
table (xmlsequence (<expr2>) as “var2”,..

where <cond-referencing-var3> /* inline var3 references with

expr3 */
[0089] Otherwise, if node identity is to be preserved, examine the LET clauses in the
FLWOR expression to determine if they may be evaluated before the WHERE clause, by
checking whether the variables defined in the LET clauses are used in the WHERE clause.
Add aNO_MERGE hint on the inner query block to indicate that view merging should not
happen.
[0090] If the LET clause needs to be evaluated before the WHERE clause, map the LET
clause expression as a select list subquery and map the WHERE clause to the SQL WHERE

clause of the outer query block. For example:

For <varls in <exprls>, <var2> in <expr2>
let <var3s> in <expr3>

where <cond-referencing-var3>
return <expré4>

is mapped to

select xmlagg(<expréd>)
from (select /*+ NO MERGE */
value (“warl”) as “varl”,
value (“war2”) as “var2”,
<expr3> as “var3”
from table (xmlsequence (<exprl>) as “varl” ,
table (xmlsequence (<expr2>) as “var2”,..

where <cond-referencing-var3>

)
[0091] If the LET clause need NOT be evaluated before the WHERE clause, map the

LET clause expression as a select list subquery, but map the WHERE clause to the SQL
WHERE clause of the inner query block. For example:

For <varls in <exprls>, <var2> in <expr2>

26

WO 2006/009768 PCT/US2005/021259

let <var3> in <expr3>
where <cond-not-referencing-var3>
return <expré-refecencing-var3>

is mapped to

select xmlagg (<expri-referencing-var3s>)
from
(select /*+ NO_MERGE */
value (“varl”) as “varl”,
value (“var2") as “vara”,
<expr3> as “var3”
from table (xmlsequence(<exprls>) as “varl” ,
table (xmlsequence (<expr2>) as “var2”,..
where <cond-referencing-var3>

)
5.1.15. PATH EXPRESSIONS

[0092] Path expressions are mapped to SQL expressions. An operator OPTXATG is used
to extract out individual nodes in the path expression. It represents a single step traversal.

Static typechecking is used to optimize some of the path expression conversion.

5.1.15.1. PATH STEPS WITH NAME TEST

[0093] This represents the standard XPath 1.0 path expressions. Simple path traversals
with name tests are rewritten to the OPTXATG operator. Static type checking is used to
figure out the type and cardinality of the various steps. This is later used for translation.
Predicates are mapped to relational WHERE clauses after normalization. General
comparisons involving collection elements are mapped to subqueries involving value
comparisons. If there is no static type checking information available, then each step is
assumed to produce an untypedAny.

[0094] OPTXATGs are further optimized (or collapsed) based on the input arguments.

For example:

$1i/PurchaseOrder/PoNo

is mapped to

27

WO 2006/009768 PCT/US2005/021259

OPTXATG (OPTXATG ($i, ‘PurchaseOrder’), ‘PoNo’).

[0095] OPTXATGs are further optimized (or collapsed) based on the input arguments.

For example the expression,

(<A>33)/A/B

is mapped to

OPTXATG(OPTXATG(XMLElement(“A”, XMLElement(“B”,33)), ‘A’), ‘B’)

[0096] The XATG that extracts A and the XMLFElement() creating A are collapsed and
the result is XMLElement(“B”, 333) which corresponds to the result 33.
[0097] In a second example, path predicates are mapped to relational predicates:

$1/PurchaseOrder/PcNo eq 21

gets mapped to

XMLCast (OPTXATG(OPTXATG ($i , ‘PurchaseOrder’), ‘PoNo’) as
number) = 21

[0098] The previous mapping is only valid if during static type checking the type of
PoNo is an atomic value that may be cast to a number. If there is no schema information
available, then the static type information may only yield the fact that PoNo is of
xs:anyType. The XMLCast in this case may perform atomization of the values and raise error
if the input (PoNo) is not a single atomic value or element castable to a number.

[0099] If the general comparison operator (=) was used and the type information is not
known, then it has to be treated as a collection comparison. In this case, the path predicate is

rewritten to a TABLE subquery using the value comparison. For example:
$1i/PurchaseOrder/PcNo = 21
gets mapped to
EXISTS(select null
from table (xmlsequence (OPTXATG(OPTXATG ($i ,

‘PurchaseOrder’), ‘PaNo’)))) x
where XMI.Cast (value(x) as number) = 21)

28

WO 2006/009768 PCT/US2005/021259

[0100] A path expression that involves predicates in the path step itself is also handled in
a similar fashion. For example:

$1/PurchaseOrder [PoNo eq 21]
gets mapped to

select OPTXATG($i, ‘PurchaseOrder’)
from dual
where XMICast (OPTXATG(OPTXATG ($i , ‘PurchaseOrder’), ‘PcNo’)
as nurber) = 21
and in the case of general comparison with no schema inputs,
$1i/PurchaseOrder [PcNo = 21]
gets mapped to

select XMLAGG (value(v))
from table (xmlsequence (OPTXATG (ST, ‘PurchaseOrder’)) v
where exists(
select null from
table (xmlsequence (OPTXATG (value($v), ‘PoNo’))) x
where XMLCast (value (x) as nurber) = 21);

5.1.15.2. PATH STEPS WITH KIND TEST

[0101] Kind test involve checking the type of the node (e.g. text(), processing-
instruction() etc.). XQuery adds more sets of type check such as the name and schema type of
the node. For example, $i/element(foo, bar) indicates that the child element named foo of
type bar needs to be extracted. The OPTXATG operator is enhanced to take in a node type in

addition to the node name for extraction.

5.1.15.3. PATH STEPS WITH FILTER EXPRESSIONS
[0102] Filter expressions are handled by normalizing the path expression and pushing the
path expression into the context node. For example, $i/PurchaseOrder/(for $j in Lineltems

return count($j/Orders) may be normalized into (for §j in $i/PurchaseOrder/Lineltems return

count($j/Orders)).

29

WO 2006/009768 PCT/US2005/021259

[0103] Example rule: For each step of the path expression map it to an SQL operator as
follows:
a) If the step is a name test, then map it to the OPTXATG operator. <expr> <step>

<OName-or-wildcard> maps to OPTXATG(<expr>, <step>, <localname>,
<namespace>)

b) If the step is a kind test, then map it to the OPTXATG operator with type
information <expr> <step> <type> is mapped to OPTXATG(<expr>, <step>,
<type>)

¢) Ifthe step is a filter step, then normalize the expression as follows - <expr>
<step> <filterexpr> is normalized to (for $m in <expr> return <filterexpr> with
the context node in the filter expr changed to $m. This is then rewritten to SQL.

