NECK THRU SAFETY LOCK

Inventor: Earl J. Graser, Monroe, La.
Assignee: Olinkraft, Inc.
Filed: March 23, 1970
Appl. No.: 21,746

U.S. Cl. 206/65 E, 220/116, 229/40
Int. Cl. B65d 71/00
Field of Search 206/65 C, 65 E, 72; 220/113, 220/114, 116; 229/28 BC; 40; 294/87.2

Reference Cited
UNITED STATES PATENTS
2,950,041 8/1960 Stone..206/65 CX
3,278,075 3/1966 Weiss ...206/65 EX
3,348,611 10/1967 Wood ...206/65 E
3,253,706 5/1966 Spillson ...220/116 X
3,387,879 6/1968 Wood ...206/65 EX
3,528,697 9/1970 Wood ...206/65 EX
2,640,858 6/1953 Foster et al. ...206/72
3,005,854 10/1961 Coe ...206/72 X
3,253,766 5/1966 Coe ...206/72 X
3,478,951 11/1969 Graser ...229/40

Primary Examiner—Joseph R. Leclair
Assistant Examiner—Steven E. Lipman
Attorney—N. E. Van Behren

ABSTRACT
A multiple-article carrier of the "neck thru" variety comprising a top panel, side panels and overlapping end margins. The top panel comprises at least two terminal apertures through which the necks of packaged articles will extend. These apertures have associated therewith at least one retention tab hingely attached near the periphery of the terminal aperture and extends into said apertures at the opposite end thereof. These tabs afford a secondary retention means and will prevent bottle fall-out when the carrier is used in a package.

3 Claims, 9 Drawing Figures
NECK THRU SAFETY LOCK

BACKGROUND

This invention relates broadly to the field of packaging. More particularly, this invention relates to an improved multi-piece article carrier. Still more particularly, this invention relates to an improved wrap-around carrier of the "neck thru" variety.

As is well known in the prior art, the use of one-way disposable containers for the packaging of a wide variety of beverages has increased rapidly in recent years. This increased use of disposable containers, in turn, led to an increased demand for one-way carriers which were less expensive than the conventional basket style carriers which were commonly used with returnable containers. As is also well known, the demand for less expensive, one-way carriers has been, at least, in part, satisfied by the development of the wrap-around style carriers which require a reduced amount of blank material, and hence, which can be produced at a reduced cost.

For the most part, the prior art wrap-around carriers have proven quite satisfactory. Such carriers are, however, quite sensitive to variations in article size and to variations in the manner in which they are handled. For example, when undersized articles are packaged on the terminal ends of such carriers, it is possible that these bottles will drop from the carrier, thus causing damage to the packaged goods and/or personal injury to persons standing at or near the point of drop. Moreover, bottle fall-out, with similar injurious results, may be experienced after the carrier has been damaged due to handling, such as by tearing of the carrier at or near a corner or at one or more ends thereof or by tearing the bottom panels or the locking mechanisms which hold such panels in place. It will, of course, be appreciated that the threat of damage or injury will be greater when the containers are constructed of glass or other fragile material.

Several methods have been proposed to avoid the problems associated with the prior art wrap-around carriers. For example, a variety of cutouts, flaps and tabs have been used either singly or in combination to improve the retention characteristics of the wrap-around carriers. Moreover, selective locking devices have been used to insure a tightly fitting package, thus avoiding bottle drop-out due to variations in article size. These methods have not, however, been completely acceptable since they do not afford protection against all possible causes of bottle drop-out or because they suffer from one or more of several disadvantages such as relatively high cost of formation, difficulty of use and poor appearance in the final package.

BRIEF DESCRIPTION OF THE INVENTION

Accordingly, it is an object of this invention to provide an improved wrap-around style carrier. Another object of this invention is to provide a wrap-around carrier which is less sensitive to variations in article size. Still another object of this invention is to provide a wrap-around article carrier which is less sensitive to the manner in which it is handled. Yet another object of this invention is to provide a wrap-around carrier having a secondary retention means which would become operable in the event of a failure of the primary means of retention. A still further object of this invention is to provide a wrap-around carrier having a secondary retention means comprising major and/or minor tabs which may easily be adapted for use with a wide variety of packaging machines. These and other objects and advantages will be apparent from the description hereinafter set forth and the accompanying drawings.

