PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/50866
GOGF 17/30 Al) -
(43) International Publication Date: 12 November 1998 (12.11.98)
(21) International Application Number: PCT/NO98/00139 | (81) Designated States: AU, CN, HU, JP, KR, NZ, PL, SG,
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
(22) International Filing Date: 6 May 1998 (06.05.98) GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: Published
08/852,099 6 May 1997 (06.05.97) UsS With international search report.

(71) Applicant: BIRDSTEP TECHNOLOGY AS [NO/NOJ;
Haakon Vlis gate 6, N-0161 Oslo (NO).

(72) Inventor: VETHE, Olaf, Gamlelinja 49B, N-1254 Oslo (NO).

(74) Agent: OSLO PATENTKONTOR AS; Postboks 7007 M,
N-0306 Oslo (NO).

(54) Title: SYSTEM AND METHOD FOR STORING AND MANIPULATING DATA IN AN INFORMATION HANDLING SYSTEM

10 16 14
w0 COMMUNICATIONS
! RAM ADAPTER ADAPTER

| T]

(87) Abstract

The present invention is directed to a database and database management system and method designed to store and manipulate any
type of data and any combination of data types. The underlying data architecture is uniquely flexible, and thus to the DBMS, the data in
the database will appear to be of a type consistent with the access method of the DBMS. Further, the present invention allows a number
of simultaneous, different access methods to the same underlying data, delivering the ability to work with complex data within one easily
managed system. One of the key aspects of the present invention is the "atomization" of the data. Atomization is the separation of the
storage of data content from its definition, as well as from its occurrences or instances in the database. An atom is the most basic element
in the database. Data content is stored in content atoms, data definitions are stored in type atoms, and each instance of the same data
value/property is represented by instance atoms. When connected, the three different atom types form a molecule. Complex data may be
represented in the database by linking together instance atoms from several molecules to form inner relations, and then by further linking
together inner relations to form outer relations.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CcA
CF
CG
CH
CI
cM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 98/50866 PCT/NO98/00139

SYSTEM AND METHOD FOR STORING AND MANIPULATING
DATA IN AN INFORMATION HANDLING SYSTEM

Field of the Invention
The present invention relates to information handling systems, and, more
particularly, to a system and method for storing and manipulating data in an

information handling system.

Background of the Invention

A database consists of one or more large sets of persistent data. Typically,
users can update and query the database using software associated with the database.

A database is the data stored by a database management system (DBMS). A
DBMS is a set of software programs that control the organization, storage, and
retrieval of data in a database. A DBMS also controls the security and integrity of the
database. Typically, a DBMS also provides an interactive query facility, which allows
a user to interactively search and analyze data from the database.

There are several prior art methods available for organizing data in a database.
The three most common types of prior art databases are hierarchical, network, and
relational. A DBMS may provide one or more of these, and other, types of database
organization.

In a hierarchical database, the data items are referred to as records, and are
stored in a tree structure. Hierarchical databases link records together in a manner
similar to a typical organization chart. This means that each record can be owned by
only one owner record. For example, a department record may “own” fifteen employee
records. However, each employee record may only be owned by one owner record,
in this case by its department record. This makes it difficult to model real world
situations using a hierarchical database. For example, an employee may be both a
member of a department and a member of a team made up of employees from several
departments. However, a hierarchical database would not allow the same employee

record to be owned by both a department record and a team record.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-

A network database is similar to a hierarchical database, however, data records
may be freely interconnected, with no requirement that the data records fit in a tree
structure. In a network database, an employee record could be owned by both a
department record and a team record.

Both hierarchical databases and network databases are time-consuming to
search and difficult to change. Changing the data structures in a hierarchicaf or a
network database typically requires shutting down the database and rebuilding it.

Another type of prior art database is a relational database. In a relational
database, all data is stored in simple tables, referred to as relations. Relational
databases remove the complex relationships between records found in hierarchical and
network databases. The design of the records in a relational database provides a
common field, such as employee number, for matching. Often, the fields used for
matching are indexed in order to speed up searching.

However, there are several disadvantages to relational databases. Relational
databases are complex and unnatural for many data structures (i.e. network type data
structures). Relational databases are redundant, as many fields are stored in more than
one relation. While the use of index fields can increase query speed, the space needed
to store the indexes can sometimes become significantly larger than the space needed
to store the data in the database. The use of indexes is also redundant. This
redundancy, along with the redundant storage of data fields in more than one relation,
can cause performance degradation when there are a high volume of updates to the
database. Finally, the administration cost of a relational database is high, as data must
be frequently reorganized to keep performance acceptable.

Because of the many disadvantages of prior art databases, such as hierarchical,
network, and relational models, some software manufacturers have begun developing
object-oriented databases (OODBs). However, the OODBs that exist today use
traditional storage technology (i.e. relational and other) to actually store the data.
Current OODBs and object database management systems (ODMSs) are really object-
oriented interfaces to old database technologies and old database management systems.

Current OODBs and ODMSs actually try, although not very successfully, to use

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/50866 PCT/NO98/00139

3.

today’s currently existing technology (i.e. relational and other) to store object-oriented
data.