[0104] For example, $i/PurchaseOrder/(for §j in Lineltems return count($j/Orders)) is
normalized into for $m in $i/PurchaseOrder return (for $j in $m/Lineltems return
count($j/Orders)) and then mapped to SQL.

[0105]) For predicates in the path expression, the static type of the expression containing
the predicate may be checked as followed:

a) If the static type indicates that the expression results in a collection (quantifier = *
or +), then create a subquery with the expression and map the predicate to the
WHERE clause.

b) Else if the static type indicates that the expression results in a singleton node, map
toa

5.1.16. CONDITIONAL EXPRESSIONS

[0106] Tf-then-else expressions are mapped to the SQL. CASE WHEN Expressions.
[0107] Example rule: Given if <exprl> then <expr2> else <expr3>. Add the effective
Boolean value operator to exprl if necessary (as determined by the static type checking), and

map the expression to CASE WHEN <exprl > then <expr2> else <expr3>.

30

WO 2006/009768 PCT/US2005/021259

5.1.17. QUANTIFIED EXPRESSIONS
[0108] Quantified expressions may be mapped into SQL EXISTS clauses. For example
to find all purchaseorders where at least one of the lineitem number is present in the bad

items list,

for $I in ora:view(“po TAB")//PurchaseOrder
where some $j in $i//LineItem satisfies

for Sk in ora:view(“bad items”) where $k//ItenNo =
$j/ItenNo retum Sk,

where “ora:view()” is an XQuery function that returns the data from a relation table in XML

form, may be mapped to

select value(“$I”)
from “pQJIAB" “$I"
where exists(
select (select “sk”
from (select value(p) “$k” from “bad items” p)
where OPTXATG(“$k”,’//ItemNo’) =
OPTXATG (“$j"”, ' /ItemNo’)

from (
select value(“$j”) as “$3”
from table (xmlsequence (OPTXATG (value (“5I"), * //LineItem’)))

“$jn
)
)
5.1.18. DIRECT ELEMENT CONSTRUCTOR EXPRESSION
[0109] Element constructors are mapped to XMLElement() operator. Attributes inside
the element are mapped to the XMLAttributes() clause in the XMLElement() operator.

[0110] Example,

<A> { “217 } is mapped to XMLelement (NAME “A", '21') and
22 is mapped to XMLElement (NAME “A”,
XMLAttributes (21 as “b”), ‘22')

[0111] Example rule: Map any element constructor to XMLElement() using

XMLAttributes() for attribute construction.

31

WO 2006/009768 PCT/US2005/021259

5.1.19. COMPUTED ELEMENT CONSTRUCTOR EXPRESSION
[0112] Computed element constructor is also mapped to XMLElement(). Any computed
attribute constructor that is a child of the element constructor is optimized and mapped to the
XMLAitributes() clause. The XMLElement() operator is relaxed to allow dynamic element
names. The operator may also be modified to make free standing attribute children to become
the element’s attributes.

element {“a” } { “21” }
is mapped to

XMLElement (NAME EXPR ‘a’, ‘21')
and

element {“a” } {
Attribute b { “21” }
{22}

is mapped to
XMLElement (NAME EXPR ‘a’, XMLAttributes (21’ as “a”), ‘22')
[0113] Example rule: Map any computed element constructor to XMLElement() and map

child attribute constructors to XMLAttribute().

5.1.20. COMPUTED ATTRIBUTE CONSTRUCTOR EXPRESSION
[0114] Attribute constructors are handled by allowing the XMLAttribute() as a top level
SQL function.
Attribute “ar { “21” }
is mapped to

XMIAttribute (21 as “a”)

[0115] Example rule: Map Attribute constructors to XMLAttribute.

32

WO 2006/009768 PCT/US2005/021259

5.1.21. OTHER XML CONSTRUCTION EXPRESSIONS
[0116] Example rule: The XML constructors are mapped to the equivalent SQL/ XML

standard functions.

XMLComment OPTXMLCOM
XMLProcessinglnstruction OPTXMLPI
CDataSection OPTXMLCDATA
ComputedElemConstructor OPTXMLELEM

ComputedAttributeConstructor OPTXMLATTR
ComputedDocumentConstructor OPTXMLROOT
ComputedTextConstructor OPTXMLTXT

5.1.22. TYPESWITCH EXPRESSION

[0117] Typeswitch expressions are similar to if-then-else except that they switch on the
type of the input. The typechecking may be performed using an SQL operator
OPTXTYPCHK that checks the XQuery type of the input returning 1 if the type matches. If
the static type information of the expression is known the typeswitch may be optimized away
completely. The OPTXTYPCHK operator may be optimized away for most of the cases
where the static type check information may optimize the type checking.

[0118] Example rule: Map Typeswitch to Case expression and use the OPTXTYPCHK

to check the type of the input. Given

typeswitch <expr>
case <varls> as <typel> return <exprl>
case <var2> as <type2> return <expr2>

default <exprn>
[0119] Check the static type of <expr>. Let this be etype. Now for each Case expression
match the etype with the type-i in the Case expression. If the two types are the same or efype
is a subtype of #ype-i, then optimize the typeswtich expression away and return the SQL
equivalent of expr-i. If type-i is a subtype of etype then map the entire typeswitch expression
to the SQL expression of the form

Case when OPTXTYPCHK (<expr>, <typel>) = 1 then <exprls>

33

WO 2006/009768 PCT/US2005/021259

When OPTXTYPCHK (<expr>, <type2>) = 1 then <expr2>
elsé'<expm>

[0120] If no #ype-i is in the type hierarchy of etype then return the SQL equivalent of the

default expression exprn.

5.1.23. INSTANCEOF EXPRESSION

[0121] InstanceOf expression may be evaluated using the OPTXTYPCHK operator and
may be optimized using the static type of the input expression.

[0122] Example rule: Given <exprl> instanceOf <typel>. Check if the static type of
<exprl> is the same or a subtype of <typel>. If so, then remove the expression. If the static
type is a supertype of typel then map to OPTXTYPCHK(<exprl>, <typel>). Else it is an

€1Iror.

5.1.24. CASTABLE EXPRESSION

[0123] Castable expressions are used to check if the input is castable to the given form.
They may be mapped to SQL using an OPTCASTABLE operator that may be used to
determine if the expression is castable to the other type. Note that this expression may be
removed if the static type of the input is the same or a subtype of the input.

