(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第5855261号 (P5855261)

(45) 発行日 平成28年2月9日(2016.2.9)

(24) 登録日 平成27年12月18日 (2015.12.18)

(51) Int.Cl. F 1

 HO4W
 8/22
 (2009.01)
 HO4W
 8/22

 HO4W
 76/02
 (2009.01)
 HO4W
 76/02

 HO4W
 88/16
 (2009.01)
 HO4W
 88/16

請求項の数 14 (全 20 頁)

(21) 出願番号 特願2014-536074 (P2014-536074) (86) (22) 出願日 平成24年10月17日 (2012.10.17)

(65) 公表番号 特表2014-534708 (P2014-534708A) (43) 公表日 平成26年12月18日 (2014.12.18)

 (86) 国際出願番号
 PCT/CA2012/050730

 (87) 国際公開番号
 W02013/056367

(87) 国際公開日 平成25年4月25日 (2013. 4. 25) 審査請求日 平成26年6月13日 (2014. 6. 13)

(31) 優先権主張番号 13/275,678

(32) 優先日 平成23年10月18日 (2011.10.18)

(33) 優先権主張国 米国(US)

||(73)特許権者 391030332

アルカテルールーセント

フランス国、92100・ブローニュービャンクール、ルート・ドゥ・ラ・レーヌ・148/152

148/152

||(74)代理人 110001173

特許業務法人川口國際特許事務所

||(72) 発明者||シダム,カルヤン・プレームチャント|

カナダ国、オンタリオ・ケイ・2・ジー・ 6・アール・7、ネピーアン、ベイポイン

テ・クレセント・36

|(72) 発明者 ヤン、ルイ・チュウ

カナダ国、オンタリオ・ケイ・2・ティー ・O・ビー・1、カナタ、キルマー・クレ

セント・712

最終頁に続く

(54) 【発明の名称】サポートされる特徴のオーバーライド

(57)【特許請求の範囲】

【請求項1】

ネットワークデバイスによって実行される、サポートされる特徴をオーバーライドする ための方法であって、

ネットワークデバイスで、メッセージを受信するステップ(510、610)と、

メッセージの受信に応答して、サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するステップ(520、540、620)と、

パートナデバイスに基づいて、特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するステップ(550、640)と、

サポートされる特徴のデフォルトセットがオーバーライドされるべきである場合に、パートナデバイスに特徴の代替セットを送信するステップ(570、660)と、

サポートされる特徴のデフォルトセットがオーバーライドされるべきではない場合に、パートナデバイスに特徴のデフォルトセットに基づいて特徴の標準セットを送信するステップ(560、650)と

を含み、

<u>ネットワークデバイスおよびパートナデバイスが、両方とも、ポリシおよび課金ルール</u> ノード(PCRN)(236h、236v)である、方法。

【請求項2】

メッセージの受信に応答して、サポートされる特徴のセットがパートナデバイスに送信 されるべきであると判定するステップが、S9セッションがパートナデバイスと確立され

20

るべきであると判定するステップ(540、620)を含む、請求項1に記載の方法。

【請求項3】

パートナデバイスに特徴の代替セットを送信するステップが、サポートされる特徴 A V P を含まない S 9 メッセージをパートナデバイスに送信するステップを含む、請求項 1 または 2 に記載の方法。

【請求項4】

メッセージが、パートナデバイスから受信され、アドバタイズされる特徴のセットを含 み、

パートナデバイスに特徴の代替セットを送信するステップが、

パートナデバイスに関連するオーバーライド特徴のセットに基づいて、許容される特徴のセットを識別するステップと、

アドバタイズされる特徴のセットおよび許容される特徴のセットに基づいて、一致する 特徴のセットを判定するステップと、

パートナデバイスに一致する特徴のセットを送信するステップと を含む、請求項 1 に記載の方法。

【請求項5】

メッセージが、別のネットワークデバイスから受信され、

パートナデバイスに特徴の代替セットを送信するステップが、

パートナデバイスに関連するオーバーライド特徴のセットに基づいて、許容される特徴のセットを識別するステップと、

パートナデバイスに許容される特徴のセットを送信するステップと を含む、請求項1または2に記載の方法。

【請求項6】

パートナデバイスに基づいて、サポートされる特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するステップが、ネットワークデバイスがパートナデバイスに関連してオーバーライド特徴のセットを記憶するかどうかを判定するステップを含む、請求項 1 から 5 のいずれかに記載の方法。

【請求項7】

<u>ネ</u>ットワークデバイスおよびパートナデバイスのうちの少なくとも1つが、メッセージに関連するユーザのホーム公衆陸上移動網(HPLMN)(230h)に属する、請求項1から6のいずれかに記載の方法。

【請求項8】

サポートされる特徴をオーバーライドするためのネットワークデバイス(300)であって、

メッセージを受信するインターフェース(305、330)と、

インターフェースがメッセージを受信するのに応答して、サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するように構成された、ローミング通信モジュール(325)と、

特徴のデフォルトセットがオーバーライドされるべきかどうかをパートナデバイスに基づいて判定するように構成された、デフォルトオーバーライドモジュール(340)と、

サポートされる特徴のデフォルトセットがオーバーライドされるべきである場合に、 特徴の代替セットを含む特徴リストを生成する、および、

サポートされる特徴のデフォルトセットがオーバーライドされるべきで<u>はない</u>場合に、特徴のデフォルトセットに基づく特徴の標準セットを含む特徴リストを生成するように構成された、特徴リストコンストラクタ(350)と、

パートナデバイスに特徴リストを送信するように構成された、ネゴシエーションモジュール(335)と

を備え、

 $\frac{$ ネットワークデバイスおよびパートナデバイスが、ポリシおよび課金ルールノード(P CRN)(236h、236v)である、ネットワークデバイス。

20

10

30

40

【請求項9】

サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定する際に、ローミング通信モジュール(325)が、S9セッションがパートナデバイスと確立されるべきであると判定するように構成された、請求項8に記載のネットワークデバイス

【請求項10】

【請求項11】

パートナデバイスに特徴リストを送信する際に、ネゴシエーションモジュール(335)がパートナデバイスにS9メッセージを送信するように構成され、S9メッセージがサポートされる特徴AVPを含まない、請求項8または9に記載のネットワークデバイス。

メッセージが、パートナデバイスから受信され、アドバタイズされる特徴のセットを含 み、

デフォルトオーバーライドモジュール(340)が、パートナデバイスに関連するオーバーライド特徴のセットに基づいて許容される特徴のセットを識別するようにさらに構成され、

特徴の代替セットを含む特徴リストを生成する際に、特徴リストコンストラクタ(350)が、

アドバタイズされる特徴のセットおよび許容される特徴のセットに基づいて、一致する特徴のセットを判定する、および、

一致する特徴のセットを含む特徴リストを生成する ように構成された、請求項8に記載のネットワークデバイス。

【請求項12】

メッセージが、別のネットワークデバイスから受信され、

デフォルトオーバーライドモジュール(340)がさらに、パートナデバイスに関連するオーバーライド特徴のセットに基づいて、許容される特徴のセットを識別するように構成され、

特徴のデフォルトセットを含む特徴リストを生成する際に、特徴リストコンストラクタ(350)が、許容される特徴のセットを含む特徴リストを生成するように構成された、請求項8または9に記載のネットワークデバイス。

【請求項13】

特徴のデフォルトセットがオーバーライドされるべきかどうかを判定する際に、デフォルトオーバーライドモジュール(340)が、ネットワークデバイスがパートナデバイスに関連してオーバーライド特徴のセットを記憶するかどうかを判定するように構成された、請求項8から12のいずれかに記載のネットワークデバイス。