In accordance with the present invention, the foregoing and other objects are accomplished with a wrap-around carrier having a secondary retention means, which carrier may be formed from a single sheet of blank material. The carrier will comprise top, side and bottom panels and be of the "neck thru" variety. The secondary retention means will comprise at least one tab which extends from a point near the periphery of the terminal apertures provided in the top panel and through which the necks of the packaged articles extend.

FIG. 1 is a plan view of a wrap-around carrier blank cut and scored in a manner necessary to the formation of a carrier as shown in FIG. 2;

FIG. 2 is a perspective view of a wrap-around carrier of the "neck thru" variety embodying the secondary retention means of the present invention;

FIG. 3 is an end view of a package comprising a wrap-around carrier of the "neck thru" variety and embodying the secondary retention means of the present invention;

FIG. 4 is a partial sectional view of the package shown in FIG. 3 taken along the plane defined by lines 4-4;

FIG. 5 is a partial sectional view of the package shown in FIG. 3 taken along the plane defined by lines 5-5, and illustrating the operation of the secondary retention means of the present invention after failure of the primary retention means;

FIG. 6 is a partial end sectional view of the package shown in FIG. 5 taken along the plane defined by lines 6-6;

FIG. 7 is a plan view segment showing an alternate embodiment of the secondary retention means of this invention;

FIG. 8 is another plan view segment showing an alternate form of the secondary retention means comprising major tabs and alternate embodiment of the secondary retention means of this invention having only one major tab.

DETAILED DESCRIPTION OF THE INVENTION

The essence of the present invention resides in the use of secondary retention means in combination with a wrap-around article carrier of the "neck thru" variety. As will be more apparent from the disclosure set forth hereinafter, the secondary retention means of this invention may be easily and conveniently used with any wrap-around carrier of the "neck thru" variety to prevent bottle drop-out as a result of variations in bottle size or damage to the carrier causing a failure of one or more of the primary retention means, without regard to such factors as panel configuration, the means used to secure the carrier in the erected formation, or other means used to improve overall retention. As will be more apparent from the disclosure set forth hereinafter, the secondary retention means of this invention will comprise at least one tab pivotally secured near the periphery of the terminal "neck thru" apertures. For purposes of this disclosure, terminal "neck thru" aperture shall mean an aperture provided in the top panel of a wrap-around carrier such that the neck of a packaged article will extend therethrough, which aperture is positioned such that at least one side of the article positioned therein does not touch either a side panel or another bottle.

The present invention is most conveniently described by reference to the figures which are appended hereto for purposes of illustrating said invention but which are not intended in any way to limit the scope thereof. Referring then to FIG. 1, there is shown a unitary sheet of blank material which is cut and scored so as to define the bounds of the various panels and other elements of a "neck thru" wrap-around carrier having a secondary retention means within the scope of the present invention associated therewith. The blank may be prepared from paper, paperboard, or a polymeric material, etc. As can be seen in the Figure, the blank comprises a top panel, which is pivotally connected to sloping top panels, and 2', along scored fold lines, 3 and 3', respectively. As can also be seen in the Figure, the sloping top panel, 2, comprises tabs, 4-4, which are pivotally attached thereto along scored fold lines, 5-5, and cut lines 6. The top panels, 2 and 2', are in turn, pivotally connected to side panels, 7 and 7', along scored fold lines, 8 and 8, respectively. In the embodiment illustrated, the side panels, 7 and 7', are pivotally
connected to overlapping bottom panels, 9 and 9', through contour panels, 10-10 and 10'-10', which contour panels are connected to side wall panels, 7 and 7', along scored fold lines, 11-11 and 11'-11', respectively, along one edge and to bottom panels, 9 and 9', along scored fold lines, 12-12 and 12'-12', respectively, along the opposite edge. The lower edges of side wall panels, 7 and 7', are cut such that heel protection tabs, 13-13 and 13'-13', extend outwardly therefrom.