[0124] Example rule: Map <expr> castable as <type> is mapped to

OPTXTYPCHK (<expr>, <type>)

5.1.25. TREAT EXPRESSION
[0125] Treat expressions are mapped to Case expressions.
[0126] Example rule: Map treat <expr> as <type> to CASE WHEN OPTXTYPCHK(

<expr>, <type>) = 1 then <expr> else error() end.

34

WO 2006/009768 PCT/US2005/021259

5.1.26. VALIDATE EXPRESSION

[0127] Validate expressions are mapped to the XMLValidate() function. The
XMLValidate() is an SQL operator that takes in a schema type (local or global) and returns
the validated XML value back or an error.

[0128] Example rule: Map validate <type> <exp;~§ to XMLValidate(<expr>, <type>)

[0129] Validate expressions may also be mapped to an XMLIsValid() function.

5.1.27. AGGREGATE EXPRESSION
[0130] XQuery allows aggregates to be present anywhere in the query. This is not
directly supported by SQL. For example, the following XQuery returns all purchaseorders
that have more thaﬁ 21 lineitems in them.

for $i in doc(“Po.xml”)

where count ($1/PurchaseOrder/Lineltems) > 21

return Si

[0131] Aggregates are rewritten using a subquery to cbmpute the aggregate.

select x.res
from (select res from resource view where
equals path(res,’'Po.xml’) = 1) X
where

select count (value(z))

from table (xmlsequence (OPTXATG (OPTXATG (X.res
, ‘PurchaseOrder’), ‘Lineltems’))) z

) >21

[0132] Example rule: When mapping Functions & Operators (F&O) to SQL expressions,
if the F&O is an aggregate then map it to an SQL Subquery. Map agg-func (<expr>) to

(select sql-agg-func(value(p)) from table(xmisequence(<expr>)) p) .

5.1.28. POLYMORPHIC OPERATOR
[0133] Since XQuery allows overloading of arithmetic and comparison function to

handle a variety of datatypes, the mapping to an SQL operator may vary depending on the

35

WO 2006/009768 PCT/US2005/021259

run-time input types of the operands. XQuery operators utilizing such overloading are called
“polymorphic operators.”
[0134] For example, consider, the following XQuery expression:

declare $b xs:boolean external;

(if ($b) then 3.3 else xs:date("2001-08-25")) +

(if ($b) then 44 else xdt:yearMonthDuration("P5YO0M")
[0135] Depending on the value at run time for the external variable $b, the addition in
XQuery can be translated to decimal addition (in this case, it adds decimal value 3.3 and 44)
or can be translated to date addition with yearMonthDuration (in this case, it adds five years
and zero months to the date '2001-08-25' which yields the date '2006-08-25").
[0136] Therefore, the determination as to whether this expression is mapped to the SQL
decimal operator or SQL date addition operator may only be made at run time. To support
this, the techniques described herein map arithmetic expressions, whose input data type is
polymorphic as determined from static type check, into polymorphic SQL arithmetic
operators. A polymorphic SQL arithmetic operator can dispatch to the appropriate SQL
arithmetic operator at run time depending on the run time input types.
[0137] Similar translations are used for polymorphic XQuery comparison functions as
well. Polymorphic XQuery comparison functions are mapped to polymorphic SQL value
comparison operators.
[0138] As noted above, it may be beneficial to use polymorphic operator translation if the
input types may vary during XQuery compile time. Furthermore, non-polymorphic XQuery
expressions, such as 3.3 + 44, may still be directly translated it into non-polymorphic SQL
expressions, e.g. using SQL decimal addition operators, instead of the polymorphic SQL

operators,

36

WO 2006/009768 PCT/US2005/021259

5.1.29. XQUERY USER-DEFINED AND EXTERNAL FUNCTIONS

[0139] XQuery supports user-defined functions written in XQuery and external functions
whose implementation is outside of the XQuery environment. For example, the body of a
function may be written in a programming language such as the Java programming language.
[0140] User-defined XQuery functions may be translated into Oracle PL/SQL
(Procedural Language/Structured Query Language) functions. This may be performed by
translating the body of a user-defined XQuery function from an XQuery expression into a
PL/SQL expression. Additionally, an invocation of an XQuery function may be translated
into an invocation of a PL/SQL function in SQL.

[0141] The techniques described herein also support external user-defined functions in
XQuery. For example, if the body of a function is written in the Java programming
language, then the function may be mapped to an equivalent external user-defined function
using an SQL external user-defined function written in the target language (for example, a
Java user-defined SQL function). Therefore, an external user-defined function in XQuery,
implemented in Java, C, PL/SQL, or any other appropriate language, may be translated into a
user-defined PL/SQL function, written in Java, C, PL/SQL, or any other appropriate

language supported by the SQL system.

5.1.30. XQUERY MODULE

[0142] XQuery supports modules. XQuery modules are fragments of XQuery code that
can be independently created and imported or loaded into an XQuery processor. XQuery
modules may be translated into Oracle PL/SQL packages that may be independently created

and loaded into the database server.

37

WO 2006/009768

PCT/US2005/021259

5.2. MAPPING OF FUNCTIONS & OPERATORS

[0143]

The following table illustrates the mapping of XQuery operators and standard

functions (F&O) to existing or new SQL operators.

XQuery
Operator SQL mapping Optimized |Notes
Empty sequence returns empty sequence.
NULL on NULL is ok for these cases,
And OPTAND since the WHERE clause may not be satisfied.
Or OPTOR -same
Optimization in case when General
Comparison may be normalized to value
comparison. May be translated to
polymorphic SQL operator. May be
translated to SQL exists subquery with value
comparisons as illustrated in section 5.1.10
> OPTXGT OPTTGT |General Comparison Expression.
< OPTXLT OPTTLT -same-
>= OPTXGE OPTTGE |-same-
<= OPTXLE OPTTLE -same-
= OPTXEQ OPTTEQ |-same-
= OPTXNE OPTTNE |-same-
Also add ERROR_ON_NULL(LHS)
in case the left hand side (LHS) is
NULLABLE (e.g. optional element/attribute)
$i/b < 20 is mapped to
i.b <20 and error_on_null(i.b)
OPTTLT if i.b is mapped to a nullable value.
Empty sequence returns empty sequence.
NULL on NULL is ok for these cases,
since the WHERE clause may not be
satisfied. May be translated to polymorphic
gt OPTTGT SQL operator.
eq OPTTEQ -same-
ne OPTTNE -same-
le OPTTLE -same-
ge OPTTGE -same-
node is OPTTEQ Node operation
>> OPTTGT -same-,
<< OPTTLT
range OPTXNRNG Range operator
If adding map or order method on
XMLType(Seq), then may reuse the regular
union, | OPTXUJ OPTTUN | UNION/INTERSECT etc.