【請求項14】

<u>ネ</u>ットワークデバイスが、メッセージに関連するユーザのホーム公衆陸上移動網(HPLMN)(230h)および訪問先公衆陸上移動網(VPLMN)(230v)のうちの少なくとも1つに属する、請求項8から13のいずれかに記載のネットワークデバイス。

【発明の詳細な説明】

【技術分野】

[0001]

本明細書で開示される様々な例示的実施形態は、概して、電気通信ネットワークに関する。

【背景技術】

[0002]

移動体通信ネットワーク内の様々なタイプのアプリケーションの需要が増えるにつれて、サービスプロバイダは、この広範な機能を確実に提供するために、自らのシステムを絶えずアップグレードしなければならない。かつて単に音声通信のために設計されたシステムであったものが、テキストメッセージング、マルチメディアストリーミング、および一般的インターネットアクセスを含む無数のアプリケーションにアクセスを提供し、汎用ネ

10

20

30

30

50

20

30

40

50

ットワークアクセスポイントに成長した。そのようなアプリケーションをサポートするために、プロバイダは、自らの既存の音声ネットワークに加えて新しいネットワークを構築し、決して洗練されていない解決法をもたらした。第2世代および第3世代のネットワークで見られるように、音声サービスは、専用音声チャネルを介して運ばれ、回路交換式のコアに導かれる必要があり、一方、他のサービス通信は、インターネットプロトコル(IP)に従って送信され、異なるパケット交換式のコアに導かれる。これは、アプリケーション提供と、計量および課金と、体感品質(quality of experience、QoE)保証とに関する独特な問題を引き起こした。

[0003]

第2世代および第3世代のデュアルコア手法を簡略化することを目的として、3GPP(3rd Generation Partnership Project、第3世代パートナシッププロジェクト)は、ロングタームエボリューション(LTE)と称する新しいネットワーク体系を推奨した。LTEネットワークでは、すべての通信が、ユーザ機器(UE)からEPC(Evolved Packet Core、進化型パケットコア)と称されるオールIPコアにIPチャネルを介して運ばれる。EPCは、次いで、受け入れ可能なQoEを確保し、加入者に自らの特定のネットワーク活動について課金しながら、他のネットワークにゲートウェイアクセスを提供する。

[0004]

3 G P P は、一般に、いくつかの技術的仕様においてE P C の構成要素とそれらの互いの対話とを説明する。具体的には、3 G P P T S 2 9 . 2 1 2 、3 G P P T S 2 9 . 2 1 3 、および、3 G P P T S 2 9 . 2 1 4 は、E P C のポリシおよび課金ルール機能(P o licy and Charging Rules Function、P C R F)と、ポリシおよび課金実施機能(P o licy and Charging Enforcement Function、P C E F)と、ベアラバインディングおよびイベント報告機能(Bearer Binding and Event Reporting Function、B B E R F)とを説明する。これらの仕様はさらに、高信頼のデータサービスを提供し、そこでの使用について加入者に課金するためにこれらの要素がどのように対話するかに関するいくらかの手引きを提供する。

[0005]

3 GPPはまた、様々なユーザにローミングアクセスを提供するための様々な手続きを推奨している。3 GPP TS29.215は、訪問先PCRFが、接続されたユーザのホームPCRFとS9セッションを介して通信し得ることを実現する。このS9セッションを介して、訪問先PCRFは、ユーザによって要求されるデータフローの提供において有用な情報を検索することができる。

【発明の概要】

【課題を解決するための手段】

[0006]

様々な例示的実施形態の簡単な概要が以下に提示される。様々な例示的実施形態のいくつかの態様を明らかにし、紹介することを意図して、但し本発明の範囲を限定することは意図せず、いくらかの単純化および省略が以下の概要で行われることがある。当業者が本発明の概念を行い、使用することを可能にするのに適した好ましい例示的実施形態の詳細な説明が後節に続く。

[0007]

様々な例示的実施形態は、ネットワークデバイスによって実行される、サポートされる特徴をオーバーライドするための方法に関し、本方法は、以下のうちの1つまたは複数を含む:ネットワークデバイスでメッセージを受信するステップと、メッセージの受信に応答して、サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するステップと、パートナデバイスに基づいて、特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するステップと、サポートされる特徴のデフォルトセットがオーバーライドされるべきである場合に、パートナデバイスに特徴の代替セットを送信す

るステップと、サポートされる特徴のデフォルトセットがオーバーライドされるべきではない場合に、特徴のデフォルトセットに基づいてパートナデバイスに特徴の標準セットを送信するステップ。

[00008]

様々な例示的実施形態が、サポートされる特徴をオーバーライドするためのネットワークデバイスに関し、ネットワークデバイスは、以下のうちの1つまたは複数を含む:メッセージを受信するインターフェースと、インターフェースがメッセージを受信するのに応答して、サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するように構成されたローミング通信モジュールと、パートナデバイスに基づいて、特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するように構成されたデフォルトオーバーライドモジュールと、サポートされる特徴のデフォルトセットがオーバーライドされるべきである場合に特徴の代替セットを含む特徴リストを生成し、サポートされる特徴のデフォルトセットがオーバーライドされるべきである場合に特徴のデフォルトセットを含む特徴リストを生成するように構成された、特徴リストコンストラクタと、パートナデバイスに特徴リストを送信するように構成されたネゴシエーションモジュール。

[0009]

様々な例示的実施形態が、サポートされる特徴をオーバーライドするためのネットワークデバイスによる実行のための命令で符号化された有形的および非一時的機械可読ストレージ媒体に関し、有形的および非一時的機械可読ストレージ媒体は、以下のうちの1つまたは複数を含む:ネットワークデバイスでメッセージを受信するための命令と、メッセージの受信に応答して、サポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するための命令と、パートナデバイスに基づいて、特徴のデフォルトセットがオーバーライドされるべきである場合に、パートナデバイスに特徴のデフォルトセットがオーバーライドされるべきである場合に、パートナデバイスに特徴の代替セットを送信するための命令と、サポートされる特徴のデフォルトセットがオーバーライドされるべきではない場合に、特徴のデフォルトセットに基づいてパートナデバイスに特徴の標準セットを送信するための命令。

[0010]

メッセージの受信に応答してサポートされる特徴のセットがパートナデバイスに送信されるべきであると判定するステップが、S9セッションがパートナデバイスと確立されるべきであると判定するステップを含む、様々な実施形態が記載される。

[0011]

パートナデバイスに特徴の代替セットを送信するステップが、サポートされる特徴 A V P を含まない S 9 メッセージをパートナデバイスに送信するステップを含む、様々な実施形態が記載される。

[0012]

以下のような様々な実施形態が記載される:メッセージがパートナデバイスから受信され、アドバタイズされる特徴のセットを含み、パートナデバイスに特徴の代替セットを送信するステップが以下を含む:パートナデバイスに関連するオーバーライド特徴のセットに基づいて許容される特徴のセットを識別するステップと、アドバタイズされる特徴のセットおよび許容される特徴のセットに基づいて一致する特徴のセットを判定するステップと、パートナデバイスに一致する特徴のセットを送信するステップ。

[0013]

以下のような様々な実施形態が記載される:メッセージが、別のネットワークデバイスから受信され、パートナデバイスに特徴の代替セットを送信するステップが以下を含む:パートナデバイスに関連するオーバーライド特徴のセットに基づいて許容される特徴のセットを識別するステップ、パートナデバイスに許容される特徴のセットを送信するステップ。

[0014]