Consequently, it would be desirable to have a database, and database
management system and method, for organizing data so that it can be accessed as if it
were any conceivable database organization, including those discussed above. It would
be desirable if the system and method could support many simultaneous, diﬁ'érent
access methods and storage/retrieval syntaxes. Further, it would be desirable if the
system and method allowed fast and efficient searching, dynamic schema evolution with
no need to take the database off-line for restructuring, and automatic history

generation.

Brief Summary of the Invention

Accordingly, the present invention is directed to a database and database
management system and method designed to store and manipulate any type of data
(i.e. text, numeric, spatial, graphical, etc.) and any combination of data types. The
underlying data architecture is uniquely flexible, and thus to the DBMS, the data in the
database will appear to be of a type consistent with the access method of the DBMS
(although, of course, the underlying structure of the database does not change).
Further, the present invention allows a number of simultaneous, different access
methods to the same underlying data, delivering the ability to work with complex data
within one easily managed system.

One of the key aspects of the present invention is the "atomization" of the data.
Atomization is the separation of the storage of data content from its definition, as well
as from its occurrences or instances in the database. An atom is the most basic element
in the database. Data content is stored in content atoms, data definitions are stored in
type atoms, and each instance of the same data value/property is represented by
instance atoms. When connected, the three different atom types form a molecule.
Complex data may be represented in the database by linking together instance atoms
from several molecules to form inner relations, and then by further linking together

inner relations to form outer relations.

SUBSTITUTE SHEET (RULE 26)

10

WO 98/50866 PCT/NO98/00139

-4-

One advantage of the present invention is that it is able to automatically
maintain a separate chronological history for every instance atom in the database.
When modifying the content atom (i.e. the data value) of a molecule, the database will
(at the user's option) either reconnect the instance atom to a new content atom, or
generate a new instance with the new content and link the old instance into a history
chain. _

Another advantage of the present invention is a unique search structure which
allows for fast and efficient searching of the database. For each content atom, the
DBMS uses the 'n' most significant bytes in the data as a vector into the system's search
structure. The DBMS splits the search structure into 'm' separate mini-structures
where 'm' is the range of the 'n' most significant bytes. The actual content atom is then

stored in its vector's mini-structure.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

Brief Description of the Drawings

The foregoing and other features and advantages of the present invention will
become more apparent from the detailed description of the best mode for carrying out
the invention as rendered below. In the description to follow, reference will be made
to the accompanying drawings, where like reference numerals are used to identify like
parts in the various views and in which:

Figure 1 is a block diagram of an information handling system capable of
storing and manipulating the atomic database of the present invention;

Figure 2 depicts a content atom, type atom, and instance atom linked together
to form a molecule;

Figure 3 depicts several molecules linked together to form an inner relation;

Figure 4 depicts two inner relations linked together to form an outer relation;

Figure S illustrates the manner in which history links may be used to maintain
instance history;

Figure 6 depicts the internal components of the database of the present
invention;

Figure 7 depicts further details regarding the internal structure of the database
of the present invention;

Figure 8 depicts an internal structure of the database used to improve searching
performance;

Figure 9 depicts the search structure of the present invention;

Figure 10 depicts the exposed access methods of the present invention;

Figure 11 is a flow chart illustrating a method of creating a database in
accordance with the present invention;

Figure 12 is a flow chart illustrating a method of adding a content/instance atom
to the database;

Figure 13 is a flow chart illustrating a method of searching the database; and

Figure 14 is a flow chart illustrating a method of updating a content/instance

atom.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

._6_

Detailed Description of the Preferred Embodiment

The invention may be implemented on a variety of hardware platforms,
including personal computers, workstations, mini-computers, and mainframe
computers. Many of the steps of the method of the present invention may be
advantageously implemented on parallel processors of various types. Referring now
to Figure 1, a typical configuration of an information handling system that may be used
to practice the novel method of the present invention will be described. The computer
system of Figure 1 has at least one processor 10. Processor 10 is interconnected via
system bus 12 to random access memory (RAM) 16, read only memory (ROM) 14, and
input/output (I/O) adapter 18 for connecting peripheral devices such as disk units 20,
tape drives 40, and printers 42 to bus 12, user interface adapter 22 for connecting
keyboard 24, mouse 26 having buttons 17a and 17b, speaker 28, microphone 32,
and/or other user interface devices such as a touch screen device 29 to bus 12,
communication adapter 34 for connecting the information handling system to a data
processing network, and display adapter 36 for connecting bus 12 to display device 38.
Communication adaptor 34 may link the system depicted in Figure 1 with hundreds or
even thousands of similar systems, or other devices, such as remote printers, remote
servers, or remote storage units.

The system and method of the present invention are designed to store and
manipulate any type of data (i.e. text, numeric, spatial, graphical, etc.) and any
combination of data types. The underlying data architecture is uniquely flexible. As
a result, the database management system (DBMS) of the present invention can be a
relational DBMS, an object DBMS, a hierarchical DBMS, or any other DBMS. In
addition, each structure's storage/retrieval syntax (e.g. SQL for relational, OQL for
object, etc.) may be used to access and retrieve data from the database. To the DBMS,
the data in the database will appear to be of a type consistent with the access method
of the DBMS (although, of course, the underlying structure of the database does not
change). Further, the present invention allows a number of simultaneous, different
access methods to the same underlying data, delivering the ability to work with

complex data within one easily managed system.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-7-

One of the key aspects of the present invention is the "atomization" of the data.
Atomization is the separation of the storage of data content (e.g. the string "John
Smith") from its definition (i.e. its data type and relationship to other data elements),
as well as from its occurrences or instances in the database.