It should be noted that overlapping bottom panels, 9 and 9', which panels are sometimes referred to herein as end margins and sometimes simply, margins, are separated from the side panels, 7 and 7', by cutouts, 14-14 and 14'-14', respectively. The periphery of cutouts, 14-14 and 14'-14', is contoured such that said cutouts will circumscribe the outer corners of the bottles packaged in the subject carrier. This, in turn, permits contour panels, 10-10 and 10'-10', to slope inwardly from side wall panels, 7 and 7', when the carrier is erected, thereby reducing the amount of blank material required to circumscribe a given number of bottles when the blank is used in a package. Because of the reduced amount of blank material required by the configuration as illustrated, it is particularly preferred that the secondary retention means of the present invention be used in combination with a carrier having such a configuration. It will be appreciated, however, that the secondary retention means of this invention may be used to an advantage with any style of wrap-around carrier including, but not limited to, carriers in which the end margins are pivoted directly to the side wall panels and carriers having a single top panel, which panel lies in a plane substantially parallel to the plane defined by the overlapping end margins.

As can be seen in FIG. 1, end margin, 9, comprises locking flaps, 15-15, which are pivotally attached thereto along scored fold lines, 16-16. The locking flaps, 15-15, carry locking tabs, 17-17, which are pivotally attached thereto along scored fold lines, 18-18. It should be noted that when locking flaps, 15-15, are rotated out of the plane of end flap, 9, the section previously adjacent the leading edge of the locking tabs, 17-17, provides a long perimeter locking bar, 19-19. The end margin, 9, also comprises short perimeter locking bars, 21-21, each of which is provided with a region of weakness, 22-22, to prevent permanent distortion of end margin, 9, when the short perimeter lock is not selected. The locking devices thus illustrated are identical with those described and claimed in U. S. Pat. No. 3,478,951 which was granted on Feb. 18, 1969, in the name of the inventor of the present application, the disclosure of which is hereby incorporated by reference. Since U. S. Pat. No. 3,478,951 describes, in detail, the manner in which either long perimeter locking tabs, 23-23, or short perimeter locking tabs, 24-24, which extend inwardly from the trailing edge of locking flap, 25, cooperate with either long perimeter locking bars, 19-19, or short perimeter locking bars, 21-21, respectively, and the manner in which locking tabs, 17-17, cooperate with locking bars, 26-26, to secure the carrier in an erected position, this need not be repeated herein. It should be noted, however, that the selection of the short or long perimeter locks may be varied so as to compensate for variations in bottle size thus yielding a tighter package than could be obtained with a single locking tab or locking bar. Because of this advantage, it is particularly preferred that the secondary retention means of the present invention be used in combination with a wrap-around carrier having a multiple locking device. It should again be noted, however, that the secondary retention means of this invention may be used with great advantage in combination with a wrap-around carrier which is ultimately secured in an erected or upright position by any means, including but not limited to, carriers having a single locking device, carriers secured in an upright position with punch tabs and carriers secured by means of glue or other adhesive.

Returning now to the top panel, 1, as shown in FIG. 1, this panel comprises six apertures in a 2 × 3 arrangement. As will be readily apparent, this is a typical arrangement for a six-article wrap-around carrier. Two of these apertures, 27-27, are positioned in the central portion of the top panel, and are circular in shape, and are sized in a manner consistent with conventional practice in laying out “neck thru” containers; i.e., these apertures are sized so as to minimize the void area between the periphery of said apertures and the neck of the article extending therethrough when the blank is converted into a carrier. Ideally, these apertures will be sized such that the peripheries thereof will contact the article neck extending therethrough at every point without distorting the top panel. This would, of course, minimize if not eliminate, vertical as well as horizontal movement of the packaged article. As a practical matter, however, the ideal situation is rarely realized and as is well known in the art, relatively substantial deviations can be tolerated. The remaining apertures, 28-28 and 29-29, are terminal apertures and comprise the secondary retention means of the present invention. As illustrated in FIG. 1, the secondary retention means associated with the terminal apertures, 28-28 and 29-29, comprise two major tabs, 30-30 and 30'-30' and 31-31 and 31'-31', respectively, and two minor tabs, 32-32 and 32'-32' and 33-33 and 33'-33', respectively. As can be seen in the figure, the major tabs are of a greater length than the minor tabs and extend in a direction along the major perimeter of the top panel. The minor tabs, on the other hand, extend in a direction along the minor perimeter of the top panel. As illustrated, terminal apertures, 28-28 and 29-29, have a generally circular periphery as defined by curved line segments, 34-34', 34'-34', 35-35 and 35'-35'. In a preferred embodiment, the generally circular periphery of the terminal apertures will be of substantially the same dimension as the circular periphery of the central apertures. This will, of course, then provide substantially the same protection against bottle movement as is provided by the top panel around the periphery of the central apertures and thereby minimize possible damage to the secondary retention means caused by such motion. It should be noted, however, that a generally circular configuration of the terminal apertures which is properly sized, although exhibiting great advantage, is not essential to the present invention. In this regard, it should be noted that an aperture formed from virtually any combination of curved or straight lines would be operable in the present invention since resistance to bottle movement will be provided by the secondary retention means. Moreover, many non-circular configurations which will provide the necessary resistance to bottle movement without exerting potentially damaging force on the secondary retention means are possible. Such configurations include, but in no way are limited to, configurations having five or more equal sides, which configurations contact the bottle neck at least one point on each side, said point of contact being in the plane of the top panel. As can be seen in FIG. 1, the secondary retention means are hingedly attached to the top panel at a point removed from the general periphery of the apertures. As can be seen in the figure, major tabs, 30-30, 30'-30', 31-31 and 31'-31', are hingedly attached to the top panel along scored fold lines, 36-36, 36'-36', 37-37 and 37'-37', respectively. As can also be seen in the figure, these hinge points are located outside the general periphery of the terminal apertures. Similarly, minor tabs, 32-32, 32'-32', 33-33 and 33'-33', are hingedly attached to the top panel along scored fold lines, 38-38, 38'-38', 39-39 and 39'-39', respectively. As can be seen, the hinge points of the minor tabs are also removed from the general periphery of the terminal apertures. The purpose of removing these hinge points from the general periphery of the terminal apertures will be discussed more fully hereinafter.