40

30

20

10

20

30

40

50

パートナデバイスに基づいてサポートされる特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するステップが、ネットワークデバイスがパートナデバイスに関してオーバーライド特徴のセットを記憶するかどうかを判定するステップを含む、様々な実施形態が記載される。

[0015]

以下のような様々な実施形態が記載される:ネットワークデバイスおよびパートナデバイスがともにポリシおよび課金ルールノード(policy and charging rules node、PCRN)であり、ネットワークデバイスおよびパートナデバイスのうちの少なくとも1つは、メッセージに関連するユーザのホーム公衆陸上移動網(home public land mobile network、HPLMN)に属する。

[0016]

様々な例示的実施形態をよりよく理解するために、以下のような添付の図面が参照される。

【図面の簡単な説明】

[0017]

【図1】様々なデータサービスを提供するための例示的加入者ネットワークを示す図である。

【図2】様々なデータサービスにローミングアクセスを提供するための例示的加入者ネットワークを示す図である。

【図3】例示的ポリシおよび課金ルールノード(PCRN)を示す図である。

【図4】オーバーライド特徴を記憶するための例示的データ配列を示す図である。

【図 5 】アドバタイズされた特徴をパートナデバイスに送信するための例示的方法を示す 図である。

【図6】一致する特徴をパートナデバイスに送信するための例示的方法を示す図である。

【発明を実施するための形態】

[0018]

理解を容易にするために、同一参照番号は、ほぼ同じもしくは同様の構造および / またはほぼ同じもしくは同様の機能を有する要素を指定するために使用される。

[0019]

3 G P P 規格は、進化する規格であり、拡張される機能を含むために継続的に更新される。しかし、これは、異なるリリースに従って実装されるノードが通信を試みるときに、互換性の問題を生み出すことがある。たとえば、最近のバージョンの仕様に従って実装されたノードがより古いノードにメッセージを送信することがある。このより古いノードは、メッセージはより古いバージョンの仕様の下では無効であったおよび/または定義されていなかったため、メッセージを処理することができないことがある。

[0020]

新しいS9セッションを確立するときに下位互換性を提供するために、2つのポリシおよび課金ルールノード(PCRN)が、セッションでサポートされることになる特徴のセットを最初にネゴシエーションすることができる。たとえば、第1のPCRNは3GPPTS29.215のリリース10に従って実装されるが、第2のPCRNはリリース9に従って実装される場合、それらの2つのPCRNは、それらの通信をリリース9によってサポートされる通信に限定することができる。

[0021]

3 GPP仕様は、2つのPCRNが、両方によってサポートされる特徴のセット全体に従ってS9セッションで通信すべきであると明記する。しかし、いくつかの環境では、2つのPCRNが両方によってサポートされるいくつかの特徴を除いて互いに通信することが望ましいことがある。たとえば、2つのPCRNが両方ともある特徴をサポートし得るが、一方、ネットワーク内の他のデバイスは特徴をまだサポートしないことがある。もう1つの例として、2つのPCRNが両方ともある特徴を実装し得るが、一方、異なる実装

20

30

40

50

形態はなお互換性がないことがある。

[0022]

前述を考慮すると、いくつかのパートナPCRNのための新しいS9セッションをネゴシエーションする際にPCRNのデフォルトビヘイビアをオーバーライドすることが望ましいことになろう。具体的には、両方のデバイスによってサポートされるいくつかの特徴を除外する2つのPCRNの間の特徴のセットをネゴシエーションする方法を提供することが望ましいことになろう。

[0023]

ここで、同様の番号が同様の構成要素またはステップを指す図面を参照すると、様々な 例示的実施形態の開示される広範な態様がある。

[0024]

図1は、様々なデータサービスを提供するための例示的加入者ネットワーク100を示す。例示的加入者ネットワーク100は、様々なサービスへのアクセスを提供するための電気通信ネットワークまたは他のネットワークでもよい。様々な実施形態で、加入者ネットワーク100は、公衆陸上移動網(public land mobile network、PLMN)でもよい。例示的加入者ネットワーク100は、ユーザ機器110、基地局120、進化型パケットコア(EPC)130、パケットデータネットワーク140、およびアプリケーション機能(AF)150を含み得る。

[0025]

ユーザ機器110は、データサービスをエンドユーザに提供するためのパケットデータネットワーク140と通信するデバイスでもよい。そのようなデータサービスは、たとえば、音声通信、テキストメッセージング、マルチメディアストリーミング、およびインターネットアクセスを含み得る。より具体的には、様々な例示的実施形態で、ユーザ機器110は、パーソナルもしくはラップトップコンピュータ、ワイヤレス電子メールデバイス、携帯電話、タブレット、テレビジョンセットトップボックス、または、EPC130を介して他のデバイスと通信することができる任意の他のデバイスである。

[0026]

基地局120は、ユーザ機器110とEPC130の間の通信を可能にするデバイスでもよい。たとえば、基地局120は、3GPP規格によって定義されるような進化型ノードB(eNode B)などの基地局装置でもよい。したがって、基地局120は、電波などの第1の媒体を介してユーザ機器110と通信し、イーサネット(登録商標)ケーブルなどの第2の媒体を介してEPC130と通信するデバイスでもよい。基地局120は、EPC130と直接通信してもよく、またはいくつかの中間ノード(図示せず)を介して通信し得る。様々な実施形態で、複数の基地局(図示せず)が、ユーザ機器110に移動性を提供するために存在し得る。様々な代替実施形態で、ユーザ機器110は、EPC130と直接通信し得ることに留意されたい。そのような実施形態で、基地局120は、存在しなくてもよい。

[0027]

進化型パケットコア(EPC)130は、パケットデータネットワーク140へのゲートウェイアクセスをユーザ機器110に提供するデバイスまたはデバイスのネットワークでもよい。EPC130はさらに、提供されるデータサービスの使用について加入者に課金し、特定の体感品質(QoE)標準が満たされることを確保することができる。したがって、EPC130は、少なくとも部分的に、3GPP TS29.212、29.213、および29.214規格に従って実装され得る。それにより、EPC130は、サービングゲートウェイ(serving gateway、SGW)132、パケットデータネットワークゲートウェイ(PGW)134、ポリシおよび課金ルールノード(PCRN)136、およびサブスクリプションプロファイルレポジトリ(subscription profile repository、SPR)を含み得る。

[0028]

サービングゲートウェイ(SGW)132は、EPC130にゲートウェイアクセスを

20

30

40

50

提供するデバイスでもよい。SGW132は、ユーザ機器110によって送信されるパケットを受信するEPC130内の第1のデバイスのうちの1つでもよい。様々な実施形態はまた、SGW132に先立ってパケットを受信することができる移動管理エンティティ(mobility management entity、MME)(図示せず)を含み得る。SGW132は、そのようなパケットをPGW134に向けて転送することができる。SGW132は、たとえば、複数の基地局(図示せず)の間のユーザ機器110の移動性の管理、および、供される各流れの特定のサービス品質(QoS)特性の実施など、いくつかの機能を実行することができる。プロキシモバイルIP規格を実装するものなどの様々な実装形態で、SGW132は、ベアラバインディングおよびイベント報告機能(BBERF)を含み得る。様々な例示的実施形態で、EPC130は、複数のSGW(図示せず)を含むことができ、各SGWは複数の基地局(図示せず)と通信することができる。

[0029]