An “atom,” also referred to as an “element,” is the most basic element in the
database. Referring now to Figure 2, the relationship among the three element‘s, or
atom types, is depicted. Data content, in this case “John Smith,” is stored in content
atom 50, its definition is stored in type atom 52, and each instance of the same data
value/property is represented by instance atom 54. When connected, the three different
atom types 50, 52, 54 form molecule 56. Type atoms 52 and instance atoms 54
consist of a data structure of values and pointers. The DBMS manages these atoms
and the many possible relationships between them.

Type atom 52 contains the definition of instance atom 54 (referred to as a field
definition in prior art terminology). This definition is a data structure with a number
of elements including both a typename and a basetype. The typename could be "Name,"
"Birthdate," "Patient," “Supplier," etc. The basetype determines how the data is
physically represented in the database (i.e. name = text, birthdate = long integer, etc.).

Content atom 50 holds data values (i.e, "John Smith,” "10091962," etc.). Each
data value is stored only once in the database. Multiple instances of the same data
value are differentiated by their instance atoms 54 (as described below with reference
to Figures 6 and 8). Even if a data value is common to several type atoms 52 it is still
physically stored just once. For example, "John Smith" could be an instance of type
atoms "Attorney," "Parent," and “Supplier,” but only one content atom with "John
Smith" as its data value is created. Content atom 50 holds both the data value and a
pointer to the structure of its instance atoms 54 (as described below with reference to
Figures 6 and 8).

Instance atom 54 acts as the connector between type atom 52 and content atom
50. Each instance atom 54 defines one occurrence of a combination (i.e., Type atom
"Attorney" + Content atom "John Smith"), which represents an instance of a field or

object in the database.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139 -

-8-

Molecule 56 is depicted in Figure 2, and consists of one atom of each type 50,
52 bound through an instance atom 54. An incomplete molecule (not shown) consists
of an instance atom 54 connected to either a type atom 52 or a content atom 50, but
not to both. An incompiete molecule may be used to store data with no predefined
type. This allows the flexibility to store data, and decide on its type later. An
incomplete molecule may also be used to define instances with no data or with
undefined data. This adds a flexibility to database desigh that is not available in the
prior art, but is often needed. For example, suppose the DBMS receives unstructured
data from optical scanning of newspaper advertisements. It is impossible for the
DBMS to know the type of the various text items in an advertisement, because the
placement of different items (phone, fax, address, name, description etc.) will be
different for each advertisement. Therefore, all items initially do not have a type, but
because their content is known a user may search for the items. At a later point in time,
specific types may be allocated to the items.

Referring now to Figure 3, an inner relation 60 is depicted. In this example,
inner relation 60 consists of instance atoms 54, 62, 64, and 66, which are linked
together with pointers 68. Inner relation 60 can be used as the equivalent to the data
fields in a conventional record, or can be a more complex data type, such as a spatial
data type, with one atom for each of “n” coordinates.

As shown in Figure 3, an owner is the first instance atom, in this case instance
atom 54, in inner relation 60. The members are the instance atoms, including the
owner, which belong to the inner relation. In the example shown in Figure 3, instance
atoms 62, 64, and 66, along with owner atom 54, are the members of inner relation 60.

Inner relations may be linked together to form outer relations. One of the
available basetypes is "pointer," which means that a content atom in a molecule can act
as a pointer to a specific place in the database, usually an instance atom (e.g, an
instance atom in another inner relation). This capability allows linking between distinct
inner relations to form infinitely complex data structures.

Referring now to Figure 4, an example of an outer relation is illustrated. In
Figure 4, there are two inner relations shown, inner relation Person-1 80 and inner

relation Person-2 82. Person-1 80 consists of three instance atoms 54, 82, and 84.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

9.

Instance atom 54 is linked to content atom 50 and type atom 52. Instance atom 82 is
linked to content atom 86 and type atom 88. Instance atom 84 is linked to content
atom 90 and type atom 92. Person-2 82 consists of two instance atoms 94 and 96.
Instance atom 94 is linked to conteﬁt atom 98 and type atom 100. Instance atom 96
is linked to content atom 102 and type atom 104. _

In the example depicted in Figure 4, Person-1 80 is the parent of Person;2 82
(note that type atom 92 is of type “CHILD”). Content atom 90 contains the address
of instance atom 94 (as denoted by dashed line 106). Person-1 80 could be linked to
several children through the use of additional address links, similar to the address link
of content atom 90. The combination of two or more inner relations forms an outer
relation, which in this case could represent an entire family.