38

WO 2006/009768

PCT/US2005/021259

intersect OPTXINTR OPTTIS -same-
except OPTXEXC OPTTMI -same-
Add TO_ NUMBER() on non-char inputs.
May be translated to polymorphic SQL
+ OPTTAD operator.
- OPTTSU -same-
mult OPTTMU -same-
-same- -INF, +INF are handled by
binary_float operators.
May cast LHS or RHS to binary_float or
binary double if the XMLSchema datatype is
div OPTTDI float/double.
OPTTTR,
idiv OPTTDI truncate(div) returns integer division
unary + - Ignored
unary - OPTING
or the divisor is positive or negative zero (0),
or both, the result is NaN —
mod OPTTMO Return 0 if the divisor is 0.
cast
functions See Datatype Mapping
Node
Functions
fn:nodenam
e OPTXNNAME XPath operators
fn:string OPTXSTRING String conversion
This is an SQL operator which does
fn:data OPTXT2SQLT atomization.
fn:base-uri |OPTXBURI
Special Function to access document URI for
fn:document docs. Either part of the XMLType or translate
-uri OPTXDOCURI it to access the ANY PATH of resource_view
Error
Functions
dbms_xquery.rai
fn:error() [seError()
dbms_Xquery.tra
fn:trace() ce()
Math
functions
fn:abs OPTTAB
fn:ceiling OPTTCE
fn:floor OPTTFL
May add 0.5 and use floor: May normalize in
round OPTTFL(a+0.5) XQuery to be xf:floor(a+0.5)
round-half- |OPTXFLHE

39

WO 2006/009768

PCT/US2005/021259

to-even
String
functions
fn:codepoint
s-to-string |- NLS input needed
fn:string-to-
codepoint |- NLS input needed
May be equivalent to having in SQL as case
lhs < rhs then -1 else case when lhs = rhs then
fn:compare |- Oelse 1.
May map to multiple OPTTCA (SQL takes
fn:concat OPTTCA only 2 args)
fn:string- May do with concat operators, but empty
join OPTXSJOIN OPTTCO |sequence needs to be taken into account.
OPTFL(x+0.5),
fn:substring | OPTTSS Add ROUND to all input args
fn:string-
length OPTTLN
fn:normalize
-space OPTXSOPR String operations (normalize space)
fn:normalize
-unicode OPTXSOPR NLS support
fn:upper-
case OPTTUP
fn:lower-
case OPTTLO
fn:translate |OPTTRA
fn:escape-
uri OPTXSOPR String function (Escape URI)
Substring
functions
Issue with NULL - XQuery says contains((),
fn:contains |OPTTFN ") is true ; Collation support (NLS) needed
fn:starts- OPTTSS, Substring with position = 1; collation support
with OPTFL(x+0.5) needed
OPTTSS, Substring with position = LENGTH(arg);
fn:ends-with | OPTFL(x+0.5) collation support needed
fn:substring- | OPTTSS, OPTTSS(expr,1, OPTTFN(expr)); collation
before OPTTEN support needed
fn:substring- | OPTTSS, OPTTSS(expr,OPTTFN(expr)); collation
after OPTTEN support needed
String
pattern
match

40

WO 2006/009768

PCT/US2005/021259

fn:matches

OPTRXLIKE

s flag matches n option; x option needs to be
supported in OPTRXLIKE

fn:replace

OPTRXRPL

SQL replacement string uses \number whereas
XQuery uses $number to refer to
subexpressions.

fn:tokenize

OPTXSTKN

Boolean
Operations

fn:true

fn:false

m:NOT

Date
operations

fn:get-
years-from-
yearMonthD
uration

OPTXTRCT

fn:get-
months-
from-
yearMonthD
uration

OPTXTRCT

fn:get-days-
from-
dayTimeDur
ation

OPTXTRCT

fn:get-
hours-from-
dayTimeDur
ation

OPTXTRCT

fn:get-
minutes-
from-
dayTimeDur
ation

OPTXTRCT

fn:get-
seconds-
from-
dayTimeDur
ation

OPTXTRCT

fn:get-year-
from-
dateTime

OPTXTRCT

fn:get-
month-from-
dateTime

OPTXTRCT

41

WO 2006/009768

PCT/US2005/021259

fn:get-day-
from-
dateTime

OPTXTRCT

fn:get-
hours-from-
dateTime

OPTXTRCT

fn:get-
minutes-
from-
dateTime

OPTXTRCT

fn:get-
seconds-
from-
dateTime

OPTXTRCT

fn:get-
timezone-
from-
dateTime

OPTXTRCT

Get only TZ Hour

fn:get-year-
from-date

OPTXTRCT

fn:get-
months-
from-date

OPTXTRCT

fn:get-day-
from-date

OPTXTRCT

fn:get-
timezone-
from-date

OPTXTRCT

Get only TZ Hour

fn:get-hour-
from-time

OPTXTRCT

fn:get-
minutes-
from-time

OPTXTRCT

fn:get-
seconds-
from-time

OPTXTRCT

fn:get-
timezone-
from-time

OPTXTRCT

Get only TZ Hour

fn:adjust-
dateTime-
to-timezone

OPTADD

Need a wrapper. May be implemented with
existing functions

fn:adjust-
date-to-
timezone

OPTADD

Oracle doesn't have date+timezone, only
timestamp-+timezone,
date->timestamp, the time portion is midnight

fn:adjust-
time-to-
timezone

OPTADD

42

WO 2006/009768

PCT/US2005/021259

fn:subtract-
dateTimes-
yielding-
yearMonthD
uration

OPTTSU

fn:subtract-
dateTimes-
yielding-
dayTimeDur
ation

OPTTSU

QNames

fn:resolve-
gname

OPTXQNM

Qname functions

fn:expanded
-gqname

OPTXQNM

fn:get-local-
name-from-
QName

OPTXQNM

fn:get-
namespace-
uri-from-
QName

OPTXQNM

fn:get-
namepace-
uri-for-
prefix

OPTXQNM

fn:get-in-
scope-
prefixes

OPTXQNM

fn:resolve-
uri

OPTXURI

functions
on nodes

fn:mame

OPTXNODE

Node operators

fn:local-
name

OPTXNODE

fn:namespac
e-uri

OPTXNODE

fn:number

OPTXT2SQLT

fn:lang

OPTXNODE

fn:root

OPTXNODE

Sequence
operations

fn:zero-or-
one

OPTXSOPR

ignored

Check sequence cardinality. If static typing
may find that the occurance is zero or one,
then this function is ignored.

fn:one-or-

OPTXSOPR

ignored

Check sequence cardinality. If static typing

43

WO 2006/009768

PCT/US2005/021259

more may find that the occurance is one or one,
then this function is ignored.