パケットデータネットワークゲートウェイ(PGW)134は、パケットデータネットワーク140にゲートウェイアクセスを提供するデバイスでもよい。PGW134は、SGW132を介してパケットデータネットワーク140に向けてユーザ機器110によって送信されるパケットを受信するEPC130内の最後のデバイスでもよい。PGW134は、各サービスデータフロー(service data flow、SDF)のためのポリシおよび課金制御(policy and charging control、PCC)ルールを実施するポリシおよび課金実施機能(PCEF)を含み得る。したがって、PGW134は、ポリシおよび課金実施機能(PCEF)を含み得る。したがって、PGW134は、ポリシおよび課金実施ノード(policy and charging enforcement node、PCEN)でもよい。PGW134は、たとえば、パケットフィルタリング、深パケット検査、および加入者課金サポートなどのいくつかの追加の特徴を含み得る。PGW134はまた、知られていないアプリケーションサービスのためのリソース割当てを要求する責任を負うことができる。

[0030]

ポリシおよび課金ルールノード(PCRN)136は、アプリケーションサービスの要求を受信し、PCCルールを生成し、PCCルールをPGW134および / または他のPCEN(図示せず)に提供するデバイスまたはデバイスのグループでもよい。PCRN136は、R×インターフェースを介してAF150と通信してもよい。AF150に関して以下にさらに詳しく説明するように、PCRN136は、認証および権限付与要求(Authentication and Authorization Request、AAR)160の形でアプリケーション要求をAF150から受信することができる。AAR160を受信したとき、PCRN136は、アプリケーション要求160を満たすための少なくとも1つの新しいPCCルールを生成することができる。

[0031]

PCRN136はまた、それぞれ、GxxxおよびGxインターフェースを介してSGW132およびPGW134と通信してもよい。PCRN136は、SGW132またはPGW134からクレジット制御要求(credit control request、CCR)(図示せず)の形でアプリケーション要求を受信することができる。AAR160でのように、CCRを受信したとき、PCRNは、アプリケーション要求170を満たすための少なくとも1つの新しいPCCルールを生成することができる。様々な実施形態で、AAR160およびCCRは、別個に処理されることになる2つの独立したアプリケーション要求を表すことができ、一方、他の実施形態で、AAR160およびCCRは単一のアプリケーション要求に関する情報を伝えることができ、PCRN136は、AAR160およびCCRの組合せに基づいて少なくとも1つのPCCルールを作成することができる。様々な実施形態で、PCRN136は、単一のメッセージおよび対のメッセージアプリケーション要求の両方を処理する能力を有し得る。

[0032]

新しいPCCルールを作成したとき、またはPGW134による要求に応じて、PCR

20

30

40

50

N 1 3 6 は、 G x インターフェースを介して P G W 1 3 4 に P C C ルールを提供することができる。たとえば、 P M I P 規格を実装するものなどの様々な実施形態で、 P C R N 1 3 6 はまた、 Q o S ルールを生成することができる。新しい Q o S ルールを作成したとき、または S G W 1 3 2 による要求に応じて、 P C R N 1 3 6 は、 G x x インターフェースを介して S G W 1 3 2 に Q o S ルールを提供することができる。

[0033]

サブスクリプションプロファイルレポジトリ(SPR)138は、加入者ネットワーク100への加入者に関連する情報を記憶するデバイスでもよい。したがって、SPR138は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイス、および/または同様のストレージ媒体などの機械可読ストレージ媒体を含み得る。SPR138は、PCRN136の構成要素でもよく、または、EPC130内の独立したノードを構成し得る。SPR138によって記憶されるデータは、各加入者の識別子と、帯域幅限界、課金パラメータ、および加入者優先順位などの各加入者の加入情報の指示とを含み得る。

[0034]

パケットデータネットワーク 1 4 0 は、ユーザ機器 1 1 0 と A F 1 5 0 などのパケットデータネットワーク 1 4 0 に接続された他のデバイスとの間でデータ通信を提供するための任意のネットワークでもよい。パケットデータネットワーク 1 4 0 はさらに、たとえば、パケットデータネットワーク 1 4 0 と通信する様々なユーザデバイスに電話および / またはインターネットサービスを提供することができる。

[0035]

アプリケーション機能(AF)150は、知られているアプリケーションサービスをユーザ機器110に提供するデバイスでもよい。したがって、AF150は、たとえば、ビデオストリーミングまたは音声通信サービスをユーザ機器110に提供するサーバまたは他のデバイスでもよい。AF150はさらに、R×インターフェースを介してEPC130のPCRN136と通信してもよい。AF150が、知られているアプリケーションサービスをユーザ機器110に提供し始めようとするとき、AF150は、ダイアメーク・フロトコルによる認証および権限付与要求(AAR)160などのアプリケーションサービスのために割り当てられメッセージを生成して、リソースがアプリケーションサービスのために割り当てられメッセージは、アプリケーションサービスを使用する加入者の識別、加入者および/または、要求であるエアプリケーションサービスを使用する加入者の識別、加入者および/または、要求は関連するエタ・CANセッションのAPNのエPアドレス、および/または、要求は関連するエP・CANセッションのAPNのエPフドレス、および/または、要求は関連するエタ・ローの識別なのようなアプリケーション要求を通信することができる。

[0036]

図2は、様々なデータサービスにローミングアクセスを提供するための例示的加入者ネットワーク200を示す。例示的加入者ネットワーク200は、例示的ネットワーク100に対応し得る。EPC230vは、UE210などのローミングUEのためのパケットデータネットワーク240に訪問先アクセスを提供することができ、それによって、UE210に関連するトラフィックはSGW232vおよびPGW234vを介して流れる。様々な実施形態で、EPC230vおよびEPC230hは、同パケットデータネットワーク240に接続することができ(図のように)、または、2つの独立したネットワークに接続することができる。別法としてまたは追加で、EPC230vは、UE210などのローミングUEのためのパケットデータネットワーク240にホームルートのアクセスを提供することができ、それによって、UE210に関連するトラフィックは、SGW232vおよびPGW234hを介して流れる。それにより、SGW232vは、PGW234hと通信し得る。同様に、EPC230hが、基地局220hに接続された他のローミングUE(図示せず)に同様のアクセスを提供することができるように、SGW232hはPGW234vと通信し得る。

20

30

40

50

[0037]

UE210は、基地局220vと通信し得るが、基地局220hの範囲の外側にあり得る。しかし、基地局220vは、UE210のホーム公衆陸上移動網(HPLMN)に接続することができない。その代わりに、基地局220vは、UE210に関する訪問先公衆陸上移動網(visited public land mobile network、VPLMN)に属することができ、そのようなものとして、UE210に関連する様々なデータ、それに関連する加入者、および/または、UE210への接続性を提供する際に有用なもしくは必要な他のデータへのアクセスを有し得ない。たとえば、SPR238vは、UE210に関連する情報を含むことができず、その代わりに、そのような情報はSPR238h内に記憶することができる。SPR238hに記憶された加入者情報に基づくサービスの提供を可能にするために、PCRN236vは、S9セッションを介してPCRN236hと通信することができる。

[0038]

様々な実施形態で、PCRN236vは、S9セッションを介してPCRN236hに UE210に関連する要求を転送することができる。PCRN236hは、たとえば、P CCおよび / またはQoSルールを生成するために、これらのメッセージを処理すること ができる。PCRN236hは、次いで、これらのルールをPGW234vおよび / また はSGW232vでのインストールのためにPCRN236vに転送することができる。 ホームルートのアクセスの場合、PCRN236hはまた、PGW234hに直接にPC Cルールをインストールすることができる。PCRN236h、236vの協調的性質を 考慮して、これらのデバイスは、互いに関する「パートナデバイス」と呼ぶことができる

[0039]