The system and method of the present invention is able to automatically
maintain a separate chronological history for every instance atom in the database.
When modifying the content atom (i.e. the data value) of a molecule, the database will
(at the user's option) either reconnect the instance atom to a new content atom, or
generate a new instance with the new content and link the old instance into a history
chain. As a result, the database can automatically maintain a separate chronological
history on every instance in the database.

An example of instance history formation is depicted in Figure 5. Type atom
110 is linked to three instance atoms, Instancel 112 (which is linked to Content1 114),
Instance2 116 (which is linked to Content2 118), and Instance3 120 (which is linked
to Content3 122). Note that history links 124 connect Instance3 120 with two older
versions 126, 130 of Instance3 (along with their content atoms 128, 132).

The main internal components of the database of the present invention are
shown in Figure 6. The components depicted in Figure 6 are stored in RAM 16 of
Figure 1. The solid lines in Figure 6 show the links defining molecules, while the
dashed lines show the links defining inner relations. As discussed above, withe
reference to Figure 2, each molecule consists of a content atom 150, an instance atom
152, and a type atom 154. ‘Inner relations are formed by defining links between
instance atoms 152. Search structure 156 is defined in more detail below, with

reference to Figure 9. Type atoms 154 are stored in dictionary 158, which is itself, a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-10-

database according to the present invention, thus providing user-extensibility for type
definitions.

Further details regarding the internal structure of the DBMS are illustrated in
Figure 7. When each type atom 160 is created, it contains a set of characteristics. In
the described embodiment, these characteristics include basetype 162, typename 164,
type description 166, type handle 168, type low value 170, type high value 172, and
type count (instance) 174. Each type atom 160 is allocated a unique type handle 168,
which is a number that uniquely identifies the type atom 160. Type handle 168 is part
of the information contained in each instance atom 176, thus uniquely identifying each
instance atom 176 with its type atom 160.

Content atoms are maintained as an integral part of the database. Each content
atom is part of a separate search structure that starts from the content's vector
(described below with reference to Figure 9). Each instance atom is stored under its
content atom in a two-level hierarchy, as depicted in Figure 8. Referring now to Figure
8, the instance atoms 200, 202, 204, 206 are shown at the lowest level of the hierarchy,
grouped by type handle. At the first level below content atom 208, there are a set of
“branches” 210, 212, 214 each of which contains a type handle. There is one branch
for each of the type handles for which there is one or more corresponding instance
atoms (and no branch if there are no instances of a particular type handle). These
branches are linked in ascending order. This structure is used internally by the DBMS
(i.e. it is not available to the user) for searches and for improving performance.

When inserting or updating data elements, the user (typically, an application
programmer) locates the correct position in an inner relation by traversing the linking
between instances. Next, the position is found under the content/branch hierarchy, and
then the new instance (or modified instance) is stored and linked into both the instance
chain and the content structure.

The system and method of the present invention includes a unique search
structure which allows for fast and efficient searching of the database. For each
content atom, the DBMS uses the 'n' most significant bytes in the data as a vector into
the system's search structure. The DBMS splits the search structure into 'm' separate

mini-structures where 'm' is the range of the 'n' most significant bytes. The actual

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-11-

content atom is then stored in its vector's mini-structure. The search structure is similar
to a hash table except that no algorithm is needed to define its elements, and the
elements are always in sort order. To enhance performance, there is a separate search
structure for each basetype.

An example of a search is shown in Figure 9. Referring now to Figure 9,
suppose that a user wishes to locate a particular instance of “John Smith” 220. In the
described embodiment, the most significant byte (i.e. “T”) is used as a vector into search
structure 222. The entire content (i.e. “John Smith”) is used to find the correct
position within search structure 222. Only one content atom 224 in the entire databse
contains the content of “John Smith.” Once this content atom 224 is located, the user
can then search all the instance atoms linked to the content atom to find the desired
instance of “John Smith.”

The method and system of the present invention also incorporate a variety of
exposed access methods which are the sole means of access to the internal components.
The exposed functions provide means for data storage and retrieval, defining and
manipulating inner and outer relations and type atoms, as well as means for performing
a variety of system functions. The exposed access methods are illustrated in Figure 10.

Referring now to Figure 10, the exposed access methods may be an developer
access method 230 (perhaps in the form of a class library) for direct use by application
developers. Users may also access the system through other implementations of this
layer/interface which present the system as an SQL access method 232, object access
method 234, network access method 236, or other database access method, such as a
TCP/IP serialized HTML 238. Note that the underlying structure of atoms and links
remains the same in all implementations and that data can be simultaneously accessed
by different methods according to users' needs. Note also that the exposed access
methods, as well as the database itself, is stored in RAM 16 of Figure 1. The access
methods 230, 232, 234, 236, 238 interface to the database through the use of an
application programmer interface (API) 240. In addition to the access methods shown,
users may, through the use of other application programs (not shown), use API 240 to

create a new database (as discussed below with reference to Figure 11).

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-12-

Referring now to Figures 11 through 14, methods of using the present invention
will be described. Figure 11 illustrates a method of creating a new database. Through
the use of API 240, a user or user application program first creates a dictionary of type
atoms (step 300). As discussed above with reference to Figure 6, the dictionary is also
a database according to the present invention. Next, instance atoms and content atoms
are created to represent the various data items stored in the database (step 302). Note
that to a user, the combination of one instance atom and one content atom will usually
be thought of as a single data item. Finally, the appropriate instance, content, and type
atoms are linked together, through the use of pointers, to create molecules (step 304).
To represent more complex data types, molecules may be linked together to form inner
relations (as discussed above with reference to Figure 3) and inner relations may be
linked together to form outer relations (as discussed above with reference to Figure 4).

Referring now to Figure 12, a method for adding new data to the database is
illustrated. Data is received from the user (step 400) and the database is searched (step
401). Searching is described more fully below with reference to Figure 13. The system
determines if the data content exists in the database (step 402). If not, a content atom
is instantiated and linked into the search structure (step 403). If the data content does
exist already, the system determines if there is more than one branch (step 404). A
branch is a link from a content atom to one or more instance atoms of the same type.
If the content atom is only associated with one type atom, a new instance is stored in
the single branch (step 405). If the content atom is associated with more than one type
atom, the system searches for the correct type and stores the new instance in the
correct branch (step 406).

Referring now to Figure 13, a method for searching the database will now be
described. Data is received from the user (step 500). The first “n” bytes of the data
is used to select the proper mini-structure in which to begin the search (step 501). The
mini-structure is then searched (step 502). The system determines if the data has been
found (step 503). If not, the user is informed that the data does not currently exist in
the database (step 504). If the data is found, it is output to the user (step 505).

Referring now to Figure 14, a method for updating a data item in the database

will now be described. The system first finds the content/instance pair which is being

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-13-

changed (step 600). The new data is created (step 601). If history has been requested
(step 602), a new instance atom is instantiated under the newly created data (step 603)
and the new instance is set up to point to the old instance (step 604). If history has not
been requested, the old instance becomes the new instance (step 605) and is relinked
to the newly created data (step 606).

The unique architecture of the present invention provides many advantages‘over
the prior art. The present invention provides dynamic schema evolution, eliminating
the need to take the database off-line for restructuring and thus also eliminating the
overhead associated with of on-line restructuring. The system is extensible, supporting
new, user-defined data types. The database stores data codexes just once (e.g. the
string "John Smith” is physically stored just once no matter how many John Smith's
may occur in the database). This feature reduces the size of any database and, when
combined with its search structure of the present invention (described above with
reference to Figure 9), provides very high speed retrieval and update operations. The
DBMS of the present invention eliminates the need for separately defined and
maintained indexes because it maintains its own internal search structure for all data
elements. The system is, therefore, more robust and requires less system
administration.

The present invention automatically maintains a history of user-designated data
elements, dramatically reducing the amount of programming effort needed to provide
this facility in prior art systems. Maintaining history in prior art systems requires
extensive programming and database design. In relational databases this is
accomplished by defining separate history tables for each table where history is
required. The system and method of the present invention provide this functionality
automatically at the instance atom level with no separate external definitions by the
developer or database designer. The invention’s programming interface includes
functions for reversing instance modifications using the history atoms. Programming
for transaction reversal is minimized and conditions for system-initiated rollbacks can
be easily defined.

The invention further supports object inheritance, encapsulation and

polymorphism. The basetype of a type atom may change over time (through

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-14-

overloading) and a complete history is automatically maintained, eliminating the need
to convert old data values as new definitions are added. For example, type atom
“Temperature,” may be defined as INTEGER (fixed number), but there may also be
type atoms with typename "Temperature," with basetypes TEXT (formula) and BLOB
(applet). As aresult, data values can be accepted and stored in multiple formats. This
functionality can be used to provide both inheritance and polymorphism. As arother
example, the typename SPEED can be defined as an integer (e.g, basic speed = 65
mph), text describing the speed (e.g. "very fast," "extremely slow,” "faster than light"),
and a BLOB (with an applet that animates a speed bar). Note that polymorphism can
also be implemented through the different user/developer interfaces into the database.

A further advantage of the present invention is its universal object-relational-
hierarchical capability. Each inner relation may consist of any combination of
molecules (and therefore any combination of data types, number of instances, etc.) and
each inner relation may be changed at will. The present invention therefore dispenses
with the need to work with static and inflexible record and database structures.
Complex data structures can be implemented as a "native" part of the database, instead
of requiring complicated manipulation and transformation to fit into the database
structure.

Data structures can be defined to match any type of database (relational,
hierarchical, etc.), and any access method (user interface/syntax, such as SOL) can be
implemented. The DBMS effectively takes on the form of any desired DBMS, even
though the underlying system of atoms and molecules remains unchanged.

The present invention further supports first normal form databases by ensuring
that any data value is stored just once (in a content atom) and never duplicated. This
feature provides the basis for building first normal form databases.

The present invention also allows for dynamic schema evolution. Any, or all,
attributes of a type atom may be changed at will. For example, a type atom for
“Humidity” may be changed, thereby changing the description of all instances of
"Humidity" without affecting the associated content atoms or any of the instance
atoms. This is a significant advantage over conventional DBMS's, where restructuring

is required when changing record layouts, adding or removing fields, etc. Molecules

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/50866 PCT/NO98/00139

-15-

(fields) may be added, change format, or erased from an inner relation (record) without
affecting any other part of the database. The need for database restructure,
unload/load, etc., is eliminated, reducing the cost and complexity of data administration
and avoiding downtime.

The present invention also eliminates the need for index fields. Instead, an
integrated search structure based on content atoms provides the ability to qliickly
search for a specific data value. The search structure of the present invention (as
described above with reference to Figure 9) is more robust than indexes, which are
typically maintained in separate files. Thus the search structure of the present invention
reduces the complexity of database design and administration.

The present invention has several performance and storage advantages over
prior art systems. An instance atom may be disconnected, and reconnected, without
touching the associated type or content atoms. For example, an instance of "John
Smith" could be disconnected from type atom "Customer" and reconnected to type
atom "Supplier" in one step. In a conventional DBMS, this operation would require
the deletion of one record and the creation of another record, a much slower process.

Each data value/property (i.e. "John Smith") will occur only once within the
database, in a content atom. This feature saves storage space. In addition, changing
all instances with data content "John Smith" to "Tom Smith" requires just one
transaction, improving system performance dramatically. Performance is also improved
because a search for "John Smith" requires the identification of just one value, which
then automatically provides all instances with the data content "John Smith.” In
addition, empty fields in records (i.e. fields that have a null-value) do not exist in the
present invention, thus saving space and improving performance.

Complex data structures can be implemented as a "native" part of the database
instead of requiring complex manipulation and transformation to fit into the database
structure. This capability improves performance by avoiding transformation processes
for each read and write, and also produces storage space savings. Further
performance and storage savings are found in the present invention because history

information is stored at the instance atom level, rather than at the record or object level.

SUBSTITUTE SHEET (RULE 26)

WO 98/50866 PCT/NO98/00139

-16-

Although the invention has been described with a certain degree of particularity,
it should be recognized that elements thereof may be altered by persons skilled in the
art without departing from the spirit and scope of the invention. The invention is

limited only by the following claims and their equivalents.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/50866

PCT/NO98/00139

-17-

What Is Claimed Is:
1. A memory for storing data for access by a program executing in an
information handling system, comprising:
a data structure stored in said memory, said data structure including information
resident in a database used by the program and comprising:
a plurality of content elements, wherein each content element contains
a unique data item;
a plurality of type elements, wherein each type element stores type data,
and wherein each type element includes a unique type handle; and
a plurality of instance elements, wherein each instance element links one

content element and one type element.

2. A memory according to claim 1, wherein each data item is uniquely

stored in only one content element.

3. A memory according to claim 1, wherein said data structure further

comprises one or more inner relations, wherein each inner relation comprises one or

more instance elements linked together.

4. A memory according to claim 3, wherein said data structure further
comprises one or more outer relations, wherein each outer relation comprises one or

more inner relations linked together by a linking means.

5. A memory according to claim 4, wherein the linking means comprises
a content atom in a first inner relation containing a pointer to an instance atom in a

second inner relation.
6. A memory according to claim 1, wherein said data structure further

comprises one or more history links, wherein each history link links a new instance

element to an old instance element.

SUBSTITUTE SHEET (RULE 26)

WO 98/50866 PCT/NO98/00139

-18-

7. A memory according to claim 1, wherein said data structure further

comprises a data dictionary, wherein said type elements are stored in said data

dictionary.
8. A memory according to claim 1, wherein said data structure further
5 comprises a search structure, said search structure comprising; _

one or more mini-structures, wherein each mini-structure contains one or more
content elements linked together; and
for each mini-structure, a vector comprising one or more bytes of data, wherein

said vector determines which mini-structure to search for a desired content element.

10 9. A computer-readable medium for storing data for access by a program
executing in an information handling system, comprising;
a data structure stored on said computer-readable medium, said data structure
including information resident in a database used by the program and comprising:
a plurality of content elements, wherein each content element contains
15 a unique data item;
a plurality of type elements, wherein each type element stores type data,
and wherein each type element includes a unique type handle; and
a plurality of instance elements, wherein each instance element links one

content element and one type element.

20 10. A computer-readable medium according to claim 9, wherein each data

item is uniquely stored in only one content element.
11. A computer-readable medium according to claim 9, wherein said data

structure further comprises one or more inner relations, wherein each inner relation

comprises one or more instance elements linked together.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/50866 PCT/NO98/00139

-19-

12. A computer-readable medium according to claim 11, wherein said data
structure further comprises one or more outer relations, wherein each outer relation

comprises one or more inner relations linked together by a linking means.

13. A computer-readable medium according to claim 12, wherein the linking
means comprises a content atom in a first inner relation containing a pointer to an

instance atom in a second inner relation.

14. A computer-readable medium according to claim 9, wherein said data
structure further comprises one or more history links, wherein each history link links

a new instance element to an old instance element.

15. A computer-readable medium according to claim 9, wherein said data
structure further comprises a data dictionary, wherein said type elements are stored in

said data dictionary.

16. A computer-readable medium according to claim 9, wherein said data
structure further comprises a search structure, said search structure comprising:

one or more mini-structures, wherein each mini-structure contains one or more
content elements linked together; and

for each mini-structure, a vector comprising one or more bytes of data, wherein

said vector determines which mini-structure to search for a desired content element.

17. Aninformation handling system, comprising:

one Or more processors;

one or more images of an operating system for controlling the operation of said
processors;

one or more programs executing in said processors;

memory means; and

a data structure stored in said memory means, said data structure including

information resident in a database used by said programs, and comprising:

SUBSTITUTE SHEET (RULE 26)

WO 98/50866 PCT/NO98/00139

-20-

a plurality of content elements, wherein each content element contains
a unique data item,
a plurality of type elements, wherein each type element stores type data,
and wherein each type element includes a unique type handle; and
5 a plurality of instance elements, wherein each instance element links one

content element and one type element.

18. An information handling system according to claim 17, wherein each

data item is uniquely stored in only one content element.

19. An information handling system according to claim 17, wherein said
10 data structure further comprises one or more inner relations, wherein each inner

relation comprises one or more instance elements linked together.

20. An information handling system according to claim 19, wherein said
data structure further comprises one or more outer relations, wherein each outer

relation comprises one or more inner relations linked together by a linking means.

15 21. An information handling system according to claim 20, wherein the
linking means comprises a content atom in a first inner relation containing a pointer to

an instance atom in a second inner relation.

22. An information handling system according to claim 17, wherein said
data structure further comprises one or more history links, wherein each history link

20 links a new instance element to an old instance element.

23. An information handling system according to claim 17, wherein said
data structure further comprises a data dictionary, wherein said type elements are

stored in said data dictionary.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/50866 PCT/NO98/00139

21-

24, An information handling system according to claim 17, wherein said
data structure further comprises a search structure, said search structure comprising:

one or more mini-structures, wherein each mini-structure contains one or more
content elements linked together; and

for each mini-structure, a vector comprising one or more bytes of data, wherein

said vector determines which mini-structure to search for a desired content element.

25. An information handling system according to claim 17, further
comprising means for adding a data item to said data structure, said means for adding
comprising:

means for receiving the data item;

means for creating a new content element containing the data element;

means for creating a new instance element linked to the new content element;
and

means for linking the new content element and an appropriate type element to

the new instance element.

26. An information handling system according to claim 25, further
comprising:

means for determining if the data item aiready exists in a content element in the
data structure; and

means for linking the new instance element to an existing content element.

27. An information handling system according to claim 17, further
comprising means for searching the data structure to find a desired data item,
comprising;

means for selecting a mini-structure to search based on one or more bytes in the

desired data item; and

means for searching the mini-structure to find the desired content element.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/50866 PCT/NO98/00139

222

28. An information handling system according to claim 17, further
comprising means for updating a content element in said data structure, said means for
updating comprising:

means for creating a new content element;

means for creating a new instance element;

means for linking the new content element to the new instance elemeni; and

means for linking the new instance element to an old instance element.

29. An information handling system according to claim 17, further
comprising means for updating a content element in said data structure, said means for
updating comprising:

means for changing a data item in the content element; and

means for relinking the changed content element to an existing instance

element.

30. A method for managing data in a database, comprising the steps of:

creating a plurality of content elements, wherein each content element contains
a unique data item,;

creating a plurality of type elements, wherein each type element stores type
data, and wherein each type element includes a unique type handle; and

creating a plurality of instance elements, wherein each instance element links

one content element and one type element.

31 A method according to claim 30, wherein each data item is uniquely

stored in only one content element

32. A method according to claim 30, further comprising the step of adding
a new data item to the database, said adding step comprising the steps of:

receiving the data item;

creating a new content element containing the data element;

creating a new instance element linked to the new content element; and

SUBSTITUTE SHEET (RULE 26)

WO 98/50866 PCT/NO98/00139

-23-

linking the new content element and an appropriate type element to the new

instance element.

33. A method according to claim 32, further comprising:

determining if the data item already exists in a content element in the database;
linking the new instance element to an existing content element.

34. A method according to claim 30, further comprising the step of
searching the database to find a desired data item, wherein said searching comprises the
steps of’

10 selecting a mini-structure to search based on one or more bytes in the desired
data item; and

searching the mini-structure to find the desired content element.

35. A method according to claim 30, further comprising the step of updating
a content element in said database, said updating step comprising the steps of:
15 creating a new content element;
creating a new instance element;
linking the new content element to the new instance element; and

linking the new instance element to an old instance element.

36. A method according to claim 30, further comprising the steps of
20 updating a content element in said database, said updating step comprising the steps of:
changing a data item in the content element; and

relinking the changed content element to an existing instance element.