Check sequence cardinality. If static typing
fn:exactly- may find that the occurance is exactly once,
one OPTXSOPR ignored then this function is ignored.
fn:boolean |OPTXGEB ignored Computes effective Boolean value
fn:concatena
te OPTXMLCONC XMLConcat() may be reused
fn:index-of |OPTXSINDX
fn:empty ISNULL Translated to a NOT NULL on the sequence

This may be translated into the EXISTS

subquery when operating on a query

EXISTS, NOT expression or translated to a IS NOT NULL
fn:exists NULL on a variable.
fn:distinct- This may be optimized into a select
values OPTXSDIST DISTINCT subquery in certain cases.
fn:insert- _
before OPTXSOPR Sequence operation (Insert before)
fn:remove |OPTXSOPR Sequence operation (remove)
fnireverse | OPTXSOPR Sequence operation (reverse)
fn:subseque
nce OPTXSOPR Sequence operation (subsequence)
fn:unordered |ignored Used by translation component
equals
fn:deep- May be done using XMLType map method
equal OPTXDEEP functions.
aggregate
functions
fn:count OPTTCO
fn:avg OPTTAV Need support for collations
fn:max OPTTMX -same-
fn:min OPTTMN -same-
fn:sum OPTTSUM -same-
sequence
generators
fn:id OPTXNODE
fnzidref OPTXNODE

Translated to (select xmlagg(res) from

resource_view where equals_path(res,<arg>)
fi:doc =1)

fn:collection

Translated to (select xmlagg(res) from
resource_view where
under_path(res,<arg>)=1)

Context
positions

fn:position

44

WO 2006/009768 PCT/US2005/021259

fn:last

fn:current-
dateTime STRTCTS

fn:current-
date STRTCTS

fn:current-
time STRTCTS

fn:default-
collation

fn:implicit-
timezone OPTSESTZ

Oracle
provided
functions

Translated to (select
xmlagg(xmlelement(“ROW”, xmlforest(coll,
col2...) from <table-name>) in case of
relational tables and no xmlelement(“ROW”)
ora:view for XMLType tables.

ora:contains |OPTXMLCONT

ora:sqrt OPTSQR

[0144] The following SQL operators are also provided to perform XQuery related
operations: OPTXTYPCHK performs type checking on the input so that it conforms to the
given XQuery type (e.g. xs:integer). OPTXATG performs an XPath extraction operation.
OPTXT2SQLT is used for casting XML type to SQL (XMLCast (xmltype expr as sqltype).

OPTSQL2XMLT is used for casting SQL types to XML (XMLCast (sql-expr as xml-type)).

5.3. EXPRESSION MAPPING EXAMPLES
[0145] Some of the common expressions and their mapping are explained with examples
in this section.

[0146] For example, Repository Queries (doc):

for $i in doc (“/public/purchaseorder.xml”)

where $i/PurchaseOrder/@Id eq 2001

return <PO pono={$i/PurchaseOrder/@Id}/>
which is rewritten to

select XMIAgg (XMLElement (“PO”, XMLAttributes (
XMLCast (OPTXATG(OPTXATG(“$i”.res,’/PurchaseOrder’),’/@Id’)

45

WO 2006/009768 PCT/US2005/021259

as number)
as “pono”)))
from (select res
from resource view
where equals path(res, ' /public/purchaseorder.xml’) = 1) “$i”
where XMLCast (OPTXATG(“$i”.res,’/PurchaseOrder/@Id’) as number) =
2001;

gets rewritten to

select XMIAgg (XMLElement (“PO”, XMIAttributes (
XMLCast (OPTXATG (OPTXATG (res, ' /PurchaseOrder’), ‘@Id’)
as number)
as “pono”)))
from resource view
where equals path(res,’/public/purchaseorder.xml’) = 1
and XMLCast (OPTXATG (res, ' /PurchaseOrder/@Id’) as number) = 2001;

[0147] For example, Repository (Collection):

for $i in collection(“/public”)
where $i/PurchaseOrder/@Id gt 2001
return <PO pono={$i/PurchaseOrder/@Id}/>

becomes

select XMIAgg (XMLElement (“PO”, XMLAttributes (
XMLCast (OPTXATG (“$1” .xmlv, ' /PurchaseOrder/@Id’) as number)
as “pono”)))
from table (xmlsequence (select XMLAgg(res) as xmlv
from resource view
where under path(res,’/public’) = 1) nsin
where XMLCast (OPTXATG (“$i”.xmlv,’/PurchaseOrder/@Id’) as
number) > 2001));

[0148] For example, SQL Table Queries:
for $emp in ora:view(“EMP”),
$dept in ora:view (“DEPT”)
where Semp/ROW/DEPINO = $dept/ROW/DEPINO
return (Semp/ROW/ENAME, Sdept/ROW/DNAME)

becomes

select XMLAGY(
XMLConcat (XMLCast (OPTXATG (“Semp” .xmlv, ' /ROW/ENAME’) as

nunber) ,

XMICast (OPTXATG (“$dept” .xmlv, ' /ROW/DNAME’) as
number)))
from (select XMLElement (“ROW” ,XMLForest (empno, ename, sal,
deptno))

as xmlv
from emp) “Semp”,
(select XMLElement (“ROW” ,XMLForest (deptno, dname) as xmlv
from dept) “Sdept”

46

WO 2006/009768 PCT/US2005/021259

where XMLCast (OPTXATG (“$emp” .xmlv, ' /ROW/DEPTNO’) as number) =
XMLCast (OPTXATG (“Sdept” .xmlv, ' /ROW/DEPINO) as number) ;

which gets rewritten into

select XMLAgg (XMLConcat (e.ename, d.dname))
from emp e, dept d
where e.deptno =d.deptno;

6.0 EXAMPLE ALTERNATIVES

[0149] In the embodiments described herein, XQuery and XQueryX were presented as
examples of query languages for querying XML language sources and SQL was presented as
an example of a query language for querying relational databases. The techniques are in no
way limited to those query languages. Any other query language may be used.

[0150] The techniques described herein present unique solutions for efficient evaluation
of queries using translation. The techniques, however, are not limited to queries made on
markup languages data sources. In other embodiments, any query language may be used.
Queries in the query language may then be parsed and compiled into first form of in-memory
representation. The first form of in-memory representation may then be converted into a
second form of in-memory representation and processed further as described above.

[0151] The techniques described herein provide that the various formats of queries are
first parsed and compiled into ASTs or other in-memory representations. These in-memory
representations are then converted to a particular abstract syntax. In other embodiments, the
elements of a query in a first syntax (e.g. XQuery) are parsed, compiled, and immediately
converted to the particular format element-by-element. In the embodiment, there may not
necessarily exist, at any particular time, an in-memory representation of the entire portion of

the query in the first format.

47

WO 2006/009768 PCT/US2005/021259

7.0 HARDWARE OVERVIEW

[0152] FIG. 3 is a block diagram that illustrates a computer system 300 upon which an
embodiment of the invention may be implemented. Computer system 300 includes a bus 302
or other communication mechanism for communicating information, and a processor 304
coupled with bus 302 for processing information. Computer system 300 also includes a main
memory 306, such as a random access memory (RAM) or other dynamic storage device,
coupled to bus 302 for storing information and instructions to be executed by processor 304.
Main memory 306 also may be used for storing temporary variables or other intermediate
information during execution of instructions to be executed by processor 304. Computer
system 300 further includes a read only memory (ROM) 308 or other static storage device
coupled to bus 302 for storing static information and instructions for processor 304. A
storage device 310, such as a magnetic disk or optical disk, is provided and coupled to bus
302 for storing information and instructions.

[0153] Computer system 300 may be coupled via bus 302 to a display 312, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 314,
including alphanumeric and other keys, is coupled to bus 302 for communicating information
and command selections to processor 304. Another type of user input device is cursor
control 316, such as a mouse, a trackball, or cursor direction keys for communicating
direction information and command selections to processor 304 and for controlling cursor
movement on display 312. This input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify
positions in a plane.

[0154] The invention is related to the use of computer system 300 for implementing the

techniques described herein. According to one embodiment of the invention, those

48

WO 2006/009768 PCT/US2005/021259

techniques are performed by computer system 300 in response to processor 304 executing
one or more sequences of one or more instructions contained in main memory 306. Such
instructions may be read into main memory 306 from another machine-readable medium,
such as storage device 310. Execution of the sequences of instructions contained in main
memory 306 causes processor 304 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus, embodiments of the invention are
not limited to any specific combination of hardware circuitry and software. |

[0155] The term “machine-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 304 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 310. Volatile media includes dynamic memory, such as main memory
306. Transmission media includes coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 302. Transmission media can also take the form of acoustic or light
waves, such as those generated during radio-wave and infrared data communications.

[0156] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.
[0157] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more instructions to processor 304 for execution. For example, the

instructions may initially be carried on a magnetic disk of a remote computer. The remote

49

WO 2006/009768 PCT/US2005/021259

computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 300 can receive the data
on the telephone line and use an infrared transmitter to convert the data to an infrared signal.
An infrared detector can receive the data carried in the infrared signal and appropriate
circuitry can place the data on bus 302. Bus 302 carries the data to main memory 306, from
which processor 304 retrieves and executes the instructions. The instructions received by
main memory 306 may optionally be stored on storage device 310 either before or after
execution by processor 304.

[0158] Computer system 300 also includes a communication interface 318 coupled to bus
302. Communication interface 318 provides a two-way data communication coupling to a
network link 320 that is connected to a local network 322. For example, communication
interface 318 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 318 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication interface 318 sends and receives
electrical, electromagnetic or optical signals that carry digital data streams representing
various types of information.

[0159] Network link 320 typically provides data communication through one or more
networks to other data devices. For eﬁ;ample, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data equipment operated by an
Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as

the “Internet” 328. Local network 322 and Internet 328 both use electrical, electromagnetic

50

WO 2006/009768 PCT/US2005/021259

or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 320 and through communication interface 318, which carry
the digital data to and from computer system 300, are exemplary forms of carrier waves
transporting the information.

[0160] Computer system 300 can send messages and receive data, including program
code, through the network(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested code for an application program
through Internet 328, ISP 326, local network 322 and communication interface 318.

[0161] The received code may be executed by processor 304 as it is received, and/or
stored in storage device 310, or other non-volatile storage for later execution. In this manner,
computer system 300 may obtain application code in the form of a carrier wave.

[0162] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims shall
govern the meaning of such terms as used in the claims. Hence, no limitation, element,
property, feature, advantage or attribute that is not expressly recited in a claim should limit
the scope of such claim in any way. The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense.

51

WO 2006/009768 PCT/US2005/021259

CLAIMS

What is claimed is:

L. A method of processing a query, comprising:

receiving the query, wherein the query specifies certain operations;

determining that the query comprises a first portion in a first query language and a
second portion in a second query language;

5 generating a first in-memory representation for the first portion;

generating a second in-memory representation for the second portion;

generating a third in-memory representation of the query based on the first in-
memory representation and the second in-memory representation; and

performing the certain operations based on the third in-memory representation.

10 2. The method of Claim 1, wherein the first in-memory representation and the third in-
merﬁory representation are formatted in a first abstract syntax and the second in-memory
representation is formatted in a second abstract syntax, and wherein the step of generating the
third in-memory representation comprises:

generating a fourth in-memory representation in the first abstract syntax based on the
15 second in-memory representation; and
generating the third in-memory representation based on the first in-memory

representation and the fourth in-memory representation.

3. The method of Claim 2, wherein the second in-memory representation comprises one
or more in-memory representations of query elements in the second abstract syntax, and

20 wherein generating the fourth in-memory representation comprises:

52

WO 2006/009768 PCT/US2005/021259

determining a second set of one or more equivalent in-memory representations of
query elements in the first abstract syntax for the one or more in-memory
representations of query elements in the second abstract syntax; and
generating the fourth in-memory representation in the first abstract syntax based on
5 the second set of one or more equivalent in-memory representations of query

elements in the first abstract syntax.

4. The method of Claim 3, wherein each in-memory representation of query elements in

the one or more in-memory representations of query elements in the second abstract syntax

corresponds to one or more in-memory representation of query elements in the second set of
10 one or more equivalent in-memory representations of query elements in the first abstract

syntax.

5. The method of Claim 1, wherein one or more of the first in-memory representation,
the second in-memory representation, and the third in-memory representation are represented

in memory as abstract syntax trees.