様々な実施形態で、各パートナデバイスは、ホームデバイスおよび訪問先デバイスとして動作する能力を有し得る。たとえば、別のローミングUE(図示せず)が基地局220hに接続された場合、PCRN236hは、追加で、PCRN236vに要求を転送する能力を有することができ、PCRN236vは、インストールのためにPCRN236hに適切なルールを返す能力を有し得る。

[0040]

S9セッションを確立する際に、PCRN236h、236vは、セッションでサポートされることになる特徴のセットをネゴシエーションするように構成することができる。様々な実施形態で、PCRN236h、236vは、たとえば、デバイスによってサポートされるすべての特徴のセットなどの特徴のデフォルトセットに関してこのネゴシエーションを実行するように各々構成することができる。そのような実施形態で、サポートされる特徴のネゴシエーションされたセットは、単純に、両方のデバイスによってサポートされるすべての特徴のセットでもよい。

[0041]

様々な実施形態で、PCRN236h、236vのうちの少なくとも1つは、他方のPCRN236h、236vに関するこのデフォルトビヘイビアをオーバーライドし、その代わりに、特徴の代替セットに基づいてネゴシエーションするように構成され得る。たとえば、PCRN236hに特徴のセットをアドバタイズするとき、PCRN236vは、この特徴がPCRN236vで実装され得るとしても、3GPP TS29.215のリリース10のサポートをアドバタイズしないように構成され得る。もう1つの例として、PCRN236vからの特徴のアドバタイズされたセットの受信に応答して特徴のセットに同意するときに、PCRN236hは、たとえこの特徴がPCRN236vによってアドバタイズされ、PCRN236hによってサポートされるとしても、IPフローモビリティをサポートすることに同意しないように構成することができる。

[0042]

図 3 は、例示的ポリシおよび課金ルールノード(PCRN) 3 0 0 を示す。PCRN3 0 0 は、PCRN 1 3 6 、 2 3 6 h 、 2 3 6 v のうちの 1 つまたは複数に相当し得る。P

20

30

40

CRN300は、ネットワークインターフェース305、ローミングユーザ識別モジュール310、加入者ストレージ315、メッセージプロセッサ320、ローミング通信モジュール325、S9インターフェース330、ネゴシエーションモジュール335、デフォルトオーバーライドモジュール340、オーバーライド特徴ストレージ345、および/または特徴リストコンストラクタ350を含み得る。

[0043]

ネットワークインターフェース305は、ハードウェア、および/または、たとえば、PGWおよび/またはAFなどの少なくとも1つの他のデバイスと通信するように構成された機械可読ストレージ媒体上で符号化された実行可能命令を備える、インターフェースでもよい。したがって、ネットワークインターフェース305は、Gx、Gxx、および/またはRxインターフェースを含み得る。様々な実施形態で、ネットワークインターフェース305は、イーサネットインターフェースでもよい。動作中、ネットワークインターフェース305は、別のデバイスから要求メッセージを受信し、メッセージをローミングユーザ識別モジュールに転送することができる。

[0044]

ローミングユーザ識別モジュール310は、ハードウェア、および/または、ネットワ ークインターフェース305を介して受信されたメッセージがローミングユーザに関連す るかどうかを判定するように構成された機械可読ストレージ媒体上の実行可能命令を含み 得る。そのようなものとして、ローミングユーザ識別モジュール310は、メッセージに よって運ばれるデータを使用して、加入者ストレージ315がメッセージに関連する加入 者に関する情報を記憶するかどうかを判定することができる。たとえば、ローミングユー ザ識別モジュール310は、要求から1つまたは複数の加入識別子を抽出し、加入者スト レージが相関性のある記録を記憶するかどうかを判定することができる。別法として、加 入者識別子がメッセージ内で入手可能ではない場合、ローミングユーザ識別モジュール3 10は、IP-CANセッションを識別するのに十分な情報を抽出することができる。ロ ーミングユーザ識別モジュール310は、次いで、IP-CANセッション記録(図示せ ず)を使用して、セッションに関連する1つまたは複数の加入識別子を判定することがで きる。様々な実施形態で、ローミングユーザ識別モジュールは、メッセージがローミング メッセージであるまたはローカルに処理されるべきかどうかを判定するときに、追加の要 因を考慮することができる。たとえば、ローミングユーザ識別モジュール310は、メッ セージからアクセスポイント名(access point name、APN)を抽出 し、APNが緊急サービスのプロバイダに対応するかどうかを判定することができる。そ うである場合、メッセージは、たとえユーザが実際にローミングしていても、非ローミン グメッセージとして扱われ得る。様々な追加の変更形態が、当業者には明らかとなろう。 ローミングユーザ識別モジュール310が、メッセージがローミングユーザに関連しない または他の方法でローカルに処理されるべきであると判定した場合、ローミングユーザ識 別モジュール310は、メッセージをローカル処理のためにメッセージプロセッサ320 に転送することができる。そうではない場合、ローミングユーザ識別モジュール310は 、メッセージをローミング処理のためにローミング通信モジュール325に転送すること ができる。

[0045]

加入者ストレージ315は、様々な加入者に関連する情報を記憶することができる任意の機械可読媒体でもよい。したがって、加入者ストレージ315は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイス、および/または同様のストレージ媒体などの機械可読ストレージ媒体を含み得る。加入者ストレージ315は、PCRN300に知られている各加入者の記録を記憶することができる。様々な実施形態で、加入者ストレージ315は、PCRN300の外部にあるデバイスでもよい。たとえば、加入者ストレージ315は、サブスクリプションプロファイルレポジトリ(SPR)でもよい。

[0046]

20

30

40

50

メッセージプロセッサ320は、ハードウェア、および/または、3GPP規格に従って様々なメッセージをローカルに処理するように構成された機械可読ストレージ媒体上の実行可能命令を含み得る。たとえば、メッセージプロセッサ320は、IP-CANセッションおよび/またはサービスデータフローの確立の要求を受信し、PCCおよび/またはQoSルールを生成し、PGWおよび/またはSGWでそれらのルールをインストールすることができる。3GPP規格を実装するのに必要なまたは有用な様々な追加の機能が、当業者には明らかとなろう。

[0047]

ローミング通信モジュール325は、ハードウェア、および/または、S9インターフェース330を介して1つまたは複数のパートナデバイスと通信するように構成された機械可読ストレージ媒体上の実行可能命令を含み得る。たとえば、VPLMNの部分として動作するとき、ローミング通信モジュール325は、確立されたS9セッションを使用して、適切なHPLMN内のパートナデバイスにローミングユーザ識別モジュール310から受信された要求を転送することができる。ローミング通信モジュール325は、次いで、インストールのための1つまたは複数のPCCおよび/またはQoSルールを含むパートナデバイスからの応答を受信することができる。

[0048]

ローミング通信モジュール325はまた、HPLMNの一部として動作する能力も有し得る。この能力で、ローミング通信モジュールは、転送された要求メッセージを含むS9インターフェースを介するパートナデバイスからのメッセージを受信することができる。ローミング通信モジュールは、次いで、要求が満たされ得るまたは拒否され得るように、メッセージプロセッサ320に要求メッセージを転送することができる。メッセージプロセッサ320は、ローミング通信モジュール325がパートナデバイスに返すことができる1つまたは複数のPCCおよび/またはQoSルールを作成することができる。様々な実施形態で、メッセージプロセッサ320はまた、HPLMN内のPGWで1つまたは複数のPCCルールをインストールすることができる。

[0049]