As has already been noted, essentially any aperture configuration may be used to attain the advantages of the present invention. Similarly, it will be readily apparent to those of ordinary skill in the art that the number of supporting tabs, as well as their shape and size, may be varied widely and no attempt will be made herein to present an exhaustive list of all opera-
ble variations. It should be noted, however, that the overall
effectiveness of the secondary retention means will vary with
both the number and position of the major and/or minor tabs
employed. For example, when only one tab is employed, it will
prevent bottle drop-out in only one general direction, and
hence, should be placed, for maximum advantage, so as to
prevent drop-out in the most probable direction.

Although, as has already been noted, no attempt will be
made herein to provide an exhaustive list of secondary reten-
tion means configurations, FIGS. 7, 8 and 9 have been in-
cluded for purposes of illustrating ultimate embodiments
wherein one, two and three supporting tabs are employed to
provide a secondary retention means associated with each of
the terminal apertures. Each of these figures is a partial
view showing a segment of the top panel, including one pair of
terminal apertures. It will, of course, be appreciated that
similar secondary retention means will be associated with the
terminal apertures which are not shown. As can be seen in
FIG. 7, terminal apertures, 729—729, are of a generally cir-
cular configuration. Each of said apertures is provided with three
supporting tabs, 731—731, which are hingedly connected to
top panel, 701, along scored fold lines, 737—737. As can be
seen in the figure, the hinge points are removed from the
general periphery of the terminal apertures. In FIG. 8, ter-
mal apertures, 829—829, are each provided with two major tabs,
831—831. As can be seen in the figure, major tabs, 831—831,
are hingedly attached to top panel, 801, along scored fold lines, 837—837. As is preferred in the present in-
vention, the hinge points are removed from the general
periphery of the terminal apertures. In FIG. 9, terminal aper-
tures, 929—929, are each provided with a single major tab,
931—931. As can be seen in the drawing, the major tabs,
931—931, are hingedly attached to top panel, 901, along
scored fold lines, 937—937, which scored lines are removed from the
general periphery of the terminal apertures. It should
be noted at this point that the secondary retention means as
illustrated in FIGS. 7—9, inclusive, as well as that illustrated in
FIG. 1, enjoy the advantage that no additional blank material
is required therefor over and above that required for a con-
ventional "neck thru" carrier since the major and/or minor tabs
are cut from all or a portion of the material which would
normally be discarded after cutting the "neck thru" apertures.