15 6. The method of Claim 1, wherein the first query language is Structured Query

Language.

7. The method of Claim 1, where in the second query language is a markup query

language.
8. The method of Claim 1, wherein the second query language is XQuery.

20 O. The method of Claim 1, wherein the second query language is XQueryX.

53

10

15

20

WO 2006/009768 PCT/US2005/021259

10. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XQuery aggregation in the second abstract syntax; and wherein
the step of generating the fourth in-memory representation comprises generating an SQL
subquery in the first abstract syntax to compute the aggregation, said SQL subquery being

generated based on the XQuery aggregation in the second abstract syntax.

11. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises a literal expression in the second abstract syntax; and wherein the
step of generating the fourth in-memory representation comprises generating an SQL literal

in the first abstract syntax based on the literal expression in the second abstract syntax.

12. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XQuery cast expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating one
of an SQL cast function and an SQL convert function in the first abstract syntax based on the

XQuery cast expression in the second abstract syntax.

13. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises a set expressions in the second abstract syntax; and wherein the

step of generating the fourth in-memory representation comprises generating one of an SQL

54

10

15

20

WO 2006/009768 PCT/US2005/021259

UNION, an SQL MINUS, and an SQL INTERSECT in the first abstract syntax based on the

set expressions in the second abstract syntax.

14. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XQuery arithmetic expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL arithmetic expression in the first abstract syntax based on the XQuery arithmetic

expression in the second abstract syntax.

15. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XQuery comparison in the second abstract syntax; and wherein
the step of generating the fourth in-memory representation comprises generating an SQL
comparison in the first abstract syntax based on the XQuery comparison in the second

abstract syntax.

16. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XQuery FLWOR order by clause in the second abstract syntax;
and wherein the step of generating the fourth in-memory representation comprises generating
an SQL order by clause in the first abstract syntax based on the XQuery FLWOR order by

clause in the second abstract syntax.

17. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the

55

10

15

20

WO 2006/009768 PCT/US2005/021259

second portion comprises an XML logical expressions in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL logical expressions element in the first abstract syntax based on the XML logical

expressions in the second abstract syntax.

18. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XML FLWOR expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL select expressions element in the first abstract syntax based on the XML FLWOR

expression in the second abstract syntax.

19. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XML Path expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL path expression in the first abstract syntax based on the XML Path expression in the

second abstract syntax.

20. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XML if-then-else expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL case-when expression in the first abstract syntax based on the XML if-then-else

expression in the second abstract syntax.

56

WO 2006/009768 PCT/US2005/021259

21. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XML quantified expression in the second abstract syntax; and
wherein the step of generating the fourth in-memory representation comprises generating an
SQL Exists expression in the first abstract syntax based on the XML quantified expression in

the second abstract syntax.

22. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an SQL / XML construction expression in the second abstract
syntax; and wherein the step of generating the fourth in-memory representation comprises
generating an SQL construction expression in the first abstract syntax based on the SQL /

XML construction expression in the second abstract syntax.

23. The method of Claim 2, wherein the first abstract syntax is an SQL-related abstract
syntax and the second abstract syntax is an XQuery-related abstract syntax; wherein the
second portion comprises an XML operator in the second abstract syntax; and wherein the
step of generating the fourth in-memory representation comprises generating an SQL

operator in the first abstract syntax based on the XML operator in the second abstract syntax.

57

WO 2006/009768 PCT/US2005/021259

24. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises an XQuery sequence type operation in the second
abstract syntax; and wherein the step of generating the fourth in-memory representation
comprises generating an SQL type operation in the first abstract syntax based on the

XQuery sequence type operation in the second abstract syntax.

25. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises an XQuery type constructor in the second abstract
syntax; and wherein the step of generating the fourth in-memory representation
comprises generating an SQL scalar constructor in the first abstract syntax based on the

XQuery type constructor in the second abstract syntax.

26. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises an XQuery validate operation in the second
abstract syntax; and wherein the step of generating the fourth in-memory representation
comprises generating one of an SQL/XML IsValid operation and an SQL/XML Validate
operation in the first abstract syntax based on the XQuery validate operation in the

second abstract syntax.

27. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises a polymorphic XQuery arithmetic operator in the

58

WO 2006/009768 PCT/US2005/021259

second abstract syntax; and wherein the step of generating the fourth in-memory
representation comprises generating one of a polymorphic SQL arithmetic operator in the
first abstract syntax based on the polymorphic XQuery arithmetic operator in the second

abstract syntax.

28. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises a polymorphic XQuery comparison operator in the
second abstract syntax; and wherein the step of generating the fourth in-memory
representation comprises generating one of a polymorphic SQL value comparison
operator in the first abstract syntax based on the polymorphic XQuery comparison

operator in the second abstract syntax.

29. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;

. wherein the second portion comprises an XQuery function call in the second abstract
syntax; and wherein the step of generating the fourth in-memory representation
comprises generating an SQL function call in the first abstract syntax based on the

XQuery function call in the second abstract syntax.

30. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises a user-defined XQuery function in the second

abstract syntax; and wherein the step of generating the fourth in-memory representation

59

WO 2006/009768 PCT/US2005/021259

comprises generating a user-defined PL/SQL function in the first abstract syntax based on

the user-defined XQuery function in the second abstract syntax.

31. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises an external XQuery function in the second abstract
syntax; and wherein the step of generating the fourth in-memory representation
comprises generating an external SQL function in the first abstract syntax based on the

external XQuery function in the second abstract syntax.

32. The method of Claim 2, wherein the first abstract syntax is an SQL-related
abstract syntax and the second abstract syntax is an XQuery-related abstract syntax;
wherein the second portion comprises an XQuery module in the second abstract syntax;
and wherein the step of generating the fourth in-memory representation comprises
generating a PL/SQL package in the first abstract syntax based on the XQuery module in

the second abstract syntax.

33. A method of processing a query comprising:
receiving the query, wherein the query specifies certain operations and is querying
data stored in a markup language;
generating a first in-memory representation of the query;
generating a second in-memory representation based on the first in-memory
representation, wherein the second in-memory representation is in the
same form as would have been produced by processing an equivalent

query that is querying a relational database; and

60

WO 2006/009768 PCT/US2005/021259

performing the certain operations based on the second in-memory representation.

34. The method of Claim 33, wherein the step of performing the certain operations
comprises performing the certain operations by executing commands specified in the

second in-memory representation against the relational database.

35. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 1.

36. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 2.

37. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 3.

38. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 4.

39. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 5.

61

WO 2006/009768 PCT/US2005/021259

40. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 6.

41. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 7.

42, A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 8.

43, A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 9.

44, A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 10.

45. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 11.

46. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 12.

62

WO 2006/009768 PCT/US2005/021259

47. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 13.

48. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 14.

49. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 15.

50. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 16.

51. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 17.

52. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 18.

53. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 19.

63

WO 2006/009768 PCT/US2005/021259

54. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 20.

55. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 21.

56. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 22.

57. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 23.

58. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 24.

59. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 25.

60. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 26.

64

WO 2006/009768 PCT/US2005/021259

61. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 27.

62. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 28.

63. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 29.

64. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 30.

65. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 31.

66. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 32.

67. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 33.

65

WO 2006/009768 PCT/US2005/021259

68. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 34.

66

WO 2006/009768 PCT/US2005/021259
1/3

FIG. 1

Database Server 150

Non-SQL Parser
Unit110a

2

Database 160

SQL Parser Unit
110b

Compiler Unit 120

Translator Unit 130

Further Query
Processing Unit 140

WO 2006/009768

FIG. 2

PCT/US2005/021259
2/3

205

Receive query.

207 L

Detect portions |
of the query.

230
Query contains

XQuery?

Query contains
SQL?

Parse and compile XQuery Parse and compile
into XQuery-related SQL into SQL-related
abstract syntax tree (AST). AST.

225
Translate More portions of
XQuery-related AST into query fo be
an SQL-related AST. processed?
250
Optimize the query .
: Combine
based °£S°T°mb'"ed ‘ SQL-related ASTSs.

255 l

Store or execute
optimized query.

PCT/US2005/021259

1SOH

AH4OMLAN

3/3

dS|

1INY3IN

8c¢
53

HIANYES

WO 2006/009768

9l¢
TOHINOD
d0SHNd

53
FOV4UALNI ¥0¢

NOLLYOINNWNOO H0SS300dd

[41]3
snd
[]13 80¢ 90¢
J0IA3d AJOW3N
JOVHOLS WO NIVIN

1254
30IA3A LNdNI

1413
AY1dSId

€ Ol

INTERNATIONAL SEARCH REPORT Intern-ggal Application No

PCT/US2005/021259

. SSIFICATION OF SUBJECT MATTER
A OSSR R 0BF 17730

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO~Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

XQuery"
IBM SYSTEMS JOURNAL,

abstract
page 646
page 662; figure 4

Schemas in Oracle XML DB"

1009-1018, XP002353604
Berlin

page 1010

page 1015

vol. 41, no. 4, 2002, XP002353603

PROC. OF THE 29TH VLDB CONFERENCE,
9 September 2003 (2003-09-09), pages

X FUNDERBURK, J. E:, MALAIKA, S., REINWALD, 1-68
B.: "XML Programming with SQL/XML and

Y MURTHY, RAVI, BANERJEE, SANDEEPAN: "XML 1-68

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

'E' earlier document but published on or afterthe international
filing date
* document which may throw doubts on priority ctaim(s) or
which is cited 1o establish the publication date of another
citation or other special reason (as specified)
'O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

-~

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the
invention

*X' document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
m?'r:ts, ?IUCh combination being obvious to a person skilled
inthe art.

&' document member of the same patent family

Date of the actual completion of the international search

16 November 2005

Date of mailing of the intemational search report

24/11/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340~3016

Authorized officer

San-Bento Furtado, P

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 3

INTERNATIONAL SEARCH REPORT

lntmpplication No

PCT/US2005/021259

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

AY

ZHANG, HUI, TOMPA, FRANK: "XQuery
rewriting at the relational algebra level"
Computer Systems Science and Engineering
CRL Publishing UK,

vol. 18, no. 5, September 2003 (2003-09),
pages 241-262, XP009056809

ISSN: 0267-6192

page 241 - page 244

SHANMUGASUNDARAM J ET AL: "Querying XML
Views of Relational Data"

PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON VERY LARGE DATA BASES, 2001,
pages 1-10, XP002313815

abstract; figure 5

page 4, Teft-hand column

page 10

CHOI, BYRON, FERNANDEZ, MARY,
SIMEON,JEROME: "The XQuery Formal
Semantics: A Foundation for Implementation
and Optimization"‘Online!

31 May 2002 (2002-05-31), XP002353605
Retrieved from the Internet:
URL:http://www-db.research.bel1-Tabs.com/u
ser/simeon/xquery-optim-planx.pdf>
‘retrieved on 2005-11-111

abstract

page 1, last paragraph

page 7 - page 8; figure 3

US 2001/037345 Al (KIERNAN GERALD GEORGE
ET AL) 1 November 2001 (2001-11-01)
abstract

paragraph ‘0026!

paragraph 0048!

paragraph ‘0140! - paragraph ‘0146!

ZHANG XIN ET AL ASSOCIATION FOR COMPUTING
MACHINERY: "Honey, I Shrunk the XQuery -
An XML Algebra Optimization Approach"
PROCEEDINGS OF THE 4TH. INTERNATIONAL
WORKSHOP ON WEB INFORMATION AND DATA
MANAGEMENT. (WIDM 2002). MCLEAN, VA, NOV.
8, 2002, PROCEEDINGS OF THE INTERNATIONAL
WORKSHOP ON WEB INFORMATION AND DATA
MANAGEMENT. (WIDM), NEW YORK, NY : ACM,
US, 8 November 2002 (2002-11-08), pages
1-16, XP002316448

ISBN: 1-58113-593-9

abstract

page 5, last paragraph - page 6

—f—

1-68

1-68

1-68

1-68

1-68

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 3

INTERNATIONAL SEARCH REPORT

Interml\pplication No

PCT/US2005/021259

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

JI-HOON KANG ET AL: "An xquery engine for
digital Tibrary systems that support xml
data"

APPLICATIONS AND THE INTERNET WORKSHOPS,
2004. SAINT 2004 WORKSHOPS. 2004
INTERNATIONAL SYMPOSIUM ON 26-30 JAN.
2004, PISCATAWAY, NJ, USA,IEEE,

26 January 2004 (2004-01-26), pages
233-237, XP010684128

ISBN: 0-7695-2050-2

the whole document

1-68

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 3 of 3

INTERNATIONAL SEARCH REPORT

Intern'al Application No

PCT/US2005/021259
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2001037345 Al 01-11-2001 US 6947945 B1 20-09-2005

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