ローミング通信モジュール325が、ローミングユーザ識別モジュール310またはS9インターフェース330を介してパートナデバイスからメッセージを受信するとき、ローミング通信モジュール325は、パートナデバイスとの通信が既に確立されたS9セッションを介して進行し得るかどうかを判定することができる。そうである場合、ローミング通信モジュール325は、前述のように進行することができる。しかし、確立されたS9セッションがパートナデバイスとのこの通信に適用されない場合、ローミング通信モジュールは、新しいS9セッションがパートナデバイスと確立されるべきであることをネゴシエーションモジュール335に指示することができる。

[0050]

S9インターフェース330は、ハードウェア、および/または、3GPP TS29 . 2 1 5 に記載されるようなS9プロトコルに従って別のPCRNなどの少なくとも1つのパートナデバイスと通信するように構成された機械可読ストレージ媒体上で符号化された実行可能命令を備える、インターフェースでもよい。様々な実施形態で、S9インターフェース330は、イーサネットインターフェースでもよい。S9インターフェース33

[0051]

ネゴシエーションモジュール 3 3 5 は、ハードウェア、および / または、パートナデバイスと通信して新しい S 9 セッションを確立するように構成された機械可読ストレージ媒体上の実行可能命令を含み得る。そのような通信は、3 G P P T S 2 9 . 2 1 5 に従って実装され得る。新しいセッションを確立する部分として、ネゴシエーションモジュールは、サポートされる特徴のセットを含む特徴リストをパートナデバイスに送信することができる。ネゴシエーションモジュール 3 3 5 が、特徴リストが送信されるべきであると判

20

30

40

50

定したとき、ネゴシエーションモジュール335は、そのような特徴リストが生成されるべきであるとデフォルトオーバーライドモジュール340に指示することができる。それを行う際、ネゴシエーションモジュール335は、デフォルトオーバーライドモジュール340および / または特徴リストコンストラクタ350にパートナデバイスの識別情報を転送することができる。PCRN300がホームPCRNとして動作する場合、ネゴシエーションモジュール335はまた、パートナデバイスから受信されるアドバタイズされる特徴のセットを転送することができる。

[0052]

デフォルトオーバーライドモジュール340は、ハードウェア、および/または、新しい59セッションを確立するときにサポートされる特徴のデフォルトセットがオーバーライドされるべきかどうかを判定するように構成された機械可読ストレージ媒体上の実行可能命令を含み得る。この判定を行うために、デフォルトオーバーライドモジュール340は、1つまたは複数のパートナデバイス識別子を使用して、オーバーライド特徴ストレージ345に記憶された関連記録がオーバーライド特徴のセットを含むかどうかを判定60かとえば、デフォルトオーバーライドモジュールは、モバイルカントリコード(MNC)およびモバイルネットワークコード(MNC)を使用して、オーバーライド特徴のことができる。そのような記録が存在する場合、デフォルトオーバーライドモジュール340は、特徴のデフォルトセットがオーバーライド特徴ストレージ345内の記録は、特徴のデフォルトセットがオーバーライドされるべきかどうかを指示するフラグを含むことができ、そのような実施形態で、記録の存在自体は、デフォルトセットがオーバーライドされるべきかどうかを示すことはできない。

[0053]

特徴のデフォルトセットがオーバーライドされるべきであると判定した後、デフォルトオーバーライドモジュール340は、オーバーライド特徴のセットを識別して特徴リストコンストラクタ350に転送することができる。様々な実施形態で、オーバーライド特徴のこのセットは、パートナデバイスに対応する記録の部分として記憶され得る。別法としてデフォルトオーバーライドモジュール340は、すべてのパートナデバイスのオーバーライド特徴の単一のセットのみを使用するように構成することができる。たとえば、特徴のデフォルトセットがオーバーライドされるべきである任意のパートナデバイスについて、デフォルトオーバーライドモジュール340は、基本的機能のみが新しいS9セッションでサポートされ得るように、空の特徴セットを特徴リストコンストラクタ350に転送するようになされ得る。様々な変更形態が、当業者には明らかとなろう。

[0054]

デフォルトセットをオーバーライドするかの決定および / またはオーバーライド特徴のセットは、パートナデバイスと直接相関性がなくてもよいことにもまた留意されたい。たとえば、様々な実施形態で、いくつかのローミングパートナが、ローミング協定に関連し得る。このローミング協定は、ローミング協定に関連するすべてのローミングパートナのために使用されることになるオーバーライド特徴のセットを指定することができる。さらに別の例として、デフォルト特徴セットをオーバーライドする決定はパートナごとに行われ得るが、それらの場合に使用されることになるオーバーライド特徴のセットは、ローミング協定内で定義され得る。様々な代替実施形態が、当業者には明らかとなろう。

[0055]

オーバーライド特徴ストレージ345は、デフォルト特徴セットがオーバーライドされるべきかどうかの指示および/または特定のパートナデバイスのために使用されることになるオーバーライド特徴のセットを記憶することができる機械可読媒体でもよい。したがって、オーバーライド特徴ストレージ345は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイス、および/または同様のストレージ媒体などの機械可読ストレージ媒体を含み得る。オーバーライド特徴ストレージ345の例示的内容は、図4に関して、以下

にさらに詳しく説明されることになる。様々な実施形態で、オーバーライド特徴ストレージ3 4 5 は、加入者ストレージ3 1 5 と同じ物理デバイスによって実装され得る。

[0056]

特徴リストコンストラクタ350は、ハードウェア、および/または、ネゴシエーションモジュール335によってパートナデバイスに送信するための特徴リストを構築するように構成された機械可読ストレージ媒体上の実行可能命令を含み得る。たとえば、PCRN300が訪問先PCRNの立場で動作するとき、特徴リストコンストラクタ350は、アドバタイズされる特徴のセットを含むリストを生成することができる。このアドバタイズされる特徴のセットは、以下の説明のように判定される、許容される特徴のセットと同じでもよい。

[0057]

さらに、PCRN300がホームPCRNの立場で動作するとき、特徴リストコンストラクタ350は、パートナデバイスからアドバタイズされる特徴のセットを受信し、一致する特徴のセットを含むリストを生成することができる。一致する特徴のセットは、アドバタイズされる特徴のどれが許容される特徴のセット内にもあり、したがってセッションについてサポートされることになるかを指定することができる。いずれにしても、特徴リストコンストラクタ350は、許容される特徴のセットを使用して、アドバタイズされるまたは一致する特徴のセットを判定することができる。

[0058]

デフォルトオーバーライドモジュール340がオーバーライド特徴のセットを指示しない限り、特徴リストコンストラクタ350は、特徴の許容されるセットとして特徴のデフォルトセットは、PCRN300によって実装されるすべての特徴のセットを単純に含み得る。他の実施形態で、特徴のデフォルトセットは、すべての実装された特徴を含まないことがあり、その代わりに、いくつかの特徴のみが、パートナデバイスのために具体的に構成され、それによってデフォルトオーバーライドモジュール340によって特徴リストコンストラクタ350に渡される場合に、サポートされ得る。他方では、特徴リストコンストラクタ350がデフォルトオーバーライドモジュール340からオーバーライド特徴のセットを受信する場合、次いで、特徴リストコンストラクタ350は、代わりに許容される特徴のセットとしてオーバーライド特徴を使用することができる。

[0059]

特徴リストを生成した後、特徴リストコンストラクタ350は、特徴リストがパートナデバイスに転送され得るように、特徴リストをネゴシエーションモジュール335に返すことができる。前述によれば、特徴リストは、オーバーライド特徴のセットに基づくアドバタイズされるまたは一致する特徴のセットを含み得る。オーバーライド特徴のセットに基づいて生成されるそのような特徴リストは、「特徴の代替セット」などと称され得る。場合によっては、たとえば、アドバタイズされる特徴のセットの場合などに、特徴の代替セットは、オーバーライド特徴のセットと同じでもよい。他の場合には、たとえば、一致する特徴のセットの場合などに、特徴の代替セットは、特徴のオーバーライドセットとは異なり得るが、やはりそれに基づき得る。