The present invention and its advantages will be better
understood by reference to the remaining figures; i.e., FIGS. 2—6,
inclusive, which are appended hereto. Referring then to FIG.
2, FIG. 3 is shown a perspective view of a carrier erected from
the blank shown in FIG. 1. FIG. 4 is shown without the bott-
les packaged therein but with the secondary retention means
surrounding terminal apertures, 28—28, extending upwardly
and in a position which would be assumed were bottles con-
tained therein. As can be seen in the figure, the carrier com-
pri ses: a top panel, 1; sloping top panels, 2 and 2'; side wall
panels, 7 and 7'; contour panels, 10—10 and 10'—10'; and
overlapping bottom panels, 9 and 9'. As can also be seen in
the figure, heel tabs, 13—13 and 13'—13', extend downwardly from side wall panels, 7 and 7', respectively, and will afford protection to the bottom portion of bottles packaged in said carrier. For convenience, the manner by
which bottom panels, 9 and 9', are interlocked, is omitted. Such detail is, however, clearly set forth in the U. S.
Patent previously discussed herein.

When bottles are extended through the terminal apertures,
the secondary retention means pivot about their respective
hinge points and extend upwardly therefrom. For example,
and as can be seen in the figure, major tabs, 30—30 and 30'—30'
pivot about scored fold lines, 36—36 and 36—36', respectively, at an angle with respect to their original, neutral
position. Similarly, minor tabs, 32—32 and 32'—32', pivot
about scored fold lines, 38—38 and 38'—38', respectively,
and extend upwardly therefrom, also at an angle with respect
to the original, neutral position. It will be appreciated, that
the secondary retention means surrounding the terminal aper-
tures, 29—29, will extend upwardly in a similar fashion when
bottles are extended therethrough.

FIG. 3 is an end view of a carrier such as shown in FIG. 2
but with bottles placed therein to further illustrate the position
assumed by the secondary retention means when bottles, 40—
40, are extended through the terminal apertures. As can be
seen in the figure, the major tabs, 30—30, are longer than
minor tabs, 32—32 and 32'—32', and extend upwardly to
a greater height than said minor tabs. It should be noted that
in the embodiment shown, the upward extension of both the
major and minor tabs stops before either become engaged
beneath the crown or cap, 41. Such an engagement could, of course, be tolerated, but is not essential to the
present invention. In fact, it is contemplated that the point at
which one or more of the secondary retention means will con-
tact the bottle relative to the crown or cap will vary depending
upon the particular bottle style as well as the size and shape of
the particular tabs employed. It will be appreciated, however,
that any tab which, in a relaxed or neutral position, extends
into the aperture will engage the crown or cap or other protu-
berance provided on the bottle neck when the primary sup-
port means fail and the bottle begins to slip from the carrier.
As will be pointed out more fully, hereinafter, the success of
such an engagement will depend upon the relative position of
the secondary retention means with respect to the general
periphery of the aperture and the angle at which the seconda-
ry retention means extends upwardly from the top panel.

FIG. 4 is a partial sectional view taken along the plane
defined by lines, 4—4, in FIG. 3, showing the relative positions
of the secondary retention means in a side view. As can be
seen in the figure, major tabs, 30 and 30', extend upwardly
from scored fold lines, 36 and 36', with the top portions
thereof resting against bottle 40. From this position, it can
be seen that either major tab, 30 or 30', would engage beneath
the crown or cap, 41, to prevent the bottle from falling out of
the carrier. Which of the two major tabs would engage the
crown or cap depends principally upon the direction of move-
ment of the bottom of the bottle, 40. For example, if the bot-
tom were to move toward major tab, 30, major tab, 30', would
engage the crown. Conversely, if the direction of movement
were toward major tab, 30', major tab, 30, would engage
the crown, 41.

At this point, it should be noted that the angle at which
the secondary retention means extend upwardly is an important
consideration of the present invention. For example, when major
tabs, 30 and 30', as shown in FIG. 4, extended upwardly from
a point adjacent to or in juxtaposition with the general
periphery of the terminal aperture, 28, the probability that
they would catch crown, 41, and thereby prevent bottle drop-
put is less. However, to say that such a configuration would not be operable, and in fact, if an embod-
iment illustrated, such a configuration would prevent bottle
drop-out. This is due principally, however, to the fact that
one or more of the secondary retention means tabs will lock
beneath a crown having a structure identical to or similar with
that of cap, 41. The crowns of many bottles which are
packed in "neck thru" wrap-around carriers are not, how-
ever, fashioned such as that illustrated, and hence, it would be
possible for the secondary retention means to slip by the pro-
tuberance or crown and thereby fail of their intended pur-
pose. Accordingly, it has been found advantageous to remove
the hinge point from the general periphery of the aperture and
preferably, the hinge point will be moved sufficiently such that
the angle formed by the secondary retention means is about
75° or less. More preferably, this angle will be reduced to
about 60°. In a preferred embodiment, however, this angle
should not be less than about 45° since at this point tab
strength becomes a factor and failure could result from bend-
ing of such tabs. For purposes of clarity, it should be noted that the angle referred to herein is the angle between
the secondary retention means in their extended position and
the same secondary retention means when in a relaxed or neutral
position.