SUBSTITUTE SHEET (RULE 26)

(gz 31nY) 133HS 31N1l1sans

FIG. 1

42 ~
20 40
N NETWORK
10 16 14 18 4
C C ¢)8 {
I To) COMMUNICATIONS
é PROCESSOR RAM ROM WD oTER N OAPTER
LL
12 e
2 USER 38
_L\ INTERFACE DISPLAY
ADAPTER \/m@ ADAPTER
) S
17b N
26 X

6/ 1

9980</86 OM

6€100/860N/LDd

(9Z 3INY) 133HS 31nLlLsans

Owner

FIG. 2

Type atom

ATTORNEY
basetype text

Content atom
"John Smith"

Instance atom
Occurence of
ATTORNEY

Content
Attorney's
Photo

Member Member Member

6/ ¢

99805/86 OM

" 6£100/860N/LOd

(gZ 31nH) 133HS 31N111SENS

FIG. 4

50

Content
"John
Smith"

Instance
atom

Owner

Inner Relation Person-1

Content

"068-67-
7966"

Instance

~\ atom)
/ 106
Member [~

84~ Member

~

I Inner Relation Person-2
| 100

Instance
atom

Owner Member

Content

"059-46-
7908"

102
104

Instance
atom

\\mw

6/€

99805/86 OM

" 6£100/860N/LOd

(9z 31nY) 133HS 31NLLLSENS

114

112

118

FIG. 5

110

116
g) %
3) %

\\

History links ~124

A
/7 \

126
P \ 130
Instance 3 /. Instance 3
oid Older
128
132

Content 3 Content 3

Old Older

6/%

99805/86 OM

" 6€100/860N/LDd

WO 98/50866 PCT/NO98/00139

/158

DICTIONARY

;
atom

Search Content - Type 154
structure atom atom
154
Type
afom
Links defining molecules

———— Links defining inner relations

SUBSTITUTE SHEET (RULE 26)

WO 98/50866

Instance atom
(in database)

176
),.

6/9

FIG. 7

Type atom

PCT/NO98/00139

(in dictionary)

160 -
f

Basetype — 162
Typename - 164

'?;;:tﬁggdle) | Type description - 166
Data content pointer Type handle - 168
Type low value =170
Type high value - 172
Type count (instances) - 174
Content atom |~ 208
"John Smith"
741 . (214
210 PR e -
\J Branch . : Branch .. [Branch
type handle-2 .-~ . i type handie-4{™ type handle-7
(Name) .-~ _ ! (Patient) (Supplier)
/ : \ =212 " |
Instance atom Instance atom instance atom Instance atom
type handle2 | | type handle-2 | | type handle-4 type handle-7
200~ 202- 204 - 206

SUBSTITUTE SHEET (RULE 26)

WO 98/50866

7/9

G.9

Fl
220 ~
John S\mith A
B
C

PCT/NO98/00139

\

\ 2247

John Smith
Contentatom |—
| 222
Application Programs | Web Browser
/ / \ 238>
Developer SQL Object DB Network TCP/IP
Access Method Access Method Access Method DB Access| | Serialized
T] | Method HTML
230 232 234 23571
240
| | |)
API
\

DB

SUBSTITUTE SHEET (RULE 26)

WO 98/50866

405
/

Store in branch

(type)

PCT/NQ98/00139

8/9

FIG. 11

Create Dictionary {__ 300
of Type Atoms

|
Create Instance/Content |~_ 302
Atoms

Link Instance,
Content, and Type [~ 304
Atoms

FIG. 12

Receive data from user t—400

l

Search DB 401

— 402N r 403

St S
Content found ? 0 - C:r:feztlLink
l Yes
No ["More than one branch ? |— 404
B (type)
Y
es e 406
Search for correct type

& store in branch

SUBSTITUTE SHEET (RULE 26)

WO 98/50866 PCT/NO98/00139
979
Receive data from user | - 500
Use first 'n’ bytes
to select proper - 501
mini-structure
1
Search mini-structure [~ 502
503 504
f No e
Found ? b—————== Inform User
‘ Yes
Output — 505
Start at available |~ 600
data instance
|
Create new data |~ 601
)
History requested ? |~ 602
Yes No
! 1
Instantiate new | _ ¢5q Use old |~ 605
instance under instance
newly created data ‘
‘ Relink |~ 606
New instance
points to old 604
instance

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/NO 98/00139

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

8. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classitication system foliowed by classification symbols)

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

see abstract

X WO 96 18958 A (UFIL UNIFIED DATA 1,9,17,
TECHNOLOGIES ;AHMADI BABAK (CA)) 20 June 30
1996
see abstract
see page 1, line 1 - page 2, line 14

A EP 0 229 232 A (TEKTRONIX INC) 22 July 1,9,17,
1987 30
see abstract

A EP 0 216 535 A (TRW INC) 1 April 1987 1,9,17,

30

D Further documents are listed in the continuation of box C.

Patent tamily members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
fiting date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the internationat filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered noval or cannot be considered to
involve an inventive step when the document is taken aione

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

28 July 1998

Date of mailing of the international search report

05/08/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016

Authorized officer

Katerbau, R

Form PCT/ISA/210 (second sheet) (July 1992)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

international Application No

PCT/NO 98/00139

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9618958 A 20-06-1996 us 5684985 A 04-11-1997
CA 2206132 A 20-06-1996
EP 0797806 A 01-10-1997

EP 0229232 A 22-07-1987 JP 1860622 C 27-07-1994
JP 62160549 A 16-07-1987
US = 5047918 A 10-09-1991

EP 0216535 A 01-04-1987 us 4714995 A 22-12-1987
JP 3003259 B 18-01-1991
JP 62111348 A 22-05-1987

Form PCT/ISA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