[0060]

さらに、特徴のデフォルトセットに基づいて生成される特徴リストは、「特徴の標準セット」などと称され得る。場合によっては、たとえば、アドバタイズされる特徴のセットの場合などに、特徴の標準セットは特徴のデフォルトセットと同じでもよい。たとえば、一致する特徴のセットの場合など、他の場合には、特徴の標準セットは、特徴のデフォルトセットと異なり得るが、やはりそれに基づき得る。

[0061]

様々な実施形態で、特徴の代替セットは、基本的機能のみが新しいS9セッションについてサポートされるべきであることを指示し、空のセットでもよい。そのような実施形態で、パートナデバイスに送信されるメッセージは、サポートされる特徴AVPを省略する

10

20

30

40

20

30

40

50

ことができる。そのようなものとして、メッセージは、基本的機能を超える特徴がサポートされるべきではないことを指示すると解釈することができる。

[0062]

図4は、オーバーライド特徴を記憶するための例示的データ配列400を示す。データ配列400は、たとえば、PCRN300のオーバーライド特徴ストレージ345に記憶されたデータベース内の一群の表でもよい。別法として、データ配列400は、一連のリンクされたリスト、アレイ、または同様のデータ構造でもよい。したがって、データ配列400は、基礎を成すデータの抽象であり、このデータのストレージに適した任意のデータ構造が使用され得ることが、明らかとなろう。

[0063]

データ配列400は、たとえば、MCCフィールド410、MNCフィールド420、およびオーバーライド特徴フィールド430などの複数のデータフィールドを含み得る。MCCフィールド410は、パートナデバイスに関連するモバイルカントリコード(MCC)を記憶することができる。MNCフィールド420は、パートナデバイスに関連するモバイルネットワークコード(MNC)を記憶することができる。ともに、MCCフィールド410およびMNCフィールド420は、ローミングパートナデバイスを一意に識別することができる。オーバーライド特徴430は、関連するローミングパートナのために使用されることになるオーバーライド特徴のセットの指示を記憶することができる。例示的データ配列400に示すように、この指示は、3GPP TS29.215によって規定されるようなビットマスクでもよい。各ビットは特定の特徴に対応することができ、1の値は特徴がサポートされることを示し、一方、0の値は特徴がサポートされないことを示す。

[0064]

一例として、記録440は、MCC310およびMNC120を有するローミングパートナについて、特徴のデフォルトセットがオーバーライドされるべきであり、ビットマスク0011が、許容される特徴のセットとして代わりに使用されるべきであることを指示し得る。もう1つの例として、記録450は、MCC310およびMNC090を有するローミングパートナについて、特徴のデフォルトセットがオーバーライドされるべきであり、ビットマスク0101が、許容される特徴のセットとして代わりに使用されるべきであることを指示し得る。データ配列400は、多数の追加の記録を含むことができる。

[0065]

図5は、アドバタイズされた特徴をパートナデバイスに送信するための例示的方法500を示す。例示的方法500は、たとえばPCRN300などのPCRNの構成要素によって実行され得る。様々な実施形態で、PCRNが訪問先PCRNの立場で動作する、方法500が実行され得る。

[0066]

方法500は、ステップ505で開始し、ステップ510に進み、そこでPCRNは別のデバイスからメッセージを受信することができる。ステップ520で、PCRNは、メッセージがローミング加入者と関連するかどうかを判定することができる。たとえば、PCRNは、メッセージが、PCRNまたは任意の緊急APNに知られている任意の加入識別子に関連するかどうかを判定することができる。そうである場合、PCRNは、メッセージがローミング加入者に関連しないと判定することができ、方法500はステップ530に進むことができる。ステップ530で、PCRNは、受信されたメッセージをローカルに処理することができ、方法500はステップ595に進んで終了することができる。

[0067]

他方では、PCRNが、メッセージがローミング加入者に関連すると判定した場合、方法500は、ステップ520からステップ540に進むことができる。ステップ540で、PCRNは、新しいS9セッションが確立されるべきかどうかを判定することができる。たとえば、PCRNは、ホームPCRNを識別してメッセージを処理し、適切なS9セッションがパートナデバイスと既に確立されているかどうかを判定することができる。そ

20

30

40

50

うである場合、方法 5 0 0 は、ステップ 5 9 0 に進むことができる。そうではない場合、新しいセッションが確立されるべきであり、方法 5 0 0 はステップ 5 5 0 に進むことができる。

[0068]

ステップ550で、PCRNは、それが新しいセッションを確立するときに特徴のデフォルトセットをオーバーライドすべきかどうかを判定することができる。様々な実施形態で、PCRNは、パートナデバイスに関連する記録が、オーバーライド特徴のセットがデフォルトセットの代わりに使用されるべきであることを指示するかどうかを判定することができる。PCRNが、そのような指示を見つけない場合、PCRNは、続けて、ステップ560で、アドバタイズされる特徴のセットとして特徴のデフォルトセットがオーバーライドされるである場合、PCRNは、代わりに、ステップ570で、アドバタイズされる特徴のセットとしてオーバーライド特徴のセットを使用し、S9要求を構築することができる。ステップ560または570で生成されるS9要求は、S9セッション確立要求でもよい。

[0069]

次に、ステップ 5 8 0 で、 P C R N は、たとえば、パートナデバイスにステップ 5 6 0 またはステップ 5 7 0 で構築された S 9 要求を送信することによって、新しい S 9 セッションを確立することができる。次いで、ステップ 5 9 0 で、 P C R N は、新しく確立された S 9 セッションを使用し、メッセージを処理することができる。たとえば、 P C R N は、パートナデバイスにメッセージを転送し、その後に、それに応答してパートナデバイスから受信される 1 つまたは複数の Q o S および / または P C C ルールをインストールすることができる。方法 5 0 0 は、次いで、ステップ 5 9 5 に進んで終了し得る。

[0070]

様々な実施形態で、ステップ580、590は重複し得ることに留意されたい。たとえば、ステップ580でセッションを確立するとき、S9要求は、メッセージがアドバタイズされる特徴のセットとともにパートナデバイスに転送されるように、追加でメッセージを含むことができる。追加の変更形態が、当業者には明らかとなろう。

[0071]

図6は、一致する特徴をパートナデバイスに送信するための例示的方法600を示す。例示的方法600は、たとえばPCRN300など、PCRNの構成要素によって実行され得る。様々な実施形態で、PCRNがホームPCRNの立場で動作する、方法600が実行され得る。

[0072]

方法600は、ステップ605で開始し、ステップ610に進むことができ、そこで、PCRNはパートナデバイスからS9メッセージを受信することができる。ステップ620で、PCRNは、新しいS9セッションが作成されるべきかどうかを判定することができる。たとえば、PCRNは、受信されたメッセージを調べて、それが新しいセッションの確立を要求するかどうかを判定することができる。メッセージが既に確立されたS9セッションに関連する場合、方法600は、ステップ670に進むことができる。そうではない場合、方法600は、ステップ630に進むことができる。

[0073]