The runner in which the secondary retention means of the
present invention functions to prevent bottle drop-out is illus-
trated in FIGS. 5 and 6. FIG. 5 is a partial sectional view of
the
carrier shown in FIG. 3 and taken along lines, 4—4. As can be seen in FIG. 5, as the bottom of bottle, 40, slips from the carrier and in the direction of major tab, 30, the inner edge of crown, 41, moves downwardly and engages major tab, 30'. Depending upon the weight of the bottle, this could in turn cause a distortion of the top panel, 1, thus permitting the bottle to drop further such that the minor tabs, 32 and 32', also engage the lower edge of crown, 41, as shown in FIG. 6. In this manner, the major and minor supporting tabs cooperate to prevent bottle drop-out after said bottle is no longer supported on bottom panels, 9 and 9'.

PREFERRED EMBODIMENT

In a preferred embodiment of the present invention, the secondary retention means will comprise four tabs pivotally attached to the top panel of a "neck thru" wrap-around carrier. Two of these tabs will extend along the major axis of said top panel and two of said tabs will extend along the minor axis of said panel. Each of the terminal apertures will be provided with such secondary retention means. Since bottle drop-out is most probable along the major axis of the carrier, the supporting tabs which extend along this axis will be longer than those extending along the minor axis. Moreover, the hinge points of each of the tabs comprising the secondary retention means will be removed from the general periphery of the terminal apertures a distance sufficient to permit said tabs to contact the packaged bottles at an angle within the range of 45° to 75°, and in a most preferred embodiment, this angle will be between 45° and 60°.

The general periphery of both the terminal apertures and the central apertures will be fashioned such that the void area between the bottle neck and the top panel is minimized. Further, in a preferred embodiment, the carrier will comprise sloping top panels and sloping contour panels so as to minimize the amount of blank material required to fabricate a carrier for a given set of bottles. Also in a preferred embodiment, the overlapping bottom panels will interlock through a locking device which may be varied with variations in overall bottle perimeters.

Although the present invention has been described and illustrated by reference to particular embodiments, it will be readily apparent that the present invention lends itself to additional variations which will be obvious to those skilled in the art. For example, the present invention could be used with carriers designed for the packaging of any number of articles, especially for carriers designed for carrying two to 12 bottles in arrangements such as 2 × 3, 2 × 4, and 2 × 6. Moreover, all of the apertures including the central apertures could be provided with secondary retention means without deviating from the spirit or scope of the present invention. Accordingly, reference should be made solely to the appended claims to determine the scope of the invention.

Having thus described and illustrated the invention, what is claimed is:

1. A package carrying a plurality of elongated necked containers, comprising:
 a. a top panel, having formed therein a plurality of neck receiving apertures;
 b. side panels, pivotally attached to said top panel;
 c. bottom panels, pivotally attached to said side panels, said bottom panels having formed thereon primary retention means fixedly attaching the bottom panels together and retaining the elongated necked containers within the package;
 d. a plurality of elongated necked containers, carried within the package, each container having a cap fixedly attached to the elongated necked portion of the containers, said containers being carried within the package by said bottom panels and being retained by said primary retention means, the elongated necked portion of the containers extending through said apertures formed in said top panel; and
 e. said apertures having formed around the periphery thereof four tabs each hingedly attached at one end thereof to said top panel along a line parallel to and spaced from a tangent to the periphery of said apertures, said tabs being spaced below the caps with the elongated necked portion of the containers positioned within the apertures, said tabs serving as a secondary retention means whenever the primary retention means fails or whenever the containers tend to drop out of the package during transportation of the package.

2. The package as defined in claim 1 wherein said tabs extend upwardly at an angle between about 45° and about 75°.

3. The package as defined in claim 1 wherein said tabs extend upwardly at an angle between about 45° and about 60°.

* * * * *