The present invention relates to guide and take-up devices for electric extension cords, such as those used on flat irons, fans, and other movable electric appliances.

One object of the invention is the provision of such a guide which is simple in construction, inexpensive to manufacture, and effective in use.

Another object is the provision of a guide of this class which will hold the cord above the ironing surface at all times so as to prevent the cord from dragging over the table being ironed.

Still another object is the provision of such a guide suitably mounted to swing freely so that it is always in alignment with the portion of the cord between the guide and the appliance.

A further object is the provision of a new and highly simplified take-up means for cords of this class.

An additional object is the provision of such a guide through which the cord is arranged to slide freely in accordance with the movement of the appliance to permit taking up the slack between the guide and the appliance.

To these and other ends the invention provides certain improvements and combinations of parts, all as will be hereinafter more fully described, the novel features being pointed out in the claims at the end of the specification.

In the drawing:

- Fig. 1 is a side elevational view of a holder and take-up device constructed in accordance with the preferred embodiment of the invention;
- Fig. 2 is a top plan view of the guide and its supporting bracket or base;
- Fig. 3 is a horizontal sectional view taken through the base substantially on the line 3-3 of Fig. 1 but on a larger scale than that shown in Fig. 1, and
- Fig. 4 is a perspective view of the new and simplified take-up device.

The same reference numerals throughout the several views indicate the same parts.

This invention is embodied in the present instance by way of illustration in a guide and take-up device for electrical extension cords such, for example, as those used in connection with electric irons. The device comprises, in general, a base member secured to or mounted on an ironing board or other supporting member, a tubular guide swiveled on the base member and adapted to slidably receive and guide the cord, and a weight applied to the cord to take up the slack.

Referring now to the drawing, there is shown a cord guide and take-up device constructed in accordance with the preferred embodiment of the invention. While this embodiment shows a take-up device used in connection with the cord of an electric iron, it is to be understood that the same arrangement may be used with other electrical appliances, such as for example electric fans, toasters, waffle irons, etc.

In the arrangement shown, the ironing board or work support 11 is used in connection with an electric iron 12 which is supplied with electric current by means of a cord 13, one end of which is connected to the iron in the usual manner and the other end of which is plugged into a wall socket 14 of any suitable or well known design.

The present invention provides a suitable guide member for holding the cord in elevated position above the ironing board 11 and to prevent it from dragging over the table being ironed. This guide member preferably comprises a hollow tube of sheet metal, rubber, or other suitable material formed to provide a portion 20 extending in a generally vertical direction, and a portion 21 in a generally horizontal direction, connected by a curved intermediate portion 22 to provide a cord guide of the shape best shown in Fig. 1. The upper end portion 21 may itself be curved, as shown in the drawing, but may nevertheless be to extend in a generally horizontal direction since a tangent to the curve at the mouth of the guide extends preferably approximately horizontally, as shown. This tubular guide is of larger diameter than the cord 13, and is adapted to slidably receive and guide the latter, as hereinafter more fully pointed out. To facilitate the placing of the cord in the guide member, the latter is provided with a slot 25 extending substantially the full length thereof and of sufficient size or width so that the cord may be laid in the guide member, as shown in Fig. 1, merely by passing it through the slot 25.

When the cord is in position within the guide, it is maintained in elevated position above the ironing board 11. When the iron 12 is moved away from the guide, the cord slides upwardly therein and when the iron is moved back towards the guide the cord is pulled downwardly by suitable take-up means hereafter described.

In guides of this class, it is desirable that the guide be mounted to swing so that it will always be in alignment with the portion of the cord between the guide member and the iron, so as to prevent bending of such portion of the cord, and to facilitate the sliding of the cord relative to the guide. To this end, the guide is swiveled on a suitable supporting member or base, hereafter described, so that the guide can move about a
vertical axis, as indicated in Fig. 2, and thus maintain its alinement with that portion of the cord between the guide and the iron. In order to so mount the guide member, the vertical portion 20 thereof is provided with a depending pin or member 30 of the shape best shown in Fig. 1. This pin is provided with a portion which is offset relative to the guide member and which is arranged to extend into a vertical opening formed in the base member to permit the guide member to be swiveled thereon for movement about a vertical axis. This pin or member 30 is secured to the portion 20 of the guide member by any suitable means, as for example, by rivets 31. The lower end of the pin 30 is preferably pointed, as shown in Fig. 1, the purpose of which construction will be hereinafter more fully disclosed.

The guide member is pivotally mounted on and supported by a suitable base member which, in the present embodiment, is in the form of a clamp having a part 35 thereof arranged to engage the upper surface of the board 11, and a yoke integral with and depending from the part 35. The lower portion 36 of this yoke is threaded to receive a thumb screw 37, at the upper end of which is secured a plate 38 which, when the screw 37 is turned in one direction, is arranged to engage the underside of the board 11 and to coact with the part 35 to secure the clamp thereto. The plate 38 is preferably provided with rearwardly extending arms 39, see Fig. 3, arranged to engage opposite sides of the vertical portion 40 of the yoke to retain the plate 38 in proper position relative thereto. The vertical portion 40 of the yoke engages the edge of the ironing board 11, and has formed in the upper end thereof a downwardly extending opening or aperture 41 in which the offset portion of the pin 30 is arranged to extend to pivotally mount the guide member thereon for movement about a vertical axis. The bottom of the opening 41 is preferably made flat so that when the pointed end of the pin 30 rests thereon a point contact is provided between the guide member and the base. Such a point contact enables the guide member to swing freely on the base about a vertical axis.

It is apparent from the above description that the guide is swivelled on the base member and is arranged to turn thereon so as to be at all times in alinement with the portion of the cord 13 between the guide and the iron 12. It is also apparent that when the iron 12 is moved toward or away from the base member, the cord is free to slide relative to the guide and is also maintained in elevated position thereby.

The present invention also provides a new, simple, and highly effective means for taking up the slack in the cord 13. This means comprises, in the preferred embodiment, a weight 42 of suitable size and shape suspended from the cord 13, as shown in Fig. 1. This weight member is provided with a slot 43 in which the cord 13 is slidably received. A slot 44 is formed on one face of the weight 42 and communicates with the slot 43 so that the cord 13 may be placed in the latter slot thereby by means of the slot 44, in a manner which will be apparent from an inspection of the drawing.

When the iron 12 is moved to the left, as shown in Fig. 1, the cord 13 slides in the slot 43, and when the iron is moved to the right the weight 42 acts on the cord to cause the guide member to take up the slack. By means of this simple arrangement the cord 13 is held taut regardless of the position of the iron 12 relative to the guide member.

While the member 42 has been shown as slidably suspended on the cord 13 this is by way of illustration only, as it is contemplated that a roller may be provided so as to form a rolling engagement with the cord. It is also contemplated that the weight may be secured to and movable as a unit with the cord, if desired. It is also contemplated that the guide member may be provided with small rollers over which the cord 13 may run.

While one embodiment of the invention has been disclosed, it is to be understood that the inventive idea may be carried out in a number of ways. This application is therefore not to be limited to the precise details described, but is intended to cover all variations and modifications thereof falling within the spirit of the invention and the scope of the appended claims.

I claim:

1. A guide for an electric extension cord comprising, in combination, a base member, an upstanding tubular guide member through which said cord is arranged to slide loosely, said guide member so arranged to provide guiding portions extending angularly with respect to each other, and a curved intermediate guiding portion, said guide member having a longitudinally extending slot on one side thereof to facilitate the placing of said cord in said guide member, and a pivotal connection between one of said angularly disposed portions and said base member so that said guide member and said cord may freely follow the movements of an appliance attached to said cord.

2. A guide for an electric cord connected to a movable electric appliance, comprising a base, a guide member connected to said base for pivotal movement about an upstanding axis, and extending upwardly to an upper end offset from said axis, said offset end being above the connection of said cord to said appliance, and being formed with a cord guiding opening of sufficient size to permit said cord to slide freely therethrough in a longitudinal direction, said guide member having a slot along one side so that a cord may be placed in said guide member by a lateral movement through said slot, said guide member threading the cord longitudinally through said guide member, and tensioning means for withdrawing said cord through said guide opening to take up slack in said cord between said guide and said appliance.

3. A guide for an electric extension cord connected to a movable electrical appliance, comprising a base member, a tubular guide member having a longitudinal opening therethrough of a cross-sectional size materially larger than that of said cord so that said cord may readily slide longitudinally through said guide member, said guide member extending upwardly and curving laterally, a slot in one side of said guide member, so that said cord may be placed in and removed from said guide member laterally through said slot, a pivotal connection between said guide and said base member, said guide member moving freely to follow the movements of said appliance, and means for moving the cord in one direction through said guide member to take up the slack in the portion of the cord between said appliance and said guide member.
about an upwardly extending axis, said tubular member extending upwardly and curving laterally from said pivotal connection to provide a free upper end portion offset from said pivotal axis and having an opening of a cross sectional size materially larger than that of an electric cord so that the cord may slide freely longitudinally through said opening when an attached appliance moves toward and away from said free upper end of said tubular member.

5. An electric cord guide comprising a base, a substantially inflexible curved tubular guiding member of substantial length having a lower end extending in a generally vertical direction and a free upper end extending in a generally horizontal direction at an elevation materially above said base, and a pivotal connection between said guiding member and said base, said pivotal connection having an axis extending substantially vertically and offset from said free upper end of said guiding member, so that an electric cord may pass through said guiding member and from the free upper end thereof to an electric appliance and may move freely along said guiding member as said appliance is shifted toward and away from said member, and so that said guiding member may swing about said axis to keep said upper end thereof pointing in a general direction toward said appliance when said appliance is shifted from one position to another.

HELEN H. MOSER.