ステップ630で、PCRNは、受信されたメッセージからアドバタイズされる特徴のセットを抽出することができる。次いで、ステップ640で、PCRNは、S9要求に応答してそれが特徴のデフォルトセットをオーバーライドすべきかどうかを判定することができる。様々な実施形態で、PCRNは、パートナデバイスに関連する記録が、オーバーライド特徴のセットがデフォルトセットの代わりに許容される特徴のセットとして使用されるべきであることを指示するかどうかを判定することができる。PCRNがそのような指示を見つけない場合、PCRNは、続けて、ステップ650で許容される特徴のセットとして特徴のデフォルトセットを使用し、S9要求を構築することができる。しかし、特

20

30

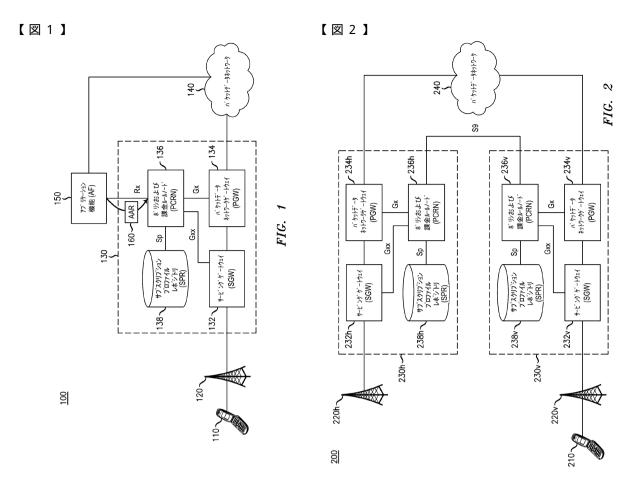
40

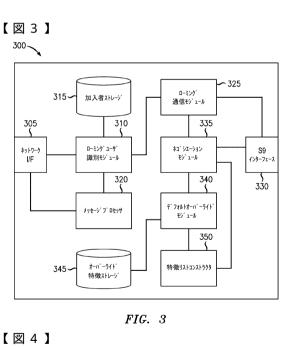
徴のデフォルトセットがオーバーライドされるべきである場合、PCRNは、代わりに、ステップ660で、許容される特徴のセットとしてオーバーライド特徴のセットを使用し、S9要求を構築することができる。ステップ650または660のいずれかで、PCRNは、どの特徴をアドバタイズされる特徴のセットおよび許容される特徴のセットが出して有するかを判定することによって、一致する特徴のセットを判定することができる。たとえば、両方のセットがビットマスクである場合、PCRNは、アドバタイズされる特徴のセットおよび許容される特徴のセットの論理積を使用して、一致する特徴のセットを作り出すことができる。最後に、ステップ670で、PCRNは、1つまたは複数のQoS/PCCルールを生成する、PGWでルールをインストールする、そのようなルールでパートナデバイスに転送する、および/または、一致する特徴のセットをパートナデバイスに送信してS9セッションの確立を完了することができる。方法600は、次いで、ステップ680に進んで終了することができる。

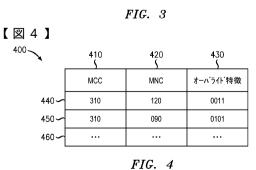
[0074]

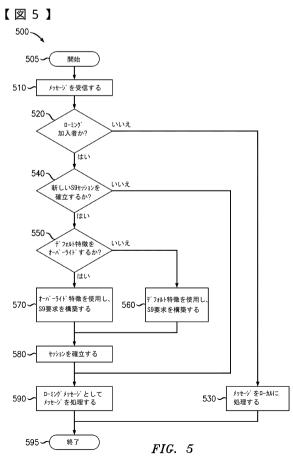
前述によれば、様々な実施形態が、PCRNがS9セッションのサポートされる特徴をネゴシエーションする際にデフォルトビヘイビアをオーバーライドすることを可能にする。具体的には、特定のパートナデバイスのオーバーライド特徴のセットを提供することによって、PCRNは、PCRNおよびパートナデバイスの両方によってサポートされる様々な特徴を除くサポートされる特徴のセットをネゴシエーションすることができる。

[0075]


前述から本発明の様々な例示的実施形態はハードウェアおよび/またはファームウェアで実装され得ることが明らかであろう。さらに、様々な例示的実施形態が、少なくとも1つのプロセッサに読み取られ、実行されて本明細書に詳細に記載された動作を実行することができる機械可読ストレージ媒体に記憶された命令として実装され得る。機械可読ストレージ媒体は、パーソナルもしくはラップトップコンピュータ、サーバ、または他のコンピューティングデバイスなどの機械によって可読の形で情報を記憶するための任意の機構を含み得る。したがって、有形的および非一時的機械可読ストレージ媒体は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイス、および同様のストレージ媒体を含み得る


[0076]


本明細書の任意のブロック図は、本発明の原理を実施する例示的回路の概念的視点を表すことが、当業者には理解されよう。同様に、いずれのフローチャート、流れ図、状態遷移図、疑似コード、および同様のものも、機械可読媒体内に実質的に表され、そうしてコンピュータまたはプロセッサによって、そのようなコンピュータまたはプロセッサが明示的に示されていてもいなくても、実行され得る、様々なプロセスを表すことが理解されよう。


[0077]

それらの様々な例示的実施形態は、そこでのある一定の例示的態様を具体的に参照して詳細に説明されるが、本発明は他の実施形態が可能であり、その詳細は様々な明らかな点で変更が可能であることを理解されたい。当業者には容易に明らかなように、変形形態および変更形態が、本発明の趣旨および範囲内に留まりつつ実施され得る。したがって、前述の開示、説明および図は、単に例示を目的とし、本特許請求の範囲によってのみ定義される本発明を決して限定しない。

【図6】

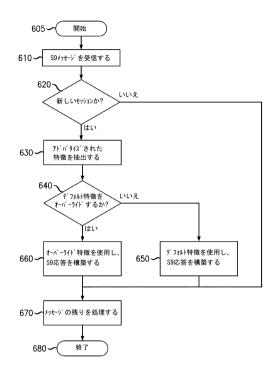


FIG. 6

フロントページの続き

- (72)発明者 マン,ロバート・エイ カナダ国、オンタリオ・ケイ・0・エイ・1・エル・0、カープ、リビングトン・ストリート・1 7.0
- (72)発明者 ブルバスキー,ミラ カナダ国、オンタリオ・ケイ・2・ケイ・3・エイ・9、カナタ、ゲイツヘッド・アベニュー・2 0
- (72)発明者 ラルセタ, サチン・ジェイ カナダ国、オンタリオ・ケイ・2・ジー・4・エム・3、オタワ、ネストウ・ドライブ・55
- (72)発明者 モヘビ サルマージ,パルトーカナダ国、オンタリオ・ケイ・2・ビー・8・ジー・6、オタワ、アンブルサイド・ドライブ・812-1100
- (72)発明者 マー,ハイチン・エイチ カナダ国、オンタリオ・ケイ・2・ジェイ・0・エヌ・1、ネピーアン、ハイレイベリー・ストリート・321

審査官 高野 洋

(56)参考文献 国際公開第2011/020514(WO,A1)

3rd Generation Partnership Project , Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC) over Gx/Sd reference point(Release 11) , 3GPP TS 29.212 V11.2.0 (2011-09) , 2 0 1 1 年 9月, 20-22ページ

3rd Generation Partnership Project , Policy and Charging Control over S9 reference point Stage3(Release11) , 3GPP TS 29.215 V11.2.0 , 2 0 1 1年 9月 , 7-14,17-22,26-28,34-42 ページ

(58)調査した分野(Int.CI., DB名)

H 0 4 B 7 / 2 4 - 7 / 2 6 H 0 4 W 4 / 0 0 - 9 9 / 0 0 3 G P P T S G R A N W G 1 - 4 S A W G 1 - 2 C T W G 